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Abstract. Representing object shape in two or three dimensions has typically involved the description of the object 
boundary. This paper proposes a means for characterizing object structure and shape that avoids the need to fmd an 
explicit boundary. Rather it operates directly from the image intensity distribution in the object and its background, 
using operators that do indeed respond to "boundariness". It produces a sort of medial axis description that recognizes 
that both axis location and object width must be defined according to a tolerance proportional to the object width. 
The generalized axis is called the multisca/e medial axis because it is defined as a curve in scale space. It has all of 
the advantages of the traditional medial axis: representation of protrusions and indentations in the object, 
decomposition of object curvature and object width properties, the identification of visually opposite points of the 
object, incorporation of size constancy and orientation independence, and association of boundary shape properties 
with medial locations. It also has significant new advantages: it does not require a predetennination of exactly what 
locations are included in the object, it provides gross descriptions that are stable against image detail, and it can be 
used to identify subobjects and regions of boundary detail and to characterize their shape properties. 
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1 Boundaries vs. Medial Representations 

The dominant train of thought in object shape measurement is based on boundary description. 

Thus, for 2D objects properties of the object edge, such as curvature, have been described, and for 

3D objects properties of the object surface, such as the loci of parabolic curves, flecnodal curves, 

gutterpoints, and ruffles [Koenderink, 1990b], have received special attention. The difficulty of 

this approach is two-fold. First, from the point of view of physics, for an object in an image there 

exists no edge locus without a tolerance since the object can exist only via imaging and/or visual 

measurements that have an associated spatial scale, and thus spatial tolerance [Koenderink, 

1990b], and the spatial scale that is appropriate for boundary definition is unclear. Second, shape 

involves certain global properties, which are not readily built into the process of describing 

boundaries. An important global property is that of involution, the relation between opposite points 

on two sides of an object (see figure 1 for examples). 



Figure 1: Involutes: visually related opposite points on an object. 

Such global shape aspects can be captured more directly by focusing on an object middle and 

width combination that arises from pairing opposite object edges [Blum, 1967]. Blum proposed to 

do this by representing the object in terms of a medial axis or skeleton running down the middle of 

the object, together with a width value at each point on the medial axis. His axis is defined such 

that for each axis point a disk centered at that point and with radius equal to the width value there 

is tangent to the boundary at two or more boundary points and is entirely within the object (figure 

2). The endpoints of these central axes correspond to corners and other object boundary locations 

of locally maximal curvature [Leyton, 1987, 1992], the perceptual importance of which has long 

been known. It has also been noted [von der Heydt, 1984; Heitger, 1991] that subjective edge 

perceptions derive especially strongly from high curvature boundary points such as line ends and 

corners. 

The width values, w(s), of the middle/width representation carry straightforward access to the 

angle of the object boundary at each of the corresponding boundary points, relative to the axis 

direction at any axis point specified by arclength s: 8= cos-{:-) [Blum, 1978]. Moreover, the 

curvature of the axis and of the boundary pair relative to the axis is also straightforwardly 

accessible. At axis endpoints the radii perpendicular to the boundary converge to a single boundary 

point, which is the visually important vertex of a protrusion, i.e., a relative maximum of boundary 

curvature. Axis branch points correspond to indentations in the object. Thus, the middle/width 

representation incorporates major aspects of shape. 

Blum also suggested a more general "global" form of the medial axis representation in which 

the multiply tangent disks need not be completely inside the object. Global axis sections for which 

the disks overlap the object's background select boundary indentations and symmetries of larger 

Figure 2: The middle and width of an object and a disk defined from them 
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width than the object, for example, the symmetry of the shorter sides of a rectangle. 

The difficulty with Blum's defmition is that while it tackles the problem of global shape, it still 

requires an object boundary that is defined with zero tolerance. No method that requires such a 

boundary can be expected to be adequately insensitive to small scale image properties, and indeed 

Blum's method has been heavily criticized for this sensitivity. 

2 Multiscale Geometry Detectors 

Many investigators have suggested that notions of shape must be based on measurements in scale 

space, i.e., by sets of operators that sense a regional rather than curvilinear (e.g., edge or medial 

axis) property, with each operator sensing the same property but at different spatial scales. Among 

the operator kernels suggested have been derivatives of Gaussians [Koenderink, 1990a; Marr, 

1982], differences of Gaussians [Wilson, 1979; Crowley, 1984], Gabor functions [Daugman, 

1980; Watson, 1987], Wigner operators [Wechsler, 1990], and wavelets [Mallat, 1989, 1991]. A 

persuasive case for how to choose the form of operators, by ter Haar Romeny et. al. [1991], is that 

the system must be invariant to translation, rotation, and size change and that this implies 

multiscale operators h with kernels that are solutions to the diffusion equation: 

V • [ c( x; 1) VI( x; 1)] = h t x; 1), where tis half the square of the spatial scale CJ, x is a spatial location 

in 9t 
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, and c is a conductance function that can vary in space and scale. Linear combinations of 

derivatives of a Gaussian with standard deviation a satisfy this equation for c = 1. 

These operators or combinations of them can be thought of as giving the degree to which a 

point in scale space x,crhas the properties expected of a particular geometric feature. For example, 

we say that "boundariness" is the degree to which the point behaves like a boundary and 

"cornerness" is the degree to which the point behaves like a corner. Similarly, we will say that 

"medialness" is the degree to which the point behaves like the middle of an object. 

Boundariness at a particular location x and scale a has typically been associated with variations 

in luminance about that location, i.e., with combinations of first or second partial derivatives _in 

some direction u of the intensity function after convolution with a Gaussian with standard 

deviation CJ [Sobel, 1975; Canny, 1987; Whitaker, 1992]. However, there are many other possible 

cues to boundariness. Among them are measures of "endness" such as the corner detector of Blom 

[1992], measures responding to an outline surrounding an object, measures of texture change, 

surface slant (giving depth change), and measures of velocity change. Each of these boundariness 

measures B(x,cr,u) are functions of position x, scale CJ, and direction given by a unit vector u; 

each gives the degree to which this point in scale space behaves like a boundary with normal 

direction u. 
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An edge with tolerance proportional to a may be taken to be a ridge in m,:tx B(x,a,u). We 

define a ridge of a function f(x) to be the locus of positions with the following property. Let 

w = V f(x)/IV f( x)l, the orientation of the gradient off at x. Letv be a unit vector orthogonal tow, 

i.e., tangent to the level curve of/through x. Then xis a ridge point of/if the rate of change of 

the gradient orientation in the v direction, D, w, has a relative maximum for a step in the v direction. 

This is a place where a level curve of/has maximal curvature. Unlike alternative definitions, this 

definition has all of the following properties: it is local, it does not in fact depend on the global 

shape of level curves, and it does not require intensity to be commensurate with spatial distance. 

The definition generalizes to 3D. 

3 Medialness 

Collectively the above ideas have led us to the development of a new model for visual region 

formation and description of object shape that accords with results from visual psychophysics and 

neurophysiology, as discussed in [Pizer, 1992]. It is based on the idea that just as explicit 

boundaries (if they are ever needed) must be derived from boundariness in scale space, so middles 

and widths must be derived from a scale-space measure that we call "medialness". Medialness 

M(xA,aA) is the degree to which a point in scale space xA,aA has the property of being an object 

middle at a specified width. 

Medialness at xA,O"A must be derived from boundariness at various xB,a8, so the tolerance of 

loci derived from medialness will be proportional to the tolerance (scale) of the boundariness 

values which contribute to it. All else follows from this property of human vision: the tolerance for 

the width of an object and for its middle location must be proportional to the object width there. In 

fact, this property that the scale for object middle measurement is proportional to object width 

I xA- x8 I allows the medialness to separate information about object features at different scales 

and to be invariant to scale change. Stated mathematically, 

a) M(xA,aA) must be derived from B(xB,a8,u8) at various xB but with the scale a8 
satisfying aA = ca8 for some constant of proportionality c , and 

b) the separation, I xA- x8 I, between the boundariness position and the medialness 

position must satisfy I xA- x8 I = ka8 for some constant of proportionality k (see 

figure 3). 
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Figure 3: Boundariness responses at the positions of the arrowheads, in an orientation indicated by the arrows, and 
at scales indicated by the surrounding solid circles contribute to medialness around the points indicated by the 
bullets and at scales indicated by the dashed circles around the bullets. Note that boundariness kernels at any point 
in space exist for all orientations, including the ones shown above that are non-orthogonal to the edge, and at all 
scales. 

In addition, for B(x8,c:r8,u8) to contribute to M(xA,c:rA ), u8 must be approximately in the 

direction xA-xB. Thus M(xA,c:rA) = 

J J J B(x •• u •. us) 

[ 

(
xA-(x.+ko"8 u 8 ) uA-cu8 xA-xB J.~ 

W 0" 'u 'lx Xj-u• B B A 8 

( 

XA - (X 8 - k0"8 Us) 0" A- CO" B X A- XB J 
+ W 0" ' 0" ' lx x I + u 8 x • du 8 du 8 

8 B A B 

The integration over x8 and c:r8 is over all of scale space, and the integration over u8 is over the 

semicircle of orientations. W is an effectcsmearing function in position, scale, and boundary 

orientation, such as a zero-mean Gaussian in its three variables. It allows a given boundariness to 

affect medialness at points in scale space near and not just exactly equal to the target position and 

scale, xA,c:rA. See figure 4 for an example. 
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The effect is that for a point xA inside the object and near a boundary, the medialness 

M(xA,erA) as a function of ern with erA = cern will have the two-humped shape shown for pointE 

in figure Sa. At small scales ern the medialness will be low because there is no boundariness to be 

found at small scales at positions at distance kern from xk As kern approaches the distance to the 

nearer edge, the boundariness originating from the edge (and oriented orthogonal to the edge) will 

have increased effect on the medialness. For a somewhat larger distance kern, the correspondingly 

oriented boundariness will be smaller; moreover, where the edge is crossed at distance kern from 

a) 

c) 

t) 

Vertical 
Cross-section 

b) 

d) 

Figure 4: a) An image to be analyzed; b) medialness vs. scale erA (image number) and position xA; c) cross­

sections and points relevant to (d)-( e) and figure 5; d,e) medialness vs.position along central cross-sections 
through xA (on the abscissa) and vs. erA (on the ordinate) along (d) horizontal and (e) vertical image cross-

sections of the image; t) optimal scale medialness vs. image space seen as a height. The results are shown 
for an object with a sharp boundary, but similar results are obtained for an object with a blurred boundary. 
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Figure 5: Medialness at a point vs. scale for points [a} across and [b) along the object middle (see figure 4c). 

xA, the boundariness oriented towards xA will be low because that orientation will be far from 

orthogonal to the edge. The boundariness will remain small until ka8 approaches the distance to 

the far object edge, when the boundariness, and thus the medialness, will increase and then 

decrease as a8 increases. 

On the other hand, for positions xA nearly equidistant from the two edges, there will be a 

single relative maximum of M(xA,ct:Y8 ) with respect to a8, because there the two equidistant edges 

will both be contributing their boundariness at the saine scale. Moreover, the medialness maximum 

will be higher at the tuiddle than nearer the edge because of the combination of the boundariness 

contributions from the two edges. Figure 5a shows this behavior of the medialness vs. scale 

curves as one moves from near the tuiddle to near the boundary. Figure 5b shows how the scale at 

which the maximum occurs at a tuiddle point increases linearly with the width of the object 

Medialness can also be computed via kernels that respond to two equidistant boundaries 

simultaneously rather than from each boundary separately. An example of such a kernel is the 

normalized Laplacian of a Gaussian. (Crowley [1984] uses a similar normalization on a difference 

of Gaussians). Details can be found in [Fritsch, 1991]. 

4 The Multiscale Medial Axis 

For a position in scale space (x,O") to correspond to a middle point and width of an object, it must 

first be at an optimal scale--a scale maxituizing medialness at that x. That is, a variation in width 

(scale) must result in a decrease in medialness. Secondly, the medialness at optimal scale must 

spatially have the ridge property. We call the loci of points in scale space, (x,O"), which have the 

above two properties .the "multiscale medial axis" (MMA). The x component of such a point 

specifies a point located on the middle of the object, and the O" component of such a point 

simultaneously gives (with appropriate constants of proportionality) the object-width property at x 

and the tolerances of both the location and width of the medial point. 
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Mathematically stated, (x.~ is on the multiscale medial axis if 

1) M(x,a) has a relative maximum with respect to a at x (a is an optimal scale at x). LetS 

be the set of (x,a) such that M(x,a)lx is such a relative maximum with respect to a. 
Partition S into its connected subsets, S i• i = 1,2, ... In each S i there exists a 

connected region of image points x not necessarily covering the whole image space, 

and there exists at most one scale a associated with any such position x. Figure 6 
shows the loci Si for a cross-section across the narrow dimension of a 2D object (cf. 

figure 4d) or a 1D image of a bar. 
2) For each Si, project M(x,a) for (x,a) e Si onto x to form the image or subimage 

Mmaxi(x) = M(x,a) for (x,a) e Si. The intensity for each of these images is an 

"optimal scale medialness" at the corresponding image point. Then (x,a) is in the 

multiscale medial axis if x is a ridge point in any such portion of Mmaxi(x) for any i. 

(see figure 4f) 
The max-over-scale surfaces Si are separated in scale space. As illustrated in figures 4d and 6, 

for points on the object from its right edge to some point near its middle there are two maximal 

scales, the one of smaller scale (below in the graph) corresponding roughly to the distance to the 

right (near) edge and the one of larger scale (above in the graph) corresponding roughly to the 

distance to the left (far) edge. Similarly, for points fromthe object's left edge to some point near its 

middle there are two maximal scales, the one of smaller scale (below in the graph) corresponding 

roughly to the distance to the left (near) edge and the one of larger scale (above in the graph) 

corresponding roughly to the distance to the right (far) edge. For object points between these two 

intervals there is a region of only a single medialness maximum with respect to scale; we have 

found experimentally that it is continuous with the far edge responses and that the ridge of optimal­
scale medialness occurs on this branch (S 3 in figure 6). Morse theory guarantees that in generic 

input 

Locus of relative 
maximum response 
across scale 

Figure 6: Max-over-scale surfaces in ID scale space for the input bar shown below the graph. Note the 
continuity for second-nearest edge response. 
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Figure 7: Multiscale medial axes in scale space for an object; for detail on that object; for an object within 
that object; for a larger-scale symmetry of that object. 

situations the loss of one of the maxima of M(x,<Y)Ixwill occur at an (x,<Y) position that is 

separated from the other trace. Thus the result is three separated loci Si. 

The ridge of optimal scale medialness (see figure 4f) is a (normally unbranching but possibly 

branching) trace in scale space-the MMA. The image space (x) positions of the MMA form a 

medial axis for an object, and their scales specify its width and tolerances at each axis point. 

As seen in figure 7, the long component of the axis at a large scale describes the gross 

orientation and width properties of the object. It establishes the boundary of the object only to a 

tolerance proportional to the width of the object. Figure 7 also shows another component which is 

an axis of object symmetry at yet larger scale-comparable to Blum's global medial axis. The 

components at smaller scales correspond to smaller boundary detail or objects within the main 

object, either with boundary tolerance proportional to their widths. Even tighter tolerance on the 

boundaries can be obtained from smaller scale operators responding to single boundaries within the 

boundary regions associated with the medial ridge. 

5 Boundariness-Medialness Interactions 

The smoothness or wiggliness of boundaries has little effect at the scales proportional to the width 

of an object that determine its main MMA (cf. to [Subirana-Vilanova] in this volume). Thus these 

shape properties cannot be reflected in the MMA itself but rather are reflected directly in 

boundariness properties. To describe the object shape fully, i.e., to show both the medial and 

boundary behavior and their relation, the need is to identify the medial location at which (and thus 
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the object to which) a particular boundariness is bound and the scale at which the boundariness is 

relevant. That is, the boundariness properties must be put into correspondence with MMA 

locations. 

The direction in scale space of the MMA at spatial location xA and scale <JA provides the 

information to associate boundary regions with that MMA point. The situation is as shown in 

figure 8. The direction of the projection onto image space of the MMA bisects the angle made by 

connecting the two corresponding boundariness regions to xA- If <JA is scaled to object width, the 

angle <P A between the direction perpendicular to the MMA direction and the directions of the vectors 
uA+ and uA- connecting xA to the two clusters of contributing boundariness is equal to the angle of 

the MMA with the image space plane, cos-{ 4 d: A J, where s is spatial arclength along the MMA. 

The angle <P A can be interpreted as the image space angle between the boundary at the scale of the 

MMA and the axis. The distance of the boundary region from xA along the directions uA+ and uA­

is proportional to <JA-

The MMA thus induces a corresponding boundariness by placing smears (e.g., Gaussian) of 

variance proportional to its scale <JA centered at the boundary positions determined as just 

described: J(' • )• MMA G[ x A+ k,crA u A±; kpA], where G[x;<J] indicates an isotropic Gaussian 
A' A 

with mean x and variance <J. This MMA-induced boundariness can be used to enable directly 

measured boundarinesses at the positions in question and at scales smaller than that of the 

corresponding MMA point. 

MMA 
MMA 

MMA 

middle of 
fuzzy boundary 

tan1ger1t \ecified 

\ \:~<" 
ff~' 1>- ........ 

Image space projection 

Figure 8: Association of boundary regions with MMA points. 
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Initially, boundariness in many regions contributes to the medialness that underlies an MMA. 

But ultimately, only boundariness in boundary regions associated with the object should contribute 

to its medialness. Roughly, the boundariness at a position and scale should contribute only in that 

direction for which the medialness at the corresponding scale is greatest (for more detail see 

[Morse, 1992]). The result is that only a few points contribute to a winning medialness and thus 

determine its direction and consequently their position. This feedback was part of the computation 

leading to figure 9. 

Neighbor interference poses an additional difficulty with the approach as specified so far. 

Large scale boundariness kernels appropriate for characterizing objects of large width overlap 

objects adjacent to or within the object being analyzed. But boundariness derived from medialness 

can be used to restrict the boundariness receptive fields to the region of the object. This is 

accomplished by letting the scale for boundariness be defined not according to the time of a 

uniform diffusion equation (the variance of a Gaussian envelope) but according to the time of a 

variable conductance diffusion equation [Whitaker, 1992-see also this volume], where the 

conductance is monotonic decreasing with the medialness-based boundariness. This behaves like 

stretching the space near object boundaries before making the medialness measures. 

a) b) 

Figure 9: a) Medialness values and b) multiscale medial axis superimposed on an image. Medialness and 
boundariness feedback by boundary/MMA correspondence. 
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6 Geometry from the MMA and Boundariness 

Working directly from image intensities, the mu1tiscale medial axis and the associated 

boundarinesses communicate much about the shape of the object 

1) The MMA direction in scale space determines both the direction of the object in space 

and the angle of the boundary relative to the MMA at the scale of its local width. The 

tolerance of both of these values is also determined. Derivatives of these values with 

respect to distance along the MMA in image space determine the curvature of the axis 

and the curvature of the boundaries relative to the axis direction. 

2) Boundary detail is given by the curvature of a ridge in boundariness in scale space, and 

this detail is associated with the corresponding MMA points. If the boundary is wiggly, 

smaller scale MMA's will be found corresponding to the protrusions at those scales. 

The means of determining the lower limit of the scale at which the image data support 

such boundariness measurements is under study but is beyond the scope of this paper. 

3) Subobjects are defined by MMA's spatially at smaller scale than and inside the region 

defined by a larger-scale MMA. 

4) Certain symmetries, namely, associations between involutes at all scales are defined by 

the pairs of boundary points associated with the MMA at its scale. This includes not 

only the principal symmetry of the object and symmetries of its detail and subobjects, 

but also external symmetries (object indentations) and symmetries larger than the 

principal symmetry, as with the global medial axis of Blum. 

Like Blum's medial axis, the MMA separates object curvature from width properties, thus 

preserving shape measures across small changes in local orientation produced by warping or 

bending; allows the identification of the visually important ends of protrusions and indentations, 

i.e., points of extremal boundary curvature; naturally incorporates size constancy and orientation 

independence; and generalizes to 3D. However, unlike Blum's medial axis it provides this 

information at a scale appropriate to the object width, so it is a more stable property of the object­

there is low sensitivity to noise in the boundary, as this appears at a smaller scale than the axis. 

There is also stability relative to edge detectors, deriving from the fact that the MMA is tied to the 

center of the object and so cannot get lost like an edge boundary can. Moreover, the MMA induces 

a natural hierarchy within objects by level of geometric detail and between objects and subobjects. 

As for boundary properties, we have seen that the understanding of them must follow (and 

interact with) the characterization of object shape by multiscale medial properties. Only with medial 

information can we determine the boundary region that may belong to a particular object and the 

12 



object locations and scales which can affect the boundariness in that region. This is very different 

from the standard view in which the boundary is determined first 
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