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Abstract 
 This technical report describes a simple method for using inertial data to facilitate locomotion in 

virtual environments.  The means of locomotion for virtual environments contributes greatly to the users’ 

sense of presence in the environment.  Although walking-in-place is not so realistic as real walking, it is a 

very cost-effective alternative.  Using a simple version of this algorithm both Type I and Type II errors 

were decreased compared to a previous walking-in-place algorithm.  Type I errors occur when the 

algorithm detects a step when none occurred.  Type II errors occur when the algorithm does not detect a 

step when one did occur.  Type I errors decreased from 3% to 1% and Type II errors decreased from 32% 

to 11%.  The more complex version of this algorithm promises even better results. 

Introduction 
 The means of locomotion in virtual environments plays an important role in the user’s sense of 

presence [Slater 1994].  Additionally, walking-in-place (virtual walking) as a means of locomotion in 

virtual environments is a cost-effective alternative to other forms of locomotion.  The cost for equipment 

and lab space is much less than other techniques such as wide-area tracking.  Unfortunately, the 

innaccuracy of many virtual walking methods is problematic.  Previous algorithms based on a neural 

network had Type I and Type II errors as 3% and 32% respectively [Usoh, 1999].  However, the use of 

inertial information to detect footsteps presents a potentially cheap, accurate alternative to current means of 

locomotion.  The  technique described in this report can provide good results at a fraction of the cost of 

other techniques.   

 In this case inertial data is gathered by a Crossbow Accelerometer and a National Data Acquisition 

board.  The accelerometer is fastened to the head mounted display (HMD).  This location was chosen 

because of the existing attachment points and cables that are used for the HMD.  Other locations such as 

the foot or back could also be used, but these possibilities have not been studied. 

Inertial Data 

 

Figure 1. Inertial data from 10 footsteps (Time v Voltage) 
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 As the body moves and interacts with the environment (feet hitting the floor as a step is taken) 

shock waves vibrate through the body.  These vibrations can be captured by the accelerometer, which 

measures inertial information that can be converted into digital data.  

Figure 1 shows ten steps occurring in approximately nine seconds. Each spike represents a 

footstep.  The inherent noise in the signal can be seen in the first and last seconds of the graph.  This is data 

for the accelerometer’s Z dimension.  The Y-axis is raw voltage.  The accelerometer gives a reading of 

approximately 1.5 volts (in Z) while at rest.  Acceleration due to gravity accounts largely for this value.  

Since most of the interesting vibrations occur in the vertical dimension, this is the portion of data used to 

detect steps in this algorithm. 

Algorithm 

 

 

Figure 2. Static thresholding (Time v Voltage) 

 

The general idea behind this algorithm is to look for large, fast changes in the inertial data.  This is 

accomplished by using a three-state thresholding system.  This system, shown in Figure 2 above, breaks the 

voltage readings into three ranges.  States 1 and 3 are for extreme readings, while the purpose of State 2 is 

to provide a noise region.  The algorithm looks for changes in the data that go from State 1 to State 3 in a 

short period of time.  It searches for the spikes that can be seen in Figure 2. 

Specifically, when the system detects a change from State 1 to State 2 to State 3 and back to State 

2 again, it records a step.  The reason to detect state changes from 1 to 3 is to look for the downward spike.  

The downward spike represents a change in acceleration from positive to negative with State 2 representing 

no acceleration.  The reason to wait until State 2 is entered again before announcing a step has occurred is 

to ease some of the bookkeeping.  This does introduce a small amount of latency but this small considering 

other delays in the virtual environment display system. 

The figure above shows the two threshold values between states held constant.  Although this 

makes the system simple it still provides enhancements over previous walk-in-place algorithms.  Accuracy 

can be further increased by allowing for the threshold values to be changed dynamically (called adaptive 

thresholding).  With adaptive thresholding the values for the thresholds do not need to be invented.  

Different accelerometers may give slightly different readings in different conditions.  Additionally, 

adaptive thresholding can adapt to a user’s step.  The techniques for adaptive thresholding are described in 

the following section. 

 

Definitions 
 The following is a list of definitions used in the description of the algorithm: 
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Baseline 

 The baseline is the average voltage reading over time.   

Basenoise 

Basenoise is a measure of the standard deviation of the voltage while the accelerometer is held in a 

fixed position.  This is a measure of the error inherent to the system. 

Lower/Upper Threshold 

 These are defined as the boundaries between the three states.  They can be dynamic or fixed.  

Lower Threshold Bound 

The Lower Threshold Bound is defined as a bound above which the Lower Threshold can not 

move.  The Bound is specified as being just below the Basenoise range from the Baseline. 

MINTIME 

A constant value that constrains how far apart steps (and thus spikes) should be.  A value of 1/4 of 

a second is conservative and corresponds to four steps in a second.  

MAXTIME 

A constant value that constrains how long a step should take.  This number indicates how long it 

should take for the voltage to move from State 1 to State 3.  A value of 2/3 of a second gives good 

results. 

Upper Threshold Bound 

The Upper Threshold Bound is defined as a bound below which the Upper Threshold can not 

move.  The Bound is specified as being just above the Basenoise range from the Baseline. 

 

Baseline 
 The baseline is important because it serves as a means to estimate where and how the thresholds 

should be set.  Using an estimate instead of an actual average keeps the bookkeeping costs down.  To keep 

track of the baseline an adaptive estimator (based on Van Jacobson’s algorithm) is used.  The basic form is 

shown below: 
 

baseline =  baseline +   (current_value – baseline) 
 

This is changed slightly to decrease the value of  over time.  This is necessary because baseline is 

initialized to some value that may be far away from where the average should be.  The value of  should be 

small to keep the baseline smooth.  However, if   is too small initially it takes a long time for baseline to 

reach a good approximation of the actual average value.  In this algorithm  starts out at 1 and is changed 

on each of the first 20 or 50 successive passes though the algorithm.  is changed in the following manner: 

 

  =  + (.0001 – ) / 2 
 

The value .0001 was chosen because it gives a smooth average for the inertial data. 

  

Adaptive Threshold I 
 

 As described above, having the thresholds constant can cause a number of problems.  Using a 

technique called adaptive thresholding, the thresholds can be changed to use the baseline value as an 

estimate of where they should be.  The sensitivity can be increased or decreased by changing variables that 

dictate how close to the bounds the thresholds are set.  With the first technique the thresholds vary a 

specific amount above and below the baseline of the signal over time: 
 

upper_thresh = upper_thresh_bound + (upper_thresh_bound – baseline)  up_amount 

lower_thresh = lower_thresh_bound + (lower_thresh_bound – baseline)  down_amount 
  

 The up_amount and down_amount are constants that specify how quickly the upper or lower 

threshold and the upper or lower bound converge.  Good values for these constants are .25 and .25.  With 

these values the upper and lower thresholds are set to always be one quarter of the distance between the 

bound and the baseline from the bound. 
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Adaptive Threshold II 
 

 

Figure 3. Adaptive thresholding (Time v Voltage) 

 

 The second technique incorporates the first technique and adds more complexity.  This technique 

changes the thresholds based on the height of the spikes.  Expansion of the thresholds moves them out and 

away from the baseline (the upper threshold moves up, the lower moves down).  The thresholds are 

compressed if no steps occur over a certain period of time.  They compress increasingly until reaching 

some limit (the Upper/Lower Threshold Bounds). 

 This expansion and compression is controlled with the up_amount and down_amount variables.  

These two variables are changed when a step occurs, or when no step has occurred for some amount of 

time.  They are changed by some percent of their previous value: 

 

 up_amount = up_amount + up_amount   

 down_amount = down_amount + down_amount   
 

Another approach changes the amount based on the height of the spikes compared to the baseline value.  

This technique is shown below: 

 

up_amount = (  (highest - upper_thresh_bound)) / (upper_thresh_bound-baseline)  

down_amount = (  (lowest - lower_thresh_bound)) / (lower_thresh_bound-baseline)  
 

With this idea the up_amount is set to the value that will solve the following equation (down_amount is 

solved in a similar manner): 
  

upper_thresh_bound +   (highest – upper_thresh_bound) = upper_thresh_bound +  
(upper_thresh_bound – baseline) * up_amount 

 

This equation (indirectly) describes that the upper_thresh should be set so that it is  of the way between 

the upper_thresh_bound and highest.   

In Figure 3 the latter technique is shown.  When the algorithm starts no steps occur for the first 

second, but the thresholds are compressed to the Upper/Lower Thresh Bounds.  As steps occur the 

thresholds expand.  After approximately seven seconds, no more steps occur and the thresholds slowly 

compress. 

The following figure shows the algorithm (with adaptive thresholding II). Pink circles indicate 

spikes that were deemed to be steps and are actual steps.  The green cross indicates a spike that the 

algorithm incorrectly identified as a step, although none actually occurred. 
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Figure 4 Detecting steps 

Results 
 To measure the performance of this algorithm compared with the previous neural network 

implementation the Type I and Type II errors that occurred with each method were studied.  Type I errors 

occur when the algorithm detects a step when none occurred.  Type II errors occur when the algorithm does 

not detect a step when one did occur.  Type I errors are more serious because they make the user move 

through the virtual environment without their control.   

The error was measured by counting the number of Type I and Type II errors that occurred 

compared to the overall number of steps taken.  These results are from the simplest version of the algorithm 

that does not use the adaptive thresholding techniques. 

 

 Type I errors (%) Type II errors (%) 

Neural Network 3 32 

3-state thresholding (static) 1 11 

 

 The table indicates that this algorithm greatly improved the Type II errors and slightly improved 

the Type I errors.  The Type II errors that did occur can be attributed to the users having his/her head in an 

orientation other than vertical.  Since the algorithm only looks at data in the accelerometer’s Z dimension, 

if this is not aligned with the world’s Z axis then it does not receive all the information it needs. 

 The adaptive thresholding techniques improve on the accuracy of the static version of this 

algorithm.  Preliminary tests show that the adaptive technique all but eliminate Type I errors and the 

dynamic nature of the thresholds also decrease Type II errors. 

 Another favorable factor is the small lag time relative to the neural network approach.  The neural 

network has lag inherently built in as it uses past data along with present data to detect footfalls.  This lag 

was as much as 1-2 seconds in previous walk-in-place algorithms.  The acceleration algorithm is much 

faster to determine when a footstep has occurred.   

Future Work 
 Many of the Type II errors that still occur using this approach are caused by a non-vertical head 

orientation.  Because the current algorithm only looks for changes in inertial information in the vertical 

dimension, any rotation around the X or Y dimensions decreases the accuracy of the algorithm.  For 

example, if the accelerometer is rotated by 90 so that the Z axis now lies horizontally then all inertial data 

is in the accelerometer’s X dimension.   
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 One possibility to solve this problem would be to use the orientation of the head to rotate the 

information from the accelerometer so that it was in world coordinates.  Then the vertical component of 

this information can be used as if the head was perfectly upright. 
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