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We present a data structure and an algorithm for efficient and exact interference detection 

amongst complex models undergoing rigid motion. The algorithm is applicable to all 
general polygonal and curved models. It pre-computes a hierarchical representation of 
models using tight-fitting oriented bounding box trees. At runtime, the algorithm traverses 
the tree and tests for overlaps between oriented bounding boxes based on a new separating 

axis theorem, which takes less than 200 operations in practice. It has been implemented 
and we compare its performance with other hierarchical data structures. In particular, 
it can accurately detect all the contacts between large complex geometries composed of 

hundreds of thousands of polygons at interactive rates, almost one order of magnitude 
faster than earlier methods. 
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1 Introduction 

The problems of interference detection between two or more geometric models in static and 

dynamic environments are fundamental in computer graphics. They are also considered 
important in computational geometry, solid modeling, computer-graphics, robotics, molec
ular modeling, manufacturing and computer-simulated environments. Generally speaking, 
we are interested in very efficient and in many cases, real-time algorithms for applications 
with the following characterizations: 

• Model Complexity: The input models are composed of many hundred thousand 
of polygons. 

• Unstructured Representation: The input models are represented as collection of 
polygons with no topology information. Such models are also known as polygon soups 

and their boundaries may have cracks, T-joints, or may correspond to open sets or 
non-manifold geometries. No robust techniques are known for cleaning such models. 

• Close Proximity: In the actual applications, the models come in close proximity 
of each other and can have multiple contacts. 

• Accurate Contact Determination: The applications need to know accurate con
tacts between the models (up to the resolution of the models and machine precision). 

Many applications like dynamic simulation, physically-based modeling, tolerance checking 
for virtual prototyping, simulation-based design of large CAD models have all these four 

characterizations. Currently, fast interference detection for such applications is a major 

bottleneck. 

Main Contribution We present efficient algorithms for accurate interference detection 
for such applications. They make no assumptions about model representations or the 
motion. The algorithms compute a hierarchical representation using oriented bounding 

boxes (OBB 's). An OBB is a rectangular bounding box at an arbitrary orientation in 
3-space. The resulting hierarchical structure is referred to as OBB-/ree. The idea of using 
OBB's is not new and many researchers have used them extensively to speed up ray tracing 
and interference detection computations. Our major contributions are: 

1. New efficient algorithms for hierarchical representation of large models using tight
fitting OBB's. 

2. A new separating axis theorem used for checking two OBB's in space (with arbitrary 
orientation) for overlap. Based on this theorem, we can test two OBB's for overlap 
in about 100 operations on average. This test is about one order of magnitude faster 

compared to earlier algorithms for checking overlap between boxes. 
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Figure 1: Interactive Interference Detection on Complex Interweaving Pipeline: 140, 000 
polygons each (Two Different Views from the Simulation) 

3. Comparison with other hierarchical representations based on sphere trees and axis

aligned bounding boxes (AABB's). We show that for many close proximity situations, 
OBB's are asymptotically much faster. 

4. Robust and interactive implementation and demonstration. We have applied it to 

compute ail contacts between very complex geometries at interactive rates (as shown 
in Figure 1 ). Its performance is almost one order of magnitude faster than earlier 
algorithms for objects in close proximity. 

The rest of the paper is organized in the following manner: We provide a comprehensive 

survey of interference detection methods in Section 2. A brief overview of the algorithm is 
given in Section 3. We describe algorithms for efficient computation of hierarchical OBB's 
in Section 4. Section 5 presents the separating-axis theorem and shows how it can be used 

to compute overlaps between two OBB's very efficiently. We compare its performance with 
hierarchical representations composed of sphere trees and axis-aligned boxes in Section 6. 
Section 7 discusses the implementation and performance of the algorithms on complex 
models. In Section 8, we show how the algorithms can be specialized to ray-tracing and 
extended to curved geometries and deformable models. 

2 Previous Work 

Interference and collision detection problems have been extensively studied in the literature. 
The simplest algorithms for collision detection are based on using bounding volumes and 

spatial decomposition techniques in a hierarchical manner. Typical examples of bounding 
volumes include axis-aligned boxes, spheres, and octrees, and they are chosen clue to the 
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simplicity of finding collision between two such volumes. These include cone trees, k-d trees 
and octrees [Sam89], sphere trees [Hub94, Qui94], R-trees and their variants [BKSS90], trees 
based on S-bounds [Cam91], strip trees, and boxtrees [ZF95]. Other spatial representations 
are based on BSP's [NAT90] and its extensions to multi-space partitions [WG91], spatial 

representations based on space-time bounds or four-dimensional testing [AANJ94, Cam90, 
Can86, Hub94] and many more. All ofthese hierarchical methods do very well in performing 
"rejection tests", whenever two objects are far apart. However, when the two objects are 
in close proximity and can have multiple contacts, these algorithms either use subdivision 
techniques or check very large number of bounding volume pairs for potential contacts. In 

such cases, their performance slows down considerably and they become a major bottleneck 
in the simulation, as stated in [Hah88, Hub94]. 

In computational geometry, many theoretically efficient algorithms have been proposed 
for polyhedral objects. Most of them are either restricted to static environments or convex 

objects or when only polyhedral object is undergoing rigid motion [CD87, Sei90]. However, 
their practical utility is not clear as many of them have not been implemented in practice. 
Other approaches are based on linear programming and computing closest pairs for convex 
polytopes [Bar90, CLMP95, GJK88, LC91, MW88, Sei90] and based on line-stabbing and 
convex differences for general polyhedral models [HKM95, PML95]. Algorithms utilizing 

spatial and temporal coherence have been shown to be effective for large environments 
represented as union of convex polytopes [CLMP95]. However, these algorithms and sys
tems are restrictive in terms of application to general polygonal models with unstructured 
representations. Furthermore, it is rather difficult to implement them robustly for gen
eral models. Algorithms based on interval arithmetic and bounds on functions have been 

described in [Duf92, HBZ90, ea93]. They are able to find all the contacts accurately. How
ever these algorithms expect the motion to be expressed as a closed-form function of time, 
which restricts the input domain. Furthermore, their performance is slow for interactive 
applications. 

OBB's have been extensively used to speed up ray-tracing and other interference com

putations [AK89]. In terms of application to large models, two main issues arise: how 
can we compute a tight-fitting OBB enclosing a model and how quickly can we test two 
such boxes for overlap? For polygonal models, the minimal enclosing bounding box is 
unique and can be computed in O(n3 ) time, where n is the number of vertices [O'R85]. 
However, it is practical for small models only. Simple incremental algorithms of linear 

time complexity are known for computing a minimal enclosing ellipsoid for a set of points 
[Wel91]. The axes of the minimal ellipsoid can be used to compute a tight-fitting OBB. 
However, the constant factor in front of the linear term for this algorithm is very high 
(almost 3 x 105 ) and thereby making it almost impractical to use for large models. As 

for ray-tracing, algorithms using structure editors [RWSO], modeling hierarchies [WHG84] 
and incremental techniques which add one primitive at a time [GS87] have been used to 
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construct hierarchies of OBB's. However, they cannot be directly applied to compute 
tight-fitting OBB's for large unstructured models. A simple algorithm for testing contact 

between OBB's is based on testing all edge-face combinations to test possible intersection. 
Since OBB's are convex polytopes, algorithms based on linear programming [PS85] and 

closest features computation [CLMP95, GJK88] can be used as well. Overall, no good and 
efficient algorithms were known to compute tight-fitting hierarchical representations using 

OBB's for large unstructured models and rapidly checking them for overlap. 

3 Hierarchical Methods & OBB-Tree's 

In this section, we present a framework for evaluating hierarchical data structures for 
interference detection and give a brief overview of OBB-Tree's. Given two large models 

and their hierarchical representation, the total cost function for interference detection can 
be formulated as: 

T =N X B+P X c, 
where 

T: total cost function for interference detection, 
N: number of bounding volume pair overlap tests 

B: cost of testing a pair of bounding volumes for overlap, 
P is the number primitive pairs tested for interference, 
C: cost of testing a pair of primitives for interference. 

(1) 

A similar cost function was used for analyzing hierarchical methods for ray-tracing in 

[WHG84]. Given this cost function, various hierarchical· data structures are characterized 
by: 
Choice of Bounding Volume: The choice is governed by two conflicting constraints: 

1. It should fit the original model as tightly as possible (to lower Nand P). 

2. Testing two such volumes for overlap should be as fast as possible (to lower B). 

Simple primitives like sphere and .A.ABB's do very well with respect to the second con
straint. But they cannot fit some primitives like long-thin oriented polygons tightly. On 

the other hand, minimal ellipsoids and OBB's provide tight fits, but checking for overlap 
between them is relatively expensive. 
Hierarchical Decomposition: Given a large model, the tree of bounding volumes may 
be constructed bottom-up or top-down. Furthermore, different techniques are known for 

decomposing or partitioning a bounding volume into two or more sub-volumes. The leaf
nodes may correspond to different primitives. For general polyhedral models, they may 
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be represented as collection of few triangles or convex polytopes. The decomposition also 
affects the values of N and P in (1 ). 

It is clear that no hierarchical representation gives the best performance all the times. 
Furthermore, given two models, the total cost of interference detection varies considerably 

with the proximity and relative orientation of the models. In particular, when two models 
are far apart, hierarchical representations based on spheres and AABB's work well in 
practice. However, when two models are in close proximity with multiple number of closest 
features, the resulting algorithms perform very large number of pair-wise tests, increasing 
P and N considerably in (1). 

For a given model, P and N for OBB trees are much smaller as compared to those of 
trees using spheres or AABB's as primitives. At the same time, the best known earlier 
algorithms for checking two OBB's for overlaps were almost two orders of magnitude slower 
than checking two spheres or two AABB's for overlap. We present efficient algorithms 

for computing tight fitting OBB's given a set of polygons, for constructing a hierarchy 

of OBB's, and for testing two OBB's for contact. Our algorithms are able to compute 
tight-fitting hierarchies efficiently and the overlap test between two OBB's is one order of 
magnitude faster than best known earlier methods. Given sufficiently large models, our 
interference detection algorithm based on OBB-Tree's is more than one order of magnitude 

faster as compared to using sphere trees or AABB's. 

4 Building an 0 B B-Tree 

In this section we describe algorithms for building an OBB-Tree. The tree construction 

has two components: first is the placement of a tight fitting OBB around a collection of 
polygons, and second is the grouping of nested OBB's into a tree hierarchy. 

We want to approximate the collection of polygons with an OBB of similar dimensions 
and orientation. We triangulate all polygons composed of more than three edges. The 
OBB computation algorithm makes use of first and second order statistics summarizing 

the vertex coordinates. They are the mean and the covariance matrix, respectively [DH73]. 
If the vertices of the i 'th triangle are the points pi, qi, and ri, then the mean (p.) and 
covariance matrix (C) in vector arithmetics can be expressed as: 

where n is the number of triangles, p'i =pi - p., q'i = qi - p., and r'i = ri - p., and Cjk are 

the elements of the 3 by 3 covariance matrix. 
The eigenvectors of a symmetric matrix, such as C, are mutually orthogonal. After 

normalizing them, they are used as a basis. We find the extremal vertices along each axis 
of this basis, and size the bounding box, oriented with the basis vectors, to bound those 
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extremal vertices. Two of the three eigenvectors of the covariance matrix are the axes of 
maximum and of minimum variance, so they will tend to align the box with the geometry 
of a tube or a flat surface patch. 

(a) (b) (c) 
Figure 2: Three levels of an OBB-Tree 

Using the covariance matrix of the triangle vertices is a simple way to compute a tight 
fitting OBB. In many models, a number of vertices of the triangle lie in the interior. 
We improve the algorithm by using the convex hull of the vertices of the triangles. The 
convex hull is the smallest convex set containing all the points and efficient algorithms 
of 0( n lg n) complexity and their robust implementations are available as public domain 
packages [BD H93}. Given the convex hull, the algorithm samples the surface of the convex 

hull densely, taking the mean and covariance of the sample points. The uniform sampling 

of the convex hull surface normalizes for triangle size and distribution. 
One can sample the convex hull "infinitely densely" by integrating over the surface of 

each triangle, and allowing each differential patch to contribute to the covariance matrix. 
The resulting integral has a closed form solution. We let a point xi in the i'th triangle be 
parameterized by s and t as in: 

s,tE[O,l} 
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The mean point of the convex hull is then 

p = - 'E. -i {' { X ds dt = - 'E. -i (p' + q' + 7'
1

) 

1 n ( 1 1 1-t ) 1 n 1 . . 

n i=I m Jo lo 6n i=I m 

where mi =area of i'th triangle= fl(t- pi) x (Ti- pi)l. The elements of the covariance 
matrix C have the following closed-form, 

where p1i = p' - p, q'' = q' - p, and r'i = ri - p. 

Given an algorithm to compute tight-fitting OBB's around a group of polygons, we 
need to represent them hierarchically. Most methods for building hierarchies fall into two 
categories: bottom-up and top-down. Bottom-up methods begin with a bounding volume 

for each polygon and merge volumes into larger volumes until the tree is complete. Top
down methods begin with a group of all polygons, and recursively subdivide until all leaf 
nodes are indivisible. In our current implementation, we have used the top-down approach. 

Our subdivision rule is to split the longest axis of a box with a plane orthogonal to it, 
partitioning the polygons according to which side of the plane their center point lay (as 

shown in Figure (2). The subdivision coordinate along that axis was chosen to be that of 
the mean point, fl, of the vertices. If the longest axis cannot not be subdivided, the second 
longest axis is chosen. Otherwise, the shortest one is used. If the group of polygons cannot 
be partitioned along any axis by this criterion, then the group is considered indivisible. 

If we choose the partition coordinate based on where the median center point lies, 
then we obtain balanced trees. This arguably results in optimal worst-case hierarchies for 
collision detection. It is, however, extremely difficult to evaluate average-case behavior, as 
performance of collision detection algorithms is sensitive to specific scenarios, and no single 
algorithm performs optimally in all cases. 

Given a model with n triangles, the overall time to build the tree is O(n lg2 n) if we 

use convex hull, and 0( n lg n) if we don't. The recursion is similar to that of quicksort. 
Processing fitting a box to a group of n triangles partitioning them into two subgroups 
takes 0( n lg n) with convex hull and 0( n) without it. Applying the process recursively 

creates a tree with leaf nodes O(lg n) levels deep. 

5 Separating Axis Theorem & Overlaps 

Given OBB-Tree's of two objects, the interference algorithm typically spends 85 - 95% 

of the total time in testing two OBB's for overlap. The simplest algorithm is based on 

performing 144 edge-face tests. In practice, it is an expensive test. Other algorithms are 
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Figure 3: Separating Axis for Vertex-Vertex Case 

based on linear programming and closest features computation. In this section, we present 
a new theorem and algorithm to test such boxes for overlap. 

We are given two OBB's, A and B, with B placed relative to A by rotation R and 

translation T. The dimensions of A and B are represented as a; and b;, where i = 1, 2, 3. 
We will denote the axes of A and Bas the unit vectors Ai and j}, fori= 1,2,3. These 
will be referred to as the box axes. Note that if we use the box axes of A a.s a basis, then 
the columns of R are the same as the j}. Our algorithm makes use of separating axes. 

A line L is a. separating axis if and ouly if the axial projections of A and B onto L are 

disjoint (as shown in Fig. 3). If lis a separating axis, then there exists a. separating plane 
orthogonal to L, implying that the boxes do not overlap. If no separating axis exists, then 
no separating plane exists, which implies for convex polytopes, such as the rectangular 

boxes, that they are touching. 
In order for l to be a. separating axis, the following condition must be met: 

The boxes are being projected onto the axis l to form intervals. The term IT· Zl is the 
projected distance separating the centers of those intervals. The first summation is the 

radius of the interval formed by the image of box A. Similarly for the second summation 
for box B. The comparison is merely between the separation distance of the centers of 
the intervals and the sum of their radii - a. kind of 1 dimensional spherical intersection 
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test. If the expression is satisfied, then l is a separating axis. The interference algorithm 
based on separating axes chooses some lines in space and checks whether any one of them 
is a separating axis. In terms of application, two main questions arise: How many lines to 
choose and what are those lines? 

The separating axis theorem asserts that 15 axial projections are sufficient to determine 
the contact status of two arbitrarily positioned and oriented rectangular boxes in 3-space. 
This formulation of the OBB overlap test leads to an efficient implementation requiring at 
most 200 arithmetic operations. 
Separating Axis Theorem: If two OBB's are not in contact, then there exists a sep

arating axis l = V x W, where V and W are distinct vectors taken from the six box 
axes. 

Proof: Given two non-overlapping boxes, on each there is a point which is closest to 
the other. These "closest points" can each lie on either a vertex, edge, or face, resulting 

in six possible closest feature combinations: face-face, face-edge, face-vertex, edge-edge, 
edge-vertex, and vertex-vertex. We consider each of these six cases. 

• Face-face: This is a nongeneric configuration in which the closest points lie on parallel 
faces. The separating axis l is orthogonal to the parallel faces, and can be formed from 
the cross product of any two box axes parallel to the faces. 

• Face-edge: In this nongeneric configuration, the closest points lie on an edge and a face 
which are parallel. The separating axis l is orthogonal to the face, and can be formed 
from the cross product of the two box axes parallel to the face as well. 
o Face-vertex: The closest points lie on a vertex and a face. Again, the separating axis 

l is orthogonal to the face, and can be formed from the cross product of any two box axes 
parallel to the face. 
o Edge-edge,: The closest points lie on edges. The separating axis lis orthogonal to both 
edges, and can be formed from the cross product of the box axes parallel to the edges. 
o Vertex-vertex: The proof for this case is more complicated than the others. We will 

sketch the outline of the argument here. For more details, refer to [Got96]. Suppose point 
p is at a vertex on A and point q is at a vertex on B, and these points are the closest 
points between the boxes, as shown in Figure 3. Let the vector u join the center of A with 
p, vector v join p to q, and vector w join q to the center of B. Recall that T joins the 
center of A to the center of B. In vector notation, the diagram expresses, 

which implies 

IT ·ll = Iii .f + v · l + w · ll for any f. 
We can show that for one of the separating axis, say, l = Aj, that u · Aj, v · Aj, and ·w · Aj 
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have the same sign, so that 

which implies 
for some Aj 

• Edge-vertex: This case is very similar to the vertex-vertex case, except that v will be 
orthogonal to the edge feature. 

We have shown that if two boxes are disjoint, then for each of the six closest feature pair 
combinations, one of the 15 different axes derived from the cross products of the box axes 
will be a separating axis. The contra-positive statement says that if none of the 15 axes is 

a separating axis, then the boxes overlap. So, testing the 15 axes is sufficient to determine 
the contact status of the boxes. 

The test of an axis is very simple. The expression originally given was 

This simplifies greatly when L is a cross product of box axes. For example, consider 
L = A1 x B2• The second term in the first summation: 

ja2B2 . CA2 X ;[r) I 
la2iJ2. A's I 
la2BJI 
a2jR32I 

The last step is due to the fact that the columns of the rotation matrix are also the axes 

of the frame of B. So that term reduced to a multiplication and an absolute value. Some 
terms reduce to zero. After simplifying all the terms, this axis test looks like: 

All 15 axis tests simplify in similar fashion. The absolute value of the elements of R are 
repeated, so those expressions can be computed once before beginning the axis tests. The 
total number of operation count for all 15 axis tests is less than 200, counting absolute 
value and comparisons. If any one of the expressions is satisfied, the boxes are known to 

be disjoint, and the remainder of the 15 axis tests are unnecessary. This permits early exit 
from the series of tests, so 200 operations is the worst case bound, but often much fewer 
are needed. 

We have implemented the algorithm and compared its performance with other box 

overlap algorithms. The latter include an efficient implementation of closest features com
putation between convex polytopes [GJK88] and a fast implementation of linear program
ming based on Seidel's algorithm [Sei90]. Note that the last two implementations have 
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been optimized for general convex polytopes. All these algorithms are much better than 

performing 144 edge-face intersections. We report the average time for checking overlap 
between two 01313's in Table 1. All the timings are in microseconds, computed on a HP 

735/125 . 

Sep. Axis Closest Linear 

Algorithm Features Programming 

5-7 us 45- 105 us 180- 230 us 

Table 1: Performance of Box Overlap Algorithms 

6 OBB's vs. other Volumes 

In this section, we analyze the performance of 01313-Tree's with other hierarchical struc
tures based on sphere trees and AA1313's. We make use of aspect ratios of these bounding 

volumes. In particular, hierarchies based on spheres (shown in Figure 4( c)) or AA1313's(shown 

in Figure 4( d)) form fixed aspect-ratio hierarchies. 
We define the thickness, e, of a bounding volume as the maximum distance of the 

bounded surface from any point in the volume, and the diamete7', d, of a bounding volume 
as the maximum distance between two points on the surface within the volume. Vve define 

the aspect-ratio as ejd. The aspect-ratio of a sphere is the same as that of it's children. 

Likewise for AA/313. 

Since the 01313 aligns itself with the surface geometry (as shown in Figure 4(b)), it 
depends more on the curvature of the surface, and not on the orientation. To simplify 

the analysis, we initially assume the curvature of the surface patch is constant, like that 

of a sphere. In Figure 4(a), we have d = 2rsinli, and e = r- rcosli. Using small angle 
assumption and eliminating II, we obtain e = d2 /Sr. So e has quadratic dependence on d. 

When d is halved, e is quartered, and the aspect-ratio is halved. 

If we use N same-sized bounding volumes to cover a patch of area A and require each 

volume to cover O(A/ N) surface area. Therefore, d = 0( [A!NJ. However, for AA1313's 

and spheres, e depends linearly on the d's, so e = 0( [A!NJ. For 01313's, e = O(A/N). In 
each case, e is a measure of how tightly the tiling of bounding volumes covers the patch. 

Such a tiling of two parallel surface patches offset by a gap of 2e can be used to determine 
their contact status. This scenario is parallel close proximity, very common in virtual 
prototyping, dynamic simulation and tolerance analysis applications, where the two objects 
can have multiple close contacts (as shown for two interweaving pipelines in Figure 1). If 
this gap between the surface patches is halved, then the number, N, of spheres or AA1313's 
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Figure 4: Convergence of Various Hierarchies 

required to confirm that they are disjoint increases by a factor of 4. However, for OBB's, N 
doubles. Thus, we claim that OBB's require 0( VJii) work (in terms of number of bounding 

volume overlaps), whereas spheres and AABB's require O(N). 
We have verified this analysis by performing some simulations. One simulation consists 

of two concentric spheres, whose radii differ by some E. We compared the performance of 

AABB-Trees against OBB-Tree's. We looked at how many bounding volume overlap tests 

each hierarchy required as E varied. The results are shown as a graph in Figure 5. It is a 

log-log plot, showing that OBB-Tree'srequire asymptotically fewer tests than AABB-Trees 
as E decreases. 

A more common scenario is point close proximity, where two nonparallel surface patches 

come close to touching at a point. We can think of the surfaces in the neighborhood of the 

closest points as being in parallel close proximity - but this approximation applies only 

locally. We have not been able to analytically characterize the performance, so we rely 

instead on empirical evidence to claim that for this scenario OBB-Tree's have superior 

asymptotic performance than AABB-Trees. We placed two same-sized spheres next to one 
another, separated by some E, and examined how many tests each hierarchy required to 

determine disjoint contact status as e was varied. The results are shown in Figure 6. 

On surface patches with high curvature everywhere, such as a 3D fractal, it is possible 

that we may lose some or all of the performance advantages. Similarly, a very coarse 
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polygonalization of a surface will place a natural limit on N, the number of volumes used 
to approximate the surface, and OBB-, sphere-, and AABB-trees will have to traverse 
their entire hierarchies, all requiring the same order of bounding volume overlap tests. In 
Figure 7, we show the different level of hierarchies for AABB-tree's and OBB-Tree's while 

approximating a torus. The number of bounding volumes in each tree a.t each level is the 
same. Even for a ~mmetric object like a. torus, the E for OBB-Tree's is much smaller a.s 

ests 
compared to E for t e AABB-tree's. 

AABB 

le+06- ----- ----------+------ "b"i'ii'f 

le+02 ----------+--

i 

le+Ol -- ______ _____J_ _________ _ 

! Separation 
le-02 le-01 le+OO 

?Figure 5: OBB's vs. AABB's: Parallel Proximity 

7 Implementation and Performance 

The software for the collision detection library was written in C++. The primary data 

structu,-e for an OBB is a. "box" class whose members contain a. rotation matrix and 
translation vector, defining its placement relative to its parent, pointers to its parent and 
two children, the three box dimensions, and an object which holds a list of the triangles the 

box contains. The overall data structure for the box occupies 168 bytes. The tree formed 
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Tests 

3-+~~~~~~~~~~~~-+--AABB 

1e+04 =t==:::::-=~~~~~f---~~~-f---bBif 

3~------r~---~~------~ 
1 e+03 --- ....•.. ··----·-----.. ~"' 

3~----~-~·---~·~·~--~~~--~-----r
--~-- •..... ~ 

1e+02-+---------+---------+·~··, ... ~.~.~ .... ~,~----+-~ 

3~------+-------+----+\+~-+--

1e+01-+--------~--------+-----~~\\~-

3-+--------+--------+------~'~ 
\ 

1e+00-+--------~--------+---------r-

1e-03 1e-02 1e-01 1e+00 

Figure 6: OBB's vs. AABB's: Point Proximity 

Separation 

from boxes as nodes, and the triangle list class, are the only compound data structures 

used. 
An OBB-/ree of n triangles contains n leaf boxes and n ~ 1 internal node boxes. 

In terms of memory requirements, there are approximately two boxes per triangle. The 
triangle itself requires 9 double precision numbers plus an integer for identification, totalling 
76 bytes (based on 64-bit IEEE arithmetic). The memory requirement therefore totals 412 

bytes per triangle in the model. This estimate does not include whatever overhead may 
exist in the dynamic memory allocation mechanism of the runtime environment. Using 
quaternions instead of rotation matrices (to represent box orientations), we can use 80 
bytes fewer per triangle, but need 13 more operations per OBB overlap test. 

7.1 Robustness and Accuracy 

The algorithm and the implementations are applicable to all unstructured polygonal mod

els. The polygons are permitted to be degenerate, with two or even one unique vertex, 
have no connectivity restrictions. The algorithm requires no adjacency information. This 

15 



degree of robustness gives the system wider applicability. For example, space curves can 
be approximated by degenerate triangles as line segments - the system will correctly find 
intersections of those curves with other curves or surfaces. 

The OBB overlap test is very robust as compared to other OBB overlap algorithms. 
It does not need to check for non-generic conditions such as parallel faces or edges; these 
are not special cases for the test and do not need to be handled separately. As a series 
of comparisons between linear combinations, the test is numerically stable: there are no 
divisions, square roots, or other functions to threaten domain errors or create conditioning 
problems. The use of an error margin, e, guards against missing intersections due to 

arithmetic error. Its value can be set by the user. 
The Qhull package [BDH93] is optionally used for computing the OBB orientation. It 

has been found to be quite robust. If we do use Qhull, we have to ensure that the input to 
Qhull spans 3 dimensions. If the input is rank deficient, our current implementation skips 

the use of Qhull, and uses all the triangles in the group. A more complete solution would 
be to project the input onto a lower dimensional space, and compute the convex hull of 
the projection ( qhull works on input of arbitrary specified dimension, but the input must 
be full rank). 

There is the issue of propagation of errors as we descend the hierarchies, performing 

overlap tests. When we test two boxes or two triangles, their placement relative to one 
another is the result of a series of transformations, one for each level of each hierarchy we 
have traversed. vVe have not found errors due to the cascading of transformation matrices, 
but it is a theoretical source of errors we are aware of. 

7.2 Performance 

Our interference detection algorithm has been applied to two complex synthetic environ
ments to demonstrate its efficiency (as highlighted in Table 2). These figures are for an 
SGI Reality Engine (90 MHz R8000 CPU, 512 MB). 

A simple dynamics engine exercised the collision detection system. At each time step, 
the contact polygons were found by the collision detection algorithm, an impulse was 

applied to the object at each contact before advancing the clock. 
In the first scenario, the pipes model was used as both the environment and the dynamic 

object, as shown in Figure 1. Both object and environment contain 140,000 polygons. The 
object is 15 times smaller in size than the environment. We simulated a gravitational 
field directed toward the center of the large cube of pipes, and permitted the smaller cube 

to fall inward, tumbling and bouncing. Its path contained 4008 discrete positions, and 
required 16.9 seconds to determine all 23905 contacts along the path. This is a challenging 
scenario because the smaller object is entirely embedded within the larger model. The 
models contain long thin triangles in the straight segments of the pipes, which cannot be 
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II Scenario Pipes Torus II 
Environ Size 143690 pgns 98000 pgns 
Object Size 143690 pgns 20000 pgns 
Num of Steps 4008 1298 
Num of Contacts 23905 2266 
Num of Box-Box Tests 1704187 1055559 
N urn of Tri-Tri Tests 71589 7069 
Time 16.9 sees 8.9 sees 

Ave. Int. Detec. Time 4.2 msecs 6.9 msecs 
Ave. Time per Box Test 7.9 usecs 7.3 usecs 
Ave. Contacts per Step 6.0 1.7 

Table 2: Timings for simulations 

efficiently approximated by sphere-trees, octrees, and AABB-Trees, in general. It has no 
obvious groups or clusters, which are typically used by spatial partitioning algorithms like 
BSP's. 

The other scenario has a complex wrinkled torus encircling a stalagmite in a dimpled, 

toothed landscape. Different steps from this simulation are shown in Figure 8 (and the 

video). The spikes in the landscape prevent large bounding boxes from touching the floor 
of the landscape, while the dimples provide numerous shallow concavities into which an 
object can enter. Likewise, the wrinkles and the twisting of the torus makes it impractical 
to decompose into convex polytopes, and difficult to efficiently apply bounding volumes. 
The wrinkled torus and the environment are also smooth enough to come into parallel 

close pmximity, increasing the number of bounding volume overlap tests. Notice that the 
average number of box tests per step for the torus scenario is almost twice that of the 
pipes, even though the number of contacts is much lower. 

7.3 Comparison with Other Approaches 

A number of hierarchical structures are known in the literature for interference detection. 

Most of them are based on spheres or AABB's. They have been applied to a number of 
complex environments. However, there are no standard benchmarks available to compare 
different algorithms and implementations. As a result, it is non-trivial to compare two 
algorithms and their implementations. More recently, [HKM95] have compared different 
algorithms (based on line-stabbing and AABB's) on models composed oftens of thousands 

of polygons. On an SGI I ndigo2 Extreme, the algorithms with the best performance are 
able to compute all the contacts between the models in about 1/7- 1/5 of a second. Just 
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based on the model complexity, we are able to handle models composed of hundreds of 
thousands of polygons (with multiple parallel contacts) in about 1/25- 1/75 of a second. 
We also compared our algorithm with an implementation of sphere tree based on the 
algorithm presented in [Qui94]. A very preliminary comparison indicates one order of 

magnitude improvement. 
Overall, we find that given two large models in close proximity: 

• B for OBB-Tree's is one-order of magnitude slower than that for sphere-trees or 

AABB's. 

• N for OBB-Tree's is asymptotically lower than that for sphere trees or AABB's. 
Likewise, P for OBB-Tree's is asymptotically lower. 

Thus, given sufficiently large models, our interference detection algorithm based on OBB
Tree's is more than one order of magnitude faster as compared to using sphere trees or 

AABB's. 

8 Extensions and Future Work 

In the previous sections, we described the algorithm for interference detection between two 
polygonal models undergoing rigid motion. In this section, we discuss its specialization and 

extension to other applications. These include ray-tracing, interference detection between 

curved surfaces and deformable models. 
Ray-Tracing: An efficient algorithm for computing the intersection between a ray and 
an OBB was presented in [RW80]. It performs intersection tests with all the boundary 
planes. An alternative is to view the ray as an OBB with infinite length, and zero width 
and height. In this case, the Separating Axes Theorem (in Section 5) can be specialized to 

show that it is sufficient to test only three axes. 
Curve and Surface Intersections: Computing the intersection between curves and sur
faces is a fundamental problem in geometric and solid modeling [SP86]. Current approaches 
are based on algebraic methods, subdivision methods and interval arithmetic. Algebraic 
methods are restricted to low degree intersections. For high degree curve intersections, 

algorithms based on interval arithmetic have been found to be the fastest [SP86]. Such al
gorithms compute a decomposition of the curve in terms of AABB's. We plan to apply our 
algorithm based on OBB's to such problems. It involves subdividing the curve, computing 

tight-fitting OBB'sfor each segment, and checking them for overlaps. 

Deformable Models: Efficient interference detection between deformable models is a 
challenging problem. Current efficient algorithms are restricted to particular deformations 
(like quadratic deformations) or when the motion can be expressed as a closed form function 
of time. Our interference detection algorithm could be applied to deformable models, 
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but an OBB-/ree would ordinarily be invalidated as the model deforms. Our current 
implementation of building the entire OBB-/ree anew is not interactive for large models. 
One possible approach is lazy, top-down construction of OBB-Tree'sin which only those 
nodes which get visited are explicitly represented and processed. 

Libraries and Benchmarks: We propose to make our models, scenarios and the interfer
ence detection library publically available sometime in the future. This would facilitate the 
comparison of different approaches, algorithms and implementations among researchers. 

9 Conclusion 

In this paper, we have presented a hierarchical data structure for rapid and exact interfer
ence detection between polygonal models. The algorithm is general-purpose and makes no 

assumptions about the input model. We have presented new algorithms for efficient con
struction of tight-fitting OBB-Tree'sand overlap detection between two OBB's based on a 
new separating axis theorem. We have compared its performance with other hierarchical 
trees based on spheres and AABB's and find it asymptotically faster for close proximity 
situations. The algorithm has been implemented and is able to detect all contacts between 

complex geometries (composed of a few hundred thousand polygons) at interactive rates. 
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Figure 7: AABB's vs. OBB's: Approximation of a Torus- This shows OBB's converging to 

the shape of a torus more rapidly than AABB's. 
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Figure 8: Interactive Interference Detection for a Complex Torus- Torus has 20000 polygons; 

Environment has 98000 polygons; Average time to perform collision detection: 6.9 msec on SGI 

Reality Engine 
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