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This note arises from the serendipitous observation that both 144 = 122 

and 1444 = 382 are perfect squares. A further examination of the first few 
perfect squares and the numbers obtained by appending a digit to them yields 
the following: 

TABLE I 

12 = 1, 16 = 42, 102 = 100, 

22 = 4, 49 = 72, 112 = 121, 

32 = 9, 122 = 144, 

42 = 16, 169 = 132, 132 = 169, 

52 = 25, 256 = 162, 142 = 196, 

62 = 36, 361 = 192, 152 = 225 

72 = 49, 162 = 256 

82 = 64, 172 = 289 

92 = 81, 182 = 324 3249 = 572 

The question now arises, whether there are any more such pairs of perfect 
squares, and what regularities apply. Consider the general case. The Diophan­
tine equation (with integer x, y, and b) is 

10x2 + b = y2, 0 ~ b ~ 9, x ~ 0, y ~ 0. (1) 

(i) If x = 0, the only solutions are 

x = 0, with (b, y) = (0, 0), (1, 1), (4, 2), or (9, 3). 

(ii) If x = 1, the only solution clearly is 

X = 1, y = 4, b = 6. 

(2) 

(3) 

(iii) If x ~ 2, since 10 is not a perfect square, b :t:. 0. Furthermore, 
let us write (with integer u and v) 

then 

or 

y = lOu + v, - 4 ~ v ~ 5, 

10x2 + b = 100u2 + 20uv + v2, 

10(x2 -10u2- 2uv) = v2- b. 

(4) 

(5) 
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Since the left-hand side is divisible by 10, if b = 5, then necessarily v = 5, 
and then 

x2 = 10u(u- 1) + 2, 

which is impossible; because the last digit of a perfect square cannot be 2. 
Thus, b * 5. For v2- b to be divisible by 10, the only remaining possibilities are 

(b, v) = (1, ±1), (4, ±2), (6, ±4), (9, ±3). 

Let us put z = lx11ot 
that is (with integer z and real~, 

x{lO = z + ,, 0 < ' < 1, 

so that 

and (with integer c) 

so that 

and so 

Then, by (1), (7b), and (8a), 

3x ~ z < 4x; 

y = z + c, 

c > ,, 

c ~ 1. 

(z + ~2 + b = (z + c)2, 

whence, by (6), (7c), and (8b), 

6x(c- ~ ~ 2z(c - ~ = b - C2 + ~ < b ~ 9. 

(6) 

(7a) 

(7b) 

(7c) 

(8a) 

(8b) 

(8c) 

(9) 

(10) 

If x ~ 2 and c ~ 2, then c-' > c- 1 ~ 1, and so (10) becomes 12 < 9, 
a contradiction. Thus, with (8c), and by (3), 

if x ~ 1, then c = 1. (11) 

TABLE II 

X b z ' c 1/ 

1 6 3 0.1623 1 4 
2 9 6 0.3246 1 7 

4 9 12 0.6491 1 13 
5 6 15 0.8114 1 16 
6 1 18 0.9737 1 19 

12 4 37 0.9473 1 38 
18 9 56 0.9210 1 57 
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Table II above shows the parameters for the solutions given in Table I. 

If we put ' = 1 - 1], (12) 

and, by (Sa) with (11), z = y- 1, (13) 

then, by (7b), r{iO = y- 1], 0 < 1] < 1. 

i.e., y = lx{iQI. 
This establishes the following result. 

(14) 

(15) 

Theorem 1. For every integer x ~· 1, the fraction ~ is the rational least upper 

bound of -{10 having x as denominator. 

It follows from (15) that there is a simple algorithm for finding possible 
solutions of (1). All that is necessary is, for each possible integer value of x, 
to compute y by applying (15), and b from (1), in the form 

b = y2 - 10x2 > 0. (16) 

If the resulting value of b is less than 10, we have an acceptable solution 
to our problem. For example, consider the three consecutive cases: 

TABLE ill 

X y x2 y2 b 

79 250 6241 62500 90 
80 253 6400 64009 9 
81 257 6561 66049 439 

Only x = 80 yields an acceptable solution. 

Using this algorithm, all the acceptable solutions of the Diophantine 
equation (1) for 0 ~ x ~ 500,000 have been computed and are tabulated below. 
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TABLE IV 

n X y x2 y2 b 

1 0 1 0 1 1 
2 0 2 0 4 4 
3 0 3 0 9 9 
4 1 4 1 16 6 
5 2 7 4 49 9 
6 4 13 16 169 9 
7 5 16 25 256 6 
8 6 19 36 361 1 
9 12 38 144 1444 4 

10 18 57 324 3249 9 
11 43 136 1849 18496 6 
12 80 253 6400 64009 9 
13 154 487 23716 237169 9 
14 191 604 36481 364816 6 
15 228 721 51984 519841 1 
16 456 1442 207936 2079364 4 
17 684 2163 467856 4678569 9 
18 1633 5164 2666689 26666896 6 
19 3038 9607 9229444 92294449 9 
20 5848 18493 34199104 341991049 9 
21 7253 22936 52606009 526060096 6 
22 8658 27379 74960964 749609641 1 
23 17316 54758 299843856 2998438564 4 
24 25974 82137 674648676 6746486769 9 
25 62011 196096 3845364121 38453641216 6 
26 115364 364813 13308852496 133088524969 9 
27 222070 702247 49315084900 493150849009 9 
28 275423 870964 75857828929 758578289296 6 
29 328776 1039681 108093658176 1080936581761 1 

We immediately observe that there appears to be a periodicity 
in the values of the incremental digit b: the period takes the form 
"1, 4, 9, 6, 9, 9, 6/' in the data we have. This feature has been emphasized 
in the table by drawing a line above the data with b = 1. In each period, 
the values 1 and 4 occur only once, while 6 occurs twice and 9 occurs thrice. 
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At this point, bearing in mind the result embodied in Theorem 1, 
it seemed appropriate to examine the literature of this problem.1 The search 
began with the discussion of continued fractions in Hardy & Wright (HAR62), 
thence moved on to Chrystal (CHR64), and so to Dickson (DIC52) and Gelfond 
(GEL61). It is found in the literature that the equation2 

y2- 10x2 = 1 (17) 

will have infinitely many solutions; and that, if the solution (x1, y1) is minimal, 
in the sense that 

y1 + x1-{i0 = min { y + .rJiO : x > 0, y > 0, y2 -10x2 = 1}, (18) 

then all the solutions of (17) take the form 

~-pn 
xn = 2-{10 ' Yn = (19) 

where a = Y1 + xl-{10, f3 = Y1- xl{IO. (20) 

We can readily derive from this that, in our case, x1 = 6, y1 = 19, and so 

a = 19 + 6-{10 z 37.973666, (21a) 

f3 = 19 - 6-{10 z 0.026334. (21b) 

Now consider a recurrence relation of the form 

(22) 

This will apply to both the xn and the Yn given in (19), if we can find coefficients 
A and B, such that, for all n, both a and f3 satisfy 

A_.n+2 = AA.n+1 + BA.n, 

i.e., (23) 

Substituting (21), we see that this is indeed possible, when 

721 ± 228-{10 = A(19 ± 6-{10) + B, 

1 

2 

See Chrystal (CHR64), Chaps. 32 and 33; Dickson-where a further, very extensive, 
historical bibliography is supplied-(DIC52), Chap. 12; Gelfond (GEL61), Chaps. 4 and 5; 
and Hardy & Wright (HAR62), Chap. 10. 

A very careful analysis of y'2- aXZ = 1, a generalized form of (17), is given by Gelfond. 
This equation is often referred to as Pell's equation; but appears to have been first considered 
by Fennat. 
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and these two equations have the unique solution 

A = 38, B = -1. 

Thus, both the xn and the Yn satisfy the recurrence 

sn+2 = 38sn+l- sn. 

(24) 

(25) 

We can verify that these relations are borne out by the solutions tabulated 
on page 4 above, for the b = 1 entries only. Thus, we have the following result. 

Theorem 2. All the integer solutions of (1) when b = 1 are given 
by the recurrence (25), with initial values x0 = 0, x1 = 6, Yo = 1, y1 = 19. 

It is interesting to note that all the x andy entries in Table IV appear 
to satisfy the relation (25), when one skips from each entry to the seventh entry 
down the table as successor. 

Now suppose that (x, y) is any Diophantine (integer) solution of (1) 
with b = 1 and that (p, q) is any Diophantine solution of (1) with b :t= 1 (that is, 
by (6), with b chosen arbitrarily to be 4, 6, or 9). Let us write 

u = qx + py, } 
(26) 

v = 10px + qy. 

Then v2- 10u2 = (10px + qy)2- 10(qx + py)2 

= (100p2 - 10q2)x2 + (q2- 10p2)y2 

= (q2- 10p2)(y2- 10x2) = b x 1 = b; (27) 

so that (u, v) is a solution of (1) with the given value of b; and, clearly, u and v 
will be integers, since p, q, x, andy are integers. Furthermore, if we consider 

(x, y) = (xw Yn), (xn+l' Yn+l), and (xn+2' Yn+2), 

related by (25), then, by (26), the corresponding pairs 

(u, v) = (uw vn), (un+l ' vn+l), and (un+2, vn+2), 

will be related by 

un+2 = qxn+2 + PYn+2 = q(38xn+l - xn) + p(38yn+l - Yn) 

(28) 

(29) 

= 38(qxn+l + PYn+l)- (qxn + PYn) = 38un+l- un' (30a) 

and vn+2 = 10pxn+2 + qyn+2 = 10p(38xn+l - xn) + q(38yn+l- Yn) 

= 38(10pxn+l + qyn+l)- (10pxn + qyn) = 38vn+l- vn. 

-6-
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That is to say, starting with any integer solution (p, q) of (1) with given integer b, 
we can generate an infinite sequence of such solutions (un, vn), in one-to-one 
correspondence with the solutions (x"' Yn) of (1) with b = 1. All these sequences 
satisfy the same recurrence, (25). Note that this is equivalent to 

(31) 

so that the recurrence proceeds without end, both forward and backward 
(i.e., both as n increases and as it decreases), yielding integer solutions. Also, 
taking (x, y) = (x0, y0) = (0, 1), we see that 

(u0, v0) = (p, q). (32) 

Substituting (19) in (26), we get that 

(
q + p-{WJ n (q -p-{WJ 

un = qxn + PYn = 2-{10 a - 2-{10 pn (33a) 

and (q + p-{WJ n (q -p-{WJ 
vn = 10pxn + qyn = 2 a + 2 /Y', (33b) 

Thus we get the following result. 

Theorem 3. Given any integer solution (p, q) of ( 1) with given b, 
we can generate an infinite sequence of such integer solutions (un, vn), given explicitly 
by (33). These solutions are in one-to-one correspondence, given by (26), 
with the solutions (x"' Yn) of (1) with b = 1. 

It is easily verified from (19) that 

Hence, by (33), 

i.e., 

and 

i.e., 

Xm+n = XrrJ!n + XnYm' Ym+n = Yrr8n + 10xmxn. 

um+n = q(XmYn + XnYm) + p(ymYn + 10xmxn), 

From this we obtain the following result. 

(34) 

(35a) 

(35b) 

Theorem 4. We can replace (p, q) by any member of the sequence 
of pairs (urn, vm) in (26) and (33) without changing the sequence of solutions defined 
in Theorem 3. 
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Now, since, by (1), q2 - 10p2 = b > 0, and we assume p ~ 0 and q ~ 0, 
it follows that 

q +pfW ~ q-p{W > 0. (36) 

We can write (33) as 

un = J.Ui1 
- vfJ", vn = {10 (Jld1 + vf!'), (37) 

with 
q+pfW q-p{W 1:!:. 

J1 = 2{10 ~ v = 2{10 > 0, v ~ 1. (38) 

(Equality occurs in (38), if and only if p = 0.) Therefore, by (21), and since 

af3 = 1, (39) 

there will be a unique integer m ~ 0, such that 

and then 

i.e., 

while 

i.e., 

a2m+2 > 1::!:. > _.?m. v - cr , 

J.Lcrm-1 < vp-m-1, 

u-m-1 < 0. 

Furthermore, by (21), (37), and (38), 

un+1- un = J.Lct" (a -1) + v/3"( 1- /3) > 0, 

so that the sequence of un is strictly monotone-increasing, and so 

un ~ 0 if and only if n ~ - m. 

(40) 

(41a) 

(41b) 

(42) 

(43) 

We have thus shown that there will be a solution (u_m, v_m) with minimal 
positive first component (the second component is always positive). 

Also, by (1) and (38), 

(44) 

Thus, by (40), ,m > ... ~ 
~ - -'J Ji I (45a) 

and cr2m-2 < ~ so that a-m-1 < ... ~whence Jl' -'J Ji I 

-8-
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crm <a~ 
Thus, by (37), (45b), (39), (21), and (44), 

u_m = JlCXm- vJrm < a~-[3~ = (a- [3) ~ 

; 12...JiQ X 
2
"!fw ; 6-./b ~ 6; 

i.e., 

This yields the following theorem. 

(45b) 

(46) 

Theorem 5. The sequence of solutions specified in Theorem 3 contains 
a member between x0 = 0 and x1 = 6. 

It follows that we can always adopt (p, q) as the member (u_m' v_m) defined 
above, which lies in (0, 6). Let us do this, from now on; so that the member 
of the sequence (un' vn) with minimal non-negative first component 
will be identified as (u0, v0) = (p, q). This proves the following theorem. 

Theorem 6. All the integer solutions of (1) with y > 0 are identified 
as the sequences defined in Theorem 3, with 

(p, q) = 

(0, 1) for b = 1, 

(0, 2) for b = 4, 

(0, 3) or (2, 7) or (4, 13) for b = 9, 

(1, 4) or (5, 16) for b = 6 

(47) 

Proof. Theorem 2 restates the known result, that all integer solutions of (1) 
when b = 1 are given by (19) with (20), or, alternatively, by the sequence 
satisfying (25), with initial values (0, 1) and (6, 19). Theorem 3 tells us that, 
if (p, q) is any integer solution of (1) with some other allowable value of b 
(i.e., by (6), one of 4, 6, and 9), then we can generate a sequence of solutions 
(un' vn) which correspond one-to-one to the (xn' Yn), via (26) or (33). Theorem 4 
tells us that there will always be a member of such a sequence lying strictly 
between x0 = 0 and x1 = 6. Therefore, by inspection of Table IV, we see 
that the only such sequences possible are those enumerated in (47).3 

3 There is the additional, isolated case of x = 0, y = 0, b = O-see (2)-but this leads to no 
other solutions; because the general solution (37) has J.l = v = 0. 
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Now, let us suppose that, for given n, (xn' Yn), (un, vn), and (r n' tn) are all 
integer solutions of (1), belonging to sequences defined as in (19), (20), and (33), 
and that 

and 

Then, by (33), 

or, by (34), 

or 

0 = x0 ~ u0 ~ r0 < x1 = 6 

1 = Yo < vo < to < Y1 = 19. 

This last result yields the following. 

(48a) 

(48b) 

(49a) 

(49b) 

Theorem 7. The seven sequences of integer solutions of (1) for various b, 
developed in Theorems 2-6 are interlaced, in the sense that each sequence retains 
its member-by-member order, relative to the others. In other words, if we list solutions 
(as in Table IV) in order of increasing y-values, every seventh entry belongs to the same 
sequence. 

We have .thus proved that the conjectures generated by examination 
of Table IV are universally true for the Diophantine problem (1). Now let us 
generalize this to 

ax2 + b = y2, 0 ~ b ~ a- 1, x ~ 0, y ~ 0. (50) 

As was mentioned in Footnote 2,4 so long as a is not a perfect square, 
the equation with b = 1, 

(51) 

is known to have infinitely many integer solution (x, y), all of them taking 
the form5 

where6 

4 

5 

6 

Compare (17). 

Compare (19). 

Compare (20). 

ci"-/Y' ci"+/Y' 
xn = 2-{i ' Yn = 2 (52) 

(53) 
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and (x1, y1) is the (unique) solution which minimizes y + x{;. The entire 
argument presented above for a = 10 clearly generalizes to any a which is not 
a perfect square? Thus, Theorems 2-7 hold for any such a, not just for a = 10, 
mutatis mutandis, as to the particular solution (x1, y1). 

For instance, if a = 7, then 0 ~ b ~ 6. If x = 0, then the only acceptable 
solutions have (b, y) = (0, 0), (1, 1), and (4, 2); if x = 1, then (b, y) = (2, 3) 
is the only solution; and if x ~ 2, then, putting8 

y = 7u + v, - 3 ~ v 5 3, 

we get9 7(x2- 7u2- 2uv) = v2- b. 

(54) 

(55) 

Since the left-hand side is divisible by 7, it is easy to verify by enumeration 
that the only possibilities are (b, v) = (1, ±1), (2, ±3), and (4, ±2). The argument 
in (7)-(15), now withlO 

r[7 = z + ,, 0 < ' < 1, 

so that 2x ~ z < 3x; 

and (with integer c) y = z + c, 

yields 4x(c- 0 ~ 2z(c- 0 = b- c2 + (2 < b ~ 4, 

which recovers that, if x ~ 1, then c = 1. 

Hence,11 y = lrfll, 
yielding the appropriate version of Theorem 1. 

Table IV is replaced by Table V, shown below. 

(56a) 

(56b) 

(8a) 

(57) 

(11) 

(58) 

We again observe a periodicity in the values of b, of the form "1, 4, 2." 
This feature has been emphasized in the table by drawing a line above the data 
with b = 1. 

7 

8 

9 

10 

11 

The irrationality of ;/a is used in proving the result embodieed in (51)-(53). 

Compare (4). 

Compare (5). 

Compare (7b), (7c). 

Compare (15). 
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TABLEV 

n X y x2 

1 0 1 0 
2 0 2 0 
3 1 3 1 
4 3 8 9 
5 6 16 36 
6 17 45 289 
7 48 127 2304 
8 96 254 9216 
9 271 717 73441 

10 765 2024 585225 
11 1530 4048 2340900 
12 4319 11427 18653761 
13 12192 32257 148644864 
14 24384 64514 594579456 
15 68833 182115 4737981889 
16 194307 514088 37755210249 
17 388614 1028176 151020840996 

This shows that,' for a = 7, we have 

xl = 3, Yt = 8, 

and so, by (53), a = 8 + 3-{7 = 15.937254 

and f3 = 8-3-{7;::: 0.062746. 

A PROPERTY OF CERTAIN SQUARES 

y2 
1 
4 
9 

64 
256 

2025 
16129 
64516 

514089 
4096576 

16386304 
130576329 

1040514049 
4162056196 

33165873225 
264286471744 

1057145886976 

b 

1 
4 
2 
1 
4 
2 
1 
4 
2 
1 
4 
2 
1 
4 
2 
1 
4 

(59) 

(60a) 

(60b) 

Theorems 2- 7 now follow, just as before, with appropriate modifi~ations. 
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