
Architecture of the Artifact-Based Collaboration System
Matrix

K. Jeffay, J.K. Lin, J. Menges, F.D. Smith, J.B. Smith

University of North Carolina at Chapel Hill
Department of Computer Science
Chapel Hill, NC, USA 27599-3175
(919) 962-1700 Ueffay ,linjk,menges.smithfdjbs} @cs .unc .edu

ABSTRACT The UNC Collaboratory project is concerned
with both the process of collaboration and with computer
systems to support that process. Here, we describe a
component of the Artifact-Based Collaboration (ABC)
system, called the Matrix, that provides an infrastructure in
which existing single-user applications can be incorporated
with few, if any, changes and used collaboratively. We take
the position that what is needed is not new tools but better
infrastructure for using familiar single-user tools
collectively. The paper discusses the Matrix architecture, a
Virtual Screen component, and generic functions that
provide conferencing, hyperlinking, and recording of users'
actions for all applications.

INTRODUCTION AND MOTIVATION

Our research is concerned with both the process of
collaboration and with computer systems to support that
process. We focus on shared intellectual activity as required,
for example, in system design and other similar tasks, in
which groups of scientific and technical professionals work
together to build a large, complex structures of ideas.
Further, we assume that these groups are geographically
distributed, interact with one-another using communications
networks, and that they normally produce some form of
tangible artifact as the goal of their work.

Our project is attempting to address the fundamental issues
of collaboration in a comprehensive way. First, we are a
multidisciplinary group including cognitive psychologists,
anthropologists, and computer scientists that is conducting
studies of collaborating groups and developing theories of
the collaborative process. A study of four software develop-

This work supported in parts by the National Science
Foundation (Grant # IRI-9015443), the IBM Corporation, and
the Digital Equipment Corporation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 0-89791-543-7/92/0010/0195 ... $1.50

CSCW 92 Proceedings

195

ment groups is described in [6]; a discussion of Collective
Intelligence as the basis for a process model of collaboration
is presented in [12]. Second, we are building a collaboration­
support system called the Artifact-Based Collaboration
(ABC) system that supports both asynchronous work- in­
dividuals working alone on different parts of a project- and
synchronous work - people, perhaps geographically
distributed, working together on the same part of the artifact
at the same time through high-speed communications
networks. An overview of the ABC system appears in [13].

We have taken as our driving problem the design of software
systems. Brooks has described the essence of software design
as follows:

The essence of a software entity is a construct of interlock­
ing concepts: data sets, relationships among data items,
algorithms, and invocations of functions. The essence is
abstract in that such a conceptual construct is the same
under many different representations. It is nonetheless
highly precise and richly detailed. I believe the hard part of
building software to be the specification, design, and test­
ing of this conceptual construct, not the labor of represent­
ing it and testing the fidelity of the representation. [2]

We agree with Brooks but go further to suggest that the
problem of building large "conceptual constructs" is funda­
mental not just for software design, but for all large collabo­
rative projects. For software systems, this construct typi­
cally consists of concept papers, architecture documents,
requirements, specifications, programs, diagrams, user doc­
umentation, and maintenance manuals, as well as various
administrative documents. Similar sets of materials are
produced by other types of collaboration, such as designing
aircraft, planning projects, or defining military doctrine.
Some materials represent the final goal of the project; others
assist the development process. However, if the work of the
group is to have integrity, then this entire conceptual con­
struct - including instrumental as well as target products
-must be consistent, coherent, and correct. To emphasize
this requirement, we consider the entire construct to be a
single artifact that is developed and maintained as a whole.

For organizing the group's shared artifact, we have adopted a
hypermedia data model; its hyperlinking capabilities allow

November 1992

users to explicitly denote dependencies within the artifact so
that when changes are made in one place, users (or
automated processes) can follow these links to other places
to verify or modify those parts of the artifact, accordingly.
We have also developed a small group of browsers that
allow users to navigate through the artifact, to visualize its
structure, and to reorganize it; these tools help users
comprehend the artifact and provide a sense of context.

Our system design is based on our hypothesis that what is
most needed is not new tools for collaboration, but better
infrastructure to support collaborative use of existing tools.
We believe our system must allow users to incorporate,
with minimal effort, familiar single-user applications of
their choice, such as editors, drawing tools, spreadsheets,
CAD/CAM programs, etc. Users should be able to use for
group-related work - in both asynchronous and syn­
chronous modes - the same computer tools they are accus­
tomed to using as individuals. Consequently, the emphasis
in the rest of this discussion is devoted to describing an
architecture in which much of the large base of existing
software can be incorporated for collaborative use.

This approach is practical only if existing single-user
applications can be incorporated with few, if any,
modifications to those programs. To meet this requirement,
we are developing a set of generic functions that can be
attached to existing applications. These functions include
hyper/inking between anchored points within different
applications; a shared-workspace conferencing function that
can be invoked from any application or group of
applications; and tools for recording and recreating the
behaviors of group members for studying the collaboration
process from a human point of view.

The architecture of the ABC system can be divided into three
large components, as shown in Figure 1. A Distributed
Graph Storage System (DGS) [11], provides the hypermedia
data model implemented in a distributed architecture. A set
of browsers and an extensible set of existing application

model of the system. Section 3 provides an overview of the
architecture. After that, individual components are described
that support generic collaboration functions. Section 4
describes the Generic Function Manager. Section 5 describes
a conferencing facility available to all applications within
the system. Section 6 describes a general hyperlinking and
anchoring component. Section 7 relates this work to other
systems and other research. Section 8 provides a summary
and discusses our future plans.

USER'S MENTAL MODEL

Here we describe the visual appearance of the ABC system
and the user's mental model of it. Much of what gives ABC
its particular character as a system derives from its hyper­
media data model, supported by the underlying DGS and
presented to the user through a set of browsers. Con­
sequently, we begin the discussion with the data model and
then discuss other components the user sees and works with.

Data Model. The basic model for the artifact is a collection
of separate graphs, each consisting of a set of nodes and a set
of links that denote structural relationships between nodes.
A node's content can consist of a block of data- such as a
conventional file- or it may be another graph. By storing
individual graphs as the content of nodes, graphs can be
composed to form a structure that can be viewed both as a
single large, integrated artifact but also as separate objects
that permit multiple users to work concurrently. ABC sup­
ports several different graph types, including trees, lists,
general directed graphs, etc. Finally, a special type of link,
called a hyperlink, is provided to define semantic relation­
ships that would violate the integrity of a graph type if they
were denoted by structural links (e.g., a relationship between
siblings in a tree) and to join separate graph structures.

Virtual Screen Environment. The ABC system runs within
the X Window System environment under the UNIX operat­
ing system. Because the underlying ABC storage system is
based on a hypermedia model instead of a conventional file

programs provide tools for the
user. A third component, shown
in the middle of the figure,
launches browsers and applica­
tions, joins them to the storage
system and to one-another, and
provides a set of generic collab­
oration functions that apply to
all tools. We call this compo­
nent the ABC System Matrix
- in the geological sense of a
surrounding context in which
objects are embedded; in this
case, the objects are browsers
and applications.

....................

system model, it is important to
signal the user that a given win­
dow or application is referencing
the ABC storage system versus
the UNIX file system. We
elected to do this by providing a
separate contiguous area within
the overall X display for the
ABC system and its associated
browsers and applications rather
than marking individual ABC
windows and permitting them to
be intermingled with conven­
tional X windows. Thus, users
have a sense of "entering" and
"leaving" the ABC environment,
which they do simply by mov­
ing the mouse from one area of
the screen to another. We call
this environment a Virtual

In following discussion, we will
focus on the architecture of this
encompassing matrix. Section 2
describes the user's mental

H-+-+-+-+-+1

Figure 1. ABC system components.

196

Screen because it resembles the entire screen in appearance;
it can contain multiple windows within its borders, as
shown in Figure 2; and users may use within it any X
window manager they choose, including one that is different
from that for the rest of the screen [9].

Browsers and Applications. Within the ABC virtual screen,
individual tools display output as X windows. A collection
of some half-dozen browsers written by our project are pro­
vided for developing, navigating, and accessing individual
graph structures within the artifact. A set of familiar applica­
tions, not written by our project, are provided for creating
and editing conventional forms of data, such as text, dia­
grams, spreadsheets, etc., stored as node content in the DGS.
This set of applications is open-ended. Thus, users may
bring into the ABC environment familiar tools of their
choice that can run without modification so long as hyper­
link anchoring capabilities (explained in a later section) are
not required. If anchoring is needed, the application program
must be modified; however, we have tried to minimize these
changes by providing a generic anchor-support toolkit. Both
browsers and applications are opened on the content of
nodes, and the graph or data object they produce is viewed by
the user as being stored "inside" the node.

Generic Function Management. Across each ABC window is
a menu bar that provides access to an additional set of func­
tions common to all ABC browsers and applications. The
functions accessed through this bar, which we call a Generic
Function Manager, include starting, stopping, and anchoring
hyperlinks, and sharing an application or browser in a con­
ference with other users. The same underlying architecture
that supports generic functions also supports the tracking
and replay functions
mentioned above.

ARCHITECTURAL
OVERVIEW

erate sized university research project). Although all of our
development efforts to date have taken place on UNIX work­
stations, the ABC system could, in principle, run on any
computer that supports X. For example, we have demon­
strated the conferencing portion of the ABC system (the
shared windows) between an Apple Macintosh and a UNIX
workstation.

The second principle is the desire to integrate as many exist­
ing applications (e.g., editors, drawing programs, text pro­
cessing utilities) as possible into the ABC system. This al­
lows users to retain significant portions of their traditional
working environment while using the ABC system. There
are two levels of integration within the ABC system. At a
minimum, any X application can be launched and used
within the ABC system. By virtue of executing within the
ABC system, such an application is automatically capable
of being conferenced and having user interactions recorded for
later study. Moreover, one can create and follow node-level
hyperlinks from or to unmodified applications. In this man­
ner, the ABC system adds powerful collaboration functions
to existing single-user applications. Existing applications
that operate on byte streams (e.g., UNIX files) can also be
used to create and modify the contents of nodes in the DGS.
(Any temporary or auxiliary files needed by an application
reside outside the DGS.) A second data integration function,
allowing the contents of UNIX files to be imported into a
DGS object, is also provided. X cut/copy/paste functions
can also be used to move data into and out of applications.

The second level of integration is the integration of anchor­
ing functions (e.g., create anchor, delete anchor, etc.) into
existing applications. This requires modification and recom­

pilation of the appli­
cation. The extent of
the modifications is a
function of the com­
plexity of the applica­
tion. Hyperlinking
and anchoring are dis­
cussed in more detail
below.

The design of the
ABC system has been
driven by two general
principles. The first is
our desire to support
synchronous collabo­
ration over networked
computer systems.
This lead to our adop­
tion of the X Window
System as the soft­
ware platform for the
ABC system. Stan­
dardizing on X also al­
lows us to maximize
the number of hard­
ware and software
platforms that can
support the ABC en­
vironment (given the
constraints of a mod- Figure 2. An ABC Virtual Screen and Generic Function Manager.

Figure 3 shows the
basic structure of the
ABC System Matrix.
It can be thought of as
a pipeline of processes
that filter streams of
X Window System
protocol data. At the
highest level, the
Matrix itself exports
an X server interface
to applications (e.g.,
browsers, editors, etc.)
and an X client inter­
face to an X server.
Therefore the Matrix
can be viewed as an X

197

"pseudo-server." All applications
manipulate their visual interface
indirectly through the Matrix.
Similarly, the X server interacts
with user applications indirectly
through the Matrix. If applications
are "ABC system aware," such as
the browsers we have constructed,

A
B
c
s
y
s
t

they also interact with the graph e
server. For example, screen man- m
agement for the ABC system, that M
is, the placement of windows a
within the larger, encompassing, ~
ABC system window is the re- 1
sponsibility of the Virtual Screen l!_x_-1-_ _:::~===~===~~J__J
component of the Matrix described
in Section 2. The Virtual Screen
is an X protocol filter, i.e., it in­
tercepts and modifies X protocol

in the same way that the window
manager's title bar is created and
managed by the window manager.
The GFM "re-parents" the applica­
tion's window so that the applica­
tion window and the generic func­
tion buttons appear to the user as
a single coherent window. The
GFM maintains one connection
(e.g., one socket) for each applica­
tion displayed within the virtual
screen. Indeed, for each applica­
tion, the X server displaying the
Virtual Screen windows considers
the GFM/application pair as a
single X client with multiple
subwindows (the GFM title bar
and the application window(s)).
The appearance and interaction of
the GFM title bar is customizable
on a per-user basis. That is, how
the user invokes various opera­
tions and how feedback is dis­
played are not prescribed, but can

data sent between an X client used - X Protocols
~ Anchonng Protocols

in the ABC system and an X -.... oGs Protocols

server. The modifications re-parent
clients to the virtual screen instead
of the root window of the worksta­
tion console. (The Virtual Screen

Figure 3. Architecture of the ABC System Matrix.

is simply a window as far as the X server is concerned.) As
is the case with all our protocol filters, the Virtual Screen
filter modifies very few of the messages (typically less than
10%) that are sent between an application and an X server.

Starting at a user application and working towards an X
server, an application's X protocol data stream is first pro­
cessed by the ABC Generic Function Manager (GFM). This
is a program that the user interacts with to create confer­
ences, or to create or manipulate hyperlinks. The output
from the GFM (a valid X client protocol stream) is pro­
cessed by a second protocol filter that implements conferenc­
ing. A third filter implements the user interaction protocol
recording. A final filter is the Virtual Screen. The filters that
implement the conferencing and screen management are de­
scribed in greater detail in separate sections below. The filter
that implements user interaction protocol recording is simi­
lar to the conferencing filter. The implementation of an­
chored hyperlinks is distributed between individual user level
applications and the GFM. This is also discussed below.

GENERIC COLLABORATION FUNCTION
MANAGEMENT

Any application that is used within the ABC environment
(i.e., within a Virtual Screen) is transparently endowed with
conferencing, hyperlinking, and user interaction recording
functions. By modifying applications, anchoring function
can also be added. These functions are referred to as generic
collaboration functions. These functions are invoked and
controlled via an entity called the Generic Function Manager
(GFM). To the user, the GFM appears as a title bar that re­
sides between each top level window of an application and
the associated window manager's title bar as shown in
Figure 2. Our title bar is created and managed by the GFM,

be defined in a GFM initialization
file. We do, however, provide reasonable defaults. The GFM
is capable of managing buttons, pop-up and pull-down
menus, dialogue boxes, miniature icons, etc. The GFM
provides a framework for extending the an application's
capabilities without disturbing its user interface.

CONFERENCING

Conferencing refers to the use of an application by multiple
users simultaneously. In the Matrix, conferencing is imple­
mented by (1) distributing the visual interface of an applica­
tion to one or more remote workstations thereby allowing
remote users to view the interactions of other users with the
applications, and (2) providing input paths from each con­
feree back to the application so that any participant in the
conference may interact with the application. Since all ap­
plications we currently use within the ABC system are
single user applications, it is not possible in general to
allow more than one user to interact with a conferenced
application at any one time. The Matrix supports a simple
protocol for negotiating access to a conferenced application.
The basic paradigm of group input to a conferenced applica­
tion is that of "passing the keyboard." The model is one of
cooperative collaboration wherein users might gather in an
office and take turns interacting with an application by pass­
ing the keyboard among themselves. While this paradigm is
certainly not a panacea for group conferencing, it is necessi­
tated by our desire to work with existing single user applica­
tions. The conferencing subsystem requires no modifications
to applications. The conferencing subsystem is based on our
earlier work on a stand-alone conferencing system [1, 3].

One X protocol filter in the Matrix is dedicated to imple­
menting conferencing. The filter records every message an
application sends to an X server that effects the state of the

198

The idraw window in Figure 2 has been placed into a conference. A remote user (left) joins the conference by contacting an ABC
conference server via a Matrix-provided conference management application and selecting a conference from a menu of on-going
conferences. An exact copy of each window of each application in the conference then appears on the remote user's virtual screen (right).

Figure 4. An example of joining a conference.

internal data structures the server maintains for the applica­
tion's visual interface. (In more technical X terms, the filter
records all X resources created by the application.) When an
application is used in non-conferenced mode (the common
case), the conferencing protocol filter passively records
salient X information that is later used to create a copy of
the application's visual interface on a remote machine.

A conference is initiated when a user presses the conference
button on the GFM menu bar for an application. The GFM
then contacts a global conference server and registers the
user's name, unique machine identifier (e.g., its internet ad­
dress), and the name of the application in the conference.
The user can then invite other users to act as participants in
the conference by notifying them of the existence of this
conference. Participants join the conference as shown in
Figure 4. In the present system there are no access control
mechanisms for joining con­
ferences. The initiator of a
conference may, however,
eject a participant from a con­
ference at any time.

- XProtoCOI5

sistent with the view on the conference originator's worksta­
tion. When an application is placed in a conference, it is
actually conferenced as an GFM/application pair. This is in
keeping with our "passing the keyboard" paradigm of
interaction. By including the GFM in the conference, remote
participants can create, for example, hyperlinks to and from
data object viewed in conferenced applications. A network
connection is established between the remote surrogate
process and the conference originator's protocol filter and all
X messages sent by the application are distributed to all
surrogate processes. In addition, the original X filter and the
surrogate process speak a Matrix conference control protocol
that negotiates access to the input path back to the
application from remote users.

Two paradigms of conferences are supported in the ABC sys­
tem. The first is conferencing of individual applications

When a remote participant
joins a conference, the remote
participant's conference man­
agement application creates a
process on the participant's
workstation that acts as a sur­
rogate for the conferenced ap­
plication as shown in Figure
5. The surrogate application
is responsible for maintaining
a visual image of the confer­
enced application on the par­
ticipant's display that is con-

- X & Conferenang Protocols

(described above). The second
is conferencing of Virtual
Screens. The latter is useful
for providing a coherent vi­
sual context for conferences
that involve multiple applica­
tions. Conferences in the
ABC system are "light­
weight" in the sense that they
can be started at any time. For
example, if a user is editing a
document and would like to
review a section with a col­
league, she could initiate a
conference around her current
editing session, independent
of how long she had been us­
ing the application in non­
conference mode. When the

Conference Originator Conference Participant

Figure 5. Conference architecture.

199

colleague joins the conference, a window will appear on
their workstation that is identical to that of the initial user's.

In order for conferences to be effective, higher bandwidth
communication media than simple "talk" windows are
required. We are interested in providing integrated digital
voice and video communication links to the workstation and
are pursuing this in a parallel research effort [7]. For high­
bandwidth communication in the present system we use an
in-house broadband CATV system.

HYPERLlNKlNG AND ANCHORING

One of our major goals is to provide a mechanism for adding
anchored hyperlink capabilities to existing X applications. A
hyperlink in the ABC system is a directed reference from a
node in one graph to a node in the same or another graph.
Either the source or the destination endpoint (or both) of a
hyperlink may be unanchored (in which case the endpoint
refers to a node as a whole) or anchored (in which case it
refers to some portion of the content of a node). For exam­
ple, suppose node 1 is a text document and node2 is a draw­
ing. If a hyperlink relates a paragraph in node 1 to the entire
drawing represented by node2, the source of that hyperlink is
anchored to the paragraph, and the destination is unanchored
[11]. Examples of hyperlinks and anchors are presented in
Figure 6.

The implementation of anchors for hyperlinks requires ap­
plication source code modifications. We wish to minimize
this effort by keeping per-application code changes small and
reducing the need to understand the implementation of each
application in detail. We also want to make it possible to
invoke hyperlink operations without changing the user inter­
faces of existing applications and window managers (e.g.,
key and mouse bindings). This minimizes interference with
the user's established work habits. Moreover it enables hy­
perlink functions to be invoked similarly for all applica­
tions. In order to make anchors fit the semantics of each ap-

Document

Reference from
one place in a
section to a
another in the
same section.

Reference from a
paragraph in one
document to a
paragraph in the
same document.

plication, we do not prescribe how any particular application
should define or display anchors, or how the user should
specify them.

Hyperlinking operations are invoked via buttons on the
GFM titlebar. Unlike conferencing, hyperlinking functions
require interactions between the user application (the GFM
client) and the GFM. For example, for the Create Hyper/ink
function the GFM should just notify the client that the
Create Hyperlink operation was invoked and wait for
feedback on the success or failure of the operation; it then
displays the feedback as the user-defined means of invoking
the function and user-defined feedback specifications dictate.
Other operations, e.g., Follow Hyper/ink, might require the
GFM to ask the client for information to display in a menu
or dialogue box; in this case a list of hyperlinks associated
with the currently selected anchor. The user would then
select one of the links and the GFM would tell the client
which was selected and wait for feedback as before. A
hyperlinking example is illustrated in Figure 7.

Most X-based applications already have some means of
selecting and highlighting items to be operated upon; most
likely these same items are appropriate anchors for the data
manipulated by the application. In this case we do not need a
new mechanism for specifying anchors; we only need to add
new operations on selected data (e.g., Create Anchor, Follow
Hyper/ink, Modify Hyper/ink). These operations are invoked
via the GFM as described above. It is the application's
responsibility to maintain the values of anchors created by
the user. Unfortunately, existing mechanisms for selecting
items typically assume that such selections are not
persistent; that is, there is only one selection and it can be
discarded when the data is edited or the application exited.
Anchors, however, must be persistent. Their values must
remain constant (or be modified in intuitively appropriate
ways) when the data is edited, and they must be maintained
between application invocations. This is the area in which
the application implementation must be understood in the

Reference from every
occurrence of a word
in a paragraph to the
definition of the word
in a glossary.

••
Reference from the
definition of a word
in a glossary to every
occurrence of the
word in a paragraph.

Figure 6. Examples of anchored hyperlinks in and between graphs.

200

be met by
..,.,_.,....,.;.;-.,...,.lllnS between the

'::}=~.:,;.:.,,..,...f';'~ proprietary
by the vendOlll,

!lu'~~ver11111!!~ support SNMP
directly. a process performing
this function an SNMP Pro"y Agent,
becauae of its role of providing SNMP access
by proxy. (My justification for choosing
SNMP as a management protocol was
discussed in the previous chapter.)

this :::!~~~Iii
becauae its roie'~f
by proxy. (My jusiiification for choosing
SNMP as a management protocol was
discussed in the previous chapter.)

The second requirement can be met by a
process that maps proprietary interactive
access mechanisms (usually the same
mechanisms mapped into SNMP by the
proxy agent) into TCP, so that all INs can
be accessed interactively via the TCP
prota<:ol. Some commonality is lost here.

The second requirement can be met by a
process that maps proprietary interactive
access mechanisms (usually the same
mechanisms mappc:d into SNMP by the
proxy agent) into TCP, so that aU INs can
be accessed interactively via the TCP
prota<:ol. Some commonality is lost here.

If! st~p one (left), the user is requesting via the GFM tide bar that the next anchor in the document be
htghhghted. The GFM forwards the request to the (modified) ez editor, which inverts the text of the
next ~nchor I"SNMP Proxy Agent"). In step two (center) the user requests that the hyperlink
assoctated wtth the selected anchor be followed. The GFM forwards this request to the ezeditor
which. queries the graph server to de~ermine the node and anchor value at the other end of the
hyperttnk. The GFM then launches the idraw editor on the content of this node and asks the modified
idraw aRplication. to highlight the relevant anchor (right). Note that idraw uses its own highlighting
mechantsm; the idrawanchor (the "SNMP Proxy• oval) is surrounded by small square "handles."

Figure 7. An example of following a hyperlink.

most detail and where the most code changes must be made.
One must either modify the application's internal data
structures to store anchor values, or maintain an anchor table
separate from the application's internal data structures and
modify all editing operations so that they update this table
appropriately.

Creating and modifying hyperlinks requires communication
between multiple applications. The entity performing the
hyperlink operation must gather information as to which
nodes and anchors are to be the endpoints of the hyperlink.
We use the X selection mechanism to effect this
communication. We define five selections: SourceAnchor,
SourceNode, Hyperlink!D. DestNode. and DestAnchor for
hyperlink operations. Ownership of these selections is
obtained by applications when the user performs the
appropriate actions. For example, to create a hyperlink, the
user would put application A in source mode, create or select
an anchor (which grabs the SourceAnchor and SourceNode
selections), put application B in destination mode, create or
select an anchor (which grabs the DestNode and DestAnchor
selections), and invoke CreateHyperlink. The entity creating
the hyperlink would request these four selections and send
the CreateHyperlink request to the graph server. The
Hyperlink!D selection is then grabbed by the entity creating
the hyperlink for use in subsequent M odifyHyperlink
operations. Splitting Anchor selections from Node
selections simplifies the creation of unanchored hyperlinks
and adding or deleting anchors to or from existing
hyperlinks.

In summary, existing applications must be modified to
maintain anchors, communicate with the GFM to provide a
user interface to new operations, communicate with the
graph server to effect hyperlink operations, and communicate

with other X clients via hyperlink X selections. With the
exception of anchor maintenance, these code modifications
can be made by simply inserting calls to library routines at
the appropriate places. We also expect to be able to facilitate
anchor maintenance by providing a set of library routines to
perform common functions.

RELATED WORK

The collaboration-support environment based on Suite [5]
focuses on flexible methods for coupling users' views of
shared objects. Where most shared-workspace systems
strictly replicate an application's windows for all users, the
Suite architecture allows each view to be tailored in several
dimensions. Views may be customized to specify which
values in shared windows are coupled (change when the
underlying object changes), how "committed" a value must
be before it is used to update a view, when and in which
views changes are reflected, how formatting may differ
among views, and which window elements (e.g., scrollbars,
menus) are coupled. Applications (e.g. text or line drawing
editors) must be written as multi-user programs using the
Suite environment.

Rendezvous [10] is another framework specifically designed
for creating multi-user programs. A rule and constraint
system provided in an underlying UIMS is used to control
three major aspects of sharing: how underlying objects are
shared, how views of objects are shared, and how input
(update) access to objects is shared. These appear to be
similar in spirit to Suite facilities (but perhaps less
flexible). Rendezvous also provides a session (conference)
manager for dynamic creation, joining, and leaving a multi­
user application. Another framework for creating shared
multi-user applications is MMConf [4]. MMConf focuses

201

on conferencing issues such as conference management,
input access (floor control), and distribution of shared data
files. No functions for tailoring views are provided.
"Conference-aware" applications are created using the
MMConf toolkit for these functions.

On the surface, ConversationBuilder [8] has greater similar­
ity to ABC - it supports artifacts with hypertext storage
and browsers, can accommodate conventional editors such as
Epoch and idraw, and does tracking of user interactions. It
represents, however, a fundamentally different approach to
collaboration support. ConversationBuilder is best
understood as a framework for creating a coordination system
using protocols based on speech/act theories. Protocols are
templates that define roadmaps for various interactions
among group members. For example, process protocols
coordinate activities and checkpoints in a goal-oriented
process such as joint paper writing; discussion protocols can
be invoked to resolve questions or issues; and transient
protocols can be used for simple ad hoc coordination.

Suite, Rendezvous, and ConversationBuilder all take a
strong role in structuring the user's working environment,
either by view tailoring and control over sharing, or by
activity coordination. In contrast, ABC takes a "hands off'
approach; it provides a suite of tools useful in both
synchronous and asynchronous activities by group members
but takes no direct role in tailoring or coordinating user
interactions. Unlike MMConf, Suite, and Rendezvous, the
only toolkit needed in ABC is for extending conventional
applications to maintain anchors for hyperlinks.

SUMMARY

The UNC Collaboratory Project is concerned with both the
process of collaboration and with computer systems to sup­
port that process. Because so many of the problems associ­
ated with collaboration derive from the fundamental problem
of constructing a coherent, integrated whole from a collec­
tion of individual contributions, we have attempted to build
a comprehensive system that supports equally collective,
synchronous work and individual, asynchronous work. In
this discussion, we emphasized the second issue by focusing
on the ABC System Matrix that provides an infrastructure in
which an extensible set of browsers and existing single-user
applications can be incorporated. We have purposely and
with considerable effort taken a minimalist approach to
make the system approachable. We were able to do this by
capitalizing on the generality of the X Windows System
architecture and by developing a set of generic functions for
conferencing, hyperlinking, and tracking, that gracefully
extend familiar application programs.

Our future agenda includes incorporating voice and, perhaps,
video into the workstation, extensions to the set of generic
functions, and increasing performance and robustness to
support actual use studies.

REFERENCES

1. Abdel-Wahab, H. M. and Feit, M. A. XTV: A
framework for sharing X Window clients in remote
synchronous collaboration. In Proceedings, IEEE
Conference on Communications Software:
Communications for Distributed Applications &
Systems, Chapel Hill, NC, April, 1991, pp. 159-167.

2. Brooks, F. P., Jr. No silver bullet: Essence and
accidents of software engineering. IEEE Computer, 20,
4 (April1991), 10-19.

3. Chung, G., Jeffay, K., and Abdel-Wahab, H. Dynamic
Participation in a Computer-based Conferencing
System. Computer Communications (to appear).

4. Crowley, T., P. Milazzo, E. Baker, H. Forsdick, and R.
Tomlinson. MMConf: An Infrastructure for Building
Shared Multimedia Applications. In Proceedings ACM
CSCW'90 Conference, October 1990, pp. 329-342.

5. Dewan, P. and R. Choudhary. Flexible Interface Cou­
pling in a Collaborative System. In Proceedings ACM
CH/'91, New Orleans, LA, April1991, pp. 41-48.

6. Holland, D., Reeves, J. R., and Larme, A. The
construction of intellectual work by programmers.
Dept. of Computer Science Tech. Report 92-013
(March 1992), Univ. of North Carolina, Chapel Hill,
NC, 27599.

7. Jeffay, K., Stone, D.L., and Smith, F.D. Kernel
Support for Live Digital Audio and Video. Computer
Communications, 16, 6 (July 1992), pp. 388-395.

8. Kaplan, S.M., A.M. Carroll, and K.J. MacGregor.
Supporting Collaborative Processes with Conversation­
Builder, Proceedings ACM Conference on
Organizational Computing Systems, Atlanta GA,
November 1991, pp. 69-79.

9. Lin, J.K. Virtual Screen: A Framework for Task
Management, The X Resource, 1, 1 (Winter 1992), pp.
191-198.

10. Patterson, J.F., R.D. Hill, S.L. Rohall, and W.S.
Meeks. Rendezvous: An Architecture for Synchronous
Multi-User Applications, Proceedings ACM CSCW'90
Conference, October 1990, pp. 317-328.

11. Shackelford, D. E., Smith, J. B., and Smith, F. D. A
Distributed Graph Storage System for Artifacts in
Collaboration. Department of Computer Science Tech.
Report 92-012 (March 1992), Univ. of North Carolina,
Chapel Hill, NC, 27599.

12. Smith, J. B. Collective Intelligence in Computer-Based
Collaboration: An Introduction. Dept. of Computer
Science Tech. Report 92-011 (March 1992), Univ. of
North Carolina, Chapel Hill, NC, 27599.

13. Smith, J.B., and Smith, F. D. ABC: A Hypermedia
System for Artifact-Based Collaboration. Proceedings
Hypertext '91, San Antonio, TX, December 1991, pp.
179-192.

202

