
VIEW

Exploratory Molecular Visualization System

TR93-30

January, 1993

Lawrence D. Bergman

Department of Computer Science
The University of North Carolina

Chapel Hill, NC 27 599-317 5

This work was supported by the National Center for Research Resources, National

Institutes of Health.

VIEW

Table of Contents

VIEW System Installation .. 1

VIEW Exploratory Molecular Visualization4
System Overview

Converting Brookhaven Protein Databank (PDB) 15
Files to VIEW Database Format

Running the VIEW System .. 16

VIEW User Interface Description 18

VIEW Drawing Tool Library Description49

VIEW Interactive Tool Definition Language - 92
Language Description

VIEW Interactive Tool Definition Language- 147
Development Environment

VIEW Data File Formats ... 170

VIEW Data Directory Structure 182

VIEW System Known Bugs ... 183

Installing the VIEW System via ftp
Larry Bergman

2/16/93

The VIEW system is available on anonymous ftp and consists of a set of software
and a set of data. The VIEW software requires about 20 megabytes of disk space to
install. The data (including Pdb files, VIEW database files, geometry files, drawing
tools, and snapshot files) also requires about 20 megabytes. Once installation is
completed, and intermediate files are removed, the system software will occupy
about 10 megabytes, and the VIEW database files will also occupy about 10
megabytes.

VIEW is installed in three steps. First the files are obtained through anonymous ftp.
Next, the system software is installed, and finally, the data is installed.

OBTAINING THE INSTALLATION FILES

1) Go to the directory where you intend to install the VIEW system software.

2) Connect to UNC's anonymous ftp. Type:

ftp ftp.cs.unc.edu

Ftp will prompt you for a name. Type in: anonymous
Ftp will next prompt you for a password. Type in your e-mail address
Ftp will respond with the prompt: ftp>

3) Set the transfer mode to binary by typing: binary

4) Go to the directory where the VIEW files are located by typing:

cd pub/VIEW

3) Retrieve the VIEW installation files. There are three files to be retrieved. Each
time you get an ftp prompt, you can type the next retrieval command. Type:

get install_ view
get view_executables.Z
get view_data.Z

The first retrieval will be very quick; the last two may require several minutes
each.

4) Exit ftp by typing: quit

1

INSTALLING THE SYSTEM SOFTWARE

1) Mark the installation script executable by typing:

chmod 777 install_ view

2) Run the installation script. Type:

install_ view

The installation will require about 1 minute. No error or warning messages
should be generated during installation. Call me if you note any difficulties.

INSTALLING THE SYSTEM DATA

Run the data installation script. Type:

install_view_data -directory view_data_directory

where view_data_directory is the full pathname of the directory where the VIEW
data is to be located. The data does not need to be in the same location as the system
software, although view_system_directory/data is a common choice.

Be sure that view_data_directory exists prior to executing this script. The data
installation script will report on its progress as it installs the data. The installation
will require about 2 minutes.

Once the data has been successfully installed, you can delete the files install_view,
install_view_data (created by the installation procedure, view_data and
view_executables (note that the installation procedure removes the .Z suffix from
the last two files).

CREATING A NEW DATA AREA

You can create a new data area as follows. This procedure will be particularly useful
for other users that want to use VIEW from their own data areas. This setup
procedure creates a VIEW subdirectory structure in a specified location, and creates
links to the system data (tools, geometry, pdb files, snapshots).

1) Create your VIEW data directory (your _data_directory).

2) Go to the VIEW system directory. Type:

cd view_system_directory

3) Run the data directory creation script. Type:

create_ view_data_directory -directory your _data_directory

2

PREPARING TO RUN VIEW

Once the system and data have been installed, you must execute your start-up shell
file. Type:

source your _data_directorylsetupview

or

source view _data_directorylsetupview

if you intend running in the system data area.

This will set up the VIEW command names. You will need to source the setupview
script in each window you intend to run VIEW from. You may wish to do this
automatically from your .cshrc.

You are now ready to run VIEW using the commands described in the document
Running the VIEW System.

PROBLEMS WITH INSTALLATION

If you run into difficulties installing VIEW, please call me at (919)962-1964 or 1976,
or send me e-mail at bergman@cs.unc.edu.

3

VIEW

Exploratory
Molecular

Visualization Systent

Overview

4

Table of Contents

1. INTRODUCTION ... 6

2. INTENDED AUDIENCE .. 9

3. USING THE VIEW SYSTEM - AN EXAMPLE ... 9

4. VIEW BASIC CONCEPTS ... 12

4.1 Geometry .. 12

4.2 Geometry Groups .. 12

4.3 Units .. 12

4.3 Drawing tools ... 13

4.4 Interactive Events ... 13

5

VIEW Exploratory Molecular
Visualization System

Overview

1. INTRODUCTION

Larry Bergman
1/27/93

The VIEW system is designed for exploratory visualization of molecules,
particularly macromolecules such as proteins. The system, which runs on IRIS
VGX, GTX, Indigo and Crimson series machines, includes:

• a 3-D geometry viewer
• a library of visualization tools
• facilities for customizing the tools or designing your own.

Exploration of a molecule begins with a simple representation, for example, a vector
representation of the backbone of a portion of a protein (Figure 1).

6

Figure 1

A vector representation of an alpha
helix used to start visualization

Using a series of drawing tools you can sketch in a variety of visual representations
of portions of the molecule. You might invoke a tool that draws sidechains bonds
as cylinders, a tool to change the radius or color of the sidechains, a tool that draws a
cylinder to fit a helix axis, and finally, a tool that allows you to rotate an individual
sidechain or a portion of the main chain. A visualization that might be produced
using these tools is shown in figure 2.

7

Figure 2

A VIEW visualization

The library contains over fifty ready-build tools for creating and altering elements of
a visualization. The VIEW system also has a facility for modifying existing tools or
developing new ones. The tools are written in a simplified C-like programming
language with special constructs for molecular database access and modification;
creation, modification, and management of 3-D geometry; and interaction with the
3-D image. The system includes debugging facilities for aiding the modification of
existing drawing tools and development of new tools.

This overview describes the background required to use the VIEW system,
continues with a tutorial example of use of the system, and concludes with an
introduction to some VIEW-specific terminology that is used throughout the user's
manual.

8

2. INTENDED AUDIENCE

The VIEW system is designed for use by biochemists or computer programmers
who have some familiarity with chemical/molecular concepts and terminology.
The user should be familiar with SGis, in particular, use of the SGis' windowing
system (mwm).

There are two levels at which VIEW may be employed. Using the supplied library
of visualization (drawing) tools requires some familiarity with computer-based
molecular graphics systems, but no programming background is assumed (this is the
background assumed for the document, VIEW User Interface Description). If you
wish to modify the tools or develop new ones, familiarity with a traditional
programming language such as Basic, FORTRAN, or (particularly) C will be helpful.
In addition, some fundamental computer graphics concepts (such as
transformations and shading), and familiarity with 3-D constructive geometry and
vector algebra will be required for you to develop tools effectively; this background
is assumed for readers of the document, VIEW Drawing Tool Definition Language
Language Description. Use of the tool development environment requires some
experience with interactive debuggers such as dbx; such experience is assumed for
readers of the document, VIEW Drawing Tool Definition Language - Development
Environment

3. USING THE VIEW SYSTEM- AN EXAMPLE

This example will trace the steps that you would go though in drawing a
representation of the backbone of a protein molecule and several side chains. It is
presented as a tutorial; you will find this most useful if you actually follow these
steps using the VIEW system. The steps in this tutorial are demonstated in the
video tape, An Introduction to the VIEW Exploratory Molecular Visualization
System.

Initialize the VIEW system by typing "iview''. You will see an empty display panel
with a dark gray background on the left in which 3-D molecular geometry will be
displayed, a control panel on the right labeled "Main panel", and a small panel in
the upper right labeled "Tool executing".

Position the mouse cursor over the button labeled Read in the Group Operations
area of the main panel and click with any of the mouse buttons (the right mouse
button is used for picking in the display panel; you may want to get in the habit of
using the right mouse button for selection operations). You will see a file listing
appear, listing all geometry files that are available in alphabetical order. Scroll
through this list by positioning the mouse cursor over the inner gray rectangle in
the scroll area, to the left of the list of file names. While holding down any mouse
button, move the mouse up or down. Position the cursor over the entry
"single_helix" in the file list and click with the mouse. The entry will be
highlighted in brown. Click on the Read button in the file list. The file list will

9

disappear, and a message saying "loading geometry file: single_helix" will appear at
the top of the screen. This message will disappear shortly (while the message is
displayed, the user interface of the system is deactivated), and a line drawing
showing connections between alpha carbons for a single helix of a protein will be
drawn in the display panel. The atoms are represented by positions where line
segments come together.

Now you are ready to use drawing tools to sketch some geometry. Click on the All
tools button in the Drawing Tools area of the main panel. A file list of all available
library tools will appear. These tools and their use is described in the document,
VIEW Drawing Tool Library Description. Click on the tool cyl_line_ca with the
mouse. Now click on the button labeled Execute. This will start the tool. The tool
will be running when you see its name appear in the small panel labeled "Tool
Executing". Additionally, the message "Select start atom" will appear at the top of
the screen. Each selection of geometry required by a tool is accompanied by a
message of this form (although the text of each message will vary depending on the
tool). At this point, the tool is waiting for you to pick an atom on-screen.

The tool that you have selected allows you to select a starting and ending atom
position, and will then draw a series of cylinders between successive alpha carbons
connecting these positions. Position the mouse cursor over an atom position near
the left-hand end of the helix and click with the RIGHT mouse button. You will
know that you have picked successfully if a red sphere appears at the atom position.
Repeat this, selecting an atom near the right-hand end of the helix. After the second
sphere has appeared, the connecting cylinders will be drawn. Holding the middle
mbuse button down, with the cursor inside the display panel, you may use the
virtual trackball (described in Section 2.1.2 of the documentVIEW User Interface
Description) to rotate the geometry.

Now, draw in a few side chains. Execute thesidechain_bonds. tool. This tool will
draw the side chain that is associated with each main-chain atom that you select.
Note that the name in the Tool executing panel is now "sidechain_bonds".
Executing this tool caused an exit of the previously executing tool (cyl_line_ca); only
one tool may execute at a time (with the exception of tool-defined events, described
in section 4.4). Select a few atom positions (in the same manner as you did
previously, using the right mouse button), and watch the tool draw in a side-chain
at each atom you select. At any point you may remove the last drawn sidechain by
clicking the button labeled Undo in the main panel. Try drawing three or four
sidechains and then removing them all using Undo. Note that after undo, you may
continue drawing sidechains. Draw a few more sidechains for later use in this
example.

The next step is to change the radius of the sidechains and the color of the backbone.
To facilitate selecting the backbone, turn off the display of the original stick drawing
(which is now mostly inside the cylinders). To do this, click on Display in the Group
Operations subpanel. A button panel will appear that will list three geometry

10

groups, "single_helix" (the geometry that we started with), "cyl_line_ca" (produced
by the drawing tool of that name), and "sidechain_bonds". Try clicking on these
buttons with the mouse. Note that groups that are displayed have a yellow light in
their button. Now toggle off the group "single_helix", but leave the other two
groups on. Close the Group display panel by clicking on Close.

Select and execute the tool change_radius_group. Click on one of the sidechains. A
query will appear at the top of the screen showing you the radius of the cylinder you
selected (the value will be 0.2 Angstroms). Change the value by positioning the
mouse cursor within the text box, hitting the backspace key (to delete the 2) and then
typing a 3, changing the value to 0.3. Press "return" or click on OK when the value
suits you. The query will disappear. Now click the mouse anywhere on any of the
sidechains (indicating to the drawing tool which group is to be modified). You will
see the sidechains all change size.

Now, select and execute the tool recolor _group. Select an object with an initial color
that you wish to modify (select a yellow cylinder on the backbone). The color
(255,155,55) (red = 255, blue= 155, green= 55) will be displayed in a query. You may
modify each field as before by positioning the mouse cursor within the text area (be
sure that each color component is between 0 and 255). Change the color, and then
click on OK. Now pick with the mouse on any element of the group that is be
recolored (any backbone cylinder). The entire backbone group will change to the
color that you have specified. You may undo the color change using the Undo
button.

In the final portion of this tutorial you will rotate a single sidechain. Begin by
deleting the sidechains drawn previously. Click on Remove in the Group
Operations subpanel. A Group remove panel will appear with a button for each
group. Click on "sidechain_bonds". The button will highlight in yellow indicating
that this group has been selected for removal. Now click on OK at the bottom of the
panel. The group will be removed from the panel and from the display. Close the
Group remove panel by clicking on Close.

Draw a single sidechain using the sidechain_bonds tool. Next, execute the
rotate_axis tool. This tool allows you to select a rotation axis and then specify one or
more groups that are to rotate around that axis. Begin by selecting the alpha-beta
carbon bond of the sidechain (the bond that connects the sidechain to the
mainchain). You will see half of the bond turn red indicating a succcessful selection
(all bonds are drawn as half-bonds to allow association of atom records from the
database with each half). Now select any portion of the sidechain, specifying it as the
group to rotate. Again the selected geometry will turn red. If you select from the
wrong group at any time, you may press Undo, and restart specification for the tool.

Now, you may rotate the sidechain using keyboard events (described in section 4.4).
Pressing the "r" or "e" keyboard keys will rotate the sidechain. See what happens if
you hold one of these keys down. Pressing the "s" key will produce a query that
allows you to change the amount of rotation for each key press.

11

This simple example should give you a taste of the VIEW interface and how
drawing tools are used. To see further examples of the drawing tools, their use, and
other VIEW interface features, view the video tapes, VIEW, a System for Exploring
Molecular Structure, and An Introduction to the VIEW Exploratory Molecular
Visualization System. For a description of the tools in the tool library, see VIEW
Drawing Tool Library Description.

4. VIEW BASIC CONCEPTS

In these section, we present some of the fundamental terminology and concepts that
are used in other sections of the User's Manual.

4.1 Geometry

Molecules are represented in VIEW using a few simple 3-D geometric forms. The
forms of display geometry available are:

• cylinders
• lines
• Spheres
• 3-D text
• triangles

Geometry may produced using drawing tools (described below), or may be read from
previous-generated geometry files.

4.2 Geometry Groups

Items of display geometry may be collected together into geometry groups. You may
manipulate a group in a number of ways. You may turn off its display (causing it to
become invisible), delete it from the system, operate on it as an entity using drawing
tools (for example, coloring all items in the group), read or write it from/to a
geometry file.

Drawing tools often create groups that have the name of the tool. Thus, the
triangle_atoms drawing tool will create a group with the name "triangle_atoms"
which will contain all geometry generated by the tool. Subsequent use of the same
tool will add additional geometric elements to this group. A tool may also define
other groups, with names defined by the tool. Thus, the db_all_bonds tool creates a
set of groups including ones named "main_chain" and "side_chain".

4.3 Units

The distance units used in the system are defined in the databases that create the
initial geometry used for drawing. Unless you write your own tools and create your

12

own databases, you will be working with atom positions with Angstroms as units.

4.3 Drawing tools

Drawing tools are the heart of the VIEW system. They provide the capability of
creating, modifying and deleting geometry from the display, or specifying ways to
interact with the geometry. In addition to the library of drawing tools provided with
the system, you may add new tools or modify existing ones at anytime by using the
tool specification language (See VIEW Drawing Tool Definition Language -
Language Description for a description of the language syntax and semantics, and
VIEW Drawing Tool Definition Language - Development Environment for a
description of how to build, modify, or test tools).

4.4 Interactive Events

Drawing tools may define what are known as events. These are actions to be
performed when a keyboard key is depressed or a dial is turned. A tool's events
become active when the tool is executed. The events active at any time are shown
in the event panel (opened by clicking on Show Events in the Drawing Tools
subpanel of the main panel). Each event will replace any event previously defined
on that same key or dial, and will remain active until it is replaced by another event
on the same key or dial, or explicitly removed. Events are not affected by exiting a
tool, or by the implicit exit that goes with executing a new tool.

The tool language provides a statement that removes event definitions. Using this
statement, drawing tools may remove any or all previously defined events. The
tool library contains a tool named "remove_events" that removes all currently
defined events.

Events operate immediately; they are not queued. Only one event may be active at a
time. Events may be initiated even when another event is executing. This is shown
diagrammatically below. Time is displayed horizontally with a different event on
each line. A dotted line means that the event is active.

a ----------
b--

c------
The event on the "a" key is started and runs until the "b" key is pressed. The "b"
event executes until the "c" key is pressed. When the "c" event is completed, the
"b" event resumes. Likewise, when the "b" event terminates, the "a" event executes
to completion.

An exception to the execution model presented above is that when an event is
executing, it may not be interrupted by the same event. Thus if an event on the "a"
key is executing, a second depression of the "a" key (before the first event has

13

completed) will have no effect. The new "a" event is not permitted to interrupt the
first event, nor is it stored for later processing. The same holds true for dials;
movement of a dial will be ignored while an event on that dial is being processed.

Events may operate sequentially. That is, the "a" key may be pressed repeatedly and
as long as the previous event on the key has completed when the key is pressed, the
event will execute over and over. The same effect may be obtained by holding a key
down. After the key has been depressed for about a second, it will act as if it were
being pressed repeatedly. Likewise, turning a dial continually will result in the
event for that dial being executed each time the previous event has completed.

14

Converting Brookhaven Protein
Databank (PDB) Files to VIEW

Database Format
Larry Bergman

1/22/93

The pdbtoview command is used to convert Brookhave Protein databank (PDB)
files to VIEW database format. pdbtoview will be defined when you have
completed the system installation described in the document Installing the VIEW
System.

The syntax of this command is:

pdbtoview -directory directory_name molecule_name

-directory directory_name - defines the directory under which the
subdirectories that contain the PDB files (in a subdirectory called Pdb)
and the VIEW database files (in a subdirectory called Database) are
located.

molecule_name - The name of the PDB file (in the directory
directory_name/Pdb) that is to be converted. The VIEW database file
produced (in the directory directory_name/Database) will have the
same name.

EXAMPLE:

pdbtoview -directory /usr/people/view/my_data lcm

will convert the molecule lcrn (crambin) from PDB to VIEW database format.

NOTE: This command will process all ATOM and HETATM records within the
PDB file up to the first TER record. Any records after the first TER record will not
be processed. If you wish to process multiple segments (between TER records),
extract each into a separate file in the Pdb subdirectory, and process each separately
using the pdbtoview command to create separate VIEW database files.

15

Running the VIEW System

Larry Bergman

1/24/93

VIEW is run with the runview command or alternately with the iview command.
These commands will be defined when you have completed the system installation
described in the document Installing the VIEW System.

Prior to executing runview or iview, you should complete converting all data from
PDB format that you wish to use using the pdbtoview program (See the document
Converting Brookhaven Protein Databank (PDB) Files to VIEW Database Format).

The syntax of the runview command is:

runview -directory directory_name [-antialias] [-background red green blue]
[-dials] [-snapshot snapshot_name] [geometryJile 1 geometry_file 2 .
geometryJile n]

-directory directory_name -defines the directory under which the
subdirectories that contain geometry files, tools, database files, and
snapshot files are located.

optional parameters

-antialias - specifies that antialiasing for lines is to be turned on. The
default is no antialiasing.

-background red green blue - defines the background color for the display
window. red, green, and blue are integers between 0 and 255. If not
supplied, the default background is (40,40,40).

-dials - if supplied, this flag specifies that the dial box is to be used in place
of the virtual trackball. The default is that dials are not to be used, and
the mouse will control movement of the image (using the virtual
trackball).

-snapshot snapshot_name - specifies a pre-existing snapshot to use when
initializing the system. A snapshot is a record of the display state that
captures which panels are open, the position of all panels, and the
contents of the user tools panel. Snapshots are stored in
directory _name I Snapshot.

16

geometry_jile 1 ... geometry _file n- geometry files that are to be loaded.
Geometry files are stored in directory_name/Geometry. Geometry files
may be listed after all other command-line options.

EXAMPLE:

run view -directory /usr /people/view /my _data
-background 100 100 100 single_helix

will start the VIEW system with a gray display panel and the geometry file
"single_helix" loaded.

The iview command is a simpler form of runview that requires no -directory option.
The directory that you specified for the install_view_data command when you
installed the VIEW system will be used to locate all data files. All optional
arguments for iview are identical torunview.

EXAMPLE:

iview -background 100 100 100 single_helix

17

VIEW

User Interface
Description

18

Table of Contents

1. INTRODUCTION ... 21

2. USING THE INTERFACE ... 21

2.1 Physical devices ... 21

2.1.1 Keyboard .. 21

2.1.2 Mouse ... 21

2.1.3 Dials ... 23

2.2 On-screen devices and objects ... 23

2.2.1 Buttons ... 24

2.2.2 Button Panels24

2.2.3 Text areas ... 25

2.2.4 File lists .. 26

2.2.5 Queries .. 28

2.2.6 Confirmations ... 29

2.2.7 Information messages ... 30

3. THE INITIAL CONFIGURATION .. 31

4. THE DISPLAY WINDOW ... 33

4.1 Geometry display .. 33

4.2 Manipulating the Geometry ... 34

5. GROUP OPERATIONS .. 35

5.1 Displaying Groups .. 35

5.2 Removing Groups .. 35

5.3 Renaming Groups .. 37

5.4 Writing Groups .. .38

5.5 Reading Groups ... 39

5.7 Deleting geometry files ... 39

6. TOOL OPERATIONS .. 40

6.1 Executing a tool ... 40

6.2 Exiting a tool .. 40

6.3 Undo .. 40

6.4 All tools panel41

6.5 User tools panel... .. 43

6.5.1 Modifying the user tools panel... .. .43

6.6 Show events panel .. .45

7. SAVING AND RESTORING THE SCREEN LAYOUT
(SN APSHOTTING) .. 45

•

19

8. Database operations .. 46

8.1 Database Remove .. 47

8.1 Field Display47

9. Other functions .. 48

9.1 Recenter function48

9.2 Exit VIEW function .. .48

20

VIEW User Interface Description

1. INTRODUCTION

Larry Bergman
1/24/93

The VIEW system interface consists of a display window which may contain 3-D
geometry, mouse and/or dial manipulation of geometry in the display window,
and a set of on-screen interface objects including button panels, editors, dialogue
boxes, and file lists.

This document starts with a description of the types of interface objects that are used
in controlling the VIEW system. The screen configuration and attributes of the
graphics display are described. A description of various panels follows, including
panels that control groups and panels that control drawing tools. Screen
snapshotting is defined and described. A few additional miscellaneous features are
discussed.

2. USING THE INTERFACE

2.1 Physical devices

The physical devices are the keyboard, the mouse, and (optionally) the dial box.

2.1.1 Keyboard

The keyboard is used for typing text in editors and text areas, entering/changing text
in queries, and individual keys may also be used to trigger interactive events.

Some of the keys have special functions.

"backspace" key - deletes the character that precedes the text cursor.

"delete" key - deletes the character that follows the text cursor.

The "return" and "tab" keys also have special functions that depend on the type of
object and will be discussed with each.

2.1.2 Mouse

The right mouse button is used for picking or selecting. Most of the drawing tools
require selecting one or more geometric objects.

21

To select:

1) Position the cursor arrow tip over the object you wish to select
2) Click the right mouse button.

X
rotation

Figure 1

y
rotation

Rotation of 3-D geometry using the
virtual trackball (mouse motions

shown using arrows)

3-D geometry displayed in the display window may be manipulated using the
mouse. The screen cursor simulates a trackball (unless "-dials" is specified when
VIEW is invoked; see section 2.1.3 below and figure 1). The following table shows
the results of mouse cursor movement while different mouse buttons are
depressed.

Left mouse button

Middle mouse button

The geometry will follow the mouse's motion
(translate)

The geometry will rotate about its center

Up and down motions
near screen center

Rotates geometry about the X
(horizontal) axis

Side-to-side motions
near screen center

Motions near edge of
the screen

Rotates geometry about the Y
(vertical) axis

Rotates geometry about the Z (out-of
screen) axis

22

Both buttons depressed - The geometry will be scaled

Motions up or right

Motions down or left

The geometry will shrink

The geometry will expand

Figure2

Dial control of display geometry

2.2 On-screen devices and objects

2.1.3 Dials

The SGI-supplied dial box has
two functions in the VIEW
system. It may be used to
manipulate the 3-D geometry
in the display window (if the
"-dials" option is specified; see
Running the VIEW System).
Additionally, interactive
events may be assigned to
dials by specific drawing tools.

The assignment of dials to 3-D
manipulations is presented in
figure 2. The unconventional
ordering of the dials (z,x,y)
makes it simplest to do
rotations about y, the most
common viewing operation.

If you develop a new tool that
assigns an event to one of the
system-defined dials (0-5),
your event will override the
system definition.

There are several types of interface objects that are displayed on-screen:

• buttons (figure 3)
• button panels (figure 3)
• file lists (figure 4)
• queries (figure 5)
• confirmations (figure 6)
• information messages (figure 7).

23

A final type of interface object, an editor, is used only for development of new
drawing tools, and is described in the document, VIEW Interactive Tool Definition
Language - Development Environment.

Figure 3

Button panel showing both selection and
action buttons

2.2.1 Buttons

Buttons (figure 3) are actuated by
positioning the mouse cursor over
the button and then clicking with
any of the mouse buttons. Buttons
come in two styles: action buttons
and selection buttons.

A selection button records a change
in system state. In some cases, the
selection serves as information for
some action to be specified later with
an action button (e.g., selecting a
group in the Group write button
panel). In other cases, a selection
button causes an immediate change
(e.g. executing a drawing tool in the
User tools panel, or toggling a group
using the Group display panel). In
either case, the selection button is
either highlighted or dehighlighted,
visually indicating the state. When
selected, a rectangle to the left of the
button's text is yellow; when not
selected, the rectangle is gray. Action
buttons lack this highlight area.

Action buttons cause something to happen immediately (such as opening or closing
a panel, executing a drawing tool, or writing a file). Their effect may be considered
to end as soon as the button is pressed.

2.2.2 Button Panels

Button panels (figure 3) are organized groups of buttons. A button panel provides a
single function or a group of closely related functions. For example, there is a
button panel that is used to remove groups from the display window. This panel
has one button for each group, used to specify which groups to remove, a button
that allows you to select all groups for removal, and a button for actually performing
the removal.

All button panels (except the Main panel which is always open) contain a button
labeled "Close" that is used to delete the panel from the screen; the Close button will
not be described for each individual panel. Panels may always be reopened by
clicking on the appropriate button in the Main panel.

24

2.2.3 Text areas

File lists and queries contain boxes, known as text areas, in which you may type or
modify text (figure 4).

bar

db_het_bonds
delete
dup_group
helix_ cylinder
intersect_plane_line
lengthen_lines
line_ ends
line_intersect
merge_groups
mid_pnts
move world
normal_plane_thru_pnt
proj_pnt_onto_line
proj_pnt_onto_plane
recolor_group
recolor_object
rernove_events
residue_CPKs

Figure 4

All tools file list showing text areas

Execute

Exit

Undo

Examine

Delete

Add to user

text
areas

Objects that contain text areas will pop-up with a text cursor (vertical blue bar) in the
topmost area. The text cursor may be repositioned in any of the text areas by
positioning the mouse cursor, then clicking any mouse button. The text cursor will
appear at the mouse cursor position. If the mouse cursor is to the right of the text,
the text cursor will appear at the end of the text. With the text cursor positioned,
new text can be inserted by typing.

Several editing operations may be performed by using a combination of mouse and
keyboard as indicated in the following table:

25

Desired Result User Action System Response

Selecting text Position the mouse Blue vertical text cursor
cursor at the place in will appear at mouse
the text that the cursor position
selection is to start or
end. Hold down the left
mouse button.

While continuing to Text will be highlighted
depress the left mouse in black.
button, drag the mouse
over the text.

Deleting selected text Press the backspace or Highlighted text will
delete key. disappear.

Replacing selected text ' Type in replacement New text will replace
text. highlighted text.

2.2.4 File lists

File lists are panels used for selecting drawing tools, geometry files, or screen
snapshot files (figure 4). The file list contains a box that lists all files that are
available. If the list is longer than the box, a scroll area will be displayed to the left of
the file list. You may use the slide bar within the scroll area to move up and down
the file list by:

1) positioning the mouse cursor over the slide bar,
2) depressing and holding any of the mouse buttons and,
3) moving the cursor up or down within the scroll area.

Larger movements are possible by clicking any mouse button with the cursor
positioned in the scroll area either above or below the slide bar.

Files are selected by positioning the mouse cursor over them and then clicking with
any mouse button. The selected file will highlight brown, and its name will appear
in a box labeled "name". Use the name in this area to determine which file will be
chosen for operations in the file list (such as Execute in the All tools file list).

You may restrict the set of files listed by specifying a pattern. A pattern is a string
that is used to search all the available file names. Those names that match the
pattern will be listed. In determining if a file name matches, the following rules
apply:

• Any single character in the pattern other than * or ? will match an identical
character in the file name.

26

• An asterisk, *, in the pattern will match any sequence of characters (zero or
more) in the file_name. This is commonly referred to as a wild-card
character.

• A question mark, ? , in the pattern will match any single character in the
file name.

• A set of characters contained in square brackets, [], will match any one of the
characters at the specified position in the file name. Specifying a starting
number or letter, followed by a dash, followed by an ending number or
letter, is a short-hand notation for the set of all numbers or letters between
the start and end inclusive. In figure 4, for example, the pattern [a-z]* will
match anything that contains a starting alphabetic characte:r.

Let us look at a few examples of pattern matching. Suppose we have the set of files:

lcrn_all_sticks
lcrn_ca_cyls
lcrn_ca_sticks
lcrn_cb_sticks
lcrn_cg_sticks
lcrn_call_sticks
2mhr_all_sticks
2mhr_ca_sticks

1) Use the pattern, " *" to see all available file names.

· 2) The pattern, " lcrn_c*sticks" , would produce a smaller file list containing:

lcrn_ca_sticks
lcrn_call_sticks
lcrn_cb_sticks
lcrn_cg_sticks

For the first file, the asterisk matched the string, " a" . For the second, the
asterisk matched the string, "all ".

3) The pattern, "*_c?_ *" , would produce a file list containing:

lcrn_ca_cyls
lcrn_ca_sticks
lcrn_cb_sticks
lcrn_cg_sticks
2mhr_ca_sticks

For the first two files, the question mark matched the string, " a" . For the
third, the question mark matched the string, " b" .

27

4) The pattern, *_c[ag]_* would produce a file list containing:

lcrn_ca_cyls
lcrn_ca_sticks
lcrn_cg_sticks
2mhr_ca_sticks

The expression in square brackets, [ag], will match either an "a" or a "g".
Thus, we get all the files from example three except for the single file that had
a "b" in this position ("lcrn_cb_sticks"). The pattern "*_c[a-g]_ "'' would
produce the same file listing as example three, by specifying any character
between "a" and "g' (inclusive) in place of example three's question mark.

Patterns are specified by editing the text in the text area labeled " pattern" . Text is
edited as described in section 2.2.3 above. If the " return" or "tab" key is pressed
after the pattern has been changed, the list of files that matches the new pattern will
be retrieved. The pattern box will turn white while the system is processing the
match.

2.2.5 Queries

Queries are used for entering or modifying strings. Each query contains one or more
text entry areas, each of which can be edited as described in section 2.2.3 above (figure
5).

Figure 5

Single text area and multiple text area queries

28

The "return" and "tab" keys have identical functions. Their operation depends on
whether the query has one text area or more than one, and also on whether or not
the text has been edited (text added, deleted, or replaced) as described in the
following table. These seemly arbitrary rules are imposed by the FORMS widget
library used in building the VIEW system.

Single text area query

Multiple text area query

Figure 6a

Figure6b

Text unedited Text edited

no effect query will disappear and
new text will be accepted

cursor will move to next cursor will move to next
text area. If in the last text area. If in the last
area, cursor will move to area, cursor will move to
first. first.

When all the strings in the
query are as you want them,
click on the OK button (or, if
the query has a single text area
and the text has been edited,
you may press "return" or
"tab"). Some queries will have
a Cancel button. Clicking on
this will cancel the operation
that generated the query.

2.2.6 Confirmations

Yes/No and OK confmnations

Confirmations are user
interface objects that require
you to reply to a simple
question. There are two types.
Yes/No confirmations (figure
6a) require that you respond
with Yes or No to a question
by clicking on one of two
buttons.

Yes Button

No Button

Confirms the action in progress and proceeds with it.

Cancels the current operation.

OK confirmations (figure 6b) report an error and require that you click on OK in
order to proceed. Both types of confirmations disappear when you click on one of
the confirmation buttons.

29

Figure 7

Infonnation message

2.2.1 Information messages

Certain operations will cause
an information message to be
displayed at the top of the
screen (figure 7). There are two
types of these messages. A
selection message has a blue
background and indicates that a

drawing tool is waiting for you to select an element of geometry in the display
window. This message will disappear automatically when you perform the
selection (and often will be replaced by another selection message, or the same
message will be repeated).

The second type is a wait message. This type has a red background and indicates that
the system is busy with some operation. An example is a message saying "Loading
geometry file: lcrn_all_sticks" . The interface will not respond to the mouse or
dials as long as a wait message is displayed. These messages disappear automatically
when the operation is completed.

30

Figure 8

The VIEW system

3. THE INITIAL CONFIGURATION

When the system is initialized, a display panel (in which all graphics will be
displayed) and a Main panel (used for invoking all system functions) will appear at
predefined locations on the screen (figure 8). The Main panel (figure 9) consists of
four subpanels each of which contains several buttons. Each subpanel contains a set
of related functions; the order of the buttons in the subpanel is based on expected
frequency of use - most used at the top. The subpanels, the buttons contained in
each, and a brief description of the function of each button is shown in the following
table:

31

Subpanel Button Function

Drawing Tools All tools Generates the All tools panel which
allows you to execute, examine, delete
any drawing tool from the library; add
tools to User tools panel.

User tools Generates the User tools panel which
allows you to execute any of a selected
set of drawing tools from the library.

Show Events Generates the Show events panel,
which displays all currently active
events.

Exit Cancels the currently executing
drawing tool.

Undo Undoes the effects of the last drawing
operation (exact effect of Undo varies
depending on which tool operated last)

Group Operations Toggle Generates the Group display panel,
which allows you to turn the display of
geometry groups on or off.

Remove Generates the Group remove panel,
which allows you to remove any or all
geometry groups.

Rename Generates the Group rename panel,
which allows you to specify new names
for geometry groups.

Write Generates the Group write panel,
which allows you to write any or all
geometry groups to a disk file

32

Subpanel Button Function

Database Ops Remove Generates the Database remove panel
which allows you to remove any or all
databases.

Field display Generates the Field display panel which
displays a summary of the contents of
all currently loaded databases.

Screen Snapshot Restore Generates the Restore snapshot panel
which allows you to select a previously
generated snapshot file to be restored

Create Creates a new snapshot file containing
the current interface configuration

There are also two buttons at the bottom of the main panel with the following
functions.

Button Function

Recenter Recenters all geometry in the display window and scales it to
fit within the display.

Exit View Exits the system

The layout of the main panel is shown in figure 9.

4. THE DISPLAY WINDOW

3-D molecular geometry is presented in a graphics window referred to as the display
panel

4.1 Geometry display

The VIEW system displays geometry using an orthonormal projection. This
projection, unlike a perspective projection, produces equal-sized screen images for
equal-sized objects; there is no size change based on distance from the viewer.
Translating objects along the z-axis (out-of-screen axis), will have no effect on their
screen size. For this reason, the scaling operation does not operate by translating

33

objects in z (as in many systems that employ perspective).

Figure9

Main panel

Frequently polygons are used to tesselate a curved
surface. When that is the case, flat shading , in which
each pixel of a polygon is assigned the same shade,
produces clunky, unattractive images. The VIEW
renderer supports a more sophisticated technique known
as Gouroud shading, which uses surface normals defined
at each polygon vertex to produce smoothly shaded
polygons. The normals are those of the curved surface
that is being represented. The simpler drawing tools
(such as triangle), do not define per-vertex normals,
resulting in flat-shaded polygons. Some of the more
sophisticated tools such as ribbon do compute vertex
normals, giving smooth surfaces. There is a tool named
avg_triangle_normals that will compute average
normals for all triangles in a geometry group, smoothing
the shading for any polygons with coincident vertices.
Section 4.3.6.5 in the document VIEW Tool Definition
Language - Language Description describes how to define
triangle normals when writing a new tool.

The 3-D geometry is lit using two white light sources.
The light positions are fixed and may not be
manipulated, nor may the lights be turned off.

The VIEW system supports anti-aliasing of lines. Anti
aliasing produces a higher quality image by minimizing
the effect of jaggy lines at the expense of interaction
speed. Starting the VIEW system with the command flag
"-antialias" will turn on antialiasing (see Running the
VIEW System). The default is no antialiasing'

4.2 Manipulating the Geometry

3-D geometry displayed in the display window may be
manipulated with respect to the viewpoint using the
mouse as described in section 2.1.2.

The right mouse button is used for picking as described
in section 2.1.2.

If the "-dials" option is specified when the program is started, the mouse will not
perform viewing manipulations of the image. Instead, only the dialbox will be used
to rotate, translate, and scale the image. The assignment of dials to these functions
is described is section 2.1.3.

34

5. GROUP OPERATIONS

The subpanel in the main panel labeled "Group Operations" contains buttons used
to invoke panels that provide for toggling groups on and off, removing groups,
reading groups from files or to writing them to files.

5.1 Displaying Groups

The Group display button panel (produced by clicking on Display in the Group
Operations subpanel of the Main panel) is used for turning groups on or off in the
display window (figure 10). The Group display panel shows all groups that are
currently turned on (indicated by a yellow button), as well as those that are turned
off (indicated by a gray button). Clicking on groups will toggle them from On to Off
and vice versa.

Figure 10

Group display panel

5.2 Removing Groups

F~11.

Group remove panel

The Group remove button panel (produced by clicking on Remove in the Group
Operations subpanel of the Main panel) is used for permanently removing groups
of geometry (figure 11). Note that this operation is not undoable, and should be
used with care. You may remove a subset of the currently defined groups, or all
currently defined groups.

35

To remove a subset of the currently defined groups:

Desired Result User Action System Response

Selecting a group for Click on the name of an Button turns from gray to
removal unhighlighted group. yellow.

or

Select all groups for Click on All button at the All group name buttons
removal bottom of the panel. turn from gray to yellow.

Deselecting a previously Click on a the name of a Button turns from yellow
chosen group highlighted group. to gray.

Confirming the selection Click on OK button, at the Selected groups are
of groups for removal bottom of the panel, when removed.

all selections are
completed.

36

Figure12

Group rename panel

5.3 Renaming Groups

The Group rename button panel (produced by
clicking on Rename in the Group Operations
subpanel of the Main panel) is used for renaming
geometry groups (figure 12). Renaming is
particularly useful for creating multiple groups using
a single tool. For example, suppose that you wish to
create two separate groups of triangles using the
triangle drawing tool. To do this you would use the
tool to create the triangles in the first group. You
would then rename the "triangle" group (to, say,
"triangle2") and then continue to draw triangles; the
new triangles would go into a group with the
original name (in this case "triangle").

Note that the renamed group cannot have additional
geometry added to it (at least not by the tool used to
create it, for that group knows only tool-specific
names). In order to add to the renamed group, its
name would have to be changed back to its original
name (in the example, the "triangle2" group would
have to be renamed "triangle").

Groups are named one-at-a-time using the Rename groups panel.

Desired Result User Action Result

Renaming a group Click on the name of Prompts you for the new name
the group you wish to of the group.
change.

Confirming the new Specify a new name Renames the group.
name for a group and hit "return" or

"tab" or click on the
OK button.

Canceling the new name Click on cancel button. Leaves the name unchanged.
for a group

Note: The system will not allow you to create multiple groups with the same name.
If you try to rename a group to an already existing name, the system will cancel the
operation and issue a warning message.

37

5.4 Writing Groups

The Group write button panel (produced by clicking on Write in the Group
Operations subpanel of the Main panel) is used for generating a disk file containing
one or more groups of geometry (layout is identical to the Group remove panel,
figure 11). These are referred to as geometry files.

To write to a geometry file:

Desired Result User Action System Response

Selecting a group for Click on the name of an Button turns from gray to
writing unhighlighted group. yellow.

or

Selecting all groups for Click on All button at the All group name buttons
writing bottom of the panel. turn from gray to yellow

.

Deselecting a previously Click on a the name of a Button turns from yellow
chosen group highlighted group. to gray.

Confirming the selection Click on OK button, when Prompts you for the name
of groups for writing all selections are of the file to be written.

completed

Naming the geometry file Specify a name and hit Writes the geometry file.
"return" or "tab" or click
on the OK button in the
name query.

Canceling the write Click on the Cancel button No action will be taken.
operation in the name query

38

..

Figure13

Read geometry panel

Desired Result

Selecting a file to read Click

User Action

on the file
with the mouse.

5.5 Reading Groups

The Read button in the Group
Operations subpanel of the
Main panel produces a file list
containing previously
generated geometry files that
may be read from disk (figure
13).

System Response

name File name will highlight
in brown and will be
displayed in the name
area.

Confirming the selection Click on Read button. File will be read from disk.
of file to be read

5.7 Deleting geometry files

Geometry files may deleted from disk file using the delete button in the Group read
panel. Click on the Read button in the Group Operations subpanel of the Main
panel to produce this panel.

39

Desired Result User Action System Response

Selecting a file to delete Click on the file name File name will highlight
with the mouse. in brown and will be

displayed in the name
area.

Confirming the selection Click on Delete button. File will be deleted from
of file to be deleted disk and the file list will

be updated.

6. TOOL OPERATIONS

Tools may be accessed from two different panels. The All tools panel will allow you
to access any drawing tool. You may execute, examine, or delete a tool from this
panel. The User tools panel contains a subset of the available tools. From this
panel, tools may only be executed. You may select those tools that are to be listed in
the User Tools panel as described in section 6.4.1 below.

6.1 Executing a tool

Executing a tool starts the operation of that tool. The Tool executing panel will
display the name of the currently executing tool. Most tools (but not all), once
started, require you to pick one or more objects in the display window. Executing a
new tool will cause the tool that was previously executing to cease.

Note that deactivation of events does not operate in the same fashion. When a tool
is executed, all events that are defined by that tool become active. When another
tool is executed, previously defined events are NOT deactivated unless the new tool
explicitly deactivates them, or replaces them by defining new events on the same
keys or dials.

6.2 Exiting a tool

Exit will terminate the currently executing drawing tool. It does not, however,
deactivate events defined by that drawing tool.

6.3 Undo

Undo will undo the last drawing operation. It is for undoing the effects of drawing
tools; although it may remove the effects of operations performed from the interface
(e.g. renaming or reading groups), these interface operations are not individually
undoable. For example, suppose that two triangles are drawn using the triangles
tool, the "triangles" group is renamed to "tris", and then a cylinder is drawn using
the helix cylinder tool. Clicking on Undo (in the Drawing Tools subpanel of the

40

Main panel, in the All tools panel, or in the User tools panel), will cause the
cylinder to be removed, leaving both triangles in the group called "tris". Clicking
Undo again, will undo the rename, but it will also back up over the second triangle
draw, that is, the second undo will leave only a single triangle in a group called
"triangles".

The amount of drawing that is undone by each undo varies from one tool to the
next. To find out how much is undone, try it.

Figure 14

All tools panel

6.4 All tools panel

The All tools panel lists and lets
you operate on any or all
drawing tools in the library
(figure 14). You may execute or
examine the text of a drawing
tool from this window as well
as deleting tools from the
library. You may also terminate
the actions of the currently
executing tool, or undo
previous drawing operations.

The tools listed in the file list
are determined by the pattern in
the pattern box. Section 2.2.5
describes the use of patterns to
choose particular sets of tools to
be listed. As shown in figure 4,
the All tools panel is initialized
with the default pattern [a-z]"
which lists all drawing tools in
the system.

To operate on a tool using the All tools panel, you must perform two separate steps:
select the tool, and then select the operation. Only one tool may be selected at a
time; selecting a new tool will cause the previously selected tool to deselect
(indicated by the brown highlight returning to white).

Desired Result User Action System Response

Selecting a tool Click on the tool name in Tool will be highlighted
the file list in brown and its name

displayed in the name
area.

41

An operation is selected at the right side of the panel. The operations that apply to
scripts are Execute, Examine, and Delete. The operation will be applied to the
currently selected script. The operations Exit and Undo do not make use of the
selected script.

Function System Response

Execute Starts executing the selected drawing tool. This will terminate the
previously executing tool (except for any events defined, which may
still be active).

Examine Pops up an editor window containing the text of the selected tool.
This text may be edited and/ or executed from the editor window. See
the document VIEW Tool Definition Language - Development
Environment for details.

Delete Removes the specified drawing tool from the library. The delete
operation will request confirmation. Oick on Yes to delete the tool, or
on No to cancel the operation.

IMPORT ANT NOTE: if a tool is added to the library using an editor outside the
system (such as "vi"), the tool will not show up in the open All tools panel until the
panel is updated. This occurs when the panel is next reopened or a new pattern is
entered.]

42

Figure15

User tools panel.

6.5 User tools panel

The tools in the User tools panel are a subset of the
tools available in ... the library (figure 15). You may
choose the tools that are to go into this panel.
Clicking on a tool button in the User tools panel will
execute the tool; unlike the All tools panel, no
operation selection is required. Clicking on a blank
button (one containing no text) in the panel will
cause the currently executing tool to exit.

6.5.1 Modifying the user tools panel

The simplest way to add a tool to the User tools
panel is using the Add to user button in the All tools
panel.

More extensive modifications to the User tools panel
can be performed using the Modify user tools panel
(figure 16). Clicking on Modify in the User tools
panel will cause the Modify user tools button panel
to appear.

Figure16

Modify user tools panel

There are five operations that you can select in the Modify user tools panel:

• adding a tool to the User tools panel,
• adding a blank button to the User tools panel
• deleting a tool from the User tools panel,
• moving a tool to the top of the User tools panel,
• moving a tool to the bottom of the User tools panel,

43

These five operations are performed as described in the following table:

Desired Result User Action System Response

Adding a tool to the Users Select the tool in the All A button containing the
tools panel tools panel. tool will appear at the

bottom of the User tools

Click on Add to user in panel

All tools panel.

or

Select the tool in the All
tools panel.

Click on Add in the
Modify user tools panel.

Adding a blank button to Click on Add blank in the A blank button will
the User tools panel Modify user tools panel appear at the bottom of

the User tools panel

Deleting a tool from the Select the tool in the User Tool will disappear from
Users tools panel tools panel. the User tools panel

Click on Delete in the
Modify user tools panel.

Moving a tool to the top Select the tool in the User Tool will move to the top
of the User tools panel tools panel of the User tools panel

Click on To Top button in
the Modify user tools
panel.

Moving a tool to the Select the tool in the User Tool will move to the
bottom of the User tools tools panel. bottom of the User tools
panel panel.

Click on To Bottom
button in the Modify user
tools panel.

The User tools panel is not able to execute tools so long as the Modify panel is

44

displayed. When the Modify panel is closed by clicking on Finished, the User tools
panel becomes active; clicking on a tool button will execute that tool. While the
Modify panel is open, clicking on a tool in the User tools panel selects it for
modification. Modify operations may be performed in any order.

6.6 Show events panel

Figure17

Show events panel

The Show events panel displays information about all currently active events
(figure 17). For each event, the defining tool, the event name, and the triggering
device is listed.

The Show events panel is not automatically updated when a tool defines new
events or removes events. To update the panel, you must close and reopen it.

7. SAVING AND RESTORING 1HE SCREEN LAYOUT
(SNAPSHOTTING)

At any time you may save a record of the VIEW interface by taking a snapshot.
Positions of all panels, position of the display window, and, most important, the
contents of the User tools panel will be recorded in the snapshot. Snapshots may be
restored at any time, causing the screen to reconfigure to the layout in the snapshot.
Note that snapshots do not capture the complete state of the system - they do not
record the graphics in the display panel, nor the state of the currently executing tool
and active events.

45

Desired Result User Action System Response

Recording a snapshot Click on the Create button Requests the name to be
in the Screen Snapshot assigned to the snapshot.
subpanel of the Main
panel.

Type in the name. Generates the snapshot.

Hit "return" or "tab" or
click on the OK button.

Canceling a snapshot Click on the Cancel Cancels snapshot request.
request button.

Restoring a snapshot Click on the Restore A file list displays all
button in the Screen available snapshots.
Snapshot subpanel.

Click on a snapshot name. Snapshot name will
highlight in brown and
will be displayed in the
name area

Click on the Read button Restores the snapshot

Hint: a tree structure of snapshots may be generated by using qualified snapshot
names. For example, if you're working on the molecule "2cna" and want to save a
snapshot for that molecule as well as slightly varying snapshots for two
visualization attempts, you might create snapshots with the names:

2cna
2cna_tryl
2cna_try2

You may add as many qualifying fields as you wish in this manner. The names may
become as long as you wish, although the Snapshot restore file list will only display
the first twenty-two characters of the name.

8. DATABASE OPERATIONS

The subpanel in the main panel labeled Database Ops contains buttons used to
invoke panels that provide for removing databases and displaying available
database fields.

46

I
f

8.1 Database Remove

The Database Remove button panel (produced by clicking on Remove in the
Database Ops subpanel of the Main panel) is used for permanently removing
databases from the system (layout is identical to the Group remove panel, figure 11).
Removing databases is useful when using tools that create new databases.
Rerunning such a tool will cause the database that is previously created to be
modified rather than regenerated. If you wish to start with a fresh database, delete
the old one using this function. Once a database is removed, any display geometry
that references that database will no longer have valid references. This may cause
certain drawing tools that perform database accesses to fail (and popup a debugger)
when operating on this geometry.

The remove operation is not undoable, and should be used with care. You may
remove a subset of the currently defined databases, or all currently defined
databases. Note that this function does not remove database files. This must be
performed outside the system using UNIX commands.

Desired Result User Action System Response

Selecting a database for Click on the name of an Button turns from gray to
removal unhighlighted database. yellow.

or

Selecting all databases for Click on All button at the All database name buttons
removal bottom of the panel. turn from gray to yellow.

Deselecting a previously Click on a the name of a Button turns from yellow
chosen database highlighted database. to gray.

Confirming the selection Click on OK button, at the Selected databases are
of databases for removal bottom of the panel, when removed.

all selections are
completed.

8.1 Field Display

This function produces a button panel that shows all the field names that are
available for all currently loaded databases. It is strictly an information panel, useful
for deciding which tools to use or for selecting field names in modifying/ creating a
tool.

The database fields that are automatically defined by VIEW molecular databases are
described in section 4.3.10 of VIEW Interactive Tool Definition Language- Language

47

Description.

9. OTHER FUNCTIONS

Several other functions are available from the main panel.

9.1 Recenter function

This function centers the geometry in the display window by translating and scaling
all on-screen geometry Orientation of the geometry is not affected.

9.2 Exit VIEW function

This function permits you to terminate a VIEW session. The system will request
confirmation when this button is pressed.

48

VIEW

Draw-ing Tool
Library

Description

49

Table of Contents

1. INTRODUCTION ,52

1.1 Geometry ... , 52

1.2 Relationships between geometry and databases 53

1.3 Selections .. 53

1.4 System prompts ... 54

1.5 Distance units ... 54

1.6 Events54

1.7 Tool descriptions in this document... .. .54

2. TOOL DESCRIPTIONS ... 57

2.1 Database management tools ... 57

db_all_bonds, db_ca_sticks, db_h_bonds and
db_het_bonds .. ,57

update_ database ... 53

2.2 Simple molecular sketching tools ... 59

connect_atoms59

cyl_atom_sequence ,59

select_atoms .. 60

triangle_atoms .. 60

2.3 Tools for displaying molecular geometry .. 60

atom_CPKs .. 61

cyl_line_ca ... 61

cyl_line_main .. 62

helix_cylinder ... 62

residue_CPKs .. 63

ribbon .. 63

ribbon_select ... 64

select_subtree .. 64

sidechain_bonds ... 65

spline_tube_chain ... 65

2.4 Tools for modifying parameters of existing geometry 66

a vg_ tri_normals .. 66

change_radius_group ... 66

change_radius_object ... 67

recolor_group ... 68

50

recolor_object.. .. 69

rotate_axis .. 69

translate_axis .. 72

2.5 Euclidean construction tools .. 73

connect_points ... 73

intersect_plane_line ... 74

lengthen_line ... 74

line_ends ... 75

line_intersect .. 76

mid_pnts .. 76

normal_plane_through_pnt77

proj_pnt_onto_line .. 77

proj_pnt_onto_plane ... 78

triangle_pnts ... 78

2.6 Annotation tools ... 79

arrow_atoms .. .79

arrow _pnts .. 81

text_atom_wqual, text_atomnum, text_resname,
text_resnum .. 81

text_ user label .. 82

2.7 Measurement tools ... 83

compute_angle ... 83

compute_dihedral ... 84

compute_distance .. 85

2.8 Geometry management tools ... 85

delete : ... 85

dup_group ... 86

merge_groups ... 86

2.9 Display and system management tools ... 87

move_ world ... 87

remove_events .. 89

set_ origin ... 89

TOOL INDEX

51

j
I

I

VIEW Drawing Tool Library
Description

1. INTRODUCTION

Larry Bergman
1/24/93

This document describes the individual tools that are supplied with the
VIEW system. Each tool is briefly described, and the sequence of actions you
perform in using it are listed. Additionally, all events are described for each
tool.

Prior to using this document, you should read VIEW Exploratory Molecular
Visualization System - Overview. That document covers basic concepts of
the VIEW system. This document will assume that you are familiar with
these underlying ideas and definitions. I also suggest that you be familiar
with the use of the VIEW system as described in the document, VIEW User
Interface Description.

- 1.1 Geometry

Many of the tools create on-screen geometry. The geometry created consists of
one or more geometric primitives. The primitives are: sphere, line, cylinder,

- triangle, and text. More complicated geometric forms are always drawn using
these primitives. For example, the normal_plane_thru_pnt tool produces a
quadrilateral. This quadrilateral is composed of two adjoining triangles.

Geometry is often created in pieces in this manner. The most common case
is the creation of atomic bonds. Although a bond could be represented with a
single line or cylinder, it is always created as two-half bonds (i.e. two
adjoining line segments or cylinders). This allows a pointer to an atom
record in the database to be associated with each half-bond. With geometry so
constructed, we can select an atom by clicking on the half-bond (line or
cylinder) near the desired atom position.

Operations on geometry are always at the level of a group or a primitive; it is
not possible to operate on levels in between. Consider the delete tool which
removes individual geometric primitives. If a quadrilateral produced by
normal_plane_thru_pnt is to be removed using delete, the two triangles
must be removed separately; there is no way to remove the quadrilateral in a
single step. Similarly, many tools will highlight selected primitives.
Selecting a bond will cause one of the half-bonds that comprise it to highlight;
you will not see the entire bond change color.

52

1.2 Relationships between geometry and databases

Many of the tools create geometry using information from a molecular
database, often atom positions. Most of these tools associate pointers to the
database with each geometric primitive created. Some do not, however (this
will be indicated in the tool descriptions), usually when the created geometry
is not unambiguously associated with an individual atom or bond. It is also
possible to remove database pointers from the geometry by removing the
database (using the Database remove operation described in Section 8.1 of
VIEW User Interface Description).

Clicking on a geometric primitive that has no database pointers will produce
no result when the system requires an atom selection.

When geometry which contains database pointers has been moved relative to
other geometry (using rotate_axis, for example), the location of the geometry
and the atom positions in the database will no longer correspond. If the
moved geometry is used to specify atoms for other drawing tools, the new
geometry will be drawn at the original atom locations, not at the positions of
the moved geometry. You may update the database to reflect the position of
the on-screen geometry using the tool update_db, thereby circumventing this
problem.

1.3 Selections

Almost all of the drawing tools involve selections of one or more geometric
primitives in the display panel. Selections are made by positioning the
mouse cursor near the geometric object to be selected and then pressing the
right mouse button.

Selections are either of atoms or geometric objects (such as spheres or lines).
When atoms are to be selected, perform the selection on some element of
geometry near the atom position. The system indicates a successful selection
by displaying a red sphere at the atom position.

If an object is to be selected, the system either changes the color of the selected
object, or performs some action that results from that choice. If a color change
results, the new color displays until the screen is redrawn (the color then
reverts to the original color of the object), either when you manipulate the
geometry with the mouse, or when you perform the next selection.

Many of the object selections are used to define a location. In this case, the
center of the object you select is used; usually you will wish to select a sphere.
Watch the color change to make sure that you selected the object you wish- if
not, use undo and then try again. Other selections require that you choose a
line. In these cases, any linear object, either a line or a cylinder, may be
selected; a cylinder may be thought of as a fat line.

53

I

I

Some of the object selections are used to specify a geometry group or a
molecule to be operated on. In this case, the selection chooses the group or
molecule by specifying one geometric element from it.

1.4 System prompts

There are two forms of system prompts - selection messages and queries. A
selection message is a blue pop-up panel at the top of the screen containing
text prompting you to make a selection in the display panel.

Queries are pop-up panels containing text areas in which you are to specify a
number or string. Default values are provided in each query area. Queries
are completed by pressing "return", "tab", or by clicking on OK. A more
detailed description of the use of queries is contained in section 2.2.5 of the
document VIEW User Interface Description. Generally, completion of a query
does not result in a change in the display panel; queries usually change some
tool parameter to be applied to future drawing operations.

1.5 Distance units

Some of the tools require that you define a distance (for example, the
select_radius event in the arrow tool requires that you define a radius). The
distance units are the units defined by the data that you are visualizing. If
you are viewing a molecule, the units are Angstroms.

1.6 Events

· A number of tools define events. Events are sequences of actions that are
triggered by depressing a keyboard key or turning a dial. Some events are
used to change parameters, others produce actions such as rotating or
translating geometry. More information on events will be found in section of
4.4 of the document VIEW Exploratory Molecular Visualization System,
-Overview

1.7 Tool descriptions in this document

The format of each tool description is as follows:

54

tool name

Brief tool description

Table detailing the actions you perform and the system prompts and
responses that accompany them.

Optional event descriptions. For each event:

Event name followed by a brief event description

Table detailing the actions you perform and the system
prompts and responses that accompany these actions.

The optional event descriptions contain an information block for each event.
The block lists the name of the event (which may be viewed in the Show
events panel of the interface), a brief description of what the event does, and
then the sequence of user actions that are used to trigger and complete the
event. Events are started when the tool that defines them is executed. Events
may be stopped by executing the remove_events tool, described below.

Let us look at a sample, and describe in detail how the tool is used. The
sample is the first tool in the library, arrow.

arrow _atoms

Draws a series of arrows between pairs of atoms

System Prompt User Action System Response

repeat as Select atom for Click on an atom Red ball appears at the
often as arrow tail atom position
desired

Select atom for Click on a second A red ball appears at the
arrow head atom second atom position.

Arrow is drawn
connecting the atoms,
then the red balls
disappear.

The description tells us that the tool is used for drawing arrows and allows us
to produce a series of them. The sequence of actions tells us that there are two
selections to be performed and that the pair of selections may be performed
repeatedly. The first selection, the arrow tail, is of an atom. Position the
mouse cursor near an atom position (for example, near the place where two

55

vector bonds meet), and click with the right mouse button. The system draws
a red sphere. The second selection, the arrow head, is performed in the same
way. After the second selection, the arrow is drawn, the spheres disappear,
and then you may continue with a new atom selection.

Optional Events

select_length

User Action

Press letter key "1"

Choose a scaling factor
of one (this is the
default value when
starting this tool)

or

Choose a length scaling
factor of less than one

- .,...

or

Choose a length scaling
factor of greater than
one.

Specifies whether the arrows are to
connect the atoms, go beyond each
atom, or fall short of each atom.

System Response

Query panel appears with prompt: Length scaling
factor:

Displayed number is the previously defined scaling
factor.

Future arrows will connect the two selected atoms
together.

Future arrows will fall short of each of the two
selected atoms.

Future arrows will extend beyond each of the two
selected atoms.

56

select _radius

User Action

Press letter key "r"

Choose a number for
the radius of the arrow
shaft.

Specifies the radius of the shaft for future
arrows.

System Response

Query panel appears with prompt: Specify radius
for shaft.

Displayed number is the previously defined radius.

Radius of arrow shaft will change to the new value
for future arrows.

The event section for this tool tells us that there are two events defined. The
first, on the letter "l" key, is called select_length. This tool allows us to specify
a scaling factor that lengthens or shortens the arrow. If we press the letter "l"
key, a query appears requesting a value for the scaling factor. The initial
value in the query is 1. We can change this value (or leave it unchanged) and
then press return or click on OK; the query will disappear. The description
tells us not to expect any immediate change to the graphics on-screen (the
new factor only affects arrow we draw after changing the length factor).
Similarly, we may use the select_radius event on the letter "r" key to specify a
new radius for future arrows.

2. TOOL DESCRIPTIONS

2.1 Database management tools

Several tools construct simple geometry directly from a molecular database or
update a database using on-screen geometry.

db_all_bonds, db_ca_sticks, db_h_bonds and db_het_bonds

This following four tools are similar and are grouped together for
convenience. These routines, which generate no graphics on-screen
until they are completed, may require quite a while to draw a large
molecule (10-30 minutes).

The geometry generated by these tools may not display until the tool has
completed. Also, the geometry may appear off-screen (the tools do not
automatically rescale geometry to fit the screen). To see the geometry,
click Recenter in the Main panel.

57
I

These tools create one or more groups with names indicating the
contents, such as "main_chain" or "h_bonds". The groups produced
will not have the name of the tool.

The results of these tools is:

db_all_bonds,

db_ca_sticks

db_h_bonds

db_het_bonds

System Prompt
..

Query panel appears
with prompt: Enter
database to be read.

Dummy file name
appears as an example.

update _database

Draws all bonds of a molecule.

Draws line segments connecting successive
alpha carbons along the main chain of a
molecule.

Draws the hydrogen bonds of a molecule.

Draws bonds between "het" (heterogenous)
atoms of a molecule. Both atoms in the bond
must be "het".

User Action System Response

Enter full path name for Depending on the tool
a file. used, draws line

segments to represent:

all bonds of a molecule,
or

connections between
sucessive alpha carbons
of a molecule, or

hydrogen bonds of a
molecule, or

bonds between "het"
atoms of a molecule.

This tool updates molecular databases to reflect on-screen geometry. It is
useful when geometry has been moved (using rotate_axis or
translate_axis, for example). update_database requires that all on-screen
geometry have geometry pointers and be associated with individual
atoms (thus helix_cylinder cylinders would not be valid). This tool only

58

uses cylinders, lines, and spheres to determine atom positions for the
update; triangles and text are ignored.

No User Actions.

2.2 Simple molecular sketching tools

These tools are used for drawing simple shapes such as lines, triangles, and
spheres based on atom positions.

connect _atoms

Draws a thin cylinder between a pair of atoms.

System Prompt User Action System Response

repeat as Select first atom. Click on an atom. Red ball appears at the
often as atom position
desired

Select second atom. Click on a second Second red bail appears
atom. mom en taril y.

A cylinder connects the
atoms together.

Red balls disappear.

cyl_atom_sequence

Draws a series of cylinders connecting selected atom positions.

System Prompt User Action System Response

Select start atom. Click on an atom. Red ball appears.

repeat as Select next atom. Click on an atom. Red ball appears.
often as
desired A cylinder connecting the

previous two atom
positions is drawn.

The red ball at the start of
the cylinder disappears.

59

I

' l

I

select_atoms

Displays small spheres at selected atom positions. This is often used in
conjunction with other drawing tools that require spheres, such as
compute_distance or mid_points.

System Prompt User Action System Response

repeat as Select an atom. Click on an atom. Colored sphere appears.
often as
desired

triangle_atoms

Draws a series of triangles connecting sets of three selected atom
positions. The triangles have no database pointers assigned.

System Prompt User Action System Response

repeat as Select first Click on an Red sphere appears.
often as atom. atom.
desired

Select second Click on Another red sphere appears.
atom. another atom.

-
Select third Click on third A third red sphere appears.
atom. atom.

A triangle is drawn.

All three red spheres disappear.

2.3 Tools for displaying molecular geometry

A number of tools construct geometry for all or part of a molecule based on
on-screen selections. These representations includes atomic CPK spheres,
side and main chain bonds, alpha-carbon connections, backbone ribbons, and
splined backbone tubes.

60

atom_CPKs

Displays CPK spheres at selected atom positions.

System Prompt User Action System Response

repeat as Select an atom. Click on an atom. Colored CPK sphere
often as with Van der Waals
desired radius appropriate to

the atom type appears.

cyl_line_ca

Draws a series of cylinders connecting adjacent alpha carbons between
two selected positions on the main chain of a protein.

System Prompt User Action System Response

repeat as Select start atom. Click on an atom. Red ball appears.
often as
desired

Select end atom. Click on a second Second red ball appears.
atom.

A series of gold cylinders
connect adjacent alpha
carbons between the two
chosen atoms.

Red balls disappear as the
cylinders are drawn over
them.

61

cyl_line_main

Draws the mainchain bonds (including carbonyl oxygens) as a set of
cylinders between two selected positions on the mainchain of a protein.

System Prompt User Action System Response

repeat as Select start atom. Click on an atom. Red bail appears.
often as
desired

Select end atom. Click on a second Second red bail appears.
atom.

A series of white cylinders
appear between the two
chosen atoms showing
main chain and carbonyl
oxygen bonds.

Red balls disappear.

helix_cylinder

Creates cylinders that lies along the axes of alpha helices. The cylinders
have no database pointers.

System Prompt User Action System Response

repeat as Select atom at start Click on an atom. Red ball appears.
often as of helix.
desired

Select atom at end Click on a second Second red ball appears.
of helix. atom.

purple cylinder within
the helix is drawn.

red bails disappear.

62

residue_CPKs

Displays the atoms as CPK spheres for individual residues, specified by
selecting a single atom from that residue.

System Prompt User Action System Response

repeat as Select atom from Click on an Red sphere appears. As residue
often as residue to be atom. is drawn, red sphere becomes a
desired displayed. CPK sphere with Vander Waals

radius appropriate to the atom
type.

ribbon

Generates a backbone ribbon for the selected molecule. This tool displays
a ribbon several minutes after the user initiates execution. The triangles
comprising the ribbon contain no database pointers.

System Prompt User Action System Response

repeat Select the molecule Click on an Selected object changes color.
as for ribbon. object from a
often group that After several minutes, a
as displays the ribbon is drawn.
desired desired

molecule. Selected object changes to
original color.

63

ribbon_select

Generates backbone ribbon segments for selected portions of molecules.
The triangles comprising the ribbon contain no database pointers.

System Prompt User Action System Response

repeat as Select start atom for Click on an atom. Red sphere appears at
often as ribbon. selected atom.
desired

Select end atom for Click on an Another red sphere
ribbon. another atom. appears at selected atom.

Red spheres disappear
when ribbon is drawn
between the atoms.

select _subtree

Displays (as a series of cylinders) the connected set of bonds (subtree)
attached to a particular bond. The display proceeds in the direction
specified by selecting, in order, the two atoms comprising the start bond.

You must execute care in selecting the bond for this tool. If the selected
bond is part of a cyclic structure (for example in a proline, within an
aromatic ring, or part of a disulfide bond), the entire molecule may be
selected.

System Prompt User Action System Response

repeat as Select first atom on Click on an atom. Red sphere appears.
often as start bond.
desired

Select second atom Click on another Another red sphere
on start bond. atom. appears.

Subtree is drawn from
first atom to another
atom. Red spheres
disappear

64

sidechain_bonds

Displays the bonds (as cylinders) for individual sidechains, specified by
selecting a single atom from each sidechain.

System Prompt User Action System Response

repeat as Select atom from Click on an atom. Red sphere appears.
often as residue to be After sidechain is
desired displayed. drawn, red sphere

disappears.

spline _tube _chain

Displays a spline-like tube between a pair of selected mainchain atoms.
The tube follows atoms of a particular type specified by the user. The
default type of atom is an alpha carbon. Spline tube geometry has no
database pointers assigned.

System User Action System Response
Prompt

Text area Type in an fully No visuai response.
appears with qualified atom type
prompt: or press "return" or
"Enter atom "tab" to keep the
type for chain default of alpha
following" carbon (CA).

repeat as Select starting Click on an atom. Red sphere appears.
often as atom.
desired

Select ending Click on another Red sphere appears at ending
atom. atom. point. Starting sphere

disappears and a tube is
drawn from the starting
point. The ending sphere
disappears when the tube
reaches it.

65

'
I

2.4 Tools for modifying parameters of existing geometry

A number of tools allow you to alter attributes of existing geometry including
their color, size, shading, and position relative to other groups.

avg_tri_normals

Averages the normals of all triangles in a given group that are coincident
at a vertex for each triangle and vertex in the group (all primitives in the
group should be triangles). This is a technique that is commonly used to
produce smoother shading when the surface normals at the vertices are
not known (e.g. the tool that produces the triangles does not assign per
vertex normals). See section 4.1 of VIEW User Interface Description for
more on the use of normals in controlling shading of triangles.

System Prompt User Action System Response

Select a triangle Click on a triangle Triangle changes color.
from the group to from the group to
be averaged. be averaged Triangles become

smooth-shaded and the
selected triangle reverts
to its original color.

change _radius _group

Changes the radii of all objects in a group to the same new radius.

System Prompt User Action System Response

Select an object with Click on an No visual response
initial radius object

Query panel appears with Specify the No visual response
prompt: Radius to be new radius.
applied to groups.

Number appearing is the
radius of the selected
object.

repeat as Select an object from the Click on an Radius of all objects
often as group to be changed. object in the group changes
desired to the new radius.

66

change _radius_ object

Changes the radii of individual objects to the same new radius.

System Prompt

Select an object with
initial radius.

Query panel appears with
prompt: Radius to be
applied to objects.

Number appearing is the
radius of the selected
object.

repeat as Select an object to be
often as changed.
desired

Optional Events

change_rad_dial

User Action

User Action System Response

Click on an object No visual
response.

Specify the new No visual
radius. response.

Click on an Radius of the
object. object changes to

the new radius.

Continuously changes the radius of the
selected object by rotating a dial.

System Response

Rotate dial 7 clockwise, Radius continuously increases.

or

Rotate dial 7 Radius continuously decreases.
counterclockwise

67

I
I

I

recolor _group

Sets all objects in a geometry group to a specified color

System Prompt User Action System Response

Select object with initial Click on an No visual
color. object response.

A query with three text Type in a new Query disappears.
areas appears with the number for any

No visual response prompt: (red, green, blue) or all of the
color to be applied to groups three color in the display

components. panel. The new
Numbers appearing in the color specified will
these text areas denote the Click on OK in apply to subsequent
exisitng intensity of the red, the query when groups selected.
green and blue components color
of the object selected. The specification is
scales is from 0 to 255. as you desire.

repeat Select an object from the Click on an Entire group
as often group to be recolored. object. containing the
as selected object
desired changes color.

68

recolor _object

Sets all selected objects to a specified color

System Prompt User Action System
Response

Select object with original Click on an No visual
color. object. response.

A query with three text Type in a new Query
areas appears with prompt: number for any disappears.
(red, green, blue) color to be or all of the three
applied to objects color No visual

components. response in the
Numbers appearing in the display panel.
these text areas denote the Click on OK in The new color
existing intensity of the red, the query when specified will
green and blue components color specification apply to
of the object selected. The is as you desire. subsequent
scales are each from 0 to 255. objects selected.

repeat as Select object to be recolored. Click on an Selected object
often as object. changes color.
desired

rotate_axis

Rotates all geometry in selected groups around a selected axis.

System Prompt User Action System Response

Select the axis to Click on an line or Selected line or cylinder
rotate about. cylinder. changes color.

repeat as Select a group for Click on an object Selected object changes
often as rotation. in a group. color and the group that
desired contains it becomes part

of the set of groups that
respond to rotation
events (listed below).

69

Optional Events

def_angle

User Action

Press key "s"

Type in a rotation angle.

Positive numbers
denote clockwise
rotation angles.

Negative numbers
denotes
counterclockwise
rotation angles

Or:

Defines the rotation amount. Default is
one degree.

System Response

Query panel appears with prompt: Enter rotation
angle

No visual response until user presses other event
keys.

'

70

User Action Event Name System Response

Press key "r" rotate_grps Rotates the geometry clockwise by the
defined amount of rotation.

Press key "e" rotate_grps_back Rotates the geometry counterclockwise
by the defined amount of rotation.

Press key "a" auto_rotate Automatically rotates the geometry
back and forth 30 degrees.

Press key "p" auto_rot_stop Stops rotation of the geometry started
by the auto_rotate event.

Press key "x" reset_rot Resets the geometry to its original
position.

Press key "f' rotate_forward Rotates the geometry counter-clockwise
30 degrees. Once activated, this event
will have no further effect on re-
execution until the rotate_backward
event is executed.

Press key "b" rotate_backward Rotates the geometry clockwise 30
degrees. Once activated, this event will
have no further effect on re-execution
until the rotate_forward event is
executed.

71

translate _axis

Translates all geometry in selected groups along a selected axis.

System Prompt

Select the axis to
translate along.

repeat as Select a group for
often as translation.
desired

Optional Events

def_amount

User Action

User Action System Response

Click on an line or Selected line or cylinder
cylinder. changes color.

Click on an object Selected object changes
in a group. color and the group that

contains it becomes part
of the set of groups that
respond to translation
events (listed below).

Defines the amount of movement of a
group along a selected axis. The default
is .1 world space units (angstroms if the
group selected represents a molecule)

System Response

Press ~ey "d" Query panel appears with prompt: Enter the
translation amount

Type in a translation No visual response until you presses other event
amount or leave keys.
default.

Or:

User Action Event Name System Response

Press key "t" translate_grps Moves the groups along the selected axis
by amount defined by key "d" or by the
default.

Press key "y" translate_grps_down Moves the group along the selected axis
in the opposite direction from key "t".

72

2.5 Euclidean construction tools

A set of tools is designed for performing 3-D Euclidean constructions. Such
constructions include drawing a line between two points, drawing a plane
normal to a line through a given point, projecting a point onto a line or a
plane, displaying the intersection of a line and a plane, and displaying the
closest approach of two 3-D lines.

Many of these tools treat on-screen geometry as representations of idealized
geometry. Thus, a cylinder, even though of fixed length, may be used to
represent an infinte line. For this reason, some of the tools produce
intersection and projection points that do not lie within the boundaries of the
geometry selected to represent a line or a plane.

None of the geometry created by Euclidean construction tools has database
pointers assigned.

connect _points

Draws a thin cylinder between the center points of a pair of objects.

System Prompt User Action System Response

repeat as Select first object. Click on an object. Object changes color.
often as
desired

Select second object. Click on a second Color of the second
object. object changes

momentarily.

First object changes to
original color.

A cylinder connects the
object centers.

73

intersect_p lane _line

Displays a sphere at the intersection of a planar surface and a line. The
planar surface may be a plane produced by the normal_plane_thu_sph
tool (which consists of two triangles) or a triangle drawn by some other
tool.

System Prompt User Action System Response

Select the plane Click on a planar If the surface chosen is a triangle,
surface (a plane or then the triangle changes color. If
a triangle). the surface chosen is a plane, then

one of the triangles forming the
plane changes color.

Select the line. Click on a line or The line or cylinder momentarily
cylinder. changes color.

Selected triangle changes to
original color.

A white ball appears at the
intersection of the plane and the
line.

lengthen_line

Lengthens or shortens selected lines segments (or cylinders) by a user
specified factor. Lines are lengthened or shortened equally beyond the
original position at each end. Spheres at the ends of the newly
lengthened lines are displayed on-screen and are placed in a group called
"lengthen_line_sphs" (which is added to Group Operations panels).
Note that this tool, unlike many of the other Euclidean construction
tools, does not treat the selected geometric primitive as a representation
of an infinite line.

System Prompt User Action System Response

repeat as Select the line. Click on a line or Original line is
often as cylinder. lengthened and balls
desired mark either end of the

lenghtened line.

74

Optional Events

change_length

User Action

Press letter key "1"

Choose a length scaling
factor of less than one,
or

Choose a length scaling
factor of greater than
one.

line_ends

Specifies the scale factor to be used for
lengthening. The default, 1.2 lengthens
the line to 120% of the size of the
original line Values less than one will
shorten the line. On-screen geometry
does not change when this event is
completed; the new scaling factor will be
applied to subsequent lines selected.

System Response

Query panel appears with prompt: Length scaling
factor:

Future lines selected will be redrawn shorter than
the original.

Future lines selected will be redrawn longer than
the original.

Creates spheres to mark the ends of lines (or cylinders). This tool may be
used in conjunction with other tools that use sphere centers as positions
(such as compute_distance).

System Prompt User Action System Response

repeat as Select the line. Click on a line or New spheres mark
often as cylinder between either end of the line.
desired two atoms.

75

line _intersect

Displays the intersection point of two lines as a sphere. If the lines do not
intersect, the points on each line that are closest to each other are marked
with a sphere and a cylinder connecting the two spheres is drawn.

System Prompt User Action System Response

Select the first Click on a line Selected line changes color.
line. or cylinder

Select the Click on a Selected line changes color momentarily.
second line. second line or

cylinder First line changes to original color.

Either a single sphere is displayed (if the
lines intersect), or a sphere for each line
with a connecting cylinder is displayed

mid_pnts

Displays a sphere marking the midpoint between the center points of two
selected objects.

System Prompt User Action System Response

repeat as Select the first Click on a object. Selected object changes color.
often as object.
desired

Select: second Click on a Selected object changes color
object. second object. momentarily. First object

changes to original color.

Mid-point sphere is displayed.

76

normal_p lane _through_pnt

Constructs a plane through a selected object center perpendicular to a
selected line (or cylinder).

System Prompt User Action System Response

Select the object Click on a Object changes color.
to pass through. object.

Select the line. Click on line Selected line changes color momentarily.
or cylinder.

First object changes to original color.

A plane is displayed that passes through
the selected object center and that is
perpendicular to the selected line.

proj _pnt _onto _line

Constructs a sphere representing the perpendicular projection of a
selected object's center onto a selected line (or cylinder).

System Prompt User Action System Response

Select the object. Click on a object. Object changes color.

Select the line. Click on line or Selected line changes color
cylinder. momentarily.

First object changes to original color.

A sphere is displayed that is the
perpendicular projection of the selected
object's center onto the selected line.

77

proj_pnt_onto_plane

Constructs a sphere representing the perpendicular projection of a
selected object's center onto a planar surface. The planar surface may be a
plane produced by the normal_plane_thu_sph tool (which consists of
two triangles) or a triangle drawn by some other tool.

System Prompt User Action System Response

Select the object. Click on a object. Object changes color.

Select the plane. Click on plane or Selected triangle changes color
triangle. momentarily.

First object changes to original color.

A sphere is displayed that is the
perpendicular projection of the selected
object's center onto the selected plane.

triangle_pnts

Draws a series of triangles connecting the centers of three selected objects.

System Prompt User Action System Response

repeat as Select first object. Click on a object. Selected object changes
often as color.
desired

Select second object. Click on another Selected object changes
object. color. First object

changes to original
color.

Select third object. Click on third Selected object changes
object. color momentarily.

Second object changes to
original color.

A triangle is drawn.

78

2.6 Annotation tools

Several of the tools are for annotating a drawing. The two forms of
annotation supported are arrows and text.

arrow _atoms

Draws a series of arrows between pairs of atoms. Arrow geometry has no
database pointers.

System Prompt User Action System Response

repeat as Select atom for Click on an Red ball appears at the atom
often as arrow tail atom position
desired

Select atom for Click on a A red ball appears at the second
arrow head second atom atom position.

Arrow is drawn connecting the
atoms, then the red balls
disappear.

79

Optional Events

select_length

User Action

Press letter key "l"

Choose a scaling factor
of one (this is the
default value when
starting this tool)

or

Choose a length scaling
factor of less than one

or

Choose a length scaling
factor of greater than
one.

select _radius

User Action

Press letter key "r"

Choose a number for
the radius of the arrow
shaft.

Specifies whether the arrows are to
connect the atoms, go beyond each
atom, or fall short of each atom.

System Response

Query panel appears with prompt: Length scaling
factor:

Displayed number is the previously defined scaling
factor.

Future arrows will connect the two selected atoms
together.

Future arrows will fall short of each of the two
selected atoms.

Future arrows will extend beyond each of the two
selected atoms.

Specifies the radius of the shaft for
future arrows.

System Response

Query panel appears with prompt: Specify radius
for shaft.

Displayed number is the previously defined radius.

Radius of arrow shaft will change to the new value
for future arrows.

80

arrow_pnts

Draws a series of arrows between the center points of a pair of selected
objects. Arrow geometry has no database pointers.

System Prompt User Action System Response

repeat as Select object for Click on an object Object changes color
often as arrow tail
desired

Select object for Click on a second Object changes color
arrow head object momentarily. First

object changes to
original color.

Second object changes to
original color. Arrow is
drawn connecting the
object's center points.

Optional Events

The select_length and select _radius events are identical to those for
arrow _atoms.

text_atom_wqual, text_atomnum, text_resname, text_resnum

These following four tools are similar and are grouped together for
convenience. Execution of each of these tools results in the appearance
of a text label near the atom/s selected. Text is of fixed size and
orientation. It is always drawn in the plane of the screen. The text labels
contain:

text_atom_wqual

text_atomnum

text_resname

text_resnum

Displays the fully qualified atom name (e.g.
"CA" or "CGl").

Displays the atom number.

Displays the 3-letter residue name.

Displays the residue number.

81

System Prompt User Action System Response

repeat as Select atom to Click on an atom. Depending on the tool
often as annotate. used, text labels-appear
desired with one of the

following:

atom name, or

atom number, or

residue name, or

residue number.

text _userlabe l

This tool is similar to the above tools, but the text label contains text that
the user supplies.

System Prompt User Action System Response

repeat as Query appears with Type in text. No visual response.
often as prompt: "Text to be
desired displayed"

Select atom. Click on an Text label appears with text
atom. that user has chosen.

82

2.7 Measurement tools

Several tools allow you to measure angles and distances.

compute_angle

Computes the inner bond angle between two linear objects (lines or
cylinders) that meet at a common point.

System User Action System Response
Prompt

repeat as Select Click on a line or Selected line or cylinder changes
often as first a cylinder color.
desired line.

Select Click on a Selected second line or cylinder
second second line or changes color. First object changes to
line. cylinder that is original color.

connected to the
first line or The message:
cylinder.

angle=n,
or

where n is the computed inner angle,
is printed in the window from which
VIEW was run.

Click on a line or No visual response. No error
cylinder that is message appears and no angle is
not connected to computed.
the first selected
line or cylinder.

83

compute _dihedral

Computes the dihedral angle between the center points of four selected
objects. The dihedral is computed using the four points in the order
selected.

System Prompt User Action System Response

repeat as Select first object. Click on an object. Object changes color.
often as
desired

Select second Click on a second Selected second object
object. object. changes color. First object

changes to original color.

Select third Click on a third Selected third object
object. object. changes color. Second

object changes to original
color.

Select fourth Click on a fourth Selected fourth object
object. object. changes color.

The message:

Dihedral angle = n

where n is the computed
angle, is printed in the
window from which
VIEW was run.

84

compute_distance

Computes the distance between the center points of two selected objects.

System User Action System Response
Prompt

repeat as Select first Click on a Object changes color.
often as object. object.
desired

Select second Click on a Selected second object changes
object. second object. color. First object changes to

original color.

The message:

distance between points = n

where n is the computed distance
is printed in the window from
which VIEW was run.

2.8 Geometry management tools

·Several tools are provided for deleting geometry, duplicating groups of
geometry, and merging geometry groups.

delete

Deletes geometric primitives (cylinders, lines, spheres, triangles, text)
from the geometry group of which they are a part. See section 1.1 for a
discussion of the relationship between geometry generated by tools and
individual primitives.

System Prompt User Action System Response

repeat as Select object to Click on an object. Object is deleted
often as delete.
desired

85

dup_group

Creates a duplicate of a selected geometry group. Attempting to give the
new group the·same name as an already-existing geometry group causes
the tool to fail.

System Prompt User Action System Response

Select object from Select an object. Selected object changes
group to be duplicated color.

Query panel appears Enter group name, or Object changes to
with prompt: Enter the leave the name "dup". original color.
name for the duplicate
group. Duplicate group is

added to Group
Dummy group name Operations panels.
"dup" appears as an
example to the user.

merge _groups

Combines geometry in two or more groups into a single group. One
group (the first selected) is be designated as the merge group. This is the
group that will contain all merged geometry. The other groups specified
have their geometry moved into the merge group and are then deleted.

System Prompt User Action System Response

Select initial group. Click on an object Selected object changes
from the merge color.
group.

repeat as Select group to Click on an object Selected object changes
often as merge. from the group to color momentarily.
desired be merged.

Previous object changes
to original color.

Geomety from the
group is transferred to
the merge group. No
visible effect on-screen.

86

2.9 Display and system management tools

A tool is available that creates a keyboard interface for geometry movement.
Another repositions geometry in the center of the screen. Finally, a tool that
removes all defined events is available.

move_world

Rotates, moves or scales all geometry (the world) using keys. This
provides a keyboard interface which serves as an alternative to the
mouse-based virtual trackball (see Section 2.1.2 of VIEW User Interface
Description for a description of the virtual trackball). The tool itself
produces no changes to the display and involves no user interaction; all
movement using this tool is done through the use of optional events.

87

Optional Events

User Action Event Name System Response

Press key "h" trans_x_left Moves the geometry to the left on the screen.

Press key "1" trans_x_right Moves the geometry to the right on the
screen.

Press key "j" trans_y_down Moves the geometry downwards on the
screen.

Press key "k" translate_y_up Moves the geometry upwards on the screen.

Press key "i" translate_z_in Zooms in on the geometry

Press key "o" translate_z_out Zooms out on the geometry

Press key "a" rot_x_clock Rotates the geometry clockwise around the x-
axis

Press key "f" rot_x_cc Rotates the geometry counter-clockwise
around the x-axis

Press key "s" rot_y_clock Rotates the geometry clockwise around they-
axis

Press key "d" rot_y_cc Rotates the geometry counter-clockwise
around the y-axis

Press key "w" rot_z_clock Rotates the geometry clockwise around the z-
axis

Press key "e" rot_z_cc Rotates the geometry counter-clockwise
around the z-axis

Press key "y: scale_down Reduces the amount of movement or
zooming resulting from each keystroke.

Press key "u" scale_up Increases the amount of movement or
zooming resulting from each keystroke.

Press key "r" reset Resets the amount of movement or zooming
resulting from each keystroke to system
default.

88

remove_events

Removes all defined events

No user actions

set_origin

Resets the origin of the world coordinate system (the center for virtual
trackball rotations) to the center of a selected object. The selected center is
moved to the center of the screen.

System Prompt User Action System Response

repeat as Select object to Click on an object. Object momentarily
often as recenter on. changes color and is
desired centered in the display

panel. '

89

Tool Index

arrow _atoms ... 79

arrow _pnts .. 81

atom_CPKs .. 61

avg_tri_normals .. 66

change_radius_group ... 66

change_radius_object ... 67

color_secstr .. 64

compute_angle ... 83

compute_ dihedral ... 84

compute_ distance .. 85

connect_atoms .. 59

connect_points ... 73

cyl_a tom_sequence ... 59

cyl_line_ca .. 61

cy l_line_main .. 62

db_all_bonds, db_ca_sticks, db_h_bonds and db_het_bonds57

delete ... 85

dup_group ... 86

helix_cylinder ... 62

intersect_p lane_line ... 7 4

lengthen_line ... 7 4

line_ends ... 75

line_intersect .. 76

merge_groups ... 86

mid_pnts ... 76

move_ world ... 87

normal_plane_through_pnt .. 77

proj_pnt_onto_line .. 77

proj_pnt_onto_plane ... 78

recolor_group ... 68

recolor_object ... 69

remove_ events .. 89

residue_ CPKs .. 63

ribbon .. 63

90

ribbon_select ... 64

rotate_ axis ... 69

select_atoms .. 60

select_subtree .. 64

set_origin ... 89

sidechain_bonds .. 65

spline_tube_chain ... 65

text atom_wqual, text_atomnum, text_resname, text_resnum Sl

text_userlabel. ... 82

translate_axis .. 72

triangle_atoms ... 60

triangle_pnts ... 78

update_database ... 58

91

VIEW

Interactive Tool
Definition Language

Language Description

92

Table of Contents

1. INTRODUCTION ... 96

2. STATEMENTS ... 98

3. VARIABLES ... 99

4. DATA TYPES .. 102

4.1 Containers ... 102

4.2 Creation .. 104

4.3 Descriptions ... 105

4.3.1 Numeric .. 105

4.3.2 String ... 106

4.3.3 Boolean .. 106

4.3.4 Array ... 106

4.3.5 Set .. 108

4.3.6 Displayable Geometry .. 108

4.3.6.1 Cylinder .. 108

4.3.6.2 Line ... 108

4.3.6.3 Sphere .. 109

4.3.6.4 Text .. 110

4.3.6.5 Triangle ... 110

4.3.7 Geometry Group ... 111

4.3.8 Color .. 111

4.3.9 Internal Geometry ... 112

4.3.9.1 Point ... 112

4.3.9.2 Vector .. 112

4.3.10 Database ... 113

4.3.11 Database record ... 114

4.3.12 Database field .. 115

4.3.13 Attribute ... 115

5. EXPRESSIONS ... 118

5.1 Arithmetic Expressions .. 118

5.2 Relational Expressions ... 119

5.3 Logical Expressions .. 119

93

6. FUNCTIONS ... 120

7. STATEMENT DESCRIPTIONS ... 121

7.1 Assignment .. 121

7.2 Concatenation .. 122

7.3 Remove .. 123

7.4 Exit .. 123

7.5 If-else ... 123

7.6 Iteration .. 123

7.6.1 While ... 124

7.6.2 Do-until ... 124

7.6.3 For .. 125

7.6.4 Foreach .. 125

7.6.5 Loop .. 127

7.7 Sleep .. 127

7.8 Report ... 128

7.9 User Query ... 128

7.9.1 Ask_number ... 128

7.9.2 Ask_string .. 129

7.10 Display .. : ... 129

7.11 Undisplay ... 129

7.12 Select ... 130

7.13 Parameter definition ... 130

7.14 Subroutine call ... 131

7.15 Subroutine return .. 131

7.16 Database manipulation .. 132

7.16.1 Defining subsets .. 132

7.16.2 Reading a database from a file .. 132

7.16.3 Writing a database to a file .. 132

7.16.4 Retrieving database records .. 133

7.16.5 Retrieving record fields .. 134

7.16:6 Creating database records .. 135

7.16.7 Adding new fields to a record ... 135

7.16.8 Replacing fields in a record .. 135

7.16.9 Defining record keys ... 135

7.16.10 Adding records to a database .. l36

7.16.11 Adding new fields to a database ... 136

94

7.16.12 Deleting fields from a database ... 136

7.16.13 Defining and using record pointers for

displayable geometry .. 137

7.17 Geometry group manipulation ... 138

7.17.1 Reading geometry groups from a file 138

7.17.2 Writing geometry groups to a file 138

7.18 Geometric object manipulation ... 138

7.18.1 Rotation ... 139

7.18.2 Translation ... 140

7.18.3 Scaling ... 140

7.18.4 Screen rotation ... 141

7.18.5 Screen translation .. 141

7.18.6 Screen scaling ... 142

7.17.7 Setting the origin ... 142

7.18.8 Resetting geometric transformations 142

. 7.19 Set manipulation ... 142

7.19.1 Union ... 142

7.19.2 Intersection ... 142

7.19.3 Difference ... 143

.7.20 Events .. 143

7.20.1 Event definition .. 143

7.20.2 Control of events .. 145

7.20.3 System constants for use in dial events 145

95

VIEW Interactive Tool Definition
Language - Language Description

1. INTRODUCTION

Larry Bergman
1/24/93

This document describes the language that defines drawing tools in the VIEW system.
The language will be referred as the too/language. This document describes the syntax
and semantics of the tool language. It does not describe how to run or debug a tool; the
development environment for tools is described in the document, VIEW Interactive Tool
Definition Language- Development Environment.

Users of the tool language are assumed to have programming experience. Knowledge
of either FORTRAN or the C programming language is helpful. Furthermore, use of the
development environment requires experience with an interactive debugger (such as
dbx). Experience with a screen-based editor (such as Mac Write) will be very helpful.

Before using this document, you should have read VIEW Exploratory Molecular
Visualization System - Overview That document covers basic concepts of the VIEW
system. This document will assume that you are familiar with these underlying ideas
and definitions. We will also assume that you have read VIEW User Interface
Description, which describes operation of the VIEW system.

A drawing tool definition consists of a sequence of program statements. The basic types
of statements are:

96

Category Statement type

Variable value definition assignment

concatenation

remove

Flow control exit

if-else

iteration

sleep

Input/ output report

user_query

Display control display

undisplay

Object selection (picking) select

Subroutine definition and control parameter definition

subroutine call

subroutine return

Data type manipulation database manipulation

geometry group manipulation

geometric object manipulation

set manipulation

Events event definition

event control

97

The syntax used in this document is as follows: a portion of a statement that will be
used elsewhere or is described elsewhere (called a non-terminal in computer-science
jargon) is enclosed in angle brackets,<>. For example, <simple variable>. Required
keywords or symbols are displayed in bold face type. For example, POINT or (. Some
statements have more than one form. In this case, the alternate forms are listed
separated by a vertical bar, I . Some statements have optional parameters. These are
enclosed in square brackets,[]. If a command has a series of optional parameters at the
end of the command, you must specify all parameters that precede the last parameter
you choose to supply. Thus, if the statement is specified as:

SPHERE (<point> , <radius> [, <color>] [,<tesselation>)

You may specify

SPHERE (pnt1, rad)
SPHERE (pnt1, rad, colorl)

or SPHERE (pnt1, rad, colorl, tess)

where pnt1 is a point, rad is a numeric radius, color1 is a color, and tess is a numeric
tesselation. but not

SPHERE (pntl, rad, tess)

In thi§ last example, the system will try to use the variable tess as the color.

The previous example uses variable names as they are used throughout the document.
Our variable names are chosen to be descriptive of the datatypes they contain or of their
use. Thus, in the first SPHERE example above, the variable pnt1 was selected for the
center point, and the variable rad was selected for the radius. When you write your own
tools, any variable names that contain the appropriate data types may be used.

The term object will be used throughout this document to refer to data elements. An
object might be a point, a number, a database, or any other datatype.

2. STATEMENTS

The syntax for language statements generally follows the C language. All statements
are one of two forms (and a few types of statements may be either). The first is:

<statement> ;

where <statement> is one of a group of language statements, such as an IF statement,
or an assignment statement. The tool definition language is slightly more restrictive
than C- <statement> may not be null.

98

EXAMPLES:

a= b + 5;
IF (a< 3) c = 2;
grp_list &= grp;

The second form is:

<statement header> {<statement body>}

where <statement header> is the initial portion of certain statements such as FOR
statements and IF statements. <statement body> is a single language statement or a
sequence of language statements, one after another. Again, the tool definition language
is more restrictive than C- <statement header> may not be null, nor may <statement
body>.

EXAMPLES:

FOR (i=O; i<4; i=i+ 1) a&= b[i] + 5;

IF (EXISTS(a))
{ REPORT(a);

b = SIN(a+PI/2);

The language supports comments. Comments always start with an exclamation mark;
the remainder of the line following the exclamation mark is treated as a comment. The
single exception is an exclamation mark immediately followed by an equals, which is
the "is-not-equal" relational operator.

EXAMPLE: a = 5; ! comment- this is a simple assignment

Comments will be used throughout this document to annotate examples.

3. VARIABLES

Variables may store any of the datatypes in the language (enumerated in the next
section). A statement such as:

pnt = POINT(l., 0., 1.);

defines a variable named pnt of type POINT. Type declarations are not required in the
language, and any variable may store any type.

99

A simple variable (referred to later in this document by <simple variable>) consists of
an arbitrary sequence of characters from the set [a-z][A-Z][0-9] and underscore, _ . A
simple variable name must begin with an alphabetic character.

EXAMPLES:

num
sph_count2

There are reserved words in the language that may not be used as simple variables.
Reserved words are all written entirely in uppercase. Since the language is case
sensitive, if you use some lowercase letters in each variable name, you will never
accidentally use a reserved word. The reserved words are:

ACOS
AND
ASK_FILE
ATAN
COLOR
cos
CYLINDER
DB_ADD_SUBSET
DB_REMOVE_FIELD
DEFAULT
DIALRATE
DISPLAY
DO
END
J;:VENT
FALSE
FOREACH
GROUP
IN
KEY
LINE
MOUSE
NEXT_RECORD
NOT
OR
PARAMETERS
POINT
REDRAW
RESET_ TRANSFORMATIONS
ROTATE
SCALE
SEARCH3D
SET
SPHERE
START
STOP
TEXT
TRANSLATE_SCREEN

ALIAS
ARRAY
ASK_NUMBER
BACK COLOR
CONTAINS
CROSS
DB
DB_PTR
DB_REMOVE_RECORD
DIAL
DIAL VAL
DISPLAY_GEOMETRY
DOWN
END_KEY
EVENT_REMOVE
FLATCAP
GEO_READ
GROUP_NAME
INDEX
KEY CHAR
LOOP
MOUSE_ BUTTON
NOCAP
OBJECT
ORIGIN
PAUSE
PREV _RECORD
REMOVE
RETURN
ROTA TE_SCREEN
SCALE_SCREEN
SELECT
SHOWDICT
SPHERECAP
START_EVENT
STOP_EVENT
TO
TRIANGLE

100

ALL
ASIN
ASK_STRING
CENTERPOINT
COPY
CURR_TOOL
DB_ADD_RECORD
DB_READ
DB_WRITE
DIALNUM
DIRECTORY
DIST
ELSE
EOD
EXISTS
FOR
GEO_WRITE
IF
IN_OUT
LEFT
MOD
MOUSE_ POSITION
NOREDRAW
ON
OUT
PI
RECORD
REPORT
RIGHT
ROUND
SCREEN
SELECT_DB
SIN
SQRT
START_KEY
TAN
TRANSLATE
TRUE

UNDEFINED
UNINTERRUPTABLE
VECTOR

UNDISPLAY
UNTIL
WHILE

UNDO ABLE
UP
Willi

Variables may be modified to specify access of fields, attributes, records, and array
elements. There are four forms that such a modification can take:

1) The variable name may be followed by an expression in brackets indicating
indexed array access.

EXAMPLE: a[3]

indicates that the third element of the array a is to be used.

2) The variable name may be followed by an expression in parentheses indicating
keyed array access.

EXAMPLE: a("num")

indicates that the element of the array a which has the string-valued key, "num",
is to be used.

3) The variable name may be followed by an period and then a field or attribute
name.

EXAMPLE: · rec. position

indicates that a field (if rec is a database record) or an attribute (if rec is some
other variable type) called "position" is to be accessed from the variable rec.

4) The variable name may be followed by a period and then a keyed access (as
described in 2 above). This syntax specifies record access from a database.

EXAMPLE: dbase.atom(S)

indicates that the record in the "atom" subset with the key value 5 is to be
accessed from the database referenced by dbase.

These forms may be combined liberally. Thus,

a[3].position

b[3][4]

dbase.atom(num).conformation

retrieves position field from array element.

two-dimensional array access.

retrieves database field "conformation" from
"num" record of "atom" subset.

101

I

I

I
'

item.color.red

are all legal.

! retrieves red component of item's color
! attribute.

The term <variable> will be used throughout this document to refer to either a simple
variable or a simple variable that has been modified as indicated.

4. DATA TYPES

Statements operate on several different data types. The major data types and their
subtypes are:

o numeric
o string
o Boolean (or logical)
o array

-keyed
-indexed

o set
o color
o displayable geometry

-sphere
-line
-cylinder
-text
-triangle

o internal geometry (not displayable)
-point
-vector

o geometry group
o database
o database record
o database field
o attribute

Each of these data types is discussed individually.

4.1 Containers

The tool definition language has four container datatypes. These are arrays, sets,
databases, and geometry groups. Containers are used for storing other data types. An
additional type, records, appears to fit this definition, but record fields are very similar
to attributes, rather than objects stored within a container. Since records do not support
iteration or concatenation, they will not be considered to be containers.

102

There are several characteristics shared by all containers. The first is that containers do
not own the objects they contain. In other words, an object is pointed to by the
container, it is not copied into it (the exception is when the COPY construct is used to
add to a container). This has an important consequence. A change made to an object,
even if through a different variable name, will change that entry in the container. Thus
the code segment:

obj = SPHERE(pnt,rad,white);
grp &= obj; ! adds obj to the geometry group grp
obj.COLOR = red;

will cause the group grp to contain a red sphere.

Secondly, the objects in any container may be accessed using the FOREACH iterator.
This construct permits you to operate on each and every object within a container
(FOREACH is described in section 7.6.4).

Containers vary from each other in several ways. The most important is the data types
that may be stored within them. Databases may only store records; geometry groups
may only store displayable geometric objects; while arrays and sets may store any
data type (including other containers).

A second way in which they differ is whether an object stored in a container may also
be stored in another container of the same type. In other words, whether an object may
have more than one parent of a given type distinguishes the containers. The rule is,
containers which are restricted to objects of a single type (databases and geometry
groups), may not share objects with another container of the same type. Thus a record
may only have a single parent database, although the record may also be stored in
multiple arrays (the "single parent" rule does not apply to other container types).

A third difference is that some of the containers (indexed array, geometry group) will
allow the same object to be inserted more than once, keeping as many references as are
inserted. Others (database, set, keyed array), will only store a single reference even if
the object is inserted more than once.

A final difference lies in how objects are retrieved for the container. Some of the
containers (sets, geometry groups) only support access of their contents through the
FOREACH iterator. Others (arrays, databases) have alternate access methods using
keys or indices.

The differences between containers are summarized in the table below.

103

Container Datatype Entry able to Duplicate Individual
type stored be storied in entries entries

more than obtainable? obtainable
one container without an
of this type? iterator?

Array Any Yes Yes (indexed) Yes
No (keyed)

Database Record No No Yes

Geometry Displayable Yes No No
group geometry

object

Set Any No Yes No

4.2 Creation

Objects may be created using object creators. An explicit object creator is a built-in
function that specifies the type of object that is to be created and describes its attributes
(at least enough of its attributes to create it).

EXAMPLES:

pnt = POINT(O,O,O);
b=ARRAY();
c[2] = TRIANGLE(pntl,pnt2,pnt3,tri_color);
tri.normall = VECTOR(l,O,O);
DISPLAY (TRIANGLE (POINT(O,O,O), POINT(l,l,l), POINT(O,l,O)));
sph = SPHERE(pnt,rad,COLOR(155,0,0));

The simplest types of objects -numeric, string, Boolean- do not have explicit creators.
Objects of this type are created implicitly, by using an expression that evaluates to that
type. Thus, statements such as:

b =TRUE;
rad = (5. 0 + PI)/20;
charstr = "a string";

will create variables of type Boolean, numeric, string respectively.

Some of the creators can be used in-line. For example the COLOR creator in the
statement:

sph = SPHERE(pnt,rad,COLOR(155,0,0));

104

is an in-line creator. Creators of container objects (array, set, geometry group, database)
would make no sense in-line and can only be used by themselves on the right hand side
of an assignment.

Object types which have explicit creators can also be created implicitly. The
expressions:

mid_pnt = (pntl + pnt2)/2;
crs_vec = CROSS(vec1,vec2);

! pnt1 and pnt2 are points
! vecl and vec2 are vectors

create a point and a vector respectively.

Array objects may also be created implicitly, by assigning a value to an array element.
This is discussed in section 4.3.4 below.

It is important to understand that object creators for those objects where no arguments
are specified, are more than just type declarations; they actually produce a new object.
An example will help to clarify this. Suppose that we wish to create a dictionary of
user-defined terms, with an set of objects to be associated with each term. The code
fragment below will prompt the user for each term's name, an then create an empty set
for each dictionary entry (the dictionary is implemented as a keyed array).

diet= ARRAY();
term_name = "initial"; ! initialization required by ASK_STRING

LOOP
{ ASK_STRlNG("Enter the name for the next term: ", term_name);

dict(term_name) =SET(); ! create an empty set for this entry

... code to define set entries ...

As many sets will be created as there are elements defined for diet.

The explicit creators for each object type are described in the next section.

4.3 Descriptions

4.3.1 Numeric

Numbers may be specified as integers or floats. The language does not restrict the
intermingling of these types; all arithmetic is done in floating point, with automatic
rounding where appropriate (e. g. when used as an array index); rounding is done
using the C function "rint". Integers and floats are defined exactly as in C (or
FORTRAN).

105

EXAMPLES:

124
-30
1.763
-1.5E-5

A special constant, PI, is defined having the value 3.141592654.

4.3.2 String

Strings are used to store sequences of text characters. A string is specified by an
arbitrary sequence of characters from the set: space, [a-z][A-Z][0-9]- .
&=+*$#@!-1 ;:"?I<>()[]{}%" surrounded by double quotes,".

EXAMPLES:

"fred"
"$*** this operation is not permitted!"

4.3.3 Boolean

A Boolean may take on the value TRUE or FALSE.

4.3.4 Array

Arrays come in two flavors- keyed and indexed. A keyed array is like a dictionary. A
single key value is supplied for each entry. This key value is required both for storage
and retrieval of values. For example, the program statements:

a("key1 ") = 4;
b = a("key1 ");

will result in the variable b taking on the value 4. The syntax for keyed array access is:

<variable name> (<key value>)

where <key value> may be any <arithmetic expression> that evaluates to a numeric, a
Boolean, a string, a color, a point or a vector.

EXAMPLES:

bonds_dict(numl + 5)
bonds_dict(5)
pnt_group(POINT(1., 0., 1.))

An indexed array is exactly like an array in C.

106

The syntax for an indexed array is:

<simple variable> [<index value 1>] [[<index value 2>] ...
[<index value n>]]

where the <index value>s may be any <arithmetic expression>. Note that array
indexing begins with 0 as in C.

EXAMPLES:

bonds[S]
val[num1 + 1][6]

If you access a keyed or indexed array entry that does not exist (because it has not been
defined), a null value will be returned. These null values are handled as follows:

Context Result

relational expression all relational expressions containing a null
evaluate to FALSE except for !=expressions
which are always TRUE.

REPORT, DISPLAY, UNDISPLAY ignored
or REMOVE statement

any other expression or statement produces a run-time error

An (empty) array is specified by:

ARRAY()

No distinction is made in the creator between keyed and indexed arrays. The system
determines the array type the first time that an element of that array is assigned.

Arrays can also be created implicitly, by assigning a value to an element of the array.
Thus, statements of the form:

a[2] = "string one";
b("key") = 5;

when not preceded by an explicit creator for a orb, implicitly create an indexed and a
keyed array respectively.

107

4.3.5 Set

A set stores objects of any type (with the exception of other sets) with the guarantee that
no object will be duplicated. Operations that may be performed on sets include union,
difference, and intersection. Objects within the set may be accessed through use of an
iterator, described in section 7.6 below.

An (empty) set is specified by:

SET()

4.3.6 Displayable Geometry

There are several datatypes that represent geometric objects that are displayable in the
graphics window. These are cylinder, line, sphere, triangle, and text.

Displayable geometry objects may have one or more database record pointers
associated with them. This allows tools to access the database through on-screen
geometry (usually using a selection). Setting and retrieving these pointers is described
in section 7.16.13 below.

Descriptions of each of the displayable geometric object types follows.

4.3.6.1 Cylinder

A cylinder is specified by:

CYLINDER (<pointl>, <point2>, <radius> [,<color>] [, <cap_typel>,
<cap_type2>] [,<tesselation>])

where <pointl> and <point2> are <point expressions> that define the ends of the
cylinder axis. <radius> is a <numeric expression> that defines the cylinder radius.
<color> is a <color expression> that will be used to assign a color to the cylinder.
<cap_typel> and <cap_type2> specify for each end whether they are to have no cap, a
flat cap, or a spherical cap. Specification is by using the keywords: NOCAP, FLATCAP,
SPHERECAP. <tesselation> is a <numeric expression> (treated as an integer) that
specifies the number of quadrilaterals that are to be used in tiling the cylinder (it does
not specify the tesselation factor for spherical caps, which is fixed).

EXAMPLES:

4.3.6.2 Line

CYLINDER(POINT(xl,yl,zl), POINT(x2,y2,z2), 5.0)
CYLINDER(pntl, pnt2, rad, color, FLATCAP, SPHERECAP, 10)

A line is specified by:

108

LINE (<pointl>, <point2> [,<color>])

where <pointl> and <point2> are <point expression>s that define the start and end
points of the line respectively. <color> is a <color expression> used to assign a color to
the line.

EXAMPLES:

LINE (pnt1, pnt2, line_ color)
LINE (POINT(x1,y1,z1), POINT(x2,y2,z2))

4.3.6.3 Sphere

A sphere is specified by:

SPHERE (<point> , <radius> [, <color>] [,<tesselation>)

where <point> is a <point expression> that defines the center of the sphere. <radius> is
a <numeric expression> that defines the sphere radius. <color> is a <color expression>
used to assign a color to the sphere. <tesselation> is a <numeric expression> (treated as
an integer) that specifies a tesselation factor for the sphere. Tesselation should be
between I and 30, the higher the number, the finer the tesselation. The default
tesselation is five. The more highly tessellated spheres will appear smoother, but will
take longer to draw. If you have a lot of spheres to draw, you may wish to reduce the
tesselation factor to retain interactive response of the display. The following table gives
the number of triangles used to tesselate each sphere for selected values of
<tesselation>.

<tesselation> value number of triangles
per sphere

1 8

2 36

3 80

4 140

5 216

6 308

7 416

8 540

9 680

10 836

109

I
I

EXAMPLES:

SPHERE(pntl, rad)
SPHERE(POINT(xl,yl,zl), 2.0, COLOR(0,100,255))

4.3.6.4 Text

A text object is specified by:

TEXT (<string> , <point> [, <color>])

where <string>, a <string expression>, is the string to be displayed. <point> is a <point
expression> that specifies where the lower left-hand corner of the text is be located.
<color> is a <color expression> used to assign the color of the text.

EXAMPLES:

TEXT("SHEET", pntl, color)
TEXT(dbase.atom(atom_numl).res_name, POINT(xl,yl,zl))

Text is always displayed parallel to the screen at a fixed size; it does not change
orientation or size when the display geometry is rotated or scaled. Text cannot be

. reliably selected.

4.3.6.5 Triangle

A triangle is specified by:

TRIANGLE (<pointl>, <point2>, <point3> [,<color>] [, [<back_color>])
TRIANGLE (<pointl>, <point2>, <point3>, <normall>, <normal2>,

<normal3> [,<color>] [, <back_color>])

where <pointl>, <point2>, and <point3> are <point expression>s that define the
vertices of the triangle. <color> is a <color expression> used to assign a color to the
front face of the triangle. If <back_ color> is specified, it assigns the back face color for
the triangle. Otherwise, <color> is applied to the back face. <normall >, <normal2>,
<normal3> are <vector expression>s that specify the unit normals (i.e., these normals
must be of length one) to be assigned to the vertices at <pointl>, <point2>, <point3>
respectively. (Remember: different unit normals may be assigned to triangle vertices so
that they may be shaded to look like curved surfaces. See section 4.1 of VIEW User
Interface Description for a more detailed discussion of the use of surface normals in
creating smoothly-shaded geometry.

EXAMPLES:

TRIANGLE(pntl, pnt2, pnt3, color)
TRIANGLE(pntl, pnt2, pnt3, COLOR(0,100,255), COLOR(0,150,155))

110

TRIANGLE(pntl, pnt2, pnt3, norman, normal2, normal3)
TRIANGLE(pntl, pnt2, pnt3, norman, normal2, normal3, color)

4.3.7 Geometry Group

Geometry groups are containers that store displayable geometry objects. They allow a set
of geometric objects to be treated as a unit. Groups may be toggled in the display,
removed, written, or renamed through the user interface. Additionally, groups may
have 3-D transformations applied to them (as described in section 7.17). Displayable
geometry objects belong to one and only one group; no nesting of groups is supported.

Note that GROUP is a datatype, not an operator; you should not confuse the term with
the "group" function in a drawing program such as MacDraw.

Each geometry group has an associated label. This label is displayed in the Group
Operations main subpanel.

The group creator:

GROUP (<group label>)

will produce an empty group with the label <group label> (where <group label> is any
<string expression>) if no group with that label already exists. If the group already
exists when the creator is executed, the existing one will be retrieved; a new group will
not be created. For example,

grp = GROUP("sphs");

The variable grp will contain an empty group which has the label "sphs". If the group
"sphs" already existed when this statement was executed, the variable grp would be
assigned that preexisting group.

Displayable geometric objects are added to a group the using the concatenation
operator described in section 7.2.

4.3.8 Color

Colors store red, green, blue triples (rgb) used to assign colors to displayable geometric
objects.

A color is specified by:

COLOR (<red> , <green> , <blue>)

where <red>, <green>, and <blue> are numeric expressions (rounded to integers by the
system) with values between 0 and 255 that specify the red, green, and blue components
of the color respectively.

111

EXAMPLES:

COLOR (0, 255, 155)
COLOR (r1, g1, b1)

4.3.9 Internal Geometry

Two types of geometric objects are available which are not directly displayable in the
graphics window (they are displayable using debugger functions, but not directly from
within a tool), but are useful for performing geometric calculations.

Points and vectors are very similar entities. Both can be expressed as a triple of
numbers- in a point, the (x,y,z) triple represents a location, in a vector, it represents an
offset. For this reason, VIEW is quite lax in enforcing a distinction between them; it is
often possible to mix points and vectors freely in expressions or interchange them as
arguments to functions. I recommend that you do not do this carelessly, however.
Since they really do represent different mathematical entities, it is wise to think about
which you wish to use, and write code accordingly. It is often beneficial to be able to
mix points and vectors, but it should be done purposefully.

4.3.9.1 Point

a point is specified by:

POINT (<x> , <y> , <z>)

where <x>, <y>, and <z> are numeric expressions that specify the x, y, and z
coordinates of the point respectively.

EXAMPLES:

POINT(l.5, 2.0, 10.0)
POINT(x1, y1, zl)

If you want to display a point, use a small sphere.

4.3.9.2 Vector

a vector is specified by:

VECTOR (<start point>, <end point>)

where <start point> and <end point> are numeric expressions that specify the starting
and ending positions of the vector respectively.

112

EXAMPLES:

VECTOR(pntl, pnt2)
VECTOR(POINT(l.5, 2.0, 10.0), POINT(3.5, 5.0, 5.5))

When vectors are printed (using REPORT or the display debugger function), they are
printed as an (x,y,z) triple representing the difference between the start and end points.

If you want to display a vector, use a line or a cylinder.

4.3.10 Database

The most common use of databases in VIEW is for accessing molecular data. Molecular
databases contain information about each atom and each bond in the molecule. The
database datatype is much more general, however, and can be used to store any data
that can be represented as a sequence of records.

Databases contain zero or more subsets. A subset contains a set of records, each
containing the same fields. For example, a database may have an "atom" subset, each
record of which contains an "x", "y", "z", "atom_num" and "res_num" field. Each field
has a name (e. g. "x") and a value (e. g. 3.1). Each record in a subset has a single
special field called the key. The key is used to access records within the subset. Values
for this key must be numeric (automatically rounded to integer) or string values.

A database is specified by:

DB()

Program constructs that are used for adding subsets to databases and records to subsets
are described in section 7.16.

Molecular databases supplied with the system each contain two subsets, one called
"atom", which stores a record for each atom in the molecule, the other called "bond",
which stores a record for each bond in the molecule. The pdbtoview program, which
converts PDB datasets into VIEW database format, creates the following fields for each
database record. All molecular field names are in lower case.

"atom" subset

atom_num
atom_type

atom_element
atom_wqual
alt_conf

atom number
atom type.

u A" = atom,
"H" ~ hetatom

element
fully qualified atom name. e. g. "CA", "CGI"
alternate conformation identifier.

"A"- normal conformation,

113

res_name
res_chain_id
res_num
X

y
z
occupancy
tempJact
H_bond_donor

conformation
atom_structure

bond_num1

bond_num2

bond_num3

bond_num4

"bond" subset

bond_num
atom_num1

atom_num2

bond_type

"B" - alternate conformation
three-letter residue name
chainid. e. g. "A", "B"
residue number
x-coordinate of atom position
y-coordinate of atom position
z-coordinate of atom position
occupancy
temperature factor
whether a hydrogen bond donor.

nyu= yes,
"N" =no

conformation: "HEUX", "SHEET", "TURN" or"?"
alternate coding for conformation.

"A"= helix,
"B" = beta sheet,
"C" = turn or unknown

bond number (in "bond" subset) of the first bond that
this atom participates in. "0" if no such bond

bond number (in "bond" subset) of the second bond that
this atom participates in. "0" if no such bond

bond number (in "bond" subset) of the third bond that
this atom participates in. "0" if no such bond

bond number (in "bond" subset) of the fourth bond that
this atom participates in. "0" if no such bond

bond number
atom number (in "atom" subset) of the first atom that

comprises this bond
atom number (in "atom" subset) of the second atom that

comprises this bond
bond type.

"C" = covalent,
''H" = hydrogen

A special field named "position" is available for atom subsets. This field returns or sets
a point at the "x","y","z" position (i.e. "position" is a shorthand for accessing "x", "y", and
"z" individually).

4.3.11 Database record

Each subset in a VIEW database is comprised of records. Each record contains one or
more fields. Each field has a string-valued field name. An alternate way to think of a
subset is as a two-dimensional array. The records correspond to the rows of the array;

I 1 4

each column is labeled with a field name, and each entry in the array is an individual
field within a record. A more detailed description of the records contained in VIEW
molecular databases is given in the preceding section.

A database record is specified by:

RECORD()

Program constructs used for adding fields to a record are described in section 7.16.

4.3.12 Database field

A field is an individual value in a database record. The format for specification of an
field is:

<record> . <field name>

EXAMPLES:

rec .position
dbase.atom(num).atom_type

! returns the "position" field from rec
! returns the "atom_ type" field from the
! record with key "num" in the "atom"
! subset of dbase

The field names that are available for molecular databases (produced using the
pdbtoview program) are listed in section 4.3.10.

4.3.13 Attribute

An attribute contains some information about an object. Examples are the color of a
displayable geometric object, the length of an array, or the name of a geometry group.
Some (but not all) attributes may be set by placing them on the left hand side of an
assignment statement. The format for specification of an object attribute is:

<variable> . <object attribute>

EXAMPLES:

item. color
list.length
item_col.red

item stores a displayable geometric object
where list stores an array, set, or group
where item_col stores a color

The attributes that are defined are listed below by object type. For each attribute,
whether or not the attribute may appear on the left-hand side of an assignment is
indicated (LHS), as well as the data type of the attribute. All attributes may be either in
lower or upper case (but not mixed case).

115

Attribute Description LHS Type
======== ---------- --- --------------

Array

length number of elements in the array NO numeric

Set

length number of elements in the set NO numeric

Color

red red component YES numeric
green green component YES numeric
blue blue component YES numeric

Displayable
geometry
(any type)

origin geometric center of the object YES point
group geometry group this element is NO group

a member of
db associated database NO database
type type of the geometric element NO string

possible values are:
CYLINDER
LINE
SPHERE
TEXT
TRIANGLE

database record pointer- described in section 7.16.13.

Sphere

center center point of the sphere YES point
radius radius of the sphere YES numeric
color color of the sphere YES color

Line

vertex I one endpoint of the line YES point
vertex2 other endpoint of the line YES point
color color of the line YES color

Cylinder

116

vertexl one endpoint of the cylinder YES point
vertex2 other endpoint of the cylinder YES point
radius radius of the cylinder YES numeric
color color of the cylinder YES color

Text

color color of the text YES color

Triangle

vertexl one vertex of the triangle YES point
vertex2 another vertex of the triangle YES point
vertex3 another vertex of the triangle YES point
norm all normal at vertexl YES vector
nonnal2 normal at vertex2 YES vector
nonnal3 normal at vertex3 YES vector
color color of the triangle's YES color

front face
backcolor color of the triangle's YES color

back face

Point or
Vector

X x component of point or vector YES numeric
y y component of point or vector YES numeric
z z component of point or vector YES numeric

Geometry
group

length number of elements in the group NO numeric
name name of the group YES string

Database

name name of the database YES string

Database
record

db associated database NO database
key record key (valid on! y if record is NO numeric or string

in a database)

117

5. EXPRESSIONS

A number of language statements allow or require expressions (referred to by
<expression>). An expression is one of three types: arithmetic expression, relational
expression, or logical expression.

5.1 Arithmetic Expressions

An arithmetic expression consists of float or integer values, variables, arithmetic
expressions, or arithmetic functions, either singly or combined using the operators:

+ (addition)

*
I
**

(subtraction or negation)
(multiplication)
(division)
(exponentiation)

Arithmetic expressions can be formed by combining simpler arithmetic expressions
using any of the arithmetic operators or by enclosing an arithmetic expression in
parentheses to indicate precedence.

EXAMPLES:

i+5
((num + 5) I 4.3) ** 2.
SQRT(x*x + y*y + z*z)
4.74
MOD((num + 7, 5), 2)
(POINT(3. , 4. , 5.) I length) * vector2

Operator precedence for all expression types follows that of C. The implementation of
operator precedence is not very robust, however. I recommend that you use
parentheses liberally.

For the purposes for future discussion, an arithmetic expression may be referred to by
the datatype that it produces. Thus, an expression which always returns a numeric
value will be referred to as a numeric expression, one which returns a vector as a vector
expression, etc.

Operators may take point or vector valued arguments as follows (a <point expression>
may be substituted for <vector expression> in all cases). The following table gives the
argument types, the result types, and the operation name for all operators that apply to
points or vectors.

118

<vector expression> + <vector expression>
<vector expression> - <vector expression>
<vector expression> * <vector expression>
<vector expression> • <numeric expression>
<vector expression> I <numeric expression>
- <vector expression>

-> <vector>
-> <vector>
-> <float>
-> <vector>
-> <vector>
-> <vector>

vector addition
vector subtraction
dot product
vector scaling
vector scaling
vector negation

Strings support a special use of the + operator -it indicates string concatenation. Thus
the statement

a=" /usr /tmp/" + file_name + ".dat";

would result in a having the value" /usr/tmp/myfile.dat" if the variable a contained
the string "myfile".

5.2 Relational Expressions

A relational expression generates a Boolean value (TRUE or FALSE) and consists of two
arithmetic expressions, logical expressions, or strings combined using the relational
operators:

-- (equals)
!= (not equals)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)

EXAMPLES:

((num- 5)*2) == 0
MOD(numl, 3) > num2
dbase.atom(a_num).atom_wqual != "CA"

5.3 Logical Expressions

A logical expression generates a Boolean value (TRUE or FALSE) and consists of a
single relational expression or two Boolean values, variables, relational expressions or
logical expressions combined using the relational operators:

OR
AND

(logical inclusive or)
(logical and)

or a single such expression preceded by the unary operator NOT.

119

EXAMPLES:

(dbase.atom(num).atom_wqual == "CA") OR
(dbase.atom(num).atom_wqual == "C")

(num < 7) AND in_flag
(pos_flag ==FALSE) AND (NOT out_flag)
X<=S

6. FUNCTIONS

Functions are similar to those in C and FORTRAN. A function returns a single value.
The following built-in numeric functions are available:

ROUND
SQRT
SIN
cos
TAN
ASIN
ACOS
ATAN
MOD
DIST

-biased round to nearest integer (using C-library "rint'' function)
- square root
-sine
-cosine
-tangent
-arcsine
-arccosine
-arctangent
-modulus
-3-D Euclidean distance

Each function (except MOD and DIST) takes a single argument in parenthesis which
may be any numeric expression. The modulus (MOD) function takes two numeric
arguments; the first is the number to be divided, and the second is the divisor. Both
arguments are automatically rounded before use. The distance (DIST) function takes
two point-valued arguments.

EXAMPLES:

SQRT (x*x + y*y + z*z)
MOD (num + 7, 5)
TAN (2*PI);
DIST (pntl, pnt2);

All trigonometric functions take arguments in degrees; inverse trigonometric functions
produce results in degrees.

The vector function, CROSS, computes the vector crossproduct of two vector-valued
(or point-valued) arguments.

EXAMPLE: CROSS(vecl, vec2)

120

A logical function, EXISTS, checks for whether a variable or an array element has been
defined. If the argument is defined, EXISTS returns TRUE, otherwise it returns FALSE;

EXAMPLES:

EXISTS(vec)
EXISTS(a[4])
EXISTS(b("key"))

EXISTS is only implemented for simple variables and arrays (indexed or keyed).

7. STATEMENT DESCRIPTIONS

7.1 Assignment

Variables are assigned using the syntax:

<variable> = <right hand side> ;

where <right hand side> is any <expression> or object creator:

EXAMPLES:

x2 = (iteml.atom.x + item2.atom.x) I 2.;
tri.COLOR = element.BACKCOLOR;
tri = TRIANGLE(pntl, pnt2, pnt3, color);
rad(numl) = atom_rad(numl) + 5.5;
pos[index] = dbase.atom(atom_num).position;
dbase.atom(num).x = 0.5;
is_true =a< 5;

The assignment operation causes the variable on the left to point to the right hand side;
it does not create a copy. Another way of saying this is, the variable on the left becomes
an alias for the right hand side.

Sometimes that is not what is desired. Consider this code sample:

tril.COLOR =red;
tri2 = tril;
tri2.COLOR = blue;

This code does not produce two triangles, a red one and a blue one (perhaps what is
desired). tri2 and tril are the SAME triangle in this example and after the three
statements have completed, that triangle is blue.

121

To allow for copying instead of aliasing, a special function, COPY, is available. COPY is
permitted in place of any variable anywhere in the language (although it only makes
sense as the right hand side of an assignment or a concatenation statement, or in the
record argument to DB_ADD_RECORD). The single argument of COPY is the
expression that is to be copied. COPY is only useful if its argument is a <variable> (if
its argument is an expression, no aliasing is possible; an implicit copy is automatic).

The above example can be recoded as:

tril.COLOR =red;
tri2 = COPY(tril);
tri2.COLOR =blue;

resulting in two triangles, a red one and a blue one.

7.2 Concatenation

The concatenation operator allows you to add objects to container objects. Three
container types may be concatenated to: arrays, sets, and geometry groups (the fourth
container type, databases, has a special command, DB_ADD_RECORD for adding to
it). The syntax is :

<container> &= <add_object> ;

where <container> is a <variable> of one of the mentioned container types, and
<add_ object> is a <variable>, expression, or function whose value is to be added to the
container. Arrays must be indexed (this would not make sense for a keyed array, since
no key is supplied); <add_object> will be placed in the location beyond the highest
index that has been assigned prior to the concatenation. Concatenation is the only
available method for adding an object to a geometry group. Note that concatenating an
object to a set is functionally equivalent to unioning that object with the set.

Like assignment, concatenation aliases the object. Thus after execution, the statements:

obj.COLOR = COLOR(255,255,255); ! white
grp &= obj;
obj.COLOR = COLOR(255,0,0); ! red

will result in a single object in the group grp, colored red. Objects may be copied using
the COPY function as part of the concatenation. The code:

obj.COLOR = COLOR(255,255,255); ! white
grp &= COPY(obj);
obj.COLOR = COLOR(255,0,0); ! red

Will result in two objects, one in grp colored red, and another (in whatever group it is
in), colored white.

122

Displayable geometric objects may only belong to one group at a time. For this reason,
concatenating an object to a group implicitly removes it from the group it was in.

7.3 Remove

The REMOVE statement is used to delete the definitions of objects. The syntax is:

REMOVE (<remove variable 1> [, <remove variable 2> , ...
<remove variable n>]);

each of the <remove variables> is a <simple variable> or an array element (indexed or
keyed).

An object, once removed, is no longer available for use. If the object removed is a
displayable geometric object, it will be deleted from the display panel. If the object is a
geometry group, all objects within the group will be deleted from the display panel, and
the group name will be removed from all Group Operations panels in the interface.

7.4 Exit

Execution may be terminated using the statement:

EXIT;

7.5 If-else

The IF- ELSE statement is identical to the if-else statement in C. The syntax is:

IF (<logical expression>) <if-body> [ELSE <else-body>]

where <if-body> and <else-body> have the same syntax as <iteration body> described
under Iteration in the next section.

If the logical expression is TRUE, <if-body> is executed. If the logical expression is
FALSE, and an ELSE clause is supplied, <else-body> is executed.

EXAMPLES:

IF (rad < 5. 0) DISPLAY sphl;
IF (element.atom.x < 5. 0)
(count = count + 1;

y = element.atom.y;

ELSE count = 0;

7.6 Iteration

123

There are several forms of iteration supported. WHILE, DO-UNTIL, and FOR are
standard, C-like constructs. The FOREACH statement is an iterator that can be used to
iterate on arrays, sets, databases, and geometry groups (any datatype that serves as a
container, i.e., contains other objects, except records). The LOOP statement permits
infinite iteration.

All iterations have an <iteration body> which consists of either a single statement, or a
sequence of script language statements contained within a set of braces, {}. Thus, the
iteration body is identical to the body of a "for" statement in C.

The examples given below for the WHILE, DO-UNTIL, and FOR statement are
functionally equivalent.

Z6.1 While

The WHILE statement is used to perform a block of code while a specified condition is
true. The syntax is:

WHILE (<logical expression>) <iteration body>

This statement executes the <iteration body> repeatedly as long as the <logical
expression> evaluates to TRUE, and then stops. The evaluation precedes the execution
of the <iteration body>.

EXAMPLE:

i = 0;
WHILE (i < 5)
(REPORT(" current index = ", i);

i = i + 1;

This program segment yields the output:

current index = 0
current index = 1
current index = 2
current index = 3
current index = 4

7.6.2 Do-until

The DO-UNTIL statement is used to perform a block of code until a specified condition
is true. The syntax is:

DO <iteration body> UNTIL (<logical expression>) ;

124

This statement executes the <iteration body> repeatedly until the <logical expression>
evaluates to TRUE. The evaluation follows the execution of the <iteration body>. Note
that the DO-UNTIL statement will always execute the iteration body at least once; the
WHILE statement may not execute the iteration body at all (it will not if the <logical
expression> is initially false).

EXAMPLE:

7.6.3 For

i = 0;
DO
(REPORT(" current index = ", i);

i = i + I;
} UNTIL (i >= 5);

This statement is identical to the C "for" statement (and similar to the FORTRAN "DO"
statement). The syntax is:

FOR (<initial statement> <logical expression>; <increment statement>)
<iteration body>

<initial statement> and <increment statement> may be any valid language statements.
The terminating semicolon(;) is omitted for <increment statement>, however.

The FOR statement defines a loop structure. Prior to beginning the loop iteration, the
<initial statement> is executed. On each iteration of the loop, the following sequence is
performed: first the <logical expression> is evaluated and checked. If it evaluates to
FALSE, the FOR statement terminates. Otherwise the <iteration body> is executed and
then the <increment statement> is executed.

EXAMPLE:

FOR (i=O; i<S; i=i+ I)
REPORT("current index = ", i);

7.6.4 Foreach

The FOREACH statement is a special-purpose iterator that is used to iterate on
container objects (arrays, groups, sets, databases). There are three forms of this
statement:

1) For arrays, groups, and sets, the syntax is:

FOREACH (<iteration variable> IN <container> [<iteration phrases>])
<iteration body>

125

<iteration variable> is a <variable name> that will take on the value of each of the
objects in <container> during the iteration. <container> is a variable that
references an array, a group, or a set. Iteration phrases are optional phrases that
allow you to specify additional control of the iteration, or additional retrieval of
information from each object in the container. The iteration phrase:

; INDEX= <variable name>

supported only for indexed arrays (the only one of these containers that can be
accessed by index), will set the variable named by <variable name> to the index
value of the <iteration variable> (the position in the array of <iteration variable>).
Thus, in the iterator:

PO REACH (item IN listl; INDEX=n) { . . . body ... }

the third time through the loop, n will have the value 2, and item will have the
value stored at listl [2] (remember that array indexing begins at 0). The iteration
phrase:

; KEY = <variable name>

supported only for keyed arrays (the only one of these containers that can be
accessed by key), will set the variable named by <variable name> to the key value
of the <iteration variable>. Note that items are retrieved in ascending key order.

2) To iterate on a database, the syntax is:

PO REACH (<iteration variable> IN <database> . <subset name>
[<iteration phrases>]) <iteration body>

<database> is a variable that contains a database and <subset name> is the name of
the subset to be accessed. Each iteration will return a database record in <iteration
variable>. Iteration phrases supported for this form include:

; START_KEY = <key value>

and

; END _KEY = <key value>

where <key value> is a key value (or a variable containing a key value) of a record
in the specified data subset. The START_KEY phrase specifies the starting
position in the database for the iteration; the END_KEY phrase specifies the
ending position. Records are retrieved in the order they are stored on the file.

126

EXAMPLE:

FOREACH (rec IN dbase.atom; START_KEY=40; END_KEY=80)
{ ... body ...)

The database iterator also supports the KEY iteration phrase described above. The
value produced by this phrase will be the record's key value.

3) The third form of the FOREACH command is used for iterating on geometry that
is displayed on-screen. Any geometry that is toggled Off, will not be retrieved.

FOREACH ([<type specifier>] <iteration variable> IN
DISPLAY_ GEOMETRY [WITH DB]) <iteration body>

This form of the FOREACH statement does not support any <iteration phrases>.
The <type specifier>, which may be specified as either OBJECTor GROUP,
determines whether each pass of the iteration will produce a single object or a
group. The two constructs given below are functionally identical.

1) FOREACH (OBJECT obj IN DISPLAY_GEOMETRY) { ... body ...)

2) FOREACH (GROUP grp IN DISPLAY_GEOMETRY)
{ FOREACH (obj IN grp) { ... body ...))

If no type specifier is supplied, it will default to OBJECT. The WITH DB phrase is
used to restrict the iteration to those geometric objects that have a database
associated with them (see section 7.16.13). The phrase is only applicable if the
<type specifier> is OBJECT (either implicitly or explicitly).

7.6.5 Loop

The LOOP statement is used to loop forever. The syntax is simply:

LOOP <iteration body>

EXAMPLE:

LOOP
{ SELECT(item);

REPORT(item.COLOR);
)

The LOOP statement will be terminated by exiting the tool, either explicitly using the
Exit function in the interface, or implicitly by starting the execution of another tool.

7.7 Sleep

127

Tools may be forced to pause in their execution for a specified period of time using the
SLEEP statement. The syntax is:

SLEEP(<time>) ;

Where <time> is a numeric expression that specifies the amount of time in seconds that
the tool is to pause.

7.8 Report

The REPORT statement generates a written report containing one or more items. The
report is produced in the window that the VIEW program is run from. The syntax is:

REPORT (<expression> [, <expression> . . .]) ;

EXAMPLES:

REPORT ("res name=", (item.atom.res_name), "rad = ", rad);
REPORT ("value=", ((x+S)/20));

7.9 User Query

Two statements are available that request information from the user, ASK_NUMBER
and ASK_STRING.

7.9.1 Ask number

This statement produces a query that requests one or more numeric values from the
user (see section 2.2.5 of the document VIEW User Interface Description for a discussion
of queries and their use). The syntax is:

ASK_NUMBER (<title>, <simple variable 1> [,<simple variable 2> ...
, <simple variable n>]);

where <title> is a <string expression> to be printed at the top of the query, and <simple
variable x> specifies a numeric value to be supplied by the user. Each <simple
variable> must have a value defined prior to executing the ASK_NUMBER; these
values will be displayed as initial values in the query.

EXAMPLE:

red = 0; green = 0; blue = 255;
ASK_NUMBER ("enter new color", red, green, blue);

128

7.9.2 Ask string

This statement produces a query that requests one or more string values from the user
The syntax is:

ASK_STRING (<title>, <simple variable 1> [,<simple variable 2> ...
, <simple variable n>]);

where <title> is a <string expression> to be printed at the top of the query, and <simple
variable x> specifies a string value to be supplied by the user. Each <simple variable>
must have a value defined prior to executing the ASK_STRING; these values will be
displayed as initial values in the query.

EXAMPLE:

res_name = "GLY";
ASK_STRING ("enter a residue name", res_name);

7.10 Display

The DISPLAY statement ensures that geometric objects (either geometry groups or
displayable geometric objects) are drawn in the display window. Its actions in doing so
depend on the type of objects it is passed (in its parameter list) and the state of the
system:

1) An argument that is a displayable geometry object is added to the current display
group. The current display group is a group that has the same name as the tool
being run. If no such group exists, the DISPLAY command will create one. If the
group exists, but is turned Off, it will be toggled On.

2) An argument that is a group not in the interface (i.e. not listed in the Group
Operations panels) is added to the interface and toggled On.

3) An argument that is a group in the interface that is turned Off is toggled On.

The syntax is:

DISPLAY (<variable 1> [, <variable 2> ... , <variable n>]) ;

EXAMPLES:

7.11 Undisplay

DISPLAY (obj1, obj2, obj3);
DISPLAY (grp);

129

The UNDISPLA Y statement turns off groups in the display. It is functionally
equivalent to toggling a group Off using the Group Toggle panel. The syntax is:

UNDISPLA Y (<variable name 1> [, <variable name 2> ... , <variable name n>]) ;

EXAMPLE:

UNDISPLAY (grpl, grp2, grp3);

7.12 Select

The SELECT statement is used to specify picking of on-screen geometry. There are two
forms of select:

SELECT (<object name> [, < select string>] [; UNDO ABLE]) ;

Specifies that an object is to be picked on-screen and assigned to the variable name
<object name>.

SELECT_DB (<object name> [,<select string>] [;UNDO ABLE]);

Same as the previous, but the picked object must have a database associated. The
statement will not return with a valid pick until an object with a database is hit.

The optional <select string> is a <string expression> to be displayed in a message box at
the top of the screen when the system is waiting for the selection. If and only if this
parameter is not supplied, the box will contain the string, "Select".

The UNDOABLE keyword specifies that a checkpoint is to be generated at this
statement for the Undo system function. If an Undo button is pressed after this
statement has completed, the system will backup execution to this statement and will
pause waiting for a selection.

EXAMPLES:

SELECT(iteml, "Select an atom");
SELECT_DB(item2;UNDOABLE);

7.13 Parameter definition

A single parameter definition statement may be supplied as the first statement of a
script. This statement supplies information about parameters that are to be passed if the
script is used as a subroutine. The syntax is:

PARAMETERS ([<parameter list>]) ;

where <parameter list> consists of one or more <parameter>s separated by commas.

130

<parameter> has the form:

<variable name> <parameter type>

<parameter type> is one of the values:

IN
OUT
IN-OUT

EXAMPLES:

- the parameter is an input parameter
- the parameter is an output parameter
-the parameter is both an input and an output parameter

PARAMETERS (radius IN, distance OUT);
PARAMETERS (marker IN-OUT);

If the subroutine is to be called with no parameters, the parameter statement may be
supplied with an empty parameter list, or may be omitted.

7.14 Subroutine call

The syntax of a subroutine call is identical to that for Cor FORTRAN.

<subroutine name> ([<parameter 1> , <parameter 2>, ... , <parameter n>]) ;

<parameter x> may be any variable name or expression. Note that in VIEW no sharp
distinction is made between subroutines and main routines. Any tool (with or without
a PARAMETER statement) may be invoked as a main routine by executing it (this
usually only makes sense if the routine has no input parameters). Subroutines have no
return values, all values to be returned must pass through the parameter list.

EXAMPLES:

Select_ atom (objl, pnt, sph);
Tetrahedron ();

In the tool library supplied with the system, those routines that are used only as
subroutines start with a capital letter; those that are directly executable as well do not.
We suggest that you adopt this practice; it allows the All tools panel to list only those
routines which are directly executable, using the default pattern ([a-z]*) .

7.15 Subroutine return

Return from a subroutine is specified using the statement:

RETURN;

131

Unlike the return statement in "C", no argument may be specified (subroutines in the
tool language have no return values).

7.16 Database manipulation

7.16.1 Defining subsets

Subsets are added to a database using the DB_ADD _SUBSET statement:

DB_ADD_SUBSET (<variable name>. <subset name>, <string>);

where <variable name> specifies a variable that contains a database, <subset name> is
the name of the subset to be added, and <string> is a string expression that specifies the
name of the key field for the subset.

EXAMPLE: DB_ADD_SUBSET (dbase.residue, "res_name");

7.16.2 Reading a database from a file

The DB_READ function is used to read a database from a file. The syntax is:

<variable> = DB_READ (<file_name>) ;

<file_name> is a string expression containing the full pathname of the file to be read.
<variable> will be of type database when this statement completes.

EXAMPLE:

dbase = DB_READ ("/my /path/view/Database/molec");

A system-defined constant DIRECTORY is available to facilitate coding file names for
DB_READ, DB_WR!TE, GEO_READ, and GEO_WR!TE. DIRECTORY is a string
containing the path specified for the -directory parameter of the iview command (See
Running the VIEW System for information on this parameter). The above example could
be coded as:

dbase = DB_READ(DIRECTORY+ "Database/molec");

Note use of the+ string concatenation operator.

7.16.3 Writing a database to a file

The DB_ WRITE function is used to write a database to a file. The syntax is:

DB_ WRITE (<file name>, <database>);

132

<database> is a <variable> containing the database to be written. <file_name> is a
string expression containing the full pathname of the file to be written. If a file by this
name already exists, it will be overwritten.

EXAMPLE:

DB_ WRITE(" I my I path/ view I Database/ molec", dbase);

7ol6o4 Retrieving database records

A language phrase that specifies record retrieval will be referred to a record specifier. A
record specifier may specify retrieval from either a database or from a displayable
geometric object. The latter allows you to retrieve database records that are "pointed
to" by the object. The record pointer will have been added to the geometric object using
the DB_PTR attribute described in section 7.16.13.

A database record may be retrieved from a database using the record specifier:

<database> o <subset name> (<key>)

<database> is a variable that contains a database. <subset name> specifies the subset
that the record is located in. <key> is a <numeric expression> (converted to integer by
the system) or a <string expression> specifying the value of the database key (Note that
the datatypes allowed for database keys are restricted from those allowed as keys for
keyed arrays).

EXAMPLES:

dbase.atom(S)
db2.residue("LYS")

The second example shows retrieval from a user-defined subset called "residue".

There are two special-purpose database keys that may be used in this form of record
specifier. START will return the first record in the subset. END will return the last
record.

EXAMPLES:

dbase.a tom(ST ART)
db2.residue(END)

A database record may be retrieved from an displayable geometric object using the
record specifier:

<geometry> o <subset name>

133

<geometry> is a <variable> that contains a displayable geometric object. <subset
name> is the name of the subset that the record is located in.

EXAMPLES:

iteml.atom
element[2].bond

Additionally, there are two functions that retrieve records in an ordered fashion from a
database. The NEXT_RECORD and PREV _RECORD functions each take a record
specifier as its single argument. NEXT_RECORD returns the record in the subset
immediately following the argument, PREV _RECORD returns the previous record in
the subset.

EXAMPLES:

new _rec = NEXT_RECORD(rec);
prev _rec = PREV _RECORD(dbase.atom(num));
rec = NEXT_RECORD(rec);

The last example shows the most common use of these functions, for iterating on a
database. These functions may be initialized using special record keys START or END.
These will retrieve the first and last record in a subset respectively.

EXAMPLE: rec = dbase.atom(START);.

When either of these functions attempts to retrieve beyond the limits of the subset
(NEXT_RECORD beyond the last record, PREV _RECORD prior to the first record), it
will return a special value, EOD (end-of-data). This value may be checked for. For
example, the code segment:

rec = dbase.atom(ST ART);
WHILE (rec != EOD)
{ rec = NEXT_RECORD (rec);

... more code ...
}

Will completely iterate through the "atom" subset of the database stored in dbase. This
code segment is functionally identical to:

FOREACH (rec IN dbase.atom)
{ ... more code . . . }

7.16.5 Retrieving record fields

Fields may be retrieved from database records using the syntax:

<record> . <field name>

134

where <record> is either a variable that contains a record or a record specifier as
described in the previous section.

EXAMPLES:

rec.atom_num
item1.atom.atom_num

dbase.atom(S).atom_num

7.16.6 Creating database records

! rec is a record)
! item1 is a displayable
! geometric object
! dbase is a database

Database records are created by using the RECORD creator (described in section 4.3.11)
and assigning the record to a variable.

EXAMPLE: rec = RECORD ();

7.16.7 Adding new fields to a record

Record fields are defined by assigning them using the syntax:

<record> . <field name> = <expression>

where <record> is either a variable that contains a record or a record specifier, <field
name> is the name of the field that is being created, and <expression> is any expression
of type numeric or string.

EXAMPLES:

rec.x = 5.0;
rec.name = "res1 ";

7.16.8 Replacing fields in a record

! assigns the "x" field of rec.
! assigns the "name" field of rec.

Record fields are replaced by reassigning them as described in the previous section.

7.16.9 Defining record keys

Record keys are set just like any other field; there is no special syntax for defining the
key value. Thus if the key name is "name", the statement:

rec.name = "res1";

will define the key field to have the value "res1". The name of the key to be used in
accessing the database is defined by the DB_ADD_SUBSET command (described in
section 7.16.1). This command may be issued either before or after key fields are set for
records to be inserted.

135

7.16.10 Adding records to a database

Records are added to a database using the DB_ADD_RECORD statement. The syntax
is:

DB_ADD_RECORD (<database>. <subset name>, <record>);

where <database> is a <database expression>, <subset name> is the name of the subset
to add to, and <record> is a <record expression>.

EXAMPLE: DB_ADD _RECORD(dbase.atom, rec);

Note that the record must contain the key field named in the DB_ADD_SUBSET
statement that created the subset in order to insert it into that subset.

If a record already exists in the subset with the key value specified in <record>, it will
be replaced. Otherwise, <record> will be appended to the end of the subset.

7.16.11 Adding new fields to a database

The first record that is added to an empty subset implicitly defines the fields for that
subset. All records subsequently added to that subset must contain exactly the same
fields (all of which must be present). It is possible to add a new field to all records in a
subset, however, with the DB_ADD_FIELD statement. The syntax is:

DB_ADD_FIELD (<database>. <subset name>, <field name>);

where <database> is a <database expression>, <subset name> is the name of the subset
to add to and <field name> is a <string expression> that contains the name of the field
to be added.

EXAMPLE: DB_ADD_FIELD(dbase.atom, "conf");

The newly created field will contain a special value (9.9999E50) for all existing records,
indicating that the value has not yet been assigned.

7.16.12 Deleting fields from a database

The DB_REMOVE_FIELD statement is used to remove a field from all records in a
subset. The syntax is:

DB_REMOVE_FIELD (<database>. <subset name>, <field name>);

where <database> is a <database expression>, <subset name> is the name of the subset
to be removed from and <field name> is a <string expression> that contains the name of
the field to be removed.

EXAMPLE: DB_REMOVE_FIELD(dbase.atom, "conf");

136

7.16.13 Defining and using record pointers for displayable geometry

Displayable geometric objects may have one or more database record pointers
associated with them. This allows you to retrieve database information based by
querying an element of geometry (particularly useful when selecting). A record pointer
is assigned to an object using the special attribute, "db_ptr". For example, the statement:

sph.db _ptr = rec;

where sph is a sphere and rec is a record from a database, would associate the record
with the sphere.

These record pointers may be retrieved by specifying the subset that they point to (see
section 4.3.10 for a discussion of subsets). Thus,

rec = sph.atom;

will place a database record in rec if sph has a record pointer that points to an "atom"
subset. The syntax is identical to record access from a database, except that no key is
specified. Note that although multiple record pointers may be assigned to an object,
they must all be to the same dataset and only one record per subset may be retrieved.
The pair of program statements:

sph.db_ptr = dbase.atom(numl);
sph.db_ptr = dbase.atom(num2);

where dbase contains a database are legal. However, the second pointer assigned will
never be retrievable. The statements:

sph.db_ptr = dbase.atom(numl);
sph.db_ptr = dbase.bond(bnum);

will allow future reference of either an atom or a bond record.

The following example shows creation of a sphere representing the first atom in a
database and assignment of a database pointer.

rec = dbase.atom(ST ART);
sph =SPHERE (rec.position,O.S);
sph.db_ptr = rec;
DISPLAY (sph);

This next code segment provides for on-screen selection of this sphere, and prints its
atom number.

SELECT (item);
REPORT ("atom number is-", item.atom.atom_num);

137

7.17 Geometry group manipulation

This section describes input-output operations for geometry groups. A number of
transformations that may be applied to geometry groups as well as displayable
geometric objects are described in section 7.18.

7.17.1 Reading geometry groups from a file

The GEO_READ function is used to read one or more geometry groups from a file. The
syntax is:

GEO_READ (<file_name>);

<file_name> is a string expression containing the full path name of the file to be read.

EXAMPLE: GEO_READ("/my/path/view/Geometry/molec_geo");

The geometry groupS>Within the specified file will automatically be added to all Group
Operations panels and may be accessed with the tool using the GROUP statement.

7.17.2 Writing geometry groups to a file

The GEO _WRITE function is used to write one or more geometry groups to a file. The
syntax is:

GEO_ WRITE (<file_name>, <geometry group 1> [,<geometry group 2> ,
<geometry group n>);

. . . '

Each <geometry group> is a <variable> containing the geometry group to be written.
<file_name> is a string expression containing the full pathname of the file to be written.
If a file by this name already exists, it will be overwritten.

EXAMPLE:

GEO_WRITE(DIRECTORY + "/Geometry/molec_geo", grpl, grp2);

where grpl and grp2 are variables each containing a geometry group.

7.18 Geometric object manipulation

Displayable geometric objects and geometry groups may be manipulated using several
transformation operations that are supplied. These are: rotation, translation, scaling
and setting the origin.

VIEW uses two coordinate systems. The world coordinate system is defined by the values
used to generate the geometry. World coordinates are usually based on data from a
database; if the on-screen geometry represents molecular data, the world coordinate

138

system will be the coordinate system of the molecular data and the units will be
Angstroms. The world coordinate system is right-handed. The screen coordinate system
is aligned with the display window (x is horizontal, y is vertical, z is out of the screen).
The virtual trackball (described in VIEW User Interface Description) allows you to change
the orientation, position, or size of the world coordinate system with respect to the
screen coordinate system.

The transformation operations, ROTATE, TRANSLATE and SCALE perform rotation,
translation, and scaling of geometry in the world coordinate system. Since the world
coordinate system may not align with the screen, these transformations will, in general,
be skew to the screen axes.

The transformation operations ROTATE_SCREEN and TRANSLATE_SCREEN are
available for rotating, translating, and scaling geometric objects in the screen coordinate
system (scaling is handled using TRANSLATE_SCREEN as described below). This
coordinate system allows viewing rotations and translations to be specified in the plane
of the screen (x-axis = horizontal, y-axis = vertical, z-axis = out of screen).

By specifying all on-screen geometry, these commands allow a tool to perform the same
operations that the virtual trackball or the dials perform from the interface.

Applying transformation operations to a geometry group is functionally equivalent to
iterating on the group and applying the operation to each object within it. For brevity
in the discussion below, the term geometric object will be used when either displayable
geometric object or geometry group might apply.

7.18.1 Rotation

The ROTATE command rotates a geometric object about its center point. The syntax is:

ROTATE (<geometric object>, <x>, <y>, <z>, <angle>);
ROTATE (<geometric object>, <vector expression>, <angle>);

These two forms are equivalent: <x>, <y>, <z> are <numeric expression>s that
comprise <vector expression> in the second format. <angle> is a <numeric expression>
that specifies the amount to rotate (in degrees) about the axis specified by <vector>).

EXAMPLES:

ROTATE (grp, 0.5, 0.5, 0, 20);
ROTATE (obj, vee, rot_angle);

Rotation is performed about the object's origin. By default, this is the point (0,0,0),
although this may be changed by resetting the origin as described below.

139

Rotations are cumulative. Thus, applying a rotation of 20 degrees followed by a
rotation of 30 degrees about the same axis, is the same as applying a single rotation of 50
degrees about that axis. Rotations about different axes also accumulate.

7.18.2 Translation

The TRANSLATE command moves a geometric object with no change of size or
orientation. The syntax is:

TRANSLATE (<geometric object>, <x>, <y>, <Z>);
TRANSLATE (<geometric object>, <vector expression>);

The two forms are equivalent: <x>, <y>, <z> are <numeric expression>s that comprise
<vector expression> in the second format. The vector specifies the amount to translate
in the x, y, and z directions. The units of translation are the units that define the
geometry. If the geometry being displayed represents a molecule, the units are
probably Angstroms.

EXAMPLES:

TRANSLATE (grp, 0.5, 0.5, 0);
TRANSLATE (obj, vee);

Translations are cumulative. Thus, applying a translation of 2 units along the x-axis
followed by a translation of 3 units along the same axis, is the same as applying a single
translation of 5 units.

7.18.3 Scaling

The scale command changes the size of a geometric object. The syntax is:

SCALE (<geometric object>, <number>);
SCALE (<geometric object> , <x> , <y> , <z>) ;
SCALE (<geometric object> , <vector expression>) ;

The first form is used for uniform scaling in all directions. <number> is a multiplicative
scale factor. Thus a value of 0.5 indicates that the object is to be shrunk by 50%, a value
of 2 indicates a doubling of the object's size.

The second and third forms are used for non-uniform scaling and are equivalent: <x>,
<y>, <z> are <numeric expression>s that comprise <vector expression> in the second
format. The vector specifies the amount to scale in the x, y, and z directions.

140

EXAMPLES:

SCALE (grp, 0.5);
SCALE (grp, 0.5, 0.5, 1);
SCALE (obj, vee);

Scaling is cumulative. Thus, applying a scale of 0.5 to an object (halving it) followed by
another scale of 0.5 is the same as applying a single scale of 0.25 (0.5 * 0.5).

7.18.4 Screen rotation

The ROTATE_SCREEN command rotates a geometric object about its center with the
rotation specified in screen space. The syntax is:

ROTATE_SCREEN (<geometric object>, <x>, <y>, <z>, <angle>);
ROTATE_SCREEN (<geometric object>, <vector expression>, <angle>);

The arguments are identical to those for the ROTATE command.

An alternate form of the command substitutes the keyword ALL for <geometric object>.
This form will rotate all geometry currently being displayed about the screen center.

EXAMPLES

ROTATE_SCREEN (obj, vee, 4 5.);
ROTATE_SCREEN (ALL, 0, 1, 0, 180.);

7.18.5 Screen translation

The TRANSLATE_SCREEN command moves all geometry in the plane of the screen or
scales it (if "z" is specified).

TRANSLATE_SCREEN (<geometric object>, <x>, <y>, <z>);
TRANSLATE_SCREEN (<geometric object>, <vector expression>);

The arguments are identical to those for the TRANSLATE command. The "z"
component is used to scale the geometry.

An alternate form of the command substitutes the keyword ALL for <geometric object>.
This form will translate (and/or scale) all geometry currently being displayed in the
plane of the screen.

EXAMPLES

TRANSLATE_SCREEN (obj, vee);
TRANSLATE_SCREEN (ALL, 0, 1, 0);

141

7.18.6 Screen scaling

Screen scaling is performed using the "z" component of the TRANSLATE_SCREEN
command described above.

7.17.7 Setting the origin

The origin of a geometric object may be changed by setting the ORIGIN attribute for
that object.

EXAMPLE: obj.ORIGIN =POINT (0.5, 0.5, 0.5);

This origin (in the object coordinate system) becomes the center of rotation for the
ROTATE or ROTATE_SCREEN command. It has no other effect or use.

7.18.8 Resetting geometric transformations

The RESET_TRANSFORMATIONS command cancels the effect of all previous
geometric transformations (rotation, translation, or scaling) on an object or group. The
format is:

RESET_TRANSFORMATIONS (<geometric object>);

This command has no effect on the origin setting for the object.

This command does NOT support the ALL keyword.

7.19 Set manipulation

The standard set operations: union, intersection, and difference are available.

7.19.1 Union

The+ operator is used to specify set union. The original set is to the left of the+. To the
right of the + may be either another set to be unioned, or a variable of any other
data type which will be added to the set.

EXAMPLES:

· new _set = setl + set2;
add_set = setl + num; ! add an element

7.19.2 Intersection

The * operator is used to specify set intersection. The original set is to the left of the *.
To the right of the * may be either another set to be intersected, or a variable of any
other data type to be intersected.

142

EXAMPLES:

intersect_ set = setl * set2;
intersect_ element= setl * num; ! intersect an element

Note that intersection may produce an empty set (the null set). This will be a set with a
length of zero.

7.19.3 Difference

The- operator is used to specify set difference. The original set is to the left of the-. To
the right of the - may be either another set to be removed, or a variable of any other
datatype to be removed. Any elements in the set to be removed not contained in the
original set are ignored.

EXAMPLES:

intersect_ set= setl - set2;
intersect_ element= setl- num; ! remove an element

Difference may also produce the null set.

7.20 Events

7.20.1 Event definition

An event may be defined on either a key or a dial. An event consists of a header and a
body. The header specifies the event name, the device that will activate the event, and
whether the UNDO function is to backup to the beginning of this event or not. The
body of the event is the code to be executed when the event is triggered (i.e., when the
device specified in the header is activated). The syntax is:

EVENT (<event name>; ON DIAL <dial number> [; UNDOABLE])
<event body>

EVENT (<event name> ; ON KEY <key> [; UNDO ABLE]) <event body>

where <event name> is a string that names the event (must be unique for each event
within a tool), <dial number> is an integer with values between 0 and 7 (inclusive)
which selects a dial (see figure 1), <key> is a string that contains a single character
naming the keyboard key that is to trigger the event, and <event body> is one or more
tool language statements contained in a pair of braces, (}.

The optional UNDOABLE phrase specifies that a checkpoint is to be created just before
the event is executed. Clicking on the UNDO button after the event is executed will
cause the system to back up to just before the event was executed (assuming that the
UNDO ABLE keyword is not encountered within the event body), undoing the effects of
the event.

143

Figure 1

Dial assigrnents for interactive events

EXAMPLES:

EVENT ("change_rad"; ON KEY "r")
{ obj.RADIUS = 0. 5;)

EVENT ("rotate_item"; ON DIAL 7; UNDOABLE)
{ ROTATE (grp, vee, del_angle);

ROTATE (grp2, vee, del_angle);

The events within a tool have access to all variables defined by that tool prior to the
event's execution. Even after the tool has completed execution, these variables are still
"alive" and available to the event.

144

An event may be triggered at any time, once the tool that defines it had begun
executing. This may cause unexpected behavior. Consider the following language
segment:

EVENT ("report_ a"; ON KEY "a")
{ REPORT ("a = ",a); }

FOREACH (rec in dbase. atom)
{ . . . code with no a references .. }

a= 5;

... morecode.

If the variable a is undefined prior to the FOREACH loop, and the "report_ a" event is
triggered while the loop is executing, an error will be generated (since a will be
undefined). On the other hand, if "report_a" is triggered after the loop has completed
and the assignment to a has been executed, then the program will print "a = 5". In this
particular case, the EXISTS statement could be used to safeguard the event:

EVENT ("report_a"; ON KEY "a")
{ IF (EXISTS(a)) REPORT("a = ", a);

ELSE REPORT ("cannot report a, not yet defined");
}

7.20.2 Control of events

Two statements are available for controlling the execution of events. An event may be
deactivated using the statement:

STOP _EVENT (<event name>);

When an event has been stopped using this statement, the dial or key defined for this
event will no longer respond by executing the event. Once stopped, an event may be
reactivated using the statement:

START_EVENT (<event name>);

Events are automatically active when defined.

START_EVENT and STOP_EVENT may only be used to control events within the
same tool; it is not possible to activate or deactivate events defined by other tools.

7.20.3 System constants for use in dial events

Several system-defined constants are available that provide information on dial status.
DIALNUM contains the integer index number of the dial that was most recently
turned. DIAL VAL contains an integer that indicates dial position. DIAL VAL is always

145

between -50 and 50. When turning the dial clockwise, the numbers will increase until
50 is reached, and the value will then reset to zero. When turning counter-clockwise,
the numbers will decrease until -50 is reached, and the value will then reset to zero.
Fifty units correspond to about a one-quarter turn of the dial. DIALRATE contains an
integer that indicates the speed of dial rotation. Values are approximately between one
and five for slow rotations and between ten and thirty for fast ones. These constants
may be used outside of events (this is most useful for DIALNUM).

146

VIEW

Interactive Tool
Definition Language

Development
Environment

147

Table of Contents

1. INTRODUCTION ... 149

2. TOOL CREATION .. 149

2.1 Text Editors .. 150

2.1.1 Find/replace .. 153

2.1.1.1 Find next ... 153

2.1.1.2 Replace .. 154

2.1.1.3 Replace, then find ... 154

2.1.1.4 Replace all ... 154

3. DEBUGGING ... 154

3.1 Types of Debuggers .. 154

3.1.1 Examine Debugger .. 156

3.1.2 Running Debugger ... 158

3.1.3 Error Debuggers .. 161

3.2 Debugger functions ... 162

3.2.1 Execute .. 162

3.2.2 Save ... 163

3.2.3 Examine .. 163

3.2.4 Find/ replace .. 164

3.2.5 Exit ... 164

3.2.6 Breakpoint .. 164

3.2.7 Remove Brks .. 166

3.2.8 Construct .. 166

3.2.9 Display .. 167

3.2.10 Undisplay ... 168

3.2.11 Step : .. 168

3.2.12 Next ... 169

3.2.13 Continue ... 169

148

VIEW Interactive Tool Definition
Language - Development Environment

1. INTRODUCTION

Larry Bergman
1/25/93

This document describes the development environment used to build, modify, and test
drawing tools in the VIEW system. This document does not describe the tool language;
the syntax and semantics of tool definitions are described in the document, VIEW
Interactive Tool Definition Language- Language Description.

Users of the tool development environment are assumed to have experience with an
interactive debugger (such as dbx), and be familiar with the use of breakpoints,
stepping, and variable display. Experience with an screen-based editor (such as
Mac Write or Word) will be very helpful.

Prior to using this document, you should have read VIEW Exploratory Molecular
Visualization System - Overview. That document covers basic concepts of the VIEW
system. This document will assume that you are familiar with these underlying ideas
and definitions. Additionally, we assume that you are familiar with the use of the
system interface, as described in VIEW User Interface Description.

2. TOOL CREATION

New tools may be created in two ways. The first is by using a debugger within VIEW.
Debuggers are windows which contain a text editor within them. The editor allows you
to alter a tool definition written in the tool definition language. Tools are usually
produced by editing the text of some pre-existing tool. Our philosophy is, "New tools
from old"; there is no mechanism for starting with an empty editor.

Tools may also be written or modified outside the VIEW system using a standard text
editor such as vi or emacs. If you have much editing to do, we recommend this
approach - the editor within VIEW lacks many of the features that make these editors
easy to use. If you add a new tool to the library using an editor outside the VIEW
system, you will need to update the All tools panel (either by reopening the panel or by
entering a new pattern) in order to see the new tool name in that panel.

149

~1 db_all bonds I •

ELSE IF (bond_type •• 'H')
{ I assign H-lxlnds

b_grp • h_llrp;
b_color .. COLOR(150,20,120);

)

ELSE IF ((atom2_type •• 'C') OR (atom2_type •• '0') OR
(atom2_type -- "N") OR (etom2_type •• 'CA') OR
(etom2_type -- 'P') OR (atom2_type •• 'OlP') OR
(atom2_type •• "02P") OR (atom2_type •• "05"') OR
(atom2_type -- "C5"') OR (atom2_type -- "C3'") OR
(atom2_type •• 'C4") OR (atom2_type •• '03"))

{ I assign main-chain

'
b_grp • maln_grp;
b_color • COLOR(255,255,255);

)

ELSE IF (((atom2_type •• ~Cl'") OR (atom2_type -- "C2"") OR
(atom2_type •• 'C3") OR (etomZ_type •• 'C4") OR
(atom2_type -- "04'")) AND (atoml_e!em J .. "N"))

{ I assign sugars (nucleic adds)
b_grp .. sugar_grp;
b_cotor • COLOR(255,255,255); '

)

I Execute II Save II Examine II Rnd/replace II erose I
I Breakpoint I (Remove Brksl (f Constru:t I ~

Figure 1

A VIEW Debugger

2.1 Text Editors

" tex t
or edit

""-fun ction
tons but

An editor (figure 1) is a subpanel within a debugger in which tool description text is
displayed. The text in an editor may be modified using a Macintosh-like interface.

If the text to be displayed is larger than the editor window, a scroll area will be
displayed to the left of the text. This scroll area is used as described for file list scrolling
in Section 2.2.4 of the document VIEW User Interface Description.

Several editing operations may be performed by using a combination of mouse and
keyboard as indicated in the following table:

150

Desired Result User Action System Response

Positioning the text cursor Position the mouse cursor A vertical blue cursor will
at the place that the text appear in the text at the
cursor is to be positioned. mouse cursor position (or

at the start or end of the
Click the left mouse line if the cursor is outside
button. the text).

Entering text Position the text =sor. New text will appear at

Type the new text with the
the text cursor position.

mouse cursor inside the
editor.

Selecting text Position the mouse cursor Text will be highlighted in
at the place in the text that yellow.
the selection is to start or
end.

Hold down the left mouse
button and drag the
mouse over the text.

Selecting single words Position the mouse over Selected word will appear
the word. in yellow.

Click the left mouse
button while depressing
the alt key.

Deleting selected text Press the backspace or Highlighted text will
delete key. disappear.

.

or

Press the middle mouse Highlighted text will
button (to cut text) disappear, but be held in a

paste buffer.

151

Desired Result User Action System Response

Replacing selected text Type in replacement text. New text will replace
highlighted text.

or

Press the right mouse Contents of paste buffer
button (to paste text) will replace highlighted

text.

Moving text Select text to be moved Text will be highlighted in
yellow.

Press the middle mouse Highlighted text will
button. disappear, but be held in a

paste buffer.

Position the text cursor at Previously removed text
the insertion point. will appear at insertion

Press the right mouse
point.

button.

Certain keyboard keys have special functions within VIEW editors:

key function

backspace Deletes the character that precedes the text cursor

delete Deletes the character that follows the text cursor

return Moves text to the right of the cursor onto a new line. If
there is no text to the right of the cursor, a blank line will
be created.

The "tab" key has no effect in VIEW editors.

Selection may be made forward/downward in the text or backward/upward. If the
cursor reaches the bottom (or the top) of the text window, the text will scroll to allow
additional text to be highlighted. When as much text as you wish to select is
highlighted, release the mouse. Selections are always contiguous areas of text. Starting
a new selection will remove the definition of the previous selection (indicated by the
previous selection dehighlighting).

152

A text selection may be deleted, cut, or replaced (by pasting over it or typing over it), as
outlined above. The paste buffer can be modified only by cutting into it; each cut
completely replaces the contents of the buffer. Cutting text from one window and
pasting into another is supported. Note that the contents of the paste buffer may be
used as many times as desired.

Figure2
Find/replace panel

2.1.1 Find/replace

Find/replace operations may
be invoked by clicking on the
button labeled
"Find/replace" below the
editor text window. Clicking
on this button causes a
Find/replace panel (figure 2)
to pop up on the screen.
Within the Find/replace
panel are two text areas,
labeled "Find" and "Replace"
and five function buttons.

When the Find/replace panel appears, a text cursor (vertical blue bar) will be displayed
. in the Find area indicating that this area is ready for editing. Text within the Find and

Replace areas may be edited in the same way as other text areas (see Section 2.2.3 of the
document VIEW User Interface Description for more details). Either the "return" or "tab"
key will move the text cursor to the other text area.

The use of each button in the Find/replace panel is described below.

2.1.1.1 Find next

Locates the next occurrence in the editor text (after the current text cursor position in the
editor) of the text in the Find area. All text in routine being edited will be searched, not
just the portion showing in the editor window.

If no cursor in the editor- Locates the first occurrence of the text
starting at the top and highlights the text in
yellow.

If there is no occurrence of the specified text following the cursor, a confirmation panel
will appear notifying you of this condition. Click on OK to make this panel disappear
and to continue working.

!53

2.1.1.2 Replace

Replaces the currently highlighted text in the editor with the text in the Replace area.

If no text is highlighted - Replacement text will be inserted at the
cursor position

If no cursor in the editor - Replacement text will be inserted at the start
of the text.

2.1.1.3 Replace, then find

This function behaves exactly the same as clicking on Replace followed by clicking on
Find. It is useful for performing a series of replacements of a given string with visual
confirmation of each replacement.

2.1.1.4 Replace all

This function will locate all strings in the editor text that match the string in the Find
area and replace each with the string in the Replace area including the text following
that in the window. If no matches are found, this function will have no effect. On
completion, the last replaced string will be selected.

Note that Replace all will replace all matching entries in the routine being edited, not
just those currently displayed in the editor window.

3. DEBUGGING

3.1 Types of Debuggers

Three types of debuggers are available in VIEW. Examine, running, and error debuggers.

Examine debuggers are used for viewing code. Running debuggers display code of
executing tools and may be used for stepping through code. Error debuggers are
produced when errors are detected in a tool.

All debuggers have a top panel which contains a text editor. Each debugger has a set of
function buttons below the editor. Running and error debuggers have additional
subpanels (described with each below) beneath the function buttons.

The function buttons differ for the three editor types. The buttons for examine
debuggers are common to all three types. Error debuggers contain additional buttons
for displaying variable values. Running debuggers, in addition to these variable
display buttons, contain buttons that control execution of the code when execution is
paused. This information is summarized in the following table. X indicates that the
function is not available for that type.

154

Information on which functions are available for each debugger type is summarized in
the following table. An X indicates that the function is not available

Examine Running Error
Debugger Debugger Debugger

Execute

Save

Examine

Find/replace

Exit X X

Breakpoint

Remove Brks

Construct

Display X

Undisplay X

Step X X

Next X X

Continue X X

Under certain conditions, buttons will be colored dark gray indicating that their
function is not available. For example, a running debugger that is not at a breakpoint,
will have disabled (gray) Step, Next, and Continue buttons, since these functions are
only valid for a tool that is stopped at a breakpoint.

155

3.1.1 Examine Debugger

Figure 3

Examine debugger

Examine debuggers (figure 3) are distinguished by gray panel backgrounds. An
examine debugger can be invoked by selecting a tool in the All tools panel, and then
clicking on Examine in that panel. An examine debugger containing text for a
subroutine can be invoked by selecting the subroutine name within the text editor of a
debugger (either by click-and-drag with the mouse, or by clicking over the name of the
routine with the "alt" key depressed), and then clicking on Examine in that debugger.
Examine debuggers are also produced when running debuggers are exited, either
explicitly using Exit or implicitly by executing a different tool. In either case, all
running debuggers will automatically change into examine debuggers. This
information is summarized in the following table:

156

Type of Background Condition producing the debugger
debugger color

Examine Gray Invoked from the Examine function in the All tools panel

or

Invoked from within another debugger by selecting the
routine name within the editor and then clicking on
Examine below the editor

or

Replaces running debugger when tool is exited (either
with system Exit function, or by executing a new tool).

The buttons listed are found below the editor subpanel of an examine debugger. These
same buttons are found in all debugger types. The button functions are described in
more detail in section 3.2.

;Button Function

Execute Executes this tool. If the code has been modified since the last
Execute or Save, you will be prompted for a new tool name.

sa;e Saves the tool. If the code has been modified since the last Execute
or Save, you will be prompted for a new tool name.

Examine Allows you to examine the text of subroutines as described above

Find/replace Invokes a find/replace panel for locating text and making text
substitutions

Close Causes the debugger to disappear. All breakpoints are retained
when the debugger is closed.

Breakpoint Used for setting textual or graphical breakpoints (described in
section 3.2.6).

Removebrks Removes all currently defined breakpoints for this tool.

Construct Activates or deactivates the "construction" debugging facility
(described in section 3.2.8).

157

3.1.2 Running Debugger

Figure 4

Running Debugger

Running debuggers (figure 4) have tan backgrounds. A running debugger is produced
when syntactically correct code is executed from either an examine debugger or an error
debugger. A running debugger will also pop up when either a breakpoint is
encountered in a routine which does not already have a running debugger, or when you
Step into a subroutine from a running debugger. This information is summarized in
the following table:

158

Type of Background Condition producing the debugger
debugger color

Running Tan Invoked when syntactically correct code is executed from
any debugger.

or

Invoked when a breakpoint is encountered while
executing a tool (see section 3.2.6 for a description of how
to set breakpoints).

or

Invoked when a subroutine is stepped into using the Step
function (described in section 3.2.11).

A running debugger may automatically convert to one of the other types as follows. If
anoerror is encountered in the routine, the debugger will automatically become an error
debugger. If the tool is exited, either explicitly when you click on Exit, or implicitly by
starting execution of another tool, the running debugger will convert to an examine
debugger.

In:addition to the buttons found in an examine debugger, Running debuggers contain:

' Button Function

Display Allows you to examine variables by seeing printed values and, if
possible, by seeing a representation in the display panel.

Undisplay Causes the color of any object in the display panel altered by Display to
revert to its original color.

Step Causes the code to advance forward a single statement. If the current
statement is a subroutine call, the subroutine will be entered; its code
will be displayed within a new running debugger stopped at the first
statement.

Next Causes the code to advance forward a single block. Subroutines called
within the current block will be executed entirely with no pause for
debugging.

Continue Causes the tool to continue execution. Used when the tool is stopped for
debugging.

!59

In addition to the text editor subpanel, running debuggers have the following subpanels
below the function buttons

Position Name Function

Top Variable Display Displays values of variables when the Display
function is selected.

Bottom Call Stack Displays the sequence of function calls, with the
last-called function at the top. Each function call
has the current line number to the right of it.
Clicking on any of the routine names in the call
stack area will cause that function to highlight in
blue and its text to appear in the call area

160

Type of
debugger

Error

3.1.3 Error De buggers

An error debugger has a red
background (figure 5). An error
debugger is produced when an
error is encountered in a tool.
The debugger will pop-up with
the line where the error
occurred (or where the system
thinks the error occurred)
highlighted in blue in the text
editor. This information is
summarized in the following
table:

Figure 5

Error debugger

Background Condition producing the debugger
color

Red Invoked when an error is encountered while executing a
tool. Errors may be encountered while scanning the text
(syntax errors) or while executing it (runtime errors).

161

Errors may be of two types. Syntax errors result from illegal use of the tool definition
language. Run-time errors are produced when legal statements are used improperly.

In addition to the buttons found in an examine debugger, Running debuggers contain:

Button Function

Display Allows you to examine variables by seeing printed values and, if
possible, by seeing a representation in the display panel (see Section
3.2.9 for more detail).

Undisplay Causes the color of any object in the display panel altered by Display
to revert to its original color.

An error debugger produced by a syntax error will have an inoperative Display
function; clicking on Display will produce no results in the Variable Display subpanel.

Error debuggers have three subpanels below the function buttons. The top two are
identical to those in a running debugger. The bottom-most has the following function:

Position Name Function

Bottom Error Message Describes the error condition encountered.

For certain kinds of error conditions, the system is unable to report accurately. For
example, an unmatched set of braces anywhere in the program is likely to be reported
with the last line of the program highlighted and the message: "null character".
Occasionally, an error will be accompanied by a message in the window that VIEW is
run from giving additional information. Whenever you are uncertain about an error, it
is always worth checking this window.

3.2 Debugger functions

The following sections describe each of the debugger functions.

3.2.1 Execute

Clicking on Execute will execute the tool specified by the text in the text area, or the
main routine, if the text is a subroutine not at the top of the call stack. If the text has not
been modified, the tool will execute immediately. If you have modified the text
(without saving it), the system will save the routine you are currently editing prior to
execution. It will do this by requesting a name for saving the new text as described in

!62

the next section. Canceling the save will also cancel the execute operation. This save
operation will delete all currently defined breakpoints prior to executing the tool.

Note that normal operating procedure from within an error debugger is to change the
code and attempt it again, by selecting Execute.

3.2.2 Save

If the tool text has been modified, this function will save the modified tool in the library.

Desired Result User Action System Response

Saving a tool Click on Save button Requests a name
for text to be
saved.

Enter the new name for the tool (or leave the
name unchanged to overwrite the current
tool definition) The default is the original
name of the tool whose code you are

' modifying.

Confirming Press "return" or click on OK button. Saves the text.
intention to save

.
or

Canceling request Click on Cancel button. Cancels the save
to save text operation.

3.2.3 Examine

Displays a subroutine called from the routine currently being examined.

163

Desired Result User Action System Response

Viewing the Drag the mouse over the subroutine name in Highlights the name
text of a the text editor, in yellow
subroutine

or

While depressing the "alt" key, dick the left
mouse button with the mouse cursor
positioned over the subroutine name.

Click on Examine button. Pops up new examine
debugger containing
the subroutine's text

3.2.4 Find/replace

This function is used for editing text in the text window. The Find/replace function is
described in section 2.1.

3.2.5 Exit

This function terminates the execution of the currently active tool or the currently active
event. It has no effect on which events are available for activation using keys or dials.

3.2.6 Breakpoint

This function allows you to define or remove breakpoints. There are two types of
breakpoints: textual breakpoints and graphical breakpoints.

Textual breakpoints allow you to select lines in the text where the system is to pause
execution, allowing you to examine variable values (using Display) and/or manually
control the execution (using Step or Next). These are the "standard" breakpoints
supported by interactive debuggers such as UNIX's dbx. Textual breakpoints are set in
the text in the editor window. When an executing tool reaches a statement with a
breakpoint set, a running debugger is popped up (if one is not already displayed), and
the breakpoint statement is highlighted in aqua indicating where execution is paused.

The following table describes how to set and remove breakpoints in the text.

164

Desired Result User Action System Response

Set textual breakpoint Click on Breakpoint Changes the mouse cursor
button. shape to a stop sign.

Click on text line in editor Highlights the selected
where breakpoint is to be text line in purple.
set.

Changes the mouse cursor
back to an arrow.

Remove textual breakpoint Click on Breakpoint Changes the mouse cursor
button. shape to a stop sign.

Click on text line in editor Removes the purple
where breakpoint is to be highlight from the selected
removed. line.

Changes the mouse cursor
back to an arrow.

If you set or remove a breakpoint at a statement that is highlighted in aqua (part of the
current block), you will see no visual effect; the aqua highlight has priority over the
purple highlight.

A graphical breakpoint allows you to specify a pause in tool execution based on creation
of particular objects. You specify a graphical breakpoint by selecting an object created
by a drawing tool in the display panel. When the tool is rerun, and that object is about
to be displayed, the tool will be presented in a running debugger with the execution
paused on the appropriate text line (just like a textual breakpoint). Once any graphical
breakpoints have been set for a tool, reexecution of that tool will cause all objects
created by previous executions of the tool to be deleted from the display window,
except for objects that have graphical breakpoints specified.

Graphical breakpoints are set and removed as follows:

165

Desired Result User Action System Response

Set graphical breakpoint Click on Breakpoint Changes the mouse cursor
button. shape to a stop sign.

Click on object in the Changes the color of the
display panel for which a selected object.
breakpoint is to be set.

Remove graphical Click on Breakpoint Changes the mouse cursor
breakpoint button. shape to a stop sign.

Click on object in the Restores the original color
display panel for which a of the selected object
breakpoint is to be
removed.

3.2.7 Remove Brks

This function removes all breakpoints, both textual and graphical.

3.2.8 Construct

This button turns display of construction objects on and off. Construction objects are
geometrically representable objects created during tool execution- points and vectors.
Points are represented by small white spheres, vectors by thin white cylinders. These
objects only affect display; they do not affect the tool execution.

For example, suppose the system executes the fragment of tool code given below. Each
program statement is followed by a line number for ease of reference.

pntl = POINT(1,1,1); (1)
pnt2 = POINT(O,O,O); (2)
pnt3 = POINT(O,l,O); (3)
vecl = VECTOR(pnt1,pnt2); (4)
vec2 = VECTOR(pnt3,pnt2); (5)
xvec = CROSS(vec1,vec2); (6)

If the construction function is turned on, execution of statements (1), (2) and (3) will
result in small spheres being displayed at positions (1,1,1), (0,0,0), and (0,1,0). Execution
of statements (4) and (5) will result in the display of thin cylinders between the specified
points. Statement (6) is a cross-product; the resulting vector will display as a thin
cylinder.

166

The objects created when construction is on are placed in a special geometry group
called "debug". This group is like any ~ther geometry group, and may be toggled,
removed, renamed, or written to a file.

If the rectangle on the Construct button is yellow, construction objects will be created
during tool execution; if it is gray, construction is turned off and no construction objects
will be generated. Clicking on this button will toggle back and forth between the two
states. With construction On, construction objects will be displayed even if the
debugger is closed.

Automatic creation of construction objects is particularly useful if combined with
debugger functions such as Step or Next, although such combination is not required.

3.2.9 Display

The Display function combines the print function found in traditional debuggers with a
graphical display function for geometric entities. Names of variables to be displayed
are selected in the text window (by dragging with the mouse or by using alt/left_mouse
word selection). Only simple variable names may be displayed (there's currently no
support for displaying array elements, record fields, or attributes).

If the variable is printable (see table below), clicking the Display button with the mouse
will result in the variable's value being printed in the variable display area of the
debugger. If the variable is displayable, a geometric element will be added to the display
panel, or if one already exists, its color will change to either white or red. These new
geometric elements (spheres for points, cylinders for vectors) are placed in a special
group called "debug" (which also contains construction objects, as described in section
3.2.8).

167

Variable type Printable Displayable

Number YES NO

Boolean YES NO

String YES NO

Point YES YES

Vector YES YES

Displayable geometric object NO YES

Color YES NO

Array NO NO

Set NO NO

Group NO NO

Database NO NO

Record NO NO

3.2.10 Undisplay

This function causes any geometric element whose color has been changed by the
Display function to revert to its original color.

3.2.11 Step

This is the standard "step" function provided by most debuggers. It is usable only
when the debugger is stopped at a statement. Clicking on Step will cause the execution
(and highlighted text) to proceed to the next statement. If the next statement is on the
same line as the current statement, the highlighting will not advance. If the current
statement is a subroutine call, clicking on Step will cause a debugger to pop up for that
routine with the first statement of the routine highlighted. Debugging (using Step,
Next, or Continue) will then be active within the subroutine's debugger. When the last
statement of the subroutine is reached, clicking on Step (or Next) will pop up and
activate the calling routine's debugger.

168

Note that statement highlighting includes the complete body of a statement. Thus, if the
debugger is stopped at a FOR statement, the complete statement including the loop
body will be highlighted.

3.2.12 Next

The Next function operates somewhat differently than that found in most debuggers.
Clicking on Next will cause the debugger to execute the currently highlighted statement
without stopping within it. Thus, if the current statement is a FOR loop, clicking on
Next will cause completion of the body of the loop with no pause for debugging. The
next statement to highlight will be the next statement to be executed after the loop
completes. If the highlighted statement when Next is clicked contains a subroutine call,
the text of the subroutine will not pop up although the subroutine will be executed.

3.2.13 Continue

Continue causes execution of the tool to resume. No further debugging will be possible
until a breakpoint (textual or graphical) is encountered.

169

VIEW

Data File Fortnats

170

Table of Contents

1. INTRODUCTION .. 172

2. DATABASE FILE FORMAT .. 172

2.1 Sample database file ... 172

2.2 File format description .. 174

3. GEOMETRY FILE FORMAT .. 176

3.1 Sample geometry file .. 176

3.2 File format description ... 178

171

VIEW Data File Formats

1. INTRODUCTION

Larry Bergman
1/26/93

This document describes the format of two file types used by the VIEW system -
database files (which is the format used for storing molecular data), and geometry
files. Each format will be described by first presenting an annotated sample file, and
then by giving a symbolic description of the format.

The sample files are annotated here by including bold-face numbers within
parenthesis. These are NOT part of the file; they are merely pointers to comments
that follow the sample file.

The blank lines in the sample files have been inserted are for clarity. VIEW ignores
all blank lines in both database and geometry files. VIEW database files are free
format. You may include as much white space (blanks, tabs, carriage-returns) as you
wish between fields.

The syntax used to describe the format follows that used in VIEW Interactive Tool
Definition Language - Language Description. A portion of the file that will be
described elsewhere (called a non-terminal in computer-science jargon) is enclosed
in angle brackets, <>. For example, <header>. Some portions of a file are optional.
These are enclosed in square brackets, []. For example, [<subset 2>]. All text within
the file format description that is not enclosed in angle brackets or square brackets is
to be entered in the file exactly as shown.

2. DATABASE FILE FORMAT

2.1 Sample database file

mhr_hl (1)

atom (2)
20 (3)
atom num (4)
1 atom_num (5)
s atom_type

172

s atom_element
s atom_wqual
s alt_conf
s res_name
s res_chain_id
i res_num
f X

f y
f z
f occupancy
f temp_fact
s H_bond_donor
s conformation
s atorn_structure
i bond_num1
i bond_nurn2
i bond_num3
i bond nurn4

1 ANN A
2A C CA A
3 A c c A
4A 0 0 A
5 A C CB A
6 A C CG A

END_SUBSET

bond
4
bond_num
i bond num

GLU?
GLU?
GLU?
GLU?
GLU?
GLU?

i atom nurn1
i atorn_nurn2
s bond_type

1 1 2
2 2 3
3 2 5
4 3 4
5 5 6

c
c
c
c
c

END_SUBSET

19
19
19
19
19
19

(7)

(8)
(9)

(10)

(11)

14.4 39.0 23.1 1.0
14.0 40.1 23.9 1.0
14.9 41.2 23.9 1.0
14.5 42.4 23.6 1.0
13.5 39.8 25.3 1.0
12.5 40.9 25.8 1.0

20.77 N ? c 1 0 0 0 (6)
23.23 N ? c 1 2 3 0
22.88 N ? c 2 4 0 0
23.59 N ? c 4 0 0 0
28.41 N ? c 3 5 0 0
38.85 N ? c 5 0 0 0

(1) "mhr_h1" is the name that will assigned to the database once it is read into

173

VIEW.

(2) "atom" is the name of the first subset in this database.

(3) The atom subset has 20 fields per record.

(4) "atom_num" is the name of the key field for the atom subset

(5) The first header record for the atom subset. There is one header record per
field. Each record has a type designator (i = integer, f = float, s = string) followed
by a field name.

(6) The first data record for the atom subset. The record has 20 fields each of the
type indicated by the header.

(7) The END _SUBSET record terminates the atom subset.

(8) "bond" is the name of the next subset in this database.

(9) The bond subset has 4 fields per record

(10) The first data record for the bond subset.

(11) The end of the bond subset.

2.2 File format description

The structure of a database file is:

<database name>

<subset 1>
[<subset 2>]

[<subset n>]

<database name> is a string 80 characters long or less that defines the internal name
to be used when the database is read.

The format of each <subset> is:

<header>

<record 1>

174

[<record 2>]

[<record m>]

END_SUBSET

The <header> is as follows:

<subset name>

<number of fields per record>

<key name>

<field 1 definition>
[<field 2 definition>]

[<field x definition>]

<subset name> is a string (up to 80 characters in length) that will be used to
reference this subset.

<number of fields per record> is an integer which specifies how many fields are to
be contained in each record, and how many <field definition> records will follow.

The <key name> is the name of the field that will be used for key accesses to the data
records. There MUST be a <field definition> record that has a <field name>
matching <key name>. The <type code> for this record must be integer (i).

Each <field definition record> has the following format:

<type code> <field name>

<type code> indicates the data type of the field. It has one of the following values:

f- float
i- integer
s- string

<field name> is a string that names the field.

The <record>s each contain <number of fields per record> fields. Each is of the type
indicated in the corresponding <field definition>.

175

3. GEOMETRY FILE FORMAT

3.1 Sample geometry file

z (1)
helix_sticks (2)
1 w
I glycine/ grip13 /view I data/Database/2mhr_h1h2.dat (4)

1 (5)
1 (6)
002 (7)
0255255 255 (8)
15.26 37.89 21.15 (9)
14.63 39.03 22.53
1 (10)
1
0 014
0 255 255 255
14.635 39.034 22.5305
14.002 40.175 23.908

z (11)
atom_positions
2
I glycine/ grip13/view I data/Database/2mhr.dat
I glycine/ grip13 I view I data/Database/2mhr_h1h2.dat
s (12)
1
00432
0 255 0 0
15.632 47.806 17.783
0.4
5

c
0
0 255 200 170
26.835 51.326 18.373
26.2465 50.3795 19.9195
0.15
8
1000

t

(13)

(14)

176

0
0 225 225 225
1
200 20 150
29.58 56.66
11.30 52.97
8.364 53.06

X

0
0 255 255 255
LYS

27.44
30.31
11.67

27.135 51.626 18.373

-0.1926
-0.1926
-0.1926

0.9806 0.03534
0.9806 0.03534
0.9806 0.03534

(15)

(1) Each geometry file contains one or more geometry groups. Each geometry
group starts with a record containing the single character, "z".

(2) "helix_sticks" is the name of the first geometry group.

(3) This group has pointers to one database in its geometry.

(4) The single database file for this group.

(5) Start of the first geometric primitive for this group. "1" indicates that this is a
line.

(6) This primitive contains one database pointer.

(7) The database pointer for this primitive. The pointer is to the first database
(index 0), the first subset in the database (index 0 which is "atom" for a
molecular database), the record with key 2 (atom number 2).

(8) The color record for this primitive. Color records always start with 0
(indicating RGB color). The color for the line primitive is white, (255,255,255).

(9) Start of the type-specific information for this primitive. Data for a line
primitive consists of two points, each with an x, y, and z component.

(10) Start of the second line in this geometry group.

(11) Start of the second geometry group in this file.

(11) Start of a sphere definition.

(13) Start of a cylinder definition. The cylinder has no database pointers.

(14) Start of a triangle definition.

177

(15) Start of a text definition.

3.2 File format description

The structure of the file is:

<geometry group 1>
[<geometry group 2>]

[<geometry group n>]

The format of each <geometry group> is:

z

<number of databases>

[<database file name 0>]
[<database file name 1>]

[<database file name m>]

<geometric primitive 1>
[<geometric primitive 2>]

[<geometric primitive p>]

The <number of databases> is an integer and is followed by that number of fully
qualified database file names. Note that if <number of databases> is zero, no file
names follow.

The format of each <geometric primitive> is:

<type code>

[<database pointer 1>]
[<database pointer 2>]

178

[<database pointer r>]

0 <red> <green> <blue>

<type specific data>

<type code> is a single character as follows:

c- cylinder
1- line
s- sphere
t- triangle
x- text

The format of each <database pointer> is:

<database index> <subset index> <key>

<database index> is the index number of the database in the list of databases at the
start of the group. Note that the first database has index number zero. Similarly
<subset index> is the index number of the subset in the database, also starting with
zero for the first. Molecular databases have two subsets, "atom" (index 0) and
"bond" (index 1). The <key> is an integer key that indicates the record. For "atom"
records, <key> will be the atom number.

<red>, <green>, <blue> are the components of the color for the primitive. Each
must be an integer value between 0 (no color) and 255 (fully saturated).

The <type specific data> for each geometric primitive type is presented below:

cylinder:

<end point 1>
<end point 2>
<radius>
<tessellation factor>
<end point 1 sphere cap code>
<end point 2 sphere cap code>
<end point 1 flat cap code>
<end point 2 flat cap code>

<end point 1> and <end point 2> each consist of an x, y, and z component
(separated by white space) for one of the two end points of the cylinder axis.

<radius> is the cylinder radius.

179

<tessellation factor> is an integer which specifies how many facets the cylinder
should be drawn with (cylinders are drawn using rectangular facets that run the
length of the cylinder).

The <sphere cap code>s indicate for each end whether a sphere is to be drawn at
that end (to cap the cylinder). 1 = draw a sphere, 0 = no sphere. Similarly, the
<flat cap code>s indicate for each end whether a flat cap is to be drawn. If
neither a sphere or flat cap is drawn for a given end, that end will be open.

line:

<end point 1>
<end point 2>

<end point 1> and <end point 2> each consist of an x, y, and z component
(separated by white space) for one of the two end points of the line.

sphere:

text:

<center point>
<radius>
<tessellation factor>

<center point> consists of an x, y, and z component (separated by white space)
for the center of the sphere.

<radius> is the sphere radius.

<tessellation factor> is an integer between 1 and 30 which specifies the level of
detail for rendering the sphere. The higher the number, the finer the
tessellation. Highly tessellated spheres will appear smooth, but will take longer
to draw then spheres with lower tessellation. Section 4.3.6.3 of VIEW
Interactive Tool Definition Language - Language Description presents a table
showing how the tessellation factor affects the number of polygons used to
actually draw the sphere.

<text string>
<text position>

The <text string> is the text to be display.

<text position> consists of an x, y, and z component (separated by white space)
for the lower left corner of the text.

180

triangle:

<backcolor flag>
[<backcolor>]
<vertex 1> <vertex 1 normal>
<vertex 2> <vertex 2 normal>
<vertex 3> <vertex 3 normal>

<backcolor flag> is either 0, indicating that no backcolor is specified for the
triangle, or 1 indicating that one is. If no backcolor is specified, the color
specified for the triangle will be applied to both front and back faces.
<backcolor> (if specified) consists of a red, green, and blue component, specified
as described above.

<vertex n> consists of an x, y, and z component (separated by white space) for a
vertex of the triangle. <vertex n normal> consists of the x, y, and z components
of a surface normal at this vertex. The vertex normals MUST be of unit length.

181

VIEW Data Directory Structure

Larry Bergman
1122/93

The files used by the VIEW system are stored in a fixed subdirectory structure
within a common directory area. The four types of files handled by VIEW as
well as PDB files (used by the pdbtoview program) are stored in subdirectories as
follows.

Subdirectory name Types of files stored

Database VIEW database files

Geometry ' VIEW Geometry files

Pdb PDBfiles

Snapshot VIEW Snapshot files

Tool VIEW Tool files (scripts)

The directory under which these subdirectories is located is provided as a
parameter to the runview command, used to run the VIEW system (although it is
not required by the alternate iview command). It is also provided to the pdbtoview
program used to convert PDB files to VIEW database format.

182

VIEW System Known Bugs

System crashes

Larry Bergman
1/25/92

On occasion the VIEW system may crash. As you use the system in ways that we
did not anticipate, it is possible that the system may fail. System failure will be
seen as a complete lack of response from the system, and a failure message in the
window that VIEW was run from. This message will usually say either "Segment
fault" or "Bus error".

If the system crashes, try to recreate the condition that caused the failure. If you
are able to reproduce the failure with a sequence of actions that you can describe,
please report the bug. To report the bug, send me mail at bergman@cs.unc.edu
and describe the failure conditions. Please also mail any databases, geometry
files and tools that contribute to the failure. I would also appreciate reports of
any odd behaviors that you noticed, even if they do not cause complete system
failure.

System hangs

Occasionally, VIEW gets stuck trying to open a new window. The only symptom
of this is that the system will not respond (in fact, it looks just like a system crash,
but no error message is reported). If the system hangs, you must kill the VIEW
process (by typing your kill character, often cntl-c in the window VIEW was run
from).

If a red stop message is displayed, be patient, the system is probably in the midst
of loading a file, and is not hung. Sometimes file loads can take several minutes.
Some other system operations, such as popping up the All tools panel, also take
a short while to complete, during which time the system will be unresponsive.

System slow-downs

After you have run VIEW for a while and loaded several geometry and/ or
database files, you may notice the system response becoming slower. This is
because VIEW is beginning to run out of memory. The only cure for this is to
save your work (by writing geometry and/or snapshotting), exiting VIEW, and
restarting the system.

183

User interface

Occasionally the virtual track ball will get stuck. That is, when you release the
mouse button(s), mouse movement will still rotate, scale or translate the
geometry. To release the geometry, click the left, middle, or both mouse buttons
with the cursor inside the display panel (try all combinations until one of them
works).

Occasionally pressing one of the virtual buttons (by positioning the mouse cursor
over the button and then depressing one of the mouse buttons) will fail to have
any effect- you will not see the button depress as it normally does. To resolve
this problem, move the mouse cursor completely outside the panel that contains
the button, then move the mouse back to the button and try again.

The system automatically maintains a clipping volume that contains all on·screen
geometry. On occasion, an operation will cause geometry to stray outside that
volume, and the geometry will be clipped out of the display. If the geometry is
unexpectedly clipped, press Recenter in the main display, which will update the
clipping volume.

Selection

When a number of geometric primitives are candidates for a selection, you may
be unable to select. This may happen when a number of triangles are coincident
at a point, for example, the tips of arrows drawn by arrow_atoms or arrow_pnts.
To overcome this difficulty, either toggle off some groups (e.g. turn off the
arrows and select using other geometry), or zoom in on the area where you are
trying to select.

Tool language

Removing geometric primitives from a group within an iterator on that group
will not work properly. For example, the code:

FOREACH (obj IN grp)
REMOVE(obj);

where grp is a geometry group should be avoided. It will not work properly and
may cause the system to crash.

Do not try to concatenate objects to themselves. Code such as:

grp &=grp;

may cause the tool to go into an infinite loop. If this happens (you will only
know because the tool will not terminate), press EXIT to stop the tool.

184

