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Abstract

Meeting the challenge of real-time visualization of a complex physical simulation can require

several specialized computers.  The virtual-world simulation described in this paper combines a

highly-parallel computer for physical simulation and a custom graphics engine for display

communicating via TCP/IP over an ethernet.  Application-level protocols to provide the high-

throughput, low-latency communication required to support an interactive virtual world are

investigated.  Experiments demonstrate that a limited write-ahead protocol gives the best tradeoff

between latency and throughput for this application.

1.  Introduction

High performance graphics engines capable of generating virtual worlds offer an expanded

opportunity for user interaction with computer generated simulations.  In this paper we report on a

prototype  implementation of a real-time virtual-world N-body simulation.  Such a simulation permits

an observer to explore a volume of space occupied by spheres representing bodies of varying mass and

charge whose motions are governed by forces due to, for example, gravitational and electrostatic

interactions.

In general, a distributed implementation involving several different machines may be required

to achieve real-time visualization.  In our case, a custom graphics engine, Pixel-Planes 5 [HPE+89] can

provide real-time display of the set of bodies in response to changes in viewpoint and orientation of the

user, as well as changes in the locations of bodies.  However, this rendering engine is not well-suited to

the calculation of the N-body simulation at real-time rates.  Instead, a general-purpose highly-

parallel computer, the Maspar MP-1, is used for this component of the application.

The real-time visualization of and interaction with complex simulations is a research goal of a

number of related projects.  In the molecular docking experiment of the GRIP project [BOB+90], an

operator viewing a display showing a drug molecule and a protein molecule tries to navigate the drug

molecule to a docking site on the protein molecule.  The forces experienced by the drug molecule as a

result of its interaction with the protein molecule are calculated in real-time by the MP-1 and a

corresponding actual force is applied to the hand grip controlling the drug position in the docking

experiment.  Compared to the application described in this paper, the docking application requires

similarly low-latency but needs far less throughput.
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The VISTAnet project [STB91] currently under development will use a remote Cray Y-MP as the

simulation engine and Pixel-Planes 5 as the rendering engine in a radiation-therapy beam-placement

application.  In this case the volume of data passed between the Y-MP and Pixel-Planes 5 requires the

use of a HIPPI [ANSI90] interface to a high-speed (OC-48) network.  First high-speed operation is

scheduled for 1993.   Compared with our application this project requires higher throughput but

tolerates far more latency, since the dose-calculation does not run in real-time.

The N-body application is representative of the sorts of applications we expect to be able to

visualize in the future, and its implementation was undertaken to gain some insight on the possibilities

and limitations of distributed real-time visualization systems.  The key challenge is to find techniques

that will increase the throughput and decrease the latency of communication between the distributed

components.  For the construction of this prototype we developed an application-specific high-level

communication protocol that limits latency yet permits reasonable throughput.

The remainder of the paper is organized as follows.  Section 2 describes the hardware

components of the system.  Section 3 gives a brief description of the application (a videotape of the

system in operation is available to provide more detail for interested readers) and the structure of its

implementation.  Section 4 focuses on the high-level communication protocol for the distributed

components of the application and its implementation using TCP/IP [Com91].  Section 5 summarizes the

performance of the current system (a qualitative sense of the performance can be obtained from the

videotape).  We conclude with a discussion of other approaches to reducing latency and improving

throughput for this application.

2.  Hardware Components

Figure 1 shows the hardware components and their interconnection as used in this application.

The primary components are the head-mounted display interface, Pixel-Planes 5 and the Maspar MP-1.

The head-mounted display (HMD) interface consists of three main pieces:  the HMD itself, a

hand-held mouse, and a tracking system.  The HMD is a helmet that holds two LCD video displays

and their associated optics in front of the user’s eyes, plus headphones for audio feedback.  The mouse is

built from a modified multi-button joystick handle.  For the tracking system we use a Polhemus

magnetic tracker, consisting of an emitter suspended above the user with sensors attached to the helmet

and mouse.  The tracking system continuously reports the three-dimensional coordinates and orientation

of the user and mouse within approximately a one-meter radius volume where the user may work.

Providing the display is UNC's custom graphics multicomputer, Pixel-Planes 5.  This system

consists of a number of Intel i860 microprocessors and several custom SIMD arrays of one-bit processors,

all connected to a high-speed ring network.  Also on the ring are frame-buffers to drive the video screens

in the HMD and a host-interface attached to the Sun Microsystems 4/280 front-end computer which

controls interaction with the user.  The front-end contains an ethernet interface and is attached via

serial lines to the Polhemus controller and to the sound server, an Apple Macintosh IIci configured to

play back digitized sounds.

The computer we use to calculate the simulation is a 4096-processor Maspar MP-1 computer.  The

MP-1 consists of a back-end data parallel unit (DPU) attached to a Unix host.  The parallel processors

are controlled in SIMD fashion by sequential processor known as the array control unit (ACU).  This

back-end assembly is attached by a VME bus to a Digital Equipment Corporation VAXstation 3520

front-end host with the usual array of I/O devices including an ethernet connection.
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Figure 1.  System Overview

3.  Application

In our application, an observer looking around the virtual world while the simulation is running

sees a collection of independently moving bodies represented by spheres of different colors and sizes.

The bodies may optionally be displayed with a velocity vector on each body's surface giving the

direction and magnitude of its motion.  The observer can apply a force to a body, and can reposition

himself by "flying" through the world, or by attaching himself to one of the spheres.  When the

simulation is stopped, various attributes of the bodies and the simulation can be modified using a 3-D

control panel that appears in the virtual world.

The application consists of three major components: the virtual-world user interface, the

simulation, and the protocol library which connects them.  We first discuss the user’s view of the user

interface and simulations, and then consider the basics of their operation.  The protocol is discussed in

section 4 below.

3.1.  User Interface

The design of the interface was limited by the fact that the user has only a multi-button mouse

for input and the HMD for output.  With these the user must be able to set up, alter, control, and save a

simulation scenario.  We chose a system of virtual control panels and tools similar to that provided by

3dm, a 3-D modelling program [BDH+92]  A number of control panels are available to allow the user to
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perform operations such as setting parameters, selecting options, saving the current setup, and selecting

different tools.  These panels appear as 3-D objects in the user’s virtual world.  A tool, indicated by a

special cursor attached to the user’s hand, allows the user to directly manipulate some global features

of the environment, such as the environment's orientation or relative size with respect to the user, as

well as features of individual bodies in the environment.

The interface is logically divided into two major modes:  editing mode and run mode.  This is

done since it was deemed inconvenient to modify bodies while they are in motion, and in addition it

simplifies the requirements of the simulation and the communications protocol.  A tool selection panel

provides easy access to certain common tools.  The edit control panels feature dials and sliders for

adjusting certain continuous parameters, a numeric display for feedback on the adjustments, and buttons

for toggling specific features.  From run mode user interaction is more limited; only the tool selection

panel is still accessible, and it now provides some additional functions:  a stop selection to exit run

mode, a thrust tool to allow the user to apply an acceleration to the selected body, and a sample-ratio

slider to change the apparent speed of the simulation.

3.2.  Simulation

The N-body simulation is calculated by numerical integration of the differential equations

describing each body's motion due to forces accumulating from all pairwise interactions with other

bodies [Gre90].  Currently only gravitational forces are calculated; the calculation of electrostatic and

other forces is simple to add.  The numerical integration method used is the Euler-Heun Predictor-

Corrector method.  Although this yields reasonable accuracy with small time steps, large simulations,

such as those of the solar system, accumulate large errors with time steps of interest (e.g . 1 sec real-

time = 1 hour virtual world time).  Therefore we partitioned the bodies into two classes: α bodies and β
bodies.  The motion of α bodies is described parametrically or by an ephemeris (table of times and

locations).  The motion of β bodies is simulated using the N-body calculation.  All bodies participate in

this calculation, but only β bodies react to the calculated forces.  This is consistent with a model in

which the α bodies are undergoing rigid motion or in which the α bodies are substantially more

massive than β bodies.

3.3.  Implementation

The user begins a simulation by running the user-interface, specifying a scenario to load.  After

initializing the simulation, the interface comes up in editing mode, where the user may adjust the

scenario or start the simulation.  The main control loop for the user interface involves these main

actions:

• reading the tracker information and determining the user’s viewpoint

• processing button-press and mouse-position information to see if the user has issued a command

• checking for any messages from the simulation (none are expected during edit mode)

• sending down to the graphics processors any updated body information

• drawing new views for the user’s HMD (done synchronously by Pixel-Planes 5)
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When the user presses the Go button, the user interface sends the following messages to the simulation:

global scenario information, body information, and a start message.  The user interface enters run mode

and expects to receive a stream of body position information.  This information is passed down to the

graphics processors for proper display.  Thrust commands are immediately sent to the simulation.

Figure 2 illustrates the information flow.
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Figure 2.  Communications Overview
Bold information is passed in Run mode

Italic information is passed in Edit mode
Dashed lines represent general control information

The simulation also arrives in editing mode once initialization is done.  It waits in this mode

and processes new scenario or body messages until it sees a start message.  Upon entering run mode, the

body information is transferred to the Maspar’s DPU, the global scenario information is passed to the

ACU, and the simulation computation is started.  Each time a simulation step is completed the results

are transferred into the font-end processor and the front-end processor is signalled.  The front-end sends

results from the simulation step to the user-interface processor whenever a result is ready.  Double-

buffering allows computation of body positions and the transmission of the computed positions to be

overlapped.  If a thrust message is received, it is passed to the back-end the next time the host tells the

back-end to perform another computation.

The HMD display requires the generation of about twenty frames per second to maintain the

illusion of reality.  A full-size Pixel-Planes system can render as many as 85,000 spheres every 1/20th of

a second.  To transfer this many sphere descriptions would require a 20MB/s data rate into the Pixel-

Planes system, far exceeding that of the HIF link to the Sun host.  In fact, to even approach the 2 MB/s

limit of this link, our application required some custom programming around the standard Pixel-Planes

graphics software.

The N-body simulation using the naive O(N2) algorithm on a full-size MP-1 can generate body

positions for about 1000 bodies every 1/20th of a second.  Our 4K processor machine can simulate

approximately 500 bodies at 20 hz.  This represents about a 120 KB/sec data rate from the MP-1 to
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Pixel-Planes, indicating that, under ideal circumstances, an ethernet connection should provide ample

bandwidth for our application.  As we found out, however, circumstances are often far from ideal.

4. Protocol

To support the communications between the user interface and the simulation we had to design

and implement a protocol to exchange the initial configuration, editing information, and run mode

interaction.  Our design also had to be implemented with the constraints of figure 1 in mind.  Providing

a bandwidth of 1.25 MB/s shared among the computing resources of the department, the ethernet

connection between the Vax and the Sun-4  is clearly the communications channel where dataflow will

be most restricted.  With this prototype we chose to implement the protocol on top of TCP/IP over

ethernet to simplify our design.  We were aware that this would lead to performance degradation and

after analysis of preliminary timings, we chose to address this by choosing communications paradigms

that would work suitably well under these constraints.

4.1. Performance characteristics of different modes

While the performance demands during initialization are very relaxed, an important

contribution to the performance of the later phases occurs here.  Since our system was designed to

support a wide variety of simulations, a wealth of data could be exchanged in every update; however,

most simulations are concerned with only a subset of the available data.  In order to tailor the user

interface to the particular simulation, feature lists are exchanged which indicate the features and

properties affecting computation and display of the images.   The protocol takes advantage of this

information in formatting the editing and running messages to contain only the data required.

Like initialization mode, edit mode also has fairly relaxed performance constraints.  However,

because of the wide variety and possible orderings of operations, the protocol for this phase could be

quite complex.  Fortunately, a key insight greatly simplified this section of the protocol: the

simulation is not interested in the sequence of editing commands that occurred, but only the end result.

By keeping copies of the data on both hosts and re-establishing the consistency of the data at the

beginning and end of edit mode, the number and complexity of the edit messages is greatly reduced.

Thus separate messages are not needed for changes to each body parameter or even to each body, but

rather a single message conveying the updated state of all of the bodies.  This also avoids the

overhead of message traffic which would slow down a highly interactive portion of the application.

Easily placing the highest demands on performance, run mode demanded high throughput and

low latency.  In order to achieve smooth updates at interactive rates we needed high throughput, but at

the same time the application demands low latency for the interactive operation of applying thrust to

a body.   Like the simulation during edit mode, the user interface is not interested in receiving all of the

updates to the bodies, only position and velocity updates, since those are the only parameters of the

simulation affecting the display.  Other variables such as mass (in a simulation where mass may be

modified by the simulation)  are not visible and thus need not be updated until edit mode is resumed.  As

such, the body updates contain only position and, conditionally, velocity (depending upon the feature

exchange during initialization).
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4.2. Implementation choices

Additionally, we considered implementation methods to reduce the application’s

susceptibility to network congestion in order to increase throughput.  We considered four approaches for

achieving high throughput.  Simplest among these was completely unconstrained transmission of body

updates by the simulation process.  In this approach, once the simulation process receives a control

message indicating that it should begin computation, it sends body updates to the display process

unchecked until the user interface sends a stop message.   In this approach the network itself is looked

upon as a very large buffer.  This simplifies the protocol since it doesn’t require acknowledgements, but

it also means the simulation can be an arbitrary number of time steps ahead of the image being

displayed to the user, causing unpredictable and annoying results when the user attempts to apply

thrust to a body.  Since interactivity was required, we dismissed this approach.
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Figure 3. Preliminary Throughput Results

Each method was executed for 2000 iterations at least 10 different times over a 24 hour
period with the average number of iterations/second displayed along the vertical axis.
The number of floating point numbers sent in each test is indicated along the horizontal
axis.  The maximum number of unacknowledged messages for the write-ahead case is 10.

However, we did consider the other three alternatives more closely.  We ran performance tests

with one process acting as sender and another acting as receiver in order to evaluate three other

protocol approaches and their performance tradeoffs.  Here we define latency as the number of time

steps that a user’s view  might be behind the current state of the simulation rather the amount of real

time involved and this definition was our primary one in choosing an implementation.  The methods we

considered were: request-send, where the receiver sends a request for information and the sender then

generates a message and sends it; send-acknowledge, where the sender generates a message and then

waits for an acknowledgement before generating the next one; and finally, an extension of send-

acknowledge, limited write ahead, where the sender can have up to N unacknowledged messages

before blocking.  While request-send obviously gives the lowest latency, write ahead would be expected

to give the highest.  However, we expected that with a sufficiently low limit on N we would be able
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get reasonable latency and a higher throughput.  The results of our throughput tests are shown in figure

3.  From these results we confirmed our initial belief that limited write ahead would offer the best

throughput, and thus chose to use it.  The results of our choices are discussed below.

5. Performance Results

Once we had a working prototype we modified the user interface to record and playback user

interaction so that we could run timing tests and get repeatable results, with the only expected  source of

variance being in the communication.   Since interaction with the virtual world is event driven these

modifications were simple to implement and offered substantial power both in the the repeatability of

tests and savings in experimentation time since we were able to run a large number of tests without

repeatedly donning the HMD and performing a repetitive sequence of actions.

For our latency tests we recorded the time between the application of thrust and the receipt of a

body update where that thrust has been applied.  We performed the tests repeatedly for  1, 16, 64, and

256  bodies  and write-ahead limits of 1, 10, 20, 30, 40, 50 and 100.  The observed latencies varied with

little correlation to the number of bodies or the write ahead limit.  After observing these results, we

investigated further and were able to determine that after receiving notification that a message had

arrived on the socket, the read call sometimes blocked for periods greater than 0.5 seconds.    This

variability in performance due to the shared nature of the ethernet is one of its fundamental

shortcomings, making it less-than-ideally suited to this type of interactive application.

For our throughput tests we used the same set of variables and timed the number of body

updates/second.   Our results for four of the write-ahead limits are shown in figure 4.    To compare with

the earlier figure, note that each body represents six floats, three for position and three for velocity.

Throughput increases as the write limit is increased for small numbers of bodies.  However, as the

number of bodies grows larger the effect of changing the write ahead limit becomes negligible,

indicating that a small write ahead limit, providing more consistent interaction with the same

throughput, is an effective implementation method.

We also recorded whether or not simulations reached the write ahead limit on positional

updates and we found that even with write-ahead limits as large as 100 updates simulations with

small numbers of bodies frequently reached this limit.   From this we conclude that a write-ahead limit

is necessary in order to bound the latency between the simulation and the user interface.  Otherwise the

latency would continue to grow unchecked.

6. Conclusions and Future Work

We were able to reduce latency and maintain sufficient throughput using the communication

protocol described on top of TCP/IP to be able to create a convincing virtual world with many dozens of

bodies moving according to the rules of gravity.  However, the ethernet connection is still the limiting

factor in the performance of the system.  There are a number of other approaches that could be explored.

The first is to use the Internet User Datagram Protocol (UDP) for the body update messages

during run mode.   This separation of the run and edit mode messages should give us the performance

benefits of UDP for run mode without sacrificing the reliability we need during editing.
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Figure 4. Application Throughput Results

In this figure we show the results for write ahead limits of 1, 30, 50, and 100.
Each line indicates a different write-ahead limit. The body updates per second
are indicated along the vertical axis, while the number of bodies in each
message is indicated along the horizontal.

Additionally, other methods of dealing with current communications limits are possible. The

visualization system could provide local interpolation of the paths of bodies and apply these

interpolations to the bodies when network delays occur, providing continued interaction with some loss

of accuracy.  Another approach might be to increase buffering, giving higher throughput, but control

latency using a rollback mechanism in the simulation process that assures that user interaction during

run mode, such as thrusting, is applied to the currently displayed timestep by restarting the simulation

engine in an appropriate previous state.

The other approach is to look toward a higher-bandwidth connection between the simulation

and the rendering engine.  We anticipate installation of a direct HIPPI connection (shown as a dashed

line in Figure 1) between the Maspar and Pixel-Planes 5 by the end of the year.  This connection will

provide eighty times the bandwidth of a standard ethernet.  This application would be well suited to

use such a connection.  We could take advantage of this high bandwidth connection by moving all of the

communications to that data path, but this would probably be unwise since it would require moving a

large base of general purpose code to a specialized architecture.   A more appropriate course of action

would move the body update messages (which are already simply forwarded to the graphics processors

by the front-end) and their acknowledgements to this connection, leaving the other control and editing

messages on the host machines, which are well suited to the general purpose computations needed for

formatting and sending these messages.

This prototype demonstrates the feasibility of distributed interactive applications with

sizable bandwidth requirements.  Although the suitability of ethernet is perhaps marginal for these
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applications, higher bandwidth connections open the door to even more ambitious projects.  The

experience gained building the virtual world system described here should be of use in such efforts.
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