
Load Balancing for Interactive Display
of Surfaces

TR96-022
1996

Subodh Kumar, Chun-Fa Chang,
Dinesh Manocha

Department of Computer Science
CB #3175, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

Load Balancing for Interactive Display of Surfaces*

Subodh Kumar Chun-Fa Chang Dinesh Manocha

University of North Carolina
Chapel Hill, NC 27599-3175, USA

Ph: (919) 962-1943. Fax: (919) 962-1799.
Email: {kumar ,chang,manocha }@cs. unc.edu

Abstract

We present efficient parallel algorithms for interactive display of higher order sur
faces on current graphics systems. At each frame, these algorithms approximate the
surface by polygons and rasterize them over the graphics pipeline. The time for poly
gon generation for each primitive varies between successive frames and we address a
number of issues related to balancing the load across processors. This includes algo
rithms to statically distribute the primitives, reduce dynamic load imbalance as well as
distributed wait-free algorithms for machines on which re-distribution is efficient, e.g.
shared memory machine. These algorithms have been implemented on different graph
ics systems and applied to interactive display of trimmed spline models. In practice,
we are able to obtain almost linear speed-ups (as a function of number of processors).
Moreover, the distributed wait-free algorithm is faster by 25- 30% as compared to
static and dynamic schemes.

Keywords: Surface tessellation, Load balancing, Real-time rendering, Virtual Reality,
NURBS.

1 Introduction

Higher order surfaces are ubiquitously used in computer graphics and geometric modeling.
This includes splines, NURBS, algebraic surfaces and generalized implicit models. A num
ber of techniques based on polygonization, ray-tracing, scan-line conversion and pixel-level
subdivision have been proposed for rendering them on current graphics systems. However,
in practice, only the algorithms based on polygonization are able to render large models at

'Supported in part by ARPA ISTO Order No. A410, NSF Grant No. MIP-9306208, an Alfred P. Sloan
Foundation Fellowship, ARO Contract P-34982-MA, NSF Grant CCR-9319957, ONR Conttact N00014-94-
l-07 38, ARPA Contract DABT63-93-C-0048 and NSF/ARPA Center for Computer Graphics and Scientific
Visualization.

1

Figure 1: Submarine Storage and Handling System

interactive frame rates. At each frame, these algorithms approximate the surface using tri
angles and render the resulting triangles over the graphics pipeline (using Gouraud or Phong
shading). In terms of performance, a standard graphics primitive like a triangle, takes almost
the same time to render per frame .. On most current graphics systems, the time to render a
primitive varies with its on-screen size [Fea89, Ake93], but that variation is relatively small
as compared to the total rendering time. As a result, the overall time to render higher order
surfaces is mainly determined by time for polygon generation and the number of polygons
generated. In this paper, we mainly deal with one such class of surfaces: trimmed NURBS
surfaces, and demonstrate our algorithm on the model of a notional submarine storage and
handling system (shown in Fig. 1, 38,000 trimmed Bezier patches).

Recently, a number of polygonization based trimmed spline renderers have been proposed
in the literature [AES91, AES94, RHD89, LC93, KML95, KM95, KS95]. These algorithms
use the host CPU's to approximate the surfaces with polygons, and employ standard graph
ics hardware to render these polygons. As we deal with large models composed of tens of
thousands of surfaces, single CPU graphics systems are currently not fast enough to polygo
nize large models at interactive frame rates. As a result, interactive algorithms for rendering
utilize multi-processor configurations. The algorithms for tessellating spline surfaces are rela
tively simple to parallelize. However, the distribution of surfaces along different processors is
important for the overall performance. The time to polygonize each surface varies as a func
tion of the viewpoint. Furthermore, for many of these spline rendering algorithms, polygon
generation is often a bottleneck on systems with high end graphics engines [Fea89, Ake93].
This means the triangle pipeline is often idle.

In this paper, we present static and dynamic load balancing algorithms for interactive
display of large models defined using higher order surfaces. The algorithms presented are
general purpose, but we specialize them for interactive display of trimmed spline surfaces.

2

The main contributions are:

1. Balancing static and dynamic load: We present a static allocation scheme for
distributing the model across multiple processors and reduce dynamic load imbalance.
The resulting algorithm takes into visibility computations (like view-frustum culling)
and highly varying transformations. It works very well on graphics systems, where
re-distributing primitives between processors can be prohibitively slow, as this essen
tially involves data movement between processors. The resulting algorithm exploits
frame-to-frame coherence. In particular, it is based on the observation that such load
exhibits spatial coherence. Primitives on same part of the screen tend to have similar
statistical load. We also extend it to configurations, where re-allocation is efficient, e.g.
shared memory machines. We present a scalable, wait-free algorithm to re-distribute
primitives, whenever the load becomes imbalanced. This algorithm is distributive, in
the sense that there exists no 'master' processor spending resources on load-balancing.

2. Greedy rendering: We present a greedy rendering technique to update the scene as a
function of viewpoint. The resulting algorithm lowers the system latency for rendering
higher order surfaces and is very important for head-mounted displays and walkthrough
applications, where a lagging image can induce motion-sickness. The resulting algo
rithm uses the concept of greedy rendering, which is like progressive refinement to
improve the quality of the image whenever the user motion stops.

The resulting algorithms have been implemented on different graphics systems and applied
to a number of models; In practice, we are able to obtain 80-90% of the ideal speed-up,
using the best algorithm. The static allocation scheme improves the average frame rate
by 15 - 20% as compared to round robin allocation schemes. The distributed algorithm
improves it further by 25 - 30% on shared-memory graphics systems.

1.1 Related Work

Load-imbalance is an old and well studied problem in parallel and distributed computing.
[Gea95] offers an excellent survey on load-balancing techniques. If the load is known a priori,
it can be optimally allocated to processors in an off-line process, spending little time at run
time to manage load. For dynamic loads, a much more dynamic algorithm is warranted.
In the graphics literature a number of algorithms have been proposed for polygonal models
and for parallel ray-tracing. In [Rob88, Whi94, Mue95] algorithms dividing the primitives in
terms of screen-regions are presented. Moreover, [PB89, EGT90, ZKN92] balance the load
in object space. However, these techniques cannot be applied to rendering of higher-order
surfaces, as the rendering-cost of a NURBS surface varies significantly across frames. For
dynamic load-balancing, in the presence of shared-memory, distributed computing literature
presents a number of algorithms to arbitrate shared accesses with consistency [Lam87, YA93,
Her93]. Indeed, for each sequential data structure there exists a shared implementation that
requires no locks [Her93]. For example, [Her93] present a hierarchy of shared objects, with
wait-free accesses. However, the objects presented in these papers are more general and do
not result in significant performance improvement. Moreover, many of these implementations

3

II Ill

Figure 2: NURBS rendering Pipeline

IV
~olygon

Rasterizer

rely on the existence of atomic 'test and set' like instructions, which may not be available
on all graphics systems.

The rest of the paper is organized in the following manner. We briefly review the NURBS
pipeline in Section 2. The static load-balancing technique is presented in Section 3. In
Section 4 we present the primitive re-distribution algorithm. We consider the problem of
real-time display and present the greedy rendering algorithm in Section 5. We discuss its
implementation and performance in Section 6.

2 NURBS Rendering

The NURBS surfaces are rendered based on the algorithm presented in [KM95]. Given a
trimmed NURBS model, the algorithm represent them as trimmed Bezier patches using
knot-insertion algorithm. At run-time it tessellates each patch into an appropriate number
of triangles at each frame (see Fig. 2). A brief overview of this algorithm is given below.

1. Perform view-frustum and back-facing patch visibility to eliminate hidden patches.

2. For each frame, given the viewing matrix, compute the required tessellation step sizes
nup, nvp for each patch p, and n1, for each trimming curve c.

3. Tessellate patch p into quads, choosing tessellants - 1
- and - 1

- apart along the u and
nup nvp

v parametric axes respectively. Tessellate trimming curve c into n1P piecewise linear
segments.

4. Generate triangles for the patch by triangulating the region enclosed by the trimming
curve, using the tessellants generated in step 3.

Any triangulation-based surface rendering algorithm first needs to allocate resources to
generate these triangles. The desirable tessellation is computed and the vertices and normals
are evaluated. The total time is, therefore a function of the number of triangles generated.
The performance of triangle rendering is system dependent and typically a function of the
number of triangles and the size and distribution of these triangles on the screen.

It is possible to compute a very fine triangulation a priori and to render all the triangles
for each frame. In this case, almost no time is spent in triangle generation and all of the
time is spent on rendering. However the number of triangles needed for close-up (zoomed)
views of some surfaces can be extremely high (a few thousand) and for models consisting of
thousands of surfaces, this requires hundreds of megabytes of storage, and the capability to
render hundreds of millions of triangles per second. We can reduce the demand on triangles
rendering capability by computing different levels of detail of each surface and at each phase

4

choosing one of the approximations as a function of the viewing parameters. But the memory
requirements only get worse.

On the other hand, we can compute, on-line, the minimum number of triangles required
for a smooth image as a function of the viewing parameters (for each frame). The result
ing algorithm is based on adaptive subdivision and takes considerable time in the triangle
generation for each frame. As a result, it can be too slow for interactive performance on
large-scale models.

A major goal of this paper is to present a hybrid between the two solutions, combining
the benefits of the two techniques.

3 Static Load Balancing

When the user zooms in to a small part of the model, that part occupies a significant part
of the screen, and hence a significant part of the total tessellation cost. If that part of the
cost is not fairly distributed between processors, some of them become bottleneck. If we
randomly distribute primitives, say in a round robin manner, to processors, load imbalances
of more than 1:50 is not uncommon.

A number of load balancing algorithms reduce the problem to graph partitioning [HL95,
KK95]. All these algorithms assume the existence of a load-graph. To construct such a
graph, we must first know the processing cost of each primitive. However, the rendering cost
of a NURBS primitive is a function of parameters such as:

• the degree of surface

• the complexity of the trimming curves

• the screen size of the primitive

Though, the dependence of this cost on the viewing parameters makes it difficult to find
an assignment which is optimal in all frames, primitives on same part of the screen tend to
have similar load. This observation of spatial coherence suggests the distribution of 'nearby'
primitives to different processors.

To model our problem as a graph partitioning problem, each primitive is represented by
a vertex of the graph. The vertices and edges are assigned weights so that sub-graph weights
estimate rendering cost well. Initially, a complete graph with n vertices is constructed where
n is the number of primitives. The weights are assigned as follows:

• Vertex weight: the sum of the estimated rendering cost of the patches in the primi
tive. This is a function of patch degrees, and the degrees of the trimming curves.

• Edge weight: the inverse of the geometric distance between the primitives of two
vertices it connects.

• Subgraph cost function: For each edge, we calculate We(Wv1 + Wv2), where We is
the edge weight and Wvt, Wv2 are the vertex weight of the vertices the edge connects.
The cost function is the sum of the above function for every edge in the subgraph.

5

Our goal is to partition the graph into p disjoint subgraphs of almost equal weight, where
p is the number of processors and the cost function in each subgraph is minimized,

Approximation algorithms such as simulated annealing can then be used for optimization.
The heuristic is: when two nearby primitives are in the same processors, the cost function of
the subgraph for that processor is increased because the the weight of the edge connecting
them is high. Thus one of the primitive is very likely to be moved to the other processor
during the optimization process.

4 Primitive Re-distribution

As mentioned earlier, in any given frame the processor load may not be balanced. This
means that some processors may finish the tessellation of their work-load while others are
still tessellating the surfaces. We refer to the first set as idle and the second one as busy.
This work-load is dynamic, in the sense that the cost to render the same set of patches
changes with time. It is precisely due to this reason that a static primitive distribution
cannot achieve optimal speedup. For systems with efficient inter-processor communication,
primitive re-distribution results in much more balanced better load, and with little overhead.

In this section we present two simple re-distribution algorithms. The first algorithm
maintains a global queue of patches, arbitrating access to the queue using locks. The second
algorithm improves this scheme by eliminating processor waits. Furthermore, it is much
more scalable as the number of available processors increases.

4.1 Global Queue (with locking)

Each element of the queue (Fig. 3 corresponds to NP patches. Each processor deletes the
element in the front of the queue and computes the tessellation for the corresponding patches
and renders the triangles. This step is repeated until the queue becomes empty. The gran
ularity Np of a queue element affects the processor utilization. In our experience, Np should
be a small fraction of N, the total number of patches to be rendered. Since, a 1 : 100 load
imbalance can sometimes occur for static schemes, we use a value of

1
/:JP, where P is the

number of processors.
A problem with this method is the fixed choice of granularity. Different values of Np are

required to achieve optimal speed-up for different environments and models. In addition,
although, this algorithm performs better than the static distribution algorithm, the overhead
of lock-maintenance and mutual-exclusion prevents us from making full use of dynamic load
balancing. Next, we propose an algorithm that reduces this overhead (based on load stealing).
At each frame, each processor starts with an approximate work-load. As processors get
idle, they steal patches from busy processors, computing the tessellation of those additional
patches.

4.2 Load Stealing

Each processor p maintains its current work-load in a global structure labeled as ActivityList[p].
It is the list of patches, that are allocated to p for the current frame. At the beginning of

6

Processori II Processor j I I Processor k

/ ./
v

41C LOCK

Np
Patches

••

Figure 3: Global Queue, with locking as a potential bottleneck

simulation, this allocation is same as the static allocation presented in Section 3. At each
frame, each processor runs its tessellation loop and updates its allocation.

4.2.1 Tessellation Loop

Due to temporal coherence, the rendering cost of a primitive does not vary significantly
between successive frames. Hence the Activity List for a processor at the previous frame is a
good .starting guess for a balanced Activity List for the current frame. The basic idea of our
algorithm is to allow no additional overhead for busy processors. All the extra computation
is done by the idle processors. Here is the basic tessellation loop:1

While (Next = Front of ActivityList is not End of list){ :1
Update Front; :2
tessellate (PATCH Next) :3
update triangles for Next :4

} :5
Find a busy processor pb, Share its load. :6

In this algorithm, possible concurrent access to shared variables occur at line 6. The
first contention at line 6 is between idle processors. Multiple processors may 'find' the
same Pb· To reduce such contention, each processor maintains a list of other processors in
a random order, and checks processors' ActivityLists in that order. Of course, this does
not guarantee mutual exclusion. This access is arbitrated by locks. Each processor has a
lock, LockList, associated with it. Before an idle processor Pi checks the ActivityList of
Pb (i oJ b), it secures a non-blocking lock on LockList[pb]· Non-blocking lock ensures that if
Pi cannot acquire LockList[pb], there must exist another idle processor Pi currently sharing

1To simplify the notation, we don't index variables by the processor id, when it is clear from context.

7

ActivityList[pb]· A processor Pi, when idle, executes the following loop until all tessellators
become idle:

for Pb in Random List { :61
lock LockList[pb] :62
if lock not acquired, go on to next in RandomList :63
if (Front of ActivityList[pb] is not End of list) :64

Share load with processor Pb : 65
unlock LockList[pb] :66
Perform Tessellation loop :67

} :68

4.2.2 Lock-free implementation

Once the idle processor used for sharing a busy processor's load is fixed, the only possible
concurrent shared variable access can occur at line 65. This contention is between the idle
processor Pi and the selected busy processor Pb· Since it involves a busy processor, exclusion
by locking is not an option, since we seek to introduce no overhead at the busy processors.
That contention is resolved by letting the Pi update the Activity List of Pb, asynchronously.
It is .possible that Pb reads the old Activity List, and tessellates some patches that are taken
off its Activity List by Pi· This case is handled by letting Pi re-read the current position of Pb
after updating its Activity List, and not tessellate any patches of new ActivityList[pi], that
Pb may already have tessellated. The resulting algorithm is:

Delete the second half of unprocessed ActivityList[pb]
Add it to ActivityList[pi]
Read new Front[pb] (pb' s copy)
Mark the Tessellation loop to start after new Front.

:651
:652
:653
:654

There still exists a race condition, in that Pb could have read its Front (line 1) just before
Pi updates its ActivityList (at line 651), and not yet written the new Front (line 2) when
Pi reads it back (at line 653). If the cost of tessellating each primitive is not high, we can let
the two processors duplicate the effort of tessellating one primitive, when this race condition
occurs, since it is quite rare. Note that line 653 appears after line 652 by design, since it
reduces the probability of race condition, assuming all processors are equally fast. However,
the race condition can be eliminated using the following modification.

Busy processors write an additional binary shared variable, ListTransient. Each busy
processor p sets its ListTransient to 1 before reading its Activity List, and resets it to 0 after
having updated its Front. Now, we let the idle processor busy-wait2 for ListTransient[pb]
to be 0 before reading the new Front of Pb·

In practice, ActivityList is not implemented as a list of patch ids but as a list of id
ranges. By design, the algorithm tends to keep adjacent patches on same processor. This
means, a processor's work load does not consist of just a random list of patches, but, rather,
a number of contiguously stored groups of patches.

The load-stealing algorithm must guarantee the following:
2For multiple processors, busy-waiting is the right solution, because it does not induce context-switch.

8

P: RFront ~nd R Front l

I

pb ll I~ I~ Time line

R
REnd Front

WFront

Figure 4: Timeline showing consistent behavior

(a) For a given frame, each element of the queue is read at least once.

In addition, for efficiency, we require that

(b) each element is read exactly once.

It is easy to see that (a) is true, since at every instant an element lies in at least one of
the queues of Pb and Pi. It is possible, though, that some elements lie in multiple queues for
a time-interval. To see that (b) still holds, consider the time line shown in Fig. 4.

Suppose the idle processor, Pi, updates the queue of the busy processor, Pb, at time
instant3 t2 • At t 2 , Pb may have read element in p;'s share, since it continues processing
asynchronously. But the next time Pi checks its queue, it must read the new queue, and
stop. Thus the last element of p;'s share that Pb reads must be read before t 2 • This implies
that the ListTransient flag is set at t 2• Pb reads the position of p;'s Front after t 2 , say at
t3 . This implies that ListTransient must be reset at t3 , which, in turn, implies that Pb must
have updated the Front of it's queue before t3 . Thus, at h, Pi knows exactly which elements
of its queue Pb ever reads.

Note that Pi is prone to starvation. But in practice, it does make progress when Pb
proceeds to tessellate the patche(s) corresponding to the the Front of its queue.

5 Greedy Rendering

A fundamental component of real-time graphics is to have the image appear on screen in
time. The quality of such image may not be of primary concern. In its most general sense,
such applications are referred to time-critical rendering. We present a method to allocate
the time spent in each frame in which all triangles must be sent down the rendering pipeline.
This is an essential component of in-time rendering.

3 Individual memory reads and writes happen atomically.

9

,...___,-"~2· Tessellator
Triangle Rendering
Pusher

Pa: Tessellator 'lJ

•
•

~: Tessellator

Triangle Memory

Figure 5: Greedy Rendering Technique

5.1 System Architecture

Fig. 5 shows our overall system architecture. A triangle pushing processor is allocated for
the sole purpose of sending triangles down the rendering pipeline. This processor runs
asynchronously with the tessellators. It has a 'view' of the current set of triangles to be
rendered.

This triangle pushing processor executes the following loop:

Get Current Viewer Position
Compute and push transformation matrix
For each triangle in view

write triangle to the pipeline.

:P1
:P2
:P3
:P4

The triangle pusher never waits for any tessellators to finish. The tessellators, asyn
chronously generate triangles and update the pusher's view. The tessellators, however,
themselves execute in synchrony: a tessellator goes on to frame number i + 1 only if all
patches have been tessellated for frame i. The tessellators follow the algorithm presented in
Section 4. Once a frame is complete, all tessellators read the then current view-matrix from a
shared global variable, and use this matrix to generate new triangles. Clearly, if tessellation
is slow, as is commonly the case, we almost always render sub-optimal number of triangle,
as the tessellator lag behind the renderer by a few frames. The tessellators mostly generate
triangles with an old view-matrix. This, in our, experience is not a major problem, due to
coherence. The tessellators mostly lag by no more than 3 - 4 frames. And the view-matrix
does not change significantly in 3-4 frames, meaning the 'old' triangles lead to a reasonably
smooth image.

10

5.2 View Update

It is important to update the view in a fashion that the pusher never mixes old and new
triangles. In addition, patches are not independent entities. The triangles for adjacent
patches must match up at the patch boundaries to prevent cracks. We partition the adjacency
graph of patches into connected components. The update of all members of a connected
components occurs simultaneously. For each component c there exists a shared variable
ComponentTris(c). ComponentTris(c) is a pointer to a list of triangle addresses. Each
address corresponds to the triangles of a patch, which are stored contiguously in memory.
The tessellator generating triangles for patch i, of component c, stores the address of new
triangles in N ewlist[i]. Once the new triangles have been generated, and the pointer list
set up, the tessellator that generates the last triangle of the group, writes the address of the
new list in ComponentTris(c).

Generate Triangles at address a
N ewlist[i] = a
if for all patches in the component NewList[i] is non NULL

ComponentTris(c) = NewList

To ensure that the pusher, does not read triangles from different list. It reads Compo
nentTris(c) just once per frame, and saves it locally. Thus it either renders all new, or all
old triangles. Modifying line P3 to reflect this:

List= ComponentTris(c)
for each patch i in component c
Render all triangles at List(i)

5.3 General Environments

This method works well for environments consisting of a number of small solid models,
resulting in a number of small components. In environments where this is not the case, we
must use a more general technique:

1. Tessellate patch boundaries separately from the patch interior

2. Generate boundary strips between the boundary and patch interior

3. For each boundary with a different patch, generate boundary strips N; with new interior
tessellation and new boundary tessellation, and strips 0; with new interior tessellation
and old boundary tessellation.

4. Maintain adjacency graph.

5. If an adjacent boundary has not been tessellated for the current frame, use 0;. If the
adjacent boundary has been tessellated, use N;. Again, the processor to tessellate a
boundary second updates the address on behalf of both processors.

11

Round-Robin Distribution Graph Partioning
Model #Patches Frames/Sec Utilization Frames/Sec Utilization
Torpedo 1201 10.80 72.6% 11.74 80.1%
Pivot 4101 15.41 61.9% 15.95 81%
Ship 3392 19.05 65.3% 19.86 78%

Table 1: Performance of Static Load-distribution Algorithm

In practice, we have found it much more efficient, and hardly distracting, to render the
images with cracks, and let the cracks 'fill up' when the user stops, and the tessellation
catches up.

As a final note, let us emphasize that this method is not necessarily bound to multiple
processor environments. For a given application, even single processors can allocate triangle
pushing time per frame. For example, suppose it takes tp seconds to process each triangle.
For each frame the triangle pushing thread has an account of the number of triangles available
for that frame, call it m. Suppose further that the desired frame rate is R frames per second.
In each frame, then, the processor must allocate no more than ~ - mtP seconds per frame
for triangle generation.

6 Implementation and Performance

On Pixel Plane 5, a heterogeneous message passing multicomputer, we implemented our
static load balancing scheme presented in section 3 and compared its performance with
random distribution. With a configuration of 25 graphics processors, our scheme shows an
average speedup of 15-20%. We evaluated our algorithms on a number of models, including
various parts of the submarine storage and handling system. Table 1 shows the increase in
average processor utilization using the graph partitioning algorithm, and the actual speedup
gained.

On Silicon Graphics Onyx/Reality Engine II, we implemented the 'static', 'global queue',
and 'load stealing' load distribution schemes, and compared their performances. Fig. 6 shows
three graphs with models of 5302, 10,604, and 15,906 trimmed NURBS patches respectively.
Each graph shows the change of the tessellation rate4 with different number of processors.
The graphs show that the global queue scheme provides 5% to 10% improvement over the
static scheme, while the load stealing scheme provides another 10% to 20% improvement
over the global queue scheme. In addition, as the number of processors increases, the load
stealing scheme shows the best scaling behavior.

If a large number of processors are not available, or if the size of the model is large,
the tessellation rate drops to under 5 frames per second. With greedy rendering, we are
consistently able to render in the speed of about 4 times of the tessellation rate. Table 2

4Since greedy rendering proceeds asynchronously, the frame-update rate is hardly affected. The lag
changes with the tessellation rate.

12

•

4 6 8 10 12 14 16
PROCESSORS

Figure 6: Performance Comparison of three load-balancing techniques

shows the performance of the greedy algorithm on a number of models. Column 5 shows the
average number of frames the tessellators lag behind the triangle pusher, and represents the
speed-up gained by the greedy algorithm. This speed-up comes at a minimal loss in image
quality. The color plate shows the images corresponding to the worst lag in a user sequence
for three parts of the submarine storage and handling system. As can be seen, even in the
worst case, the lagging images are of reasonable quality.

7 Conclusion

We have presented two techniques to distribute work across processors· to speed up the
rendering of dynamic objects. The greedy rendering technique can reduce image-jumps
for most applications, thus reducing motion-sickness. The load-balancing technique can
increase processor utilization to 70-90%. If load-redistribution is not a feasible option, in
our experience any significant load-balancing is difficult, and quite application specific. On
the other hand, load-redistribution can have significant impact on update-rates.

8 Acknowledgements

We wish to thank Anselmo Lastra, and Lars Nyland for their valuable suggestions to optimize
our load-balancing effort. Thanks to Lars for making his simulated annealing implementation
available to us, and also to John Keyser for all his help with data collection and organization.
Our gratitude to Mike Muuss, Paul Stay and others and at the Army research laboratory

Model #Patches Tessellations /Sec Updates/Sec Average Lag
Dragon 5354 4.20 19.96 15.76
Car 1 5053 4.84 19.97 15.13
Car 2 8693 2.20 8.55 6.35

Table 2: Performance of the Greedy Rendering Algorithm

13

for making time on their parallel SGI machine available for our experiments. Thanks also
to Greg Angelini and Jim Boudroux and Electric Boat for the model of the storage and
handling system.

References

[AES91] S.S. Abi-Ezzi and L.A. Shirman. Tessellation of curved surfaces under highly
varying transformations. Proceedings of Eurographics'91, pages 385-397, 1991.

[AES94] S.S. Abi-Ezzi and S. Subramaniam. Fast dynamic tessellation of trimmed nurbs
surfaces. Computer Graphics Forum, 13(3):107-26, 1994. Proc. of Eurographics'94.

[Ake93] K. Akeley. Reality engine graphics. In Proceedings of ACM Siggraph, pages 109-
116, 1993.

[EGT90] D. Ellsworth, H. Good, and B. Tebbs. Distributing display lists on a multicom
puter. In Symposium on Interactive 3D Graphics, Snowbird, UT, 1990.

[Fea89] H. Fuchs and J. Poulton et a!. Pixel-Planes 5: A heterogeneous multiprocessor
graphics system using processor-enhanced memories. In Proceedings of ACM Big
graph, pages 79-88, 1989.

[Gea95] G. Georgiannakis and C. Houstis et. a!. Description of the adaptive resource man
agement problem, cost functions and performance objectives.Technical Report TR ·
130, The Institute of Computer Science, Foundation for Research and Technology
- Hellas, 1995.

[Her93] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745-770, 1993.

[HL95] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Proc. Supercomputing '95, 1995.

[KK95] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Technical Report TR95-064, Department of Computer Science, University
of Minnesota, 1995.

[KM95] S. Kumar and D. Manocha. Efficient rendering of trimmed NURBS surfaces.
Computer-Aided Design, 27(7):509-521, July 1995.

[KML95] S. Kumar, D. Manocha, and A. Lastra. Interactive display of large scale NURBS
models. In Symposium on Interactive 3D Graphics, pages 51-58, Monterey, CA,
1995.

[KS95] R. Klein and W. Straber. Large mesh generation from boundary models with
parametric face representation. In Proc. of ACM/Siggraph Symposium on Solid
Modeling, pages 431-440, 1995.

14

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1-11, 1987.

[LC93] W.L. Luken and Fuhua Cheng. Rendering trimmed NURB surfaces. Computer
science research report 18669(81711), IBM Research Division, 1993.

[Mue95] C. Mueller. The sort-first rendering architecture for high-performance graphics.
In Symposium on Interactive 3D Graphics, pages 75-84, Monterey, CA, 1995.

[PB89] Thierry Priol and Kadi Bouatouch. Static load balancing for A parallel ray tracing
on a MIMD hypercube. The Visual Computer, 5(1/2):109-119, March 1989.

[RHD89] A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of trimmed surfaces.
In Proceedings of ACM Siggraph, pages 107-117, 1989.

[Rob88] D. Roble. A load balanced parallel scan-line z-buffer algorithm for the ipse hyper
cube. In Pixim, pages 177-192, Paris, France, 1988.

[Whi94] S. Whitman. Dynamic load balancing for parallel polygon rendering. IEEE Com
puter Graphics and Applications, 14(4):41-48, 1994.

[YA93] J.H. Yang and J. Anderson. Fast, scalable synchronization with minimal hardware
support. In ACM symposium on Principles of Distributed Computing, pages 171-
182, 1993.

[ZKN92] Y. Zheng, D. Kerbyson, and G. Nudd. 'efficient load balancing techniques for
image analysis on an m-simd machine. Technical Report CS-RR-214, Dept. of CS,
University of Warwick, 1992.

15

(a1) Pivot: Lagging Tessellation

Color Plate 1: Greedy Rendering

16

