Architectures of Image Generators for Flight Simulators

Carl Mueller

Department of Computer Science

UNC Chapel Hill

February, 1995

R T 10T [o 1o o ...
1.1. Investigating the TOPIC. cuiueiie e 1......
1.2. The NatUre Of FS IGS .. u it 1......

2. High-level IG CoNSIderatioNSot e ae e 2.
2.1, RENAEINNG SPEEOA. ...cuiiiiii i e 2.

211, ReAIFME. ..o 2.
2.01.2. LOW LAEENCY. ..t ettt 2......
2.0.3. BUAQEIS .ttt 3.
2.2. Rendering QUAlItY. 3.
2.2 0. ANGALIASING. ... 3......
2.2.2. Display of Light POINtS......cccoiiiiiiii e 3.
2.2.3. TOXIUMES .ot 3.
2.2, 4, TIANSPAIEINCY. ... ettt ettt ettt et et 4......
2.2.5. Other EffeCtS. .. 4.
2.3, Database ISSUES.. ... Ao,
2.4, Display SYSIEMS. ...t B
2.5, Other IG FUNCHONS.ottt 5.

G T (RS V51 (=T . I N =T V= B

A, P fOrMANCE IS UBS. . ittt ittt e e e e e e Borrennn
4.0. MOtioN PrediCtion. 6......
4.1, Database PrOCESSINGttt B......

4.1.1. Database StrUCTUIE cueiiit ettt ...
R =11 - 1 o D PP PTPTPPPR P
T T o 1= = 1] 0)Y/ 8......
1 5 8......
4.1.5. Small-Object CUlliNg........ccuiiiiiiiii e 9.......
4.1.6. OVEHOAA 9......
4.1.7. Run-Time Feature Conforming..........cocoviiiiiiiiiiiiiiiiiee, 10..
4.1.8. GeneriC Fill....coouii 10......
4.2, OCCIUSIOM. ... ettt ettt e e 10......
4.2.1. List-priority or Z-buffer Rendering?.........cc.ooviiiiiiiiiiiiiiieen 10
4.2.2. Advanced OCCIUSION StrategieSouvuieieiiie e 11
4.3, PiIXEl PrOCESSING ... ettt 12.....
4.3.1. AntialiasSing Strate@gieS.......ouuieeie i 12...
e I = 1 1] 0 F= T (=] 103V 13....
4.3.3. TeXturing StrategieS. ..o iiuiiii e e eas 14.......
4.3.3.1. Texture Application..........cocoiuiiiiiiii e 14..
4.3.3.2. Multiple Maps Per Polygon.............cooiiiiiiiiiiiiien 15.
4.3.3.3. Texture Coordinate Specification...............cccoooiiiiiiiiiiian, 15.
4.3.3.4. Animated Texture Possibilities.........c.cooocviiiiiiiiiiniiinnnnn. 15.....
4.3.3.5. Texture Storage & Paging........cccovviiviiiiiiiiiiiciiiieieen 15.
A4, FOQ, HaZe. . i e e 16........
4.5, VOIUMELC SMOKE. .. . aas 16.....
4.6. DiSPlay SYStIMS. ...ttt 16........
4.6.1. Calligraphic Light POINES.........ccciiiiiiii e 16...
4.6.2. DiStOrtion COIMECHION.ttt 17...
4.6.3. Multiple Image BlIending.........cccoiiiiiiii e 17...
R A @ 11 o] - £ 17....

D Sy S BIM IS SUBS ..ttt e 18......

T I 1 (= o o]] g = o3 4 o 1= 7S PR 18........
5.1 1 HOSEINtEIfaCE. .. 18....
5.1.2. Other INterfacescuiiii e 18....

5.2, ParalleliSm. ... 19.....
5.2.1. Parallel Pixel ProCeSSING . ..cuviiiiiieiiee e 19...
5.2.2. Parallel Polygon ProCeSSOIS.oviieiiiiiiiiiiee e 20..
5.2.3. Parallel Scene Management..........c.ouiiuiuiiiiiiiiieee e 20...

5.2.4. Additional ProCeSSINg.......ocuiiuiiiiiiiiie e 20.......

5.3, Channel Strategies.ouiuitii it 21....

B5.3.1. SINGIE FOIK. .o 21......
5.3.2. MUIIPIE FOIK. e 21.....
B.0 CONCIUSION . . ettt et e e e et e e e e eaans 22.......
Annotated BibOGrapiyu e 24......
Y 0] =T o 29.......
ALAA CONTOIENCES: ettt 29.......
ANNUAl IMage GENEIAION SUIVEY: ettt et 29....
ITEC, HITSC, HITSEC: . e 29.....
The IMAGE SOCIELY, INCu.e.tiiiti e 29....
T B e e 30.......
NI S ST 30.......
== U I 1= T = o] T 30.....
TECHNICAl OVEIVIEWS: ..ottt e e neens 30.....

Architectures of Image Generators for Flight Simulators
Carl Mueller
Department of Computer Science
UNC Chapel Hill
February, 1995

1. Introduction

This paper represents the results of a general investigation into the architectures of image generators
for flight simulators. The focus of this research was techniques for real-time image generation, and thus the
elements of the image generators most directly related to this topic will be concentrated on, while other
issues (such as display systems) will not receive as much attention.

The term "flight simulator” is actually too specific for the range of systems studied here. While
initially developed to support flight training, computer image generation systems have been used to support
many kinds of training and simulation tasks. Military tactical training for ground-based vehicles (i.e.,
tanks) is a major example. Unless stated otherwise, the term "IG" will be used to refer generically to image
generators developed for simulation and training purposes. While references to flight simulation will still
be made, it should be understood that such remarks usually apply as well to other kinds of simulation
training.

As the author came into this study with a background in general purpose graphics computers and
real-time rendering, the paper was written for a reader who is also somewhat familiar with these areas.
Given this, we further focus the topic of this paper on the differences between IGs and general purpose
graphics systems, zooming in on the techniques which are more unique to the IG industry.

1.1. Investigating the Topic

The business of commercial flight simulator products is highly competitive, and most companies are
quite secretive about how their systems work. This unfortunately leads to a drought of solid information
about the various systems. However, there are still a few good sources of information to be found. The
companies themselves typically do have some "technical overviews" about their systems, which may
sometimes reveal a fair amount of information if one reads between the lines. Also, there are a few regular
conferences where sharing of technical information takes place. These include the Image Society
conference, I/ITSEC, ITEC, and AIAA. Please refer to the appendix for information on these and other
sources.

1.2. The Nature of FS IGs

The application of flight simulation is fairly focused. The goal is to train a pilot for performing
various flying tasks. These may include flying at night or during weather conditions offering poor
visibility. Military trainers might emphasize special maneuvers such as tactical combat, nap-of-the-earth
flying, or flying in formation.

The job of generating the images that the trainee sees is of course the main function of the 1G. It
must draw the images representing the "out-the-window" view of the vehicle being simulated. To provide
the illusion of continuous motion, the IG must render a new image (or "frame") several times each second.

The frames generated by the IG are conveyed to the trainee by the display system. Display systems
vary greatly depending upon the particular application. Typically, a display system will consist of one or
more CRTs (or other projection devices), each scanning out a raster image composed of 1/4 million to one
million pixels.

Ideally, the views presented by the IG would be realistic images such as the trainee may expect to see
in a real environment. However, the computational requirements for presenting such realism in real time
are beyond the capabilities of any graphics machine to date (except for a limited class of environments).
Thus the compromise is that IGs present views containing only the necessary information for the training
task at hand. For night-time landing, all that may be necessary is a set of runway lights, while the scenery
required for tactical training may be a large, detailed combat area containing several moving combatants.

We call the stored representation of the scenery to be drawn the "database". It typically consists of
terrain, light points, and some fixed and moving objects. The terrain and objects are typically modeled from
polygons with various texture patterns applied.

(See [SCHAB83], [TUCK84], [YANS85], and [ROLF86] for some general FS information. Much of
the unreferenced information below is derived from these sources.)

2. High-level 1G Considerations

We now enumerate some of the requirements and issues that set FS IGs apart from the context of
general purpose graphics systems. These include:

- the rendering speed requirements

- the rendering quality requirements

- the nature of the database

- the nature of the display devices

- the additional functions assigned to the IG

These items are the focus of this section.
2.1. Rendering Speed
2.1.1. Real-time

FS IGs must be truly real-time graphics computers. The typical performance requirement is 30
frames drawn per second, with up to 60 frames per second also common. These requirements vary
somewhat depending upon the exact application: the faster the vehicle can maneuver, the faster the update
rate should be, and vice-versa.

It is essential that the IG synchronize with the rest of the system. The visual information provided
by the IG must keep pace with motion or audio cues from other systems, and also with simulation's
dynamics as it responds to the pilot's inputs. Therefore the real-time requirement of IGs is often strict: a
frame must never take more than the allotted time to generate. Some systems may relax this requirement
slightly by allowing the image generator to fall slightly out of sync when it has to (due to some overload
condition), provided that it can catch up eventually.

2.1.2. Low Latency

Another aspect of rendering speed is latency, or the time it takes from when all viewing parameters
are supplied and an image has begun rendering until it appears on the display. This latency is also referred
to as transport delay. Having low latency is important since the pilot should not feel any unnatural delays
in the time between his control input and the visual feedback he receives. Again, the amount of latency
tolerable depends upon the exact application.

Even if the simulation itself might tolerate long latency, there are display devices which will not.
For instance, some simulation systems use head-mounted displays (HMDs), which provide the pilot with
images based upon his line of sight. Here especially latency is a critical issue, since too much will not
only be unnatural and distracting, but may also cause "simulator sickness".

The HMD systems used in FS are usually of the "see-through" variety (as opposed to the enclosed,
"immersive" type) since it is necessary for the pilot to see his physical cockpit environment (including his
hands). In these setups, zero latency is desirable to avoid the distracting "swimming" effect of the virtual
scenery in relation to the real physical scenery. ([LACR94] discuses some HMD issues as related to FS.)

2.1.3. Budgets

Given the limited time available to generate a frame, and given the amount time it takes to render an
average polygon, what results is the average number of polygons that can be rendered per frame: the
"polygon budget.” A major problem is that the number of polygons present in a realistic scene may be
several thousand or hundreds of thousands. While relatively small polygon budgets might be adequate for
certain training applications, other applications continually push the limits of what modern technology can
offer. This is feature shared with general purpose graphics computers: more raw polygon processing power
is always in demand.

Related to the polygon budget is another factor known as the pixel budget. Each pixel from each
polygon takes some amount of time to process. A scene that might meet an IGs polygon budget may still
take too long to render if, for example, the polygons all have more pixels than "average”, and thus exceed
the pixel budget.

2.2. Rendering Quality
2.2.1. Antialiasing

Several elements are involved in producing an image of the necessary quality for simulation
purposes. Perhaps of prime importance is adequate antialiasing. Antialiasing involves implementation of
polygon rendering algorithms with proper filtering to prevent the visual anomalies such as "stair steps"” that
result from simplistic rendering algorithms. These visual anomalies not only take away from the realism
of the scene bhut can also distract the pilot and make him miss the subtle cues that are important to his
training.

There is no serious FS IG system that does not address the issue of antialiasing. While there is a
fair amount of variability among systems, the FS IG minimum standard for antialiased polygon edges is
16-sample sub-pixel accuracy. For the rendering of textures, the standard is to use trilinearly interpolated
MIP maps. Very few systems advertise anything less.

2.2.2. Display of Light Points

A feature particular to FS systems is the display of accurate light points. Early FS systems were
designed specifically for the purpose of night training. In these systems, the principal (or only) visual
features were airport lights, of which airports are full of, with many specialized varieties (directional, multi-
color, strobing, etc.) designed to aid the task of night landings.

These night systems typically used calligraphic CRTs, where the electron beam could be controlled
precisely in order to render the light points correctly. These display systems were very limited in their
capability of drawing shaded surfaces, and thus were not so useful for daylight simulations. While raster
displays solved the surface problem, they generally cannot display light points as accurately. Proper
antialiasing of raster light points may be adequate for many purposes, but higher-end systems use special
displays that can operate in both raster and calligraphic modes.

2.2.3. Textures
While light points provide the main visual cues for night flying, daylight flying depends upon other

kinds of cues. One such cue is "optical flow." The term is used to describe how the complex patterns seen
in a real environment appear to "flow" as one moves through the environment along a given path.

Optical flow is achieved by two main methods: adding detailed scenery to the database and adding
texture patterns to the scenery. Because of polygon budget limitations, the second method has received
attention starting from some of the very first raster-scan simulators. Fields, forests, bodies of water, sky,
and runway asphalt all can be given a much more realistic appearance by "simply" adding texture.

With the availability of highly detailed pictures of the earth (through the Defense Mapping Agency
and other efforts), texture is being used increasingly as a modeling tool to give true realism to terrain
models. This requires that the IG can access a large volumes of photo-specific texture information, and thus
be able to "page in and out" texture data dynamically during simulation. This is often referred to as a
"global texturing" feature of an I1G.

2.2.4. Transparency

Support of transparency is another standard feature of 1Gs that provides a large amount of flexibility
and rendering power. When combined with texture mapping, transparency can simplify many modeling
problems, such as the representation of trees. Certain special effects (mentioned below) are also made easier
with transparency. Perhaps the most important use of transparency is for fading objects in and out of the
scene and in between different representations. This is necessary for proper scene management (see below)
while avoiding sudden changes.

The number of transparency levels required depends upon the specific task. From sixteen to 4096
levels may be supported. Most of the effects mentioned do not require a large number of levels.

2.2.5. Other Effects

Another set of visual features that is standard on most FS IG systems is the simulation of various
visual effects. These may include atmosphere effects, such as fog, haze, precipitation, and cloud layers.
Alternately, combat-oriented simulators may require the generation of effects such as explosions, flashes, or
the display of artificial obscurants or debris.

2.3. Database Issues

There are two facets associated with database formats. One is the external representation of the
database for archival purposes. The other is the internal or run-time representation of the database. This is
our real concern, since the format affects the processing algorithms and even the basic rendering architecture
of the IG.

The size of the database is a factor. Databases may span hundreds of square miles, and thus be much
too large to even fit in memory. Therefore, database paging is an issue that most systems have to contend
with.

Unlike general purpose graphics computers, FS IGs enjoy the benefit of having a limited, well-
structured database organization. As mentioned earlier, the scenery for FS typically includes terrain, fixed
ground objects, light points, and a few moving objects. The IG can and must take advantage of the inherent
structure in such scenery, both in the manner in which the scenery is represented in the database, and how
the resulting database is processed. It is common for the database to be subdivided into sections containing
the parts mentioned, with each part stored in a specialized format.

2.4. Display Systems

Flight simulation is somewhat unique in terms of the large variety of display devices that have been
employed. In the quest for a display system with all of the desired parameters, many different setups have
been tried. Different display devices, including various types of CRTSs, light valves, projection systems,
laser-based devices, and others have been used in many kinds of display systems. A display system might
be a single CRTs, or it might include multiple projectors aimed at spherical or cylindrical screens, perhaps
employing an elaborate setup of mirrors and other optics. It might be an area-of-interest (AQI) display

system, with servos rapidly positioning a projector image to follow the pilot's gaze as his head or eyes are
tracked. It might also be a head-mounted display system, again coupled with a high-speed tracking system.

Common to many display systems is the requirement of generating multiple channels of video.
This might be for multiple displays sharing the same viewport (a large front window, for example), or for
multiple viewports with their own displays (front/side/rear windows), or for stereo displays in an HMD, or
for a variety of other reasons. As with any multiple-display setup, all displays must be synchronized as the
image is updated, or else artifacts might occur.

2.5. Other IG Functions

Aside from simply rendering the out-the-window scenery, an IG is often given other tasks, usually
because of the intimate relation is has with the scenery database. Two such tasks include "height above
terrain” (HAT) and line-of-site ranging (also known as laser ranging). These are basically queries of the
nearest object either directly below the aircraft or along some specified direction. Sometimes more general
collision detection functions are provided, such as checking whether a given volume or set of vectors
intersects any database object. These tasks are often referred to as "mission functions".

A different kind of task that an IG may support is that of providing sensor image data. Rather than
generate the out-the-window scenery, the IG renders the database as it may be seen be a forward-looking
infrared (FLIR) sensor, or perhaps by radar or other type of sensor. These functions usually call for storing
additional kinds of surface information in the database.

3. |G System Overview

To provide some common context, we now briefly describe a conceptual IG pipeline. The figure
below shows such a pipeline.

| Simulator Hos |

IG (Database Processi)—' Databas

(Polygon Processir)

(Pixel Processin)

(Video Processin)

| Display Syster |

Figure 1. IG Pipeline.

The simulator host is the machine that is performing the non-visual computations for the simulation
task. It communicates with the 1G to specify information which affects the visual display, such as any
database changes, or, more importantly, the current viewpoint information. It may also make queries of the
IG for mission-related functions.

The purpose of the database processing stage is to examine the whole scenery database and determine,
for the given viewpoint, which parts should be passed for consideration down the rest of the pipeline. This
stage is also referred to as "scene management" or "database traversal". Since the entire database may be too
large to fit in memory at once, this stage may also need to perform database paging from disk.

The polygon processing stage is where geometric transformation takes the polygons from object-
space coordinates to screen-space coordinates. This involves applying the transformation matrix and
perspective division operation to each vertex of the polygon. This is also where setup for shading and
texture calculations occurs.

The degree of separation between database processing and polygon processing varies from system to
system. These tasks may or may not be performed by the same processor or set of processors.

Pixel processing converts the resulting polygon descriptions into raster pixels. This is the stage
where many pixel-specific actions happen: transparency and texture processing, shading, atmospheric
effects, and antialiasing. The processor at this stage is often referred to as the rasterizer.

In one or both of the above stages (depending upon the specific system), the process of occulting
takes place. This is process of deciding which parts of each object are visible, and which are covered by
nearer objects.

In the video generation stage, some additional post-processing of the pixels may occur before the
resulting image is transformed into an analog video stream. This might include color remapping or gamma
correction, adding in digital overlays (perhaps from a HUD, heads-up display), or perhaps additional filtering
for antialiasing. For the purposes of sensor-image generation, some systems apply additional post-
processing at this stage.

The final streams of video are sent to the various display devices. In these, some additional
processing may occur. This may include image distortion, edge blending, or contrast mapping. The first is
used to help compensate for distorted screen geometry or display optics (some distortion correction may also
occur previously in the IG). The second two are used to help blend multiple projected images into a single,
matched, seamless image (these also may occur in earlier stages in the IG).

4. Performance Issues

Despite technology which has increased tremendously the computational power available to 1G
systems over the years, straightforward, using textbook rendering techniques to draw realistic images still
require more processing time than that available to real-time systems. The art of IG design involves two
tasks: finding new ways to harness the new technologies as they become available, and coming up with
schemes for drawing as realistic a scene as possible while doing as little work as possible. This is what we
shall examine now.

We'll try to examine systems on a feature-by-feature basis, following to some extent the order of
features as they are encountered along the IG pipeline.

4.0. Motion Prediction

We have already discussed the fact that achieving low latency is an important IG concern. Given that
the most IGs operate in fixed frame times, many include a prediction feature to allow the 1G to extrapolate
the motion of the simulated vehicle. Thus the IG will adjust the viewing parameters to account for the
time taken to generate the image. This is not a very common feature; presumably, the simulation
computer itself can perform such this task with greater accuracy, since it has more information about the
simulation vehicle.

4.1. Database Processing

As mentioned before, database processing is the selection of potentially visible elements from the
database to be processed by the rest of the system. Since this step controls the load for the rest of the
system, some of the most important gains in IG performance can be achieved through the use of
sophisticated selection algorithms.

We will refer to the entity that performs database processing as the scene manager. Besides simply
choosing which elements are potentially visible (and "culling" those which are not), the scene manager can
greatly reduce the 1G load by choosing the proper representation for each element. This is known as level-
of-detail (LOD) selection. The proper level of detail to display is mostly a function of range: as an element
moves further away from the viewer, it can be drawn using simpler representations and still retain visual
fidelity.

LOD is a powerful technique which will be discussed in more detail shortly. For now, we note that
the creation of different LOD models can be a difficult task. For objects, this is typically done by hand. For
terrain, automatic procedures can be used.

4.1.1. Database Structure

First, we consider database structure. Database processing is intimately tied to the choice of database
structure. Because the entire database can be very large, it is not possible for the scene manager to check
(cull-test) every element separately to determine if it is potentially visible. To reduce the number of checks
necessary, one must take advantage of any structure which is present in the data.

Fortunately, FS databases are full of structure. As mentioned earlier, the typical database consists of
terrain, fixed objects, light points, and a small number of moving objects. This categorization is one type
of structure in itself; IG databases are universally partitioned by these categories.

The fact that the majority of the database tends to be static helps greatly. This allows one to take
advantage of spatial coherence. The overall terrain can be divided into a number of patches; rather than cull-
testing each terrain polygon, the scene manager now needs only to cull-test each patch.

4.1.2. Terrain

How the terrain should be represented is another question. It can be represented very efficiently as an
array of points forming a regularly-grided height field. Evans and Sutherland is a major proponent of this
storage method [COSM90], which offers several benefits. One is the compactness of this representation:
for a given area, only Z (height) values need to be stored; the X and Y positions are given intrinsically by
the array position. Compact storage is important since it not only conserves IG memory, but it also means
that the database can be paged quickly from disk.

Figure 2. Regularly gridded terrain (left) vs. irregular triangular mesh (right)

With an opposing view, Martin Marietta (among others) favors an irregular triangular mesh for
terrain [DONQ]. The argument is that with such an arrangement, the triangles can be more custom-tailored
to the environment, and thus many fewer are required. While the space savings may not be great, there are
potential savings in the number of triangles that must be drawn.

Because of the tradeoffs involved, some companies (such as Sogitec) support both approaches.
Sogitec claims that the former method is more suited for the low-detail level of representation, while the
latter is more efficient for the high-detail representation [CHAU94a].

4.1.3. Hierarchy

Universally, IG databases are arranged in some type of tree-structured hierarchy. Each node in the
hierarchy includes bounds information. Thus when the scene manager finds that a particular node is not in
view, it can skip the processing of that node and all of its children nodes.

& %@\@
© ©® & © A

Figure 3. Hierarchy example.

To further help out the scene manager, there are some special types of hierarchy nodes included. One
type of node subdivides space into regular regions. Each region forms a subhierarchy which could
correspond to, for instance, a patch of terrain and all the objects found on that patch. With a regular region
subdivision, visibility culling becomes a simple matter of traversing only the regions which overlap the
field of view. Regions which do not overlap do not even need to be considered.

R<10 10<R<5(50<R<50(500<R

Figure 4. Regular region subdivision node (left); LOD-decision node (right)

Another special type of node is a LOD-decision node. When traversing such a node, the scene
manager performs a range test based upon the data provided to make a decision about which branch to
follow next. Thus the subhierarchies describing the more complex versions of terrain or models are not
traversed when they are too far away.

41.4. LOD

We now consider LOD again. While we have already said that an object that is far away can be
drawn with a simpler representation than when the same object is nearer, there is still the question of how
one can switch from one representation to the other as the object moves nearer or farther. Just toggling
between one representation and the next is not practical, since this will typically cause a noticeable "glitch"
or distraction. There are two ways around this.

The common approach is to take advantage of the IG's transparency feature to fade out the "old"
representation while simultaneously fading in the "new" representation. Since during the time of the fade,
both representations are drawn, this time should be minimized. Thus once a range threshold has been
crossed to trigger a change, the fade will proceed at a given pace regardless of range.

Another approach to LOD transition requires the IG to mutate the polygons of one representation
until they match those of the next. This is the approach Evans and Sutherland has taken with terrain LOD
processing. Since they use terrain based upon regular grids, this approach is quite practical [CLAR9O0,
COSM90]. Because the number of polygons drawn during such LOD transitions is not greater than the
number required by the more detailed representation, such transitions can be strictly range-based (rather than
time-based).

Given the ability to perform LOD transitions, there are some points to be careful about. With
terrain, for instance, one must be careful that the LOD chosen for one patch will still match up with its
neighbors, even if they have a different LOD. Ignoring this consideration can lead to "cracks" in the
landscape.

Figure5. Terrain "cracks" caused by neighboring patches with differing LODs.

Another consideration is how LOD affects the relationship between terrain and the objects which sit
upon it. When terrain changes LOD, it typically moves up or down slightly. As it does so, the objects
that rest upon it must also move correspondingly. In addition, the terrain is changing shape. Any features
such as long roads or pipelines that run along the terrain must change shape as well. This issue is addressed
well in [CLAR9Q].

Figure 6. Object/terrain conformance vs. LOD.

A further consideration involves systems with multiple image channels. If an object crosses the
boundary between two channels, it must be drawn with the same LOD on both channels [JARV87]. If this
is not done, unnatural appearance may result. Since LOD is based upon range, this is not usually a
problem. However, we will see in a moment why LOD is usually not based on range alone.

Finally, one might want to vary the range at which objects transition on an object-by-object basis,
depending upon the "importance" of each object for training purposes. An approaching generic tree might
retain low detail until it gets quite near, while an approaching tactical target should be provided more detail
even when still quite far.

LOD seems to require a fair amount of work to implement. What does one gain from using it?
Latham reports in [LATH85] that by using LOD, one can render scenes with one hundred to one thousand
times greater complexity while using the same polygon budget. In addition, LOD allows the database
paging rate to be reduced considerably, since it allows detail to be paged in gradually on an "as-needed"
basis. LOD is undeniably an extremely valuable performance technique.

4.1.5. Small-Object Culling

A feature related to LOD is the culling of distant objects. This is useful when the objects are so
distant that they occupy an insignificant portion of the screen, and may be viewed as a transition to the null
LOD. Again, to avoid the problem of objects "popping" in and out of the scene, a transition strategy such
as fading must be used.

4.1.6. Overload
As mentioned, IGs have strict polygon and pixel budgets. When a database is created, one cannot

readily tell if all potential views of that database will fit within the 1Gs budgets. It is therefore inevitable
that some scenes will produce an overload condition: there will be too many polygons or pixels to process

in one frame time. Overload is extremely undesirable given the real-time requirements of the FS
application. Fortunately, there are many ways to deal with it.

A simple strategy involves processing the scene in near-to-far (front-to-back) order. When time
constraints dictate, the 1G simply stops processing scene elements, shows what has been drawn so far, and
begins to work on the next frame. The effect is that distant objects may be dropped from the scene. If
these were small, insignificant objects, this may not be a problem. If the object were a large mountain or
an approaching enemy vehicle, then there would be a problem. This strategy alone is usually not an
adequate solution.

Another strategy, quite commonly used, is to adjust the transition ranges for LOD and small-object
culling. This method requires more careful consideration. The technique involves keeping the IG running
at about 95% capacity. When this threshold is crossed (because a frame takes too long to generate), the
transition ranges are brought in slightly until the load decreases. When the load is reduced enough (down to
90% capacity, for example), the transition ranges can be increased back to normal again. The difference in
capacity thresholds is necessary to prevent oscillation effects.

Given that overload compensation will take place only for the next frame, and that the next frame is
different than this frame, overload may result anyway despite the attempted corrective action(s). If the frame
requires more than 100% of the allotted time, the frame time must be extended to prevent dropping of
scenery. This can be done either by altering the display's refresh cycle or by using additional display cycles.
The former requires specialized IG-controllable display devices.

4.1.7. Run-Time Feature Conforming

It has already been mentioned how changing terrain LOD requires adjusting the features planted on
the terrain. The idea can be generalized further: features and terrain can be modeled completely independently
and attached together at runtime [CLAR90]. The advantage of this approach is that feature instancing can
be used more widely, as features can be more generic since they do not have to be custom fitted at modeling
time to any particular landscape. Thus the size of the database is reduced, and database bandwidth
requirements are reduced as well. As pointed out by Rich [RICH92], the conforming of the features at run-
time need not necessarily happen at frame rates; the terrain isn't necessarily changing every frame.

4.1.8. Generic Fill

One of the more interesting database techniques to appear is the use of generic fill methods. An
early example is the use of "environmental universal features" in General Electric's AVTS system
[FERG84]. The EUF's are simply a set of ground clutter objects (such as trees, rocks, or shrubs) which are
placed on a surface using a type of texture map. A more sophisticated example is the generic fill algorithm
described by Rich [RICH92], where generic fill objects are placed on surfaces procedurally.

While one of the advantages of using generic fill is ease of modeling, such techniques also help to
improve IG performance. The techniques allow much more compact database specification of fill-type
objects. Again, this results in reduced database storage and bandwidth requirements. The front of the IG
pipeline can run faster since it can spend less time moving database information around.

4.2. Occlusion
4.2.1. List-priority or Z-buffer Rendering?

One of the biggest issues in IG design used to be the choice of occlusion algorithm used. The
choice of occlusion algorithms is intimately related to an IG's polygon and pixel budgets. The basic
choices are Z-buffer and list-priority algorithms, and the issues involved are fairly universal: performance,
cost, and ease of use. Let's review the algorithms first (in simplified form, for ease of explanation).

With the Z-buffer algorithm, polygons may be processed in an arbitrary order. Each polygon is
rasterized into pixels; computed with each pixel is a function (based on Z) of its distance to the viewer. The

10

pixel is checked against any other pixels previously written to the same location; if it is nearer, it is written
there, else it is discarded.

List-priority algorithms require that the database be rendered in front-to-back or back-to-front order.
For front-to-back rendering, each polygon pixel is written only to empty screen locations. For back-to-
front, every polygon pixel is written regardless of what was written before. Front-to-back priority is the
favored approach, since each pixel must be written to only once.

There are many papers covering the advantages and disadvantages of the different algorithm choices.
We will cover them only briefly here.

One problem with the straightforward Z-buffer implementation is its high pixel budget: every pixel
of every on-screen polygon must be computed, whether it is visible or not. Another major problem is that
the unordered polygon processing makes antialiasing and transparency difficult or expensive to perform
properly. However, this is also the main advantage of Z-buffer rendering: it makes no assumptions about
the polygon order or placement, and thus can render any polygon arrangement correctly without special
treatment.

List-priority algorithms have a lower pixel-budget, and the polygon ordering makes antialiasing
easier. However, these algorithms have two main disadvantages. One is that they are well-suited only for
static scenery; moving objects require special treatment in order to be sorted properly. The other problem is
that they cannot render interpenetrating or cyclically-overlapping polygons properly. Such polygons must
be split, and this leads to many modeling and database difficulties.

List-priority used to be the algorithm of choice for IG designers. It offered performance and image
quality that could not be achieved by Z-buffer systems of similar cost. However, three factors have been
pushing more recent IGs to favor Z-buffer approaches. These are the difficulty of creating databases tailored
for list-priority systems, the increasing number of moving objects in simulations, and the fact that VLSI
technology has been driving down the cost of Z-buffer systems.

As a compromise, some systems adopt a hybrid strategy. For instance, they may use the list-
priority algorithm for the static scenery and then merge in moving objects using a Z-buffer. Such
architectures are probably just stepping stones on the way to a full Z-buffer approach.

The dominance of the Z-buffer does not mean the end to development of occlusion strategies,
however. Advanced occlusion strategies have been developed in order to reduce not only the pixel budget of
the system, but also the polygon budget as well. Front-to-back rendering is still a big issue with such
strategies.

4.2.2. Advanced Occlusion Strategies

Before we abandon list priority, let's examine an advanced occlusion scheme used by a list-priority
architecture, the Singer Company's MOD DIG (Modular Digital Image Generator) [LATH85, YANS6].

At the lowest level, this system (and many others) operates on rectangular portions of the image
called "spans" (among other names). A span may be an array of, say, 16x16 sample points contributing to
2x2 pixels.

Since MOD DIG uses the front-to-back list-priority algorithm, it can skip over already-filled-in
spans. The system goes two steps further and skips over already-filled-in row-segments of spans and
already-filled-in complete rows of spans. It does this by utilizing a hierarchy of mask buffers that indicate
when a particular span, segment, or row has been fully covered. As a polygon is converted into spans, the
mask buffers are read to indicate when sections can be skipped over (see figure 7 below). The mask buffers
are then updated when new spans are completely filled in.

11

\

Figure 7. MOD DIG masks.

The idea that front-to-back ordering can speed up rasterization has been applied to the Z-buffer as
well. We describe several approaches here.

General Electric's COMPU-SCENE PT 2000 [BUNK89] (among others) first dices up the polygons
(which are processed in arbitrary order) according to the span layout. The collection of polygon fragments
for a given span can then be easily sorted into range-separable groups. The groups are processed in front-to-
back order until the span is fully covered. In the example shown below, processing can stop after group 2.

= My N]
Groups |_1, j 3 4

Figure 8. Looking at a span sideways.

The Loral GT200 system [LORA] is a Z-buffer based system that uses what Loral terms a "mask
buffer" to help accelerate the rendering process. The technique requires a certain amount of front-to-back
polygon ordering. First, all polygons up to a given depth are rendered normally. For each pixel that is
filled, a bit is set in the mask buffer. Before the remaining scenery (which is all at a greater depth) is
rendered, it is tested against the mask buffer. Any elements found to be obscured are not rendered. The
technique is quite powerful, since the mask buffer test is performed at multiple levels: for terrain regions,
for objects, for polygons, and for individual pixels. For the mask buffer tests to be efficient, it is likely
that the mask buffer is structured in a hierarchical fashion similar to the masks in the MOD DIG above.
Thus a single bit can be checked to determine if a given area has already been covered.

The mask-buffer technique can be extended further to provide even greater culling power. Instead of
having a hierarchical buffer of mask bits, one stores depth values instead. At the finest level, one simply
has the traditional Z-buffer. For blocks of pixels, one stores the farthest Z value in the block. This is
repeated several levels for blocks of blocks. To perform the cull-test, one checks the nearest Z value of the
given object against the Z value from the smallest block that encloses the object. If the object Z value is
further, then it is completely obscured. If the object Z value is nearer, then the test may be performed
recursively over the sub-blocks, rendering the object only where necessary. It appears that Sogitec's
APOGEE system uses this technique to some extent with their "Meta-Zbuffer" system [CHAU94a].

4.3. Pixel Processing
4.3.1. Antialiasing Strategies

Antialiasing is a critically important feature for FS IGs. As such, it is not surprising that some
very sophisticated technigques have been incorporated into hardware. We discuss a few of the approaches
taken.

The techniques used by the E&S CT5 were described in several conference papers [SCHUS80,
COSM81, WALES83, HOWI84] and subsequently copied and used by many IGs. The CT5 is a list-priority
machine, and this allows fairly sophisticated antialiasing to be implemented without too great expense.

The basic elements involve a high-resolution mask memory, a filtering device, and an accumulating
framebuffer. The system scan-converts and processes the polygons in small area units called spans. The

12

size of the span is the size of the antialiasing filter kernel and contains a large humber of sampling points
(perhaps 64).

For each span output by the scan-converter, the polygon is evaluated for coverage at each sampling
point. The binary coverage of each sampling point for all previous polygons for the same span is stored in
the mask buffer. Two binary computations are performed:

current coverage - mask coverage
current coverage + mask coverage

The difference result is passed onto the filtering device, while the sum result is stored back in the mask
buffer.

The filtering device takes the coverage information for the visible part of the current polygon and
weights and sums each sample point appropriately according the filter function. The result is a fraction
which is then multiplied by the computed polygon color for the overall sample. Finally, the filtered color
result is accumulated in the frame buffer.

Mask
Buffer
Mask g* * [é% Current + Masl
Polygon » Span > Spatial I Erame V@eo to
Buffer Processor Filter Buffer Display
= L > (RGB)
Current Polygon Current - Mas} Final Color

Contributior

Figure 9. E&S CT5 Antialiasing.

By performing each sample point computation in parallel, accurate antialiasing can be done
efficiently. Because occlusion is done using front-to-back ordering, only the one-bit-deep mask buffer needs
to have subpixel accuracy.

As mentioned earlier, however, current IG systems are favoring the Z-buffer approach. How do they
solve the antialiasing problem? In a system patented by Rediffusion Simulation [BAKE94], a full sub-
pixel Z-buffer is proposed. This involves great expense, since one must now store and evaluate full depth
values for every sample point. Various approaches have been taken to find ways around this expense.

In GE's PT 2000, a full sub-pixel Z-buffer is used, but only for a portion of the screen. Thus the
polygons must be sorted according to screen regions, and each region is processed sequentially.

Another approach is Sogitec's AZtec system [CHAU94b], which uses notions from both A-buffer
and Z-buffer algorithms. It boils down to an 8-entry per pixel Z-buffer, where each entry contains Z, mask,
and tag information. This is in addition to the color frame buffer, which also participates in the algorithm.
As polygons are scan-converted, their fragments are stored in depth order in the Z-buffer. Where possible,
fragments are combined or deleted to conserve buffer entries. If a particular pixel overflows, a forced
combination is performed. Finally, all the entries are collapsed to form a final pixel color. Special care is
taken to avoid typical A-buffer artifacts. As a result, the chances that pixel will have a distorted color are
extremely small.

4.3.2. Transparency

As discussed earlier, transparency is important both for modeling and for performing smooth
transitions. Unfortunately, transparency is difficult to implement accurately in real-time. Accurate

13

transparency processing requires that polygons or samples be processed in back-to-front order. This is
contrary to other performance requirements which dictate front-to-back order.

Since transparency high precision is usually not required, many IGs use the "screen-door"
transparency technique [FOLE90]. This involves "poking holes" in the polygon subsample mask, allowing
underlying samples to show through. This technique has some limitations: the number of transparency
levels is limited by the number of subsamples, and undesirable interactions are possible when multiple
transparent objects are overlaid. An advantage of using this technique for object transitions is that occulting
is not affected: even though an object is transparent, the back parts still will not be visible through the
front parts.

For more accurate transparency, two approaches are possible. One requires keeping multiple samples
around in a stack or buffer. Both the Rediffusion system and the Sogitec system discussed above do this.
The other strategy is to process the transparent polygons only after all the opaque polygons have been
processed. If the transparent polygons are sorted back-to-front, they can then be easily blended into the
framebuffer. If they are not sorted, they can still be rendered correctly using a multipass algorithm as
discussed in [FOLE90].

Since screen-door transparency and precision transparency offer different tradeoffs and appearance,
many high-end simulators support the use of both techniques.

4.3.3. Texturing Strategies

The value of adding texture to simulation scenery was realized as early as 1963 in a system built by
GE for the NASA Apollo program [BUNK®89]. Since then, texture has become a standard feature for IGs,
and many unique strategies of applying texture have evolved.

Early texture implementations were somewhat interesting. The GE system mentioned was able to
draw polygons with perspectively correct textures formed from overlapping repetitive strip patterns. The
technique, which was implemented with a relatively small number of diodes, logic gates, and op amps, is
described in [SCHA83]. The technique was limited to planes parallel the ground plane and it required that
the horizon be parallel to the scan lines. Thus to simulate vehicle roll, the raster image on the screen was
rolled by turning the CRT deflection yoke.

Current techniques allow the application of perspectively correct, filtered texture patterns to arbitrary
surfaces. The universal standard is the application of multilevel prefiltered texture patterns (often described
as MIP MAPs [FOLE90], with varying interpretations), postfiltered using bilinear or trilinear interpolation.

4.3.3.1. Texture Application

The most obvious application of texture is to modulate the surface color of a polygon. The
straightforward approach is to store RGB color in the texture map, and use the looked-up values to provide
the polygon base color. The storage and processing required for 24-bit color texture is quite large, however,
and thus many other strategies have been used.

The texturing strategies include: (TM = Texture Map)

RGB texture: three TM values modulate polygon color.

intensity modulation: a single TM value modulates the polygon intensity.

2-color blend: a single TM value specifies a blend factor between two colors:
C=acCl+(la)C2

3-color blend: two TM values specifies a blend factor between three colors:
C=aCl+bC2+(1l-a-b)C3

14

transparency texture: a single TM value modulates polygon transparency.
Transparent edges may be smooth or sharp.

illumination texture: one or more TM values modulate the lighting parameters used to
illuminate a polygon

With any of the above applications, the information from the TM may be used to either modulate
the value intrinsic to the polygon, or replace it altogether.

4.3.3.2. Multiple Maps Per Polygon

Many IGs have the ability to combine the effects of multiple TMs on a single polygon. Thus a
polygon may have both color and transparency values specified by two different TMs. Another use of this
feature is for the application of detail texture.

Because a single texture map only has limited resolution, one will run into problems when a texture-
mapped area is viewed from too near or too far. Too near results in a blurred effect from widely-space
texels, while too far results in a repetitive pattern. To alleviate the problem, two texture maps are applied
to the area at different levels of detail. Thus, when one is near, one can see the fine texture pattern, and
when far away, one will see the course texture pattern. In fact, the fine texture pattern can interact with the
course pattern to increase the apparent pattern size and thus help avoid the repetitive look.

High-end image generators often allow up to four different TMs to be applied to a polygon. Often,
however, red, green, and blue are counted as individual TMs.

4.3.3.3. Texture Coordinate Specification

To apply texture, there must be a mapping from the polygon surface to texture space. Because
texture was first applied to increase the realism of terrain, a simple mapping scheme was often used, known
as ground-mapped texture. This involves simply projecting the terrain polygons down to a flat ground
surface which is mapped to texture space. Thus the texture coordinates at the vertices of any given polygon
are determined intrinsically by the polygon's position in world space.

To apply texture to moving models, however, different techniques must be used. A common
technique appears to be the specification of mapping matrix from polygon space into texture space.
Another alternative is the specification of explicit TM coordinates at each polygon vertex. The different
techniques each have different behavior as textured objects are mutated. For instance, the former technique
would allow one to make "brick" buildings of various size, yet still have all the bricks be the same size; the
latter would scale the brick size with the building size. This becomes a concern when one wants to use
different instances of a single model to conserve database storage and bandwidth.

4.3.3.4. Animated Texture Possibilities

Using a transformation matrix to specify or alter texture coordinates has another common
application. By dynamically changing the matrix from frame to frame, animated texture patterns will
result. This can be used to create "wave" effects in simulated water or crop fields. It can also be used to
simulate explosions and similar effects.

4.3.3.5. Texture Storage & Paging

As mentioned previously, textures are commonly used as a modeling tool to create replicas of real-
world landscapes by applying photographic textures to digitized terrain. Modeling photo-textured landscape
for a large land area requires a large amount of texture storage. Thus high-end IGs, aside from having very
large amounts of texture memory, also have one or more disk systems dedicated to storage of texture
information.

15

In addition, moving throughout such photo-textured scenery requires real-time paging of the texture
maps. To avoid having this information travel through the higher levels of the IG pipeline, systems such
as Thomson's SPACE IG attach the texture disks directly to the pixel processors [JARV94b].

4.4. Fog, Haze

The simulation of fog and haze effects are required by FS IGs not simply for training purposes, but
also because such effects obscure the horizon, thereby cutting down the IG load by allowing it to avoid
drawing distant objects and scenery.

The simplest fog effect is to blend object colors into the fog color depending upon the distance of the
object from the eyepoint. This is accurate for a uniform fog that surrounds the viewer and the environment.
However, IGs are often called upon to render more complex effects such as ground fog or elevated fog
layers; these require more complex simulation.

FlightSafety's VITAL VIII system [NIGU94] supports the display of variable density atmospheric
layers through the use of real-time integration of a density layer table. Since the system also offers gradual
transition through variations in regional weather, this table must be updatable in real time as well.

4.5. Volumetric Smoke

With their GT200 system, Loral has added capabilities to render more realistically effects such as
smoke, dust, and clouds [LORA]. This is done by allowing texture maps to include depth and density
information in addition to color. This information is used to appropriately modify the final computed color
for each pixel.

4.6. Display Systems

The IG requirements set forth by display system requirements have varied widely over the years.
Some early systems employed calligraphic CRT displays, which are limited in their drawing capability but
well-suited for rendering light points. The IG requirements posed by such display systems were thus
limited as well. In order to render solid surfaces, designers turned to raster-scan systems. Their timing
requirements, combined with technological limitations, led to the generation of many scan-line based IG
systems. As IG technologies improved, scan-line based systems were abandoned in favor of today's
polygon-order, image-buffer based systems. We note that calligraphic display systems are not abandoned;
high-end FS systems utilize displays with combined raster and calligraphic capability, since the latter
allows more precise display of light points.

The need to tailor display systems to a wide variety of applications has resulted in a wide variety of
approaches. The choice of display system is set by a variety of factors, including the type of vehicle being
simulated, the task training requirements, human visual capabilities and limitations, and, of course,
expense. A commercial airliner simulation may have only a pair of CRTs, whereas a military helicopter
simulation may have a very large spherical screen filled by an array of CRT projectors. The literature
contains many descriptions of some of the setups that have been used.

We take a moment to look at some of the IG developments that have resulted as a result of display
considerations.

4.6.1. Calligraphic Light Points

As mentioned, calligraphic light points (CLPs) are still used as they can be drawn with more
precisely and with greater brightness than raster light points. However, putting CLPs into the IG pipeline
requires some careful consideration. Light points can obviously be occluded by solid objects and attenuated
by transparent ones, and therefore CLPs must be present in the IG pipeline until the point where they
would be stored in the framebuffer. At this point, the CLPs are stored in a list, to be processed after the
raster has been drawn. [BAKE94] provides a good discussion of the treatment of CLPs.

16

4.6.2. Distortion Correction

Because of physical restrictions, display systems cannot always be designed such that a projected
raster will result in uniform, rectilinear pixels. Adjusting the projector to compensate for screen distortion
is often not enough, since the resulting pixel density (resolution) can vary widely over the screen. As
discussed in [DOEN85] and [BUNK89], real-time distortion correction is a function which must be included
in IG systems that are to work with unusual display arrangements.

Distortion correction requires that the IG perform the opposite distortion to the image as that which
is done by the optics. Some arrangements may requirement only linear correction. This is fairly
straightforward, and only requires adjustments to the viewing transformation matrix. However, nonlinear
correction is more commonly required, as many display arrangements have curved optics. This requires
different strategies.

One common strategy, discussed in [BUNK89], is to predistort the polygon coordinates as the
polygons are rendered. Since straight lines must be mapped to curves, long edges must be subdivided into
smaller segments to provide a piece-wise approximation to a curve. There is a performance tradeoff here,
since small segmentation is desirable for more accurate correction, but having more segments increases the
load for the IG.

Another approach, discussed in [BAKE94], is, instead of remapping the polygons, to remap the
raster. Rather than performing rasterization on a rectilinear raster, it is done on a distorted grid. Thus the
logical corners of each pixel are set according to a predistortion grid. The penalty is that the rasterizer
hardware is more complex. A compromise help to reduce the penalty: the predistortion grid can be a
piecewise-linear approximation of the true curve that is needed. Thus the rasterizer can still use linear
techniques over a small area to increase performance.

4.6.3. Multiple Image Blending

Another display issue that impacts IG architecture is the need for blending multiple channel outputs
into a single composite image. The alignment issues in such display setups can typically be taken care of
by various means prior to real-time operation. While running, however, the IG must "feather" each channel
image to blend it with its neighbors to avoid any discontinuities in the composite image. In addition, the
perceived intensity of the composite image needs to be uniform over the entire display area. This issue can
usually be addressed more easily through the IG than by adjusting the display hardware.

There are various approaches to solve these problems. The edge feathering can be achieved by
displaying polygons with a transparency gradient. The polygons would be fixed in screen space along the
appropriate edges of the various images. However, this approach may not provide the degree of control
necessary to achieve a seamless image.

Achieving further control requires defining an intensity mapping function. A table is commonly
used to define such functions, and the intensity remapping can occur as a post process applied to the video
streams.

4.6.4. AOIl Displays

A display system that calls extensively upon both of the prior features is the area-of-interest (AOI)
display. This system is designed to reduce both IG and display system requirements by taking advantage of
the fact that human visual acuity is greatest in the area around the direct line of sight, called the area of
interest. Thus the system needs to draw a high resolution image only in this area; the surrounding area can
be drawn with less detail. An AOI display system requires either eye and head tracking to determine the area
of interest. The displays themselves can be implemented in a number of different ways.

On the IG side of this issue, one approach for the IG to change the LOD factors based upon the AOI.

This can provide a small savings to the 1G, but not to the display system. More advanced systems actually
use differing image resolution for the AOI and surrounding areas. The usual way of doing this is by

17

projecting a low resolution background image with a fixed projector, then adding a detailed AOI inset with a
servo-controlled high-resolution projector. Creating the "hole" for the inset and edge-blending the images
together are then dynamic processes which the IG must handle.

Evans and Sutherland advertises that their non-linear image mapping capability is versatile enough to
support "a variable-acuity projector for use with eye-tracked systems." It is not known exactly what kind of
projection system is referred to for this use.

5. System |ssues

We now address a variety of issues which involve the system as a whole rather than individual
pieces. These include the interconnections between IG components, and issues related to parallel
processing.

5.1. Interconnections

We take a moment to examine the various interfaces that are used to connect various parts of an IG
system together. We start with the host interface.

5.1.1. Host Interface

The host interface is used to connect the FS host to the IG. The main information that flows here is
the data that indicates the new viewing position. As this link is the first in the I1G pipeline, it is important
that it have little latency. This link also carries a variety of other information, such as FS host changes to
the IG database, database inquires to IG, and inquiry results to be returned to the FS host. For such
purposes, small to moderate bandwidth is required.

A wide variety of technologies are used for the host link. These range from RS-232 serial to
DR11W parallel, ethernet, or DMA through a shared bus. A large number of custom interfaces have been
used as well. RS-232 is considered much too slow except for low-end applications. The other interfaces
named are more common. Many IGs use a VME bus and incorporate extra slots for the FS host to be
embedded. Ethernet is a popular interface choice because it allows easy interconnection for networked
simulation systems.

5.1.2. Other Interfaces
The other interfaces within the IG are:

- database processor to database storage unit
- database processor to polygon processor

- polygon processor to pixel processor

- pixel processor to frame buffer

The first interface mentioned is the one used to load and page the simulation database. The SCSI
interface is universally used here to attach disks, tape drives, and CD-ROM drives. Some systems also
provide a SCSI interface for the pixel processor as well so that texture maps may be paged directly to this
unit without having to travel down the pipeline.

The other interfaces associated with the IG pipeline require high bandwidth, and there have typically
custom interfaces tailored to the particular needs of each system. However, more recently, there has been
movement towards standardization for some of the interfaces. This movement is the result of efforts to
lower costs and also of the emergence of interface standards with increasing performance. Thus Loral is
using the "Skyburst" interface to connect polygon processors to pixel processors [LORA], while Kubota is
suggesting that the PCI bus will eventually be used for the same purpose (from IMAGE VIl conference
presentation).

18

5.2. Parallelism

We now examine the topic of parallelism as it is used to increase the performance of IG
architectures. Parallel processing at various stages of the IG pipeline is a concept that has been
implemented since some of the very first IG systems [BUNK89]. We examine how various systems have
incorporated parallel processing into their systems.

5.2.1. Parallel Pixel Processing

The pixel processing stage is typically the most computationally demanding part of an IG. A
display that contains 1024 x 1024 pixels and which must be updated 30 times a second requires processing
of more than 30 million pixels per second minimum. When one adds in the fact that each pixel is really
the weighted sum of 16 or more samples, one can see that tremendous computational power is required.

Fortunately, the pixel processing task subdivides easily into multiple parallel tasks. Different areas
of the screen may be assigned to different processors, each working independently. There are a large number
of ways that the task be divided, however. We examine a few of the possibilities.

Sogitec APOGEE [CHAU94a, CHAU94b]

The Sogitec system subdivides the screen into 64x64 pixel regions referred to as "zones". The pixel-
processing boards in this system each contain four processing "cells". Up to 8 pixel-processing boards are
allowed (thus up to 32 cells). A single zone can be processed by multiple cells, though greatest efficiency
would seem to be when cells are working on different zones.

The pixel processing algorithm of this system is rather interesting. An impact processor (one per
pixel-processing board) examines a polygon an decides which boards and which cells in a board should deal
with it. A cell processor examines the polygon and subdivides it recursively into 16 (4x4) pieces. Thus
the polygon is processed in chunks of 16x16 pixels, 4x4 pixels, and finally 4x4 subpixels. At any given
level, fully-covered chunks are passed to the rendering stage, while partially-covered ones are subdivided
again. At the lowest level, the 4x4 subpixels are processed in parallel.

Loral GT200 [LORA]

The Loral GT200 IG allows up 12 pixel-processing boards in a system. Each board is responsible
for filling the pixels in a 64x64 subregion of the overall display. The subregions are distributed in
interlaced fashion over the display area. Within each pixel-processing board there are four pixel operators,
each of which is responsible for a set of 2x2 pixel areas interlaced over the subregion. Presumably the 2x2
pixels are processed in parallel.

Thomson SPACE [JARV94a, JARV94b]

Thomson does not say much about their pixel processing architecture except that it uses a parallel
array of pixel processing elements that performs computations for 64 "sub-rendering samples". However,
they also claim that "an array of 16 custom-designed ASICs operate in parallel on each pixel area" and that
"a depth comparison of 16 sub samples within each pixel is made before any anti-aliasing filter is applied."

Star Graphicon 2000 [STAR]

The Star G2000 pixel-processing boards each contain 5 logical pixel processing units which operate
in parallel to each produce a stream of antialiased textured pixels. Up to four pixel-processing boards can be
used for each output channel.

Rediffusion Simulation patented system [BAKE94]

The Rediffusion system is similar to the Sogitec system in certain ways. It first scan converts
polygons into "supercells”, each of which consists of a 4x4 array of "pseudocells”, each of which is a 4x4

19

array of pixels (plus a half-pixel boundary area). The supercells are then processed by an array of
"presorters”, each of which produce a list of polygons that intersect a given pseudocell. The patent suggests
that using four presorters is a good choice, though one to sixteen can be chosen, with presorters processing
multiple pseudocells sequentially if fewer than sixteen are used.

The pseudocell-sized polygon fragments are passed to a set of modules that compute a polygon color
for each pseudopixel within the pseudocell. These colors are combined in a "postsorter”, which includes
200 sampling point processors and 16 weighting/accumulation processors (one for each pixel in the
pseudocell). Presumably multiple color modules and postsorters can be used to increase performance.

Earlier systems: E&S CT5 [SCHU80], Singer MOD DIG [LATH85, YANS86]

Both the E&S CT5 and the Singer MOD DIG used similar pixel processing techniques as discussed
earlier. We repeat the salient points briefly. The pixel processors operate on spans of 4x4 pixels (for MOD
DIG; E&S avoids mentioning exact sizes). Computation for all of the samples in a given span occurs in
parallel. Multiple pixel processors can be used; MOD DIG allows up to four pixel processors per video
processor. Spans are interlaced over the available pixel processors.

5.2.2. Parallel Polygon Processors

The next most challenging task is polygon transformation and setup. This task requires a large
amount of floating point computation (whereas most pixel-processing uses fixed-point calculations only).
The methods for incorporating parallel polygon processing are not quite as varied as the methods for parallel
pixel processing.

One way in which multiple polygon processors are incorporated into a system is by having one for
each display channel. The architectures of multiple channel systems is an issue that will be addressed
shortly. Meanwhile, we examine approaches where parallelism has been used to increase per-channel
polygon performance.

Early systems incorporated parallelism into the polygon processing task by pipelining. Given that
the number of steps to be performed for polygon rendering are finite, this technique has its limitations.
Papers by Moon [MOONS85] and Latham [LATH85] suggest that 1985 is when a general changeover to true
parallel polygon processing occurred.

Many IG systems add parallel polygon processing by simply extending the traditional serial pipeline:
the parallel polygon processor is just a plug-in replacement for the single polygon processor. Thus each
processor simply takes a section of the database as doled out by the scene manager; this may be handled in
either round-robin or first-free fashion. The results from these processors are then combined before
proceeding to the next pipeline stage. In the upcoming section on channel management, we will examine
some of the alternative strategies for incorporating parallel polygon processors into a system.

5.2.3. Parallel Scene Management

The work of the scene manager may be parallelized for a couple of reasons: either to increase the
database traversal speed, or to support a number of different display channels. Because the amount of work
at this stage of the pipeline might not be very large, many systems do not provide for parallel scene
managers.

5.2.4. Additional Processing
As mentioned earlier, the IG is often given the duty of computing mission functions or database
gueries. This task is usually handled by the scene manager in its spare time. However, if the number of

gueries is large, the scene manager may not have enough time. Thus some systems allow additional
processors to be added to handle these additional functions.

20

5.3. Channel Strategies

We now examine IG system architecture as a whole, and in particular we examine the various
approaches that have been taken towards facilitating multiple channel displays. As mentioned earlier,
multiple channel display systems are not at all uncommon for FS IGs. As far back as the early 70's, GE
built a 14-channel system for use by the Air Force [BUNK89]. Over the years, many different multi-
channel strategies have been pursued. Since multiple channel capability can add a great deal of cost to the
system, this is not surprising.

5.3.1. Single Fork

There are several obvious approaches. The simplest is to enhance the video section of the IG to
generate multiple outputs. The earlier pipeline resources are then time-shared to generate each channel
image. While this may be the cheapest approach, it offers poor scaling characteristics: the system
performance is inversely proportional to the number of channels.

Database Polygon [- Video
Processing Processin

[Pixel Video
Processin Processin

Polygon
Processing

Figure 10. Single Fork Strategies

To keep performance more independent of the number of channels without greatly changing the
system architecture, the "fork" in the IG pipeline can be moved to an earlier point. When the split is placed
very near the beginning of the IG pipeline, the result is referred to as "fully channelized architecture.” In
this configuration, each channel has a complete independent IG pipeline, and thus performance is largely
unrelated to the number of display channels. However, the system cost is now proportional to the number
of channels.

To offer application and cost flexibility, some IGs provide both of the previous methods as channel
expansion options. Additionally, the pipeline fork may be placed at other points in the pipeline. This
results in different performance compromises depending upon which pipeline parts are shared and which are
dedicated per channel.

5.3.2. Multiple Fork

A fully channelized architecture is not necessarily the best way to acquire the most performance from
a given amount of hardware. Because there may be a large difference in the scenery displayed by each
channel, it is possible that some channels will finish their work while others are still processing. Since the
channels are independent, the resources of the idle channels cannot be used to help the more burdened
channels. And since the channels must be synchronized, this idle time is wasted.

As a result, other channel strategies are taken. The common strategy is to provide not just a single
fork in the IG pipeline, but several. Thus adding a channel may involve adding additional processors to all

21

the pipeline stages while still maintaining a single pipeline that is shared by the various channels. A
highly-touted advantage of the "multiple fork" approach is system modularity. For a given channel
configuration, the various performance areas can be tailored by adding boards of the appropriate type.
However, while the marketing literature would have you believe you can add as much performance as you
want with this approach, that is seldom the case.

N Database Polygon Pixel Video
Processin Processing Processin Processin

Figure 11. Multiple Fork Strategy

The performance ceilings for these systems are generally imposed by the communications networks
connecting the pipeline stages together. Typically, various types of busses are used to join the various
stages. Each bus typically has a fixed bandwidth ceiling, and these ceilings cannot be raised without
redesigning the system. Thus the number of boards that can be added at any given pipeline stage is limited
by the bus bandwidths into and out of that stage.

There are many questions left open, however, concerning exactly how the work of generating the
scenery is split and recombined at each stage. Very few companies discuss explicitly how their systems
resolve these issues, however. We did find one interesting exception, which we now describe.

Loral GT200 [LORA, SODE93]

We begin by describing how the portions of the database are assigned to the polygon processors.
Pictured from above, the active database area is tiled into a many regions. Each region is assigned in
interlaced fashion to the available polygon processors. The only regions which must be processed for a
given frame are those which fall into the projection of the field of view onto the ground plane. Thus each
polygon processor works on a set of database regions and outputs transformed polygons to the pixel
processors by way of a polygon distribution bus. The polygon processors are also able to communicate
with each other over an unspecified crossbar interconnect. This facility is used to allow lightly-loaded
polygon processors to share the load from heavily-loaded ones.

As mentioned in an earlier section, the pixel processors are assigned to 64x64 "sub-regions". Each
pixel processor handles multiple regions distributed in interlaced fashion across the entire multi-channel
image. From the polygon descriptions sent by the polygon processors, the pixel processors compute
shaded pixels. From the pixel processors, the shaded pixels are sent over a custom pixel distribution bus to
a set of video generators. A video generator then produces the video signals which are sent to the display
system.

This system makes heavy use of interlacing to solve potential load-balancing problems. If a
particular pixel processor becomes overloaded, however, there appears to be no recourse. Load redistribution
is possible among the polygon processors, but the costs of performing this redistribution are not clear. The
issues involved are the overhead necessary to keep track of and manage load redistribution, plus the cost of
actually moving the load from one processor to another.

So while the "multiple fork™ approach seems to address channel load balance issues, in truth it only
pushes the issues down to the next level. Multiple pipeline issues simply become multiple processor
issues.

6.0 Conclusion

The various requirements placed upon IGs by the simulation task has led to the development of
many interesting techniques and architectures. In this paper, we have attempted to cover some of these
techniques, concentrating on those which are related to real-time performance.

22

These requirements have often led IG systems down different development paths than those followed
by general purpose graphics computers. The paths have been interwoven in various ways, and, more
recently, they have been have been coming closer together and even merging at many places. Technology
has had a big impact here.

It has increased the performance of the general purpose machines and decreased the cost of the IG systems,
to the point where the gap between them might be considered almost closed. (Witness Silicon Graphics
Reality Engines and Evans and Sutherland's Freedom series.)

However, many of the advanced techniques for in IG systems have yet to find their way into the
general purpose systems. As people develop more and more real-time applications for the general purpose
systems, they find themselves facing many of the same problems that IG developers have faced down
already. When the problems are similar enough, the IG developed solutions can be readily adopted. Still,
sometimes the problems are characterized somewhat differently, and this may result in new solutions from
the general purpose side. As the simulation field itself evolves, these solutions will often find homes in
new generations of I1Gs.

Of course, such sharing of solutions requires communication. Let us hope that the silence, secrecy,
and obscurity created by heavy competition do not overshadow such interaction.

23

