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Abstract: This paper presents a new technique, which we call depth-preserving
reflection mapping, to render mirror-like reflections on planar surfaces in constant
time. It is a hybrid solution which combines geometry-based rendering and image-
based rendering into a two-pass mirror reflection rendering approach. The technique
extends the traditional reflection mapping to preserve depth per texel and uses
forward warping to approximate the mirror-like reflections on planar surfaces. For
clarity, to distinguish these texels from the ones of traditional reflection mapping,
we call them zexels.

1 Introduction

Architectural walkthrough applications enable the user to interact in real-time with
computer-simulated environments [5]. An important goal is to represent the rich visual
complexity of the scenes. Such complexity is usually achieved with realistic il lumination
and shading models to generate images of the scene.

Unfortunately, interactive walkthrough applications trade photo-realism for frame rate.
Local il lumination or coarse global ill umination solutions are preferred because they are
“cheaper” to render. The usually-adopted global ill umination approximations only
consider ideally diffuse environments (radiosity) providing only view-independent effects
[3]. Specular (mirror-like) effects considerably enhance the realism of a scene but require
costly computation of view-dependent information on a per frame basis. However, they
add non-static shading and visual cues to the scenes, which make them more interesting
for walkthroughs. A few approaches exist to render mirror-like reflections but they are
either too slow or inaccurate for practical use in interactive walkthroughs [12][8][4][9]
[13][14]. Ray tracing is the most accurate technique to compute mirror reflections, but it
is also the slowest. Reflection mapping provides quick mirror reflections, but it is
inaccurate. For highly curved surfaces and for surfaces with highly varying curvature, the
inaccuracies of reflection mapping are almost unnoticeable, but for planar and almost-
planar surfaces the artifacts on the reflected images can be very severe.

This paper describes a new technique, called depth-preserving reflection mapping, for
rendering mirror reflections on planar surfaces. It is a hybrid solution combining
traditional geometry-based rendering with image-based rendering on a two-pass (multi-
pass) reflection rendering approach. Range images of the scene (depth-preserving
reflection maps) are captured a priori, and warped at rendering time to compute mirror-
like reflections on planar specular surfaces.
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The next sections describe how our method compares with traditional reflection mapping.
We show how the new method overcomes problems of traditional reflection mapping to
rapidly generate reflections with correct perspective foreshortening and correct visibility
(motion parallax) without requiring the rendering of the entire scene for each mirror
every frame.

2 Background and Related  Work

Several approaches have been proposed to render mirror-like reflections, but usuall y they
are either slow or inaccurate for practical use in interactive walkthroughs. We will now
review background material for the special case of planar reflections and describe some
approaches to their simulation.

Planar reflections can be rendered by a multi-pass rendering approach [7]. If there is a
single planar mirror in the scene, a two-pass approach suffices. In the first pass, the
reflected image of the scene is rendered. In the second pass, the rest of the scene (non-
mirror surfaces) is rendered [12].

The first pass takes the eye-point, Ep, and the eye-direction, Ed, reflects them according
to the planar mirror, and renders the scene from that reflected location and reflected
view-direction (Mp and Rd in Figure 1). The following formulae are used to compute the
mirrored point, Mp, and the reflected direction, Rd:

(1) )(2 NEM −+= dpp

(2) ddd ENENR −⋅= )(2

where d is the shortest (orthogonal) distance from the eye-point to the planar surface and
N is the normal vector to the planar mirror.

Figure 1 Reflection of the eye-point and the eye-direction with respect to the normal vector of a
planar mirror.

In the second pass, the scene is re-rendered for the original eye-point and eye-direction
(Ep and Ed) without rendering the mirror surface. Alternatively, the second pass can use a
texture mapping technique. The reflected image computed in the first pass is applied as a
texture onto the surface of the mirror in the second pass.
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This interpretation of planar reflections leads directly to the algorithms described in
[12][13][7]. Although this technique is simple and sounds attractive for polygonal
models, it is intensive in terms of computational time. Every mirror polygon requires the
re-rendering of the whole scene from its mirrored viewpoint at each frame. This means
dealing with the entire complexity of the scene several times every frame, which is
unpractical for large scenes.

Ray tracing relaxes the limitation of planar mirror reflections. Instead of mirroring the
viewpoint and view-direction, and computing an entire image per mirror, ray-tracing
tracks rays from the eye to the scene and reflects their direction whenever they hit a
mirror-like surface [8]. Although ray tracing can be more efficient in terms of the number
of sampled directions, compared to scene re-rendering, it cannot exploit current graphics
hardware. This limitation makes ray tracing a slow technique for rendering mirror-like
reflections and not applicable for interactive applications.

Reflection maps [4][9][13][14] have long been used for rapid rendering of mirror
reflections. The scene surrounding specular objects is projected onto the surface of a
sphere or cube. The captured scene is then used as a texture map on the specular objects.
Even though reflection mapping is much faster than ray tracing and scene re-rendering, it
computes only quick approximations of the mirror reflections. The artifacts can be
severe, due to assumptions about distance from the specular object to the rest of the
scene, as described in Section 3.

3 Traditional Reflection Mapping

Reflection mapping [4][9] is the most efficient shading technique to simulate specular
reflections for interactive rendering. Images of the environment around a particular
viewpoint (e.g., the center of the scene) are precomputed and then mapped onto the
surface of specular objects by stretching and compressing the map, depending on the
viewing direction and the surface normal at each pixel. The limitation of this approach is
that the mirror reflection is geometrically correct only for a surface point at the exact
same location the images (textures) were generated from. Perspective distortions and
incorrect occlusion (motion parallax) are the most noticeable artifacts.

Although reflection mapping generates inaccurate reflections, it does a great job for
indicating the curvature of the mapped surfaces. On surfaces with high curvature or with
highly varying curvature, the inaccuracies of the reflections are almost imperceptible.
The reflected images are so complex for such surfaces that our brain can not discern their
structure. However, on planar and near-planar surfaces the inaccuracies are obvious and
can lead to incorrect perception of an environment.

Reflection mapping provides quick approximations of mirror-like reflections by trading
correctness for computational time. As a preprocessing step, a convex cell (a sphere or a
cube) is created in the center of the scene or surrounding the reflective object. Then, also
as preprocessing, images of the scene are rendered from the center of the cell and stored
as textures on its surface (Figure 2). At rendering time, a reflection vector is computed
per pixel (r1, r2, and r3 in Figure 3) using equation (2). Texture coordinates are derived
from the reflection vector, as explained in [14], and index the texture maps captured in
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the previous phase to give the color of the specular reflection at each pixel (Figure 3).
The reflection on the specular surface reconstructs the color of the surrounding
environment but only approximates the geometry of the reflected scene.

Figure 2 Capturing a texture for traditional reflection mapping: the black square is the reflection
cell . The dashed lines represent the solid angles associated with each texel of the cell . The fill ed
colored rectangles represent objects in the scene. The objects are projected onto the surface of the
reflection cell and a color is stored at each texel.

The main limitation of traditional reflection mapping is due to an assumption about
distance from the specular surface to the rest of the scene. The environment surrounding
the specular reflective surface is assumed to be remote (distant). A single image of the
scene is used to map the reflected environment onto the specular surface. This
assumption eliminates motion parallax on the reflections. No matter from where the
reflection is seen, the reflected image is always obtained by simply stretching and
compressing the environment map. This two-dimensional stretch and compress does not
resolve changes in perspective distortion and motion parallax caused by variations in the
distance from viewpoint to viewpoint. When the remote environment assumption is
satisfied, i.e, when the reflected environment is really far away from the specular object,
the artifacts are almost unnoticeable. However, in general, this assumption is not
respected and artifacts are quite perturbing.

Figure 3 Using a traditional reflection map: the yellow surface is the mirror where the reflection is
mapped. The red vectors represent the normal vector to the mirror. The green vectors depict
viewing directions. The reflection vectors, in black, index, indirectly, the texture in the reflection
map. Notice the color reconstruction of the environment map on the mirror.
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4 Depth-Preserving Reflec tion Mapping

We introduce a new reflection mapping technique that generates mirror-like reflections
with correct perspective foreshortening and correct occlusion (motion parallax) for planar
surfaces. We call it depth-preserving reflection mapping.

As an alternative for computing mirror-like reflections for planar surfaces at interactive
frame rates, we propose a modified version of reflection mapping that exploits 3D image
warping [15]. Instead of projecting the scene onto the surface of the reflection cell , we
preserve depth (disparity [10]) at each texel of the reflection map (Figure 4). Both color
and depth are stored at each texel. This modification makes texels 3D entities and allows
their 3D warping during the rendering stage. For clarity, we call these entities zexels, in
order to distinguish them from texels (no depth) of traditional reflection mapping.

Figure 4 Capturing a texture for depth-preserving  reflection mapping: the fill ed colored rectangles
represent objects in the scene. The black square is the reflection cell . The dashed lines represent
solid angles associated with zexels of one side of the cell . Each zexel stores the color and depth (z)
of the object that is visible from its corresponding solid angle. Notice that zexels are not attached to
(projected onto) the reflection cell . Each zexel is floating in space in front of the corresponding
visible object. Z is the depth (distance) from the visible object to the viewing (sampling) point.

Similarly to reflection mapping, we create a cell around the specular object and render
images of the scene taken from the center of that cell . In fact, there is no explicit need for
the cell , but we keep it for clarity. As we store the depth of each zexel, measured
relatively to the sampling point (viewpoint), the zexels are not actuall y attached to
(projected onto) the surface of the cell . They are floating in space right in front of the
object hit by the corresponding solid angles (see Figure 4).

At rendering time, zexels are warped from the reference viewpoint space into the
reflected viewpoint space. This operation is performed by forward warping [11][10] and
by taking into account the geometry of the mirror and the current viewpoint (Figure 5).
After warping all zexels of all the mirrors in the scene, the geometry (except the mirror
polygons) is rendered on the same buffer. The net effect is the mapping of the reflected
image on the screen region corresponding to the mirror(s).
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As the warping operations do not depend on the number of polygons of the scene, note
that our reflection mapping technique runs in constant time with respect to the
complexity of the scene. The algorithm depends linearly on the number of zexels.

Figure 5 Using a depth-preserving reflection map: the yellow surface is the mirror where the
reflection is mapped. The red vectors represent the normal vector to the mirror. The solid green
vectors define viewing directions. The dashed green vectors define reflected directions. For clarity,
the captured depth-preserving reflection map from Figure 4 is shown here in gray. Zexels in the
reference 3D space (the depth-preserving reflection map) are warped into the reflected space and
give location and color to the pixels of the specular (yellow) surface. Warping is performed taking
into account the viewing direction (or, analogously, the reflected direction) and the normal vector at
each point on the specular surface. Notice that the internal region of the mirror surface (in yellow)
does not have any corresponding zexel in the depth-preserving reflection map, for the particular
viewpoint of this figure. This characterizes an artifact, called exposure, in the reflected image.

4.1 Warping Reflection Images

Our technique follows the principle of planar mirrors presented in section 2. Given the
planar mirror geometry and the eye-point and eye-direction, it uses equations (1) and (2)
to compute the reflected eye-point and eye-direction. These reflected parameters, together
with the depth-preserving reflection maps, feed the forward image warper, which
computes the scene reflection for the planar mirror. The forward warper traverses all the
zexels in the reflection maps and warps each one of them to the current viewing space.

Each zexel is warped from the depth-preserving reflection map onto the mirror-reflected
image by using the following equation:
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where

- xi represents the coordinates of a zexel in a depth-preserving reflection map,

- xo represents the coordinates of the corresponding point in the reflected image,

- ci and co are the centers of projection of the reference image (depth-preserving
reflection map) and of the desired image (reflected image),

- Pi and Po are the transformation matrices of the reference image (depth-preserving
reflection map) and of the desired image (reflected image),

- and δ(xi) is the disparity of zexel xi.

The disparity [10][11] of a zexel is given by:

where z(xi) is the depth for zexel xi (the OpenGL z-buffer value for a pixel at xi), far is
the distance from the reference viewpoint to the far clipping plane, and near is the
distance from the reference viewpoint to the near clipping plane.

This warping operation characterises a mapping of a reference image (depth-preserving
reflection map) into a reflected image. Zexels from the reference image are mapped into
pixels in the reflected image. As we simply map discrete points from a grid into another
grid without performing any reconstruction, there may be regions in the reflected image
which do not receive any value. This means that we do not have a one-to-one mapping
and results in uncovered regions in the reflected image (see Figure 5). This defines the
image-based rendering artifact known as hole or exposure [6][11]. A similar problem can
occur if a reference image has fewer zexels than the number of pixels required to fill in
the projected area of the mirror on the screen.

We apply three techniques to minimize exposures in our reflected images. First, we use
an ad hoc approach of not clearing the color buffer between frames. As we work with
walkthroughs of the scene, there is color coherence from frame to frame (assuming
slow/small changes in eye-point and eye-direction). Secondly, instead of warping a zexel
into a single pixel, we fill i n a region of 3x3 pixels in the reflected image (splatting). The
third technique is to warp more than one depth-preserving reflection map for the same
mirror. By computing more than one depth-preserving reflection map around a mirror we
capture more visibili ty information which is then used to reduce exposure problems.
Multiple maps are computed by regular sampling (placing reference image views) around
a hemisphere behind the mirror.

As we can have more than one zexel mapping onto the same pixel in the reflected image,
we need to break the ambiguity and take the one closer to the viewpoint. This could be
done using z-buffering, but the back-to-front traversing (occlusion preserving) proposed
by McMill an [11] has been shown to be faster. This approach also allows paralelli zation
of the warping algorithm. It subdivides the reference image into a number of regions,
depending on the projection of the center of projection of the desired image onto the
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reference image. Each one of these regions can then be processed (warped) independently
still preserving occlusion. This allows the parallelization of the forward warper on
machines with multiple CPUs.

5 Results

We have implemented our system in C++ and OpenGL on a Sili con Graphics Onyx2
with 4 CPUs and InfiniteReality2 graphics.

Our technique was tested with several different models. Here we present the results for a
simple model, to simplify the understanding of the advantages of our technique compared
to traditional reflection mapping, and the results for a more complicated model, to
ill ustrate the use and performance of our technique on a real-world environment.

Figure 6 compares the results of traditional reflection mapping (on the left) with results of
our technique (on the right). The scene contains a teapot on top of an inversed pyramid
inside a box. Five sides of the box have a checkerboard pattern and the sixth wall has a
planar mirror partially covering it. The mirror uses a single reflection (reference) map
with 512x512 zexels. Final images have 640x480 pixels.  The model contains 1850
polygons and renders, with mirrors, at 10 frames per second on the workstation described
above. The same model renders, with mirrors, at 15 frames per second by using the
parallel implementation described in the previous section. For comparison, the same
model without the mirror renders at 60 frames per second on the same machine using a
single CPU.

The checkerboard pattern aims to facil itate the identification of artifacts caused by the
traditional reflection mapping which are correctly handled by our depth-preserving
reflection mapping. Observe the continuity along straight lines of the checkerboard
between the real pattern and on the reflected image. There are clear discontinuities
created by the traditional reflection mapping which are correctly approximated by our
technique. Notice also the incorrect motion parallax of the results from traditional
reflection mapping, which is correctly captured by our technique. For example, notice the
partial occlusion of the teapot and the inversed pyramid, due to the change in viewpoint
with respect to the mirror and the scene, on the last row of images. Finally, observe that
the traditional reflection mapping only stretches and compresses the reflection texture
among different viewpoints. Conversely, the depth-preserving reflection mapping
actually uses three-dimensional information about the reflected scene and creates mirror
reflections as if the scene were rendered from the reflected viewpoint using the mirror as
a window to a virtual (mirrored) scene.

Figure 7 shows a similar comparison of results for a larger model. The scene contains
189,982 polygons and two large planar mirrors (only one mirror can be seen in the
images – on the (right) back wall with a gray frame around it). Each mirror uses up to 64
depth-preserving reflection maps of 480x480 zexels each (at most 2 out of these 64 maps
are used per frame). Final images have 640x480 pixels. This model renders at 8.6 frames
per second in a single CPU of the machine described above. The same model runs at 12.9
frames per second using 4 CPUs and the parallel implementation described in the
previous section. For comparison, the model with no mirrors renders at 15.9 frames per
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second on a single CPU. Notice that performance is bound by geometry and not by our
reflections warping. Similar artifacts described for Figure 6 can be observed in the
images of Figure 7. Observe, for instance, the slope discontinuities between straight lines
in the scene and the corresponding ones in the reflected image (the pianos, the edge
between ceil ing and left wall, etc). Motion parallax artifacts can also be observed on the
images. Note, on both Figure 6 and Figure 7, the remapping artifacts (exposures)
described in section 4.1.

The simple model of Figure 6 is intended only to il lustrate the visual differences between
the traditional and the depth-preserving reflection mapping techniques. It is not intended
for direct frame rate comparison between the two techniques. The more complex model
of Figure 7 serves both purposes, though. It should be clear that, compared to the scene
re-rendering technique of section 2, our technique becomes worthwhile when scene
rendering time is greater than warping time for a single mirror. This observation is clearly
valid for non-trivial scenes such as the model of Figure 7, where performance is bound by
time to render the geometry of the scene.

6 Conclusions and Future Work

We have presented a hybrid rendering technique that combines image-based warping
with geometry-based rendering for interactive handling planar mirror reflections. Our
depth-preserving reflection mapping extends traditional reflection mapping by preserving
depth in the texels, which we call zexels, and by forward warping these 3D entities to
approximate the planar mirror-reflected images. This provides correct perspective
foreshortening and proper motion parallax on the planar mirror reflections, effects that
are not possible to achieve with traditional reflection mapping. To make this technique as
interactive as traditional reflection mapping we need a hardware implementation of
forward warping as presented in section 4.1.

The use of forward warping has the disadvantage of requiring the warping of all the
zexels of the reflection map to create the mirror-reflected image. Even if the projected
area of the mirror on screen is small , we currently still warp all the corresponding zexels
to that small area. In order to reduce the number of zexels to warp for each mirror, a
hierarchical representation of the reflection maps, similar to mip mapping, is under
investigation. Under such a representation, the level of detail in the hierarchy is selected
based on the distance from the viewer to the specular object.

Alternatively, the application of McMill an’s [11] inverse-warping to mirror reflections is
also under investigation. Instead of warping all the zexels from the reflection map into
the specular surface, inverse-warping indexes the reflection map similarly to the
traditional reflection mapping. Pixels on the specular surface are mapped into zexels in
the depth-preserving reflection map. The use of inverse-warping would allow handling
curved surfaces and could lead to a great reduction in the number of warping operations
for each specular surface. However, it is known that inverse warpers are slower than and
less implementable in hardware than forward warpers.
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Figure 6 Comparison of the traditional reflection mapping (left) and our depth-preserving
reflection mapping (right) for a simple model.
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Figure 7 Comparison of the traditional reflection mapping (left) and our depth-preserving
reflection mapping (right) for a real-world model.


