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0. Abstract 

Our group is building an artifact-based collaboration support system and studying the 
collaborative process. This paper discusses the data storage component of the system It supports 
a graph-based data model, conservatively extended to meet hypermedia requirements. It is 
implemented in a distributed architecture so data may be stored in multiple locations and moved 
among locations . Issues addressed in both the paper and the system include: scale, logical and 
physical partitioning, protection, concurrency, and support for an extensible set of user 
applications. The discussion emphasizes issues and system aspects concerned with collaboration 
and support of multiple concurrent users. 



1. Introduction and Motivation 

Our research focuses on the process of collaboration and on technology to support that 
process. We are concerned with intellectual collaboration required for designing software systems 
and other similar tasks in which groups of people work together to build large, complex structures 
of ideas. The work of such groups -- either directly or indirectly -- is concerned with producing 
some tangible artifact 

The essence of a software entity is a construct of interlocking concepts: data sets, 
relationships among data items, algorithms, and invocations of functions. This essence is 
abstract in that such a conceptual construct is the same under many different 
representations. It is nonetheless highly precise and richly detailed. I believe the hard part 
of building software to be the specification, design, and testing of this conceptual 
construct, not the labor of representing it and testing the fidelity of the representation. 
[Brooks, 1987] 

According to Brooks, the fundamental problem in software development is building the 
large "conceptual construct." To facilitate communication among group members that create the 
construct, groups generate a variety of interrelated elements of the artifact. For software systems, 
the artifact may include concept papers, architecture, requirements, specifications, programs, 
diagrams, reference and user manuals, as well as administrative documents; for other tasks, the 
artifact may contain these and/or other kinds of information. The artifact is created by the group 
both for its own use and as part of the final product. Our research in the UNC Collaboratory 
project studies how groups merge their ideas and their efforts to build an artifact, and we are 
developing a computer system (called ABC for Artifact-Based Collaboration) [Smith & Smith, 
1991] to support that process. 

In the following sections we discuss the storage system for group artifacts being developed 
as part of the ABC system. The storage system has a distributed implementation and is called the 
ABC Distributed Graph Storage System ( ABCIDGS, or just DGS when the reference is clear from 
the context). Section 2 gives key requirements for the system; section 3 describes the data model; 
section 4 describes group-related issues; section 5 sketches the system implementation; section 6 
describes current status; section 7 relates our design to other work, and section 8 gives a summary 
and conclusions. 

2. Requirements for Storing Group Artifacts 

In this section we give a brief summary (in no particular order) of key requirements that 
have shaped our storage system design. 

Permanent (persistent) storage-- obvious but fundamental. 

Represent structural and semantic relationships -- all data elements that comprise the artifact 
have implicit structural and semantic relationships. For example, structural relationships in a 
document show ordering among chapters, sections, and paragraphs; semantic relationships can 
link an idea introduced in a concept paper to its description in requirement and design documents, 
to its implementation in a program, and to an explanation in a users' manual. Our requirement is to 
make such relationships explicit to aid in locating information and in maintaining coherence, 
completeness, and correctness of the materials. For this reason, functions provided in the storage 
system should support hypermedia applications such as browsers and other navigation aids [Haan, 
1992]. 
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Comprehensible organization -- as artifact size increases and relationships become many 
and complex, users can lose their orientation and become "lost in hyperspace" [Halasz, 1987]. To 
avoid this condition, users must be able to isolate small, coherent portions of a large artifact. Once 
the artifact has been organized into smaller structures, the pans can be understood more easily and 
then related to each other via semantic links. 

Sharing with protection-- because the artifact effectively constitutes a form of collective 
memory for a collaborative group, it must be sharable by all. There are, however, good reasons to 
make it possible to authorize or deny access to selected elements of the artifact by individuals or 
sub-groups. 

Private data -- these are created by individuals for their own use. Examples include 
personal notes, annotations on documents, and correspondence. Users should be able to create 
and protect such data and still establish relationships among them and the public artifact. 

Concurrent access-- since collaborators must work together, it is often necessary for more 
than one user to read or modify some part of the artifact at the same time. Data consistency 
semantics in these cases should be easily understood and provide minimal barriers to users' access 
to the artifact. 

Responsive performance -- sufficient to support interactive browsing of the artifact is 
required. · 

Scalable -- we are concerned about scale in two respects: the number of users in a group 
(and consequent size and complexity of the artifact), and the geographic dispersion of group 
members. For small software design teams (5-10 people) working over months or years, we 
estimate that artifacts comprised of 0( 1 0,000) elements will be needed. A system that can support 
industrial software development will require at least two orders of magnitude greater capacity, and 
perhaps more for defense, aerospace, and other large systems efforts [Malcolm, 1991]. To be 
scalable, it must be possible to distribute the system over available processing and network 
resources and to add resources incrementally as necessary. To achieve this distribution, users 
should be encouraged to organize the artifact into manageable elements. This is also true from the 
standpoint of human comprehension as well as capacity and performance. 

Available -- if data becomes unavailable because of system faults, users may be severe! y 
impacted. The system must, therefore, be designed to tolerate most common faults and continue to 
provide access to most or all elements of the artifact. Replication of data and processing capacity 
will be required to achieve high availability. 

User and artifact mobility-- users will need to change locations and system administrators 
will need to move data or processing resources to balance loads and capacity. The system should 
support this mobility in a way that is transparent to users and application programs. There should 
be no location dependencies inherent in the storage system. 

Support/or applications-- many applications used by a group are likely to be existing tools 
such as editors, drawing packages, compilers, and utilities, which use a conventional file model 
for persistent storage. The system should make it possible to use such tools with minimal or no 
changes. New applications developed for use with the system should not be dependent on any 
particular platform for implementation. 

3. Data Model 

Our data model addresses the anifact storage requirements of groups collaborating to create 
complex constructs, especially groups designing software systems. The data model is especially 
well suited for conventional hypermedia applications (e.g., navigational browsers), but it also 
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supports new approaches to applications such-as document formatting and printing, make, and 
version control. 

The most basic element of artifact storage is a node. Nodes are repositories for information 
stored either as node attributes or as a node content variable. Node attributes are named variables 
of arbitrary type and size. Some attributes (such as creation time and size) are maintained 
automatically by the system. There may also be an arbitrary number of application-defined and 
maintained attributes. Node content is used in two ways. First, a node can contain any data 
represented as a stream of bytes (the familiar model used in conventional file systems). For 
example, a node's data content could be text, bitmap, line drawing, digitized audio and video, 
spreadsheet, or any other data. Applications that read and write conventional files can read and 
write node data in our system with no changes. Second, a node can contain more structured forms 
of data, which will be described in the paragraphs that follow. 

Abstractions for grouping related nodes and composing them hierarchically are essential for 
managing large artifacts. In our model, nodes are grouped into named collections and these 
collections are stored as the content of some node (thus, the value of a node's content variable is 
either a collection of nodes or an arbitrary stream of bytes as described above). This recursion 
provides a simple but powerful model for composing a complex artifact from smaller elements. It 
is not, however, enough. 

Many essential relationships among parts of an artifact are structural, especially those that 
indicate access order (e.g., if a group of nodes store parts of a document, it is necessary to 
represent the structural relationships of sub-sections to sections, sections to chapters, and chapters 
to the document). A natural expression of structural relationships is a graph. For this reason, all 
collections of nodes are really graphs-- a named set of nodes and links (edges). To reinforce the 
essential role of composition, the only way a graph can be created is to make it the content of a 
node and every node must be contained in a graph. 

A link in a graph represents a structural relationship between two nodes. Because we 
consider structure in artifacts to be very important, we adopt the terms structural-link (abbreviated 
S-link) and structural graph (S-graph). A common case, however, is an S-graph containing nodes 
but no links; it represents a set of nodes having non-structural relationships. Nodes and S-links 
can be contained in more than one S-graph simultaneously but must be contained in at least one. 
Nodes may have arbitrary numbers of in-coming and out-going S-links. S-links have a direction, 
although traversal is supported in either direction. Like nodes, S-links can be repositories of 
information stored in attributes and a content variable. 

S-graphs are strongly typed in terms of a set of predefined graph types. The current data 
model includes five types: general directed graphs, connected graphs, acyclic connected graphs, 
trees, and lists. The system will guarantee that typed S-graphs are always in a state consistent with 
their type. No operations are permitted that would violate the integrity of the type. For example, 
an application is not allowed to create a cycle in an S-graph of type tree. Typed S-graphs are 
necessary to address issues such as integrity, consistency, and completeness of the artifact 

The value of these rather abstract mechanisms is best motivated by examples. The data 
model encourages users to decompose a large artifact into small S-graphs related by composition. 
For example, Figure 1 shows how a software system could be structured. This organization 
improves human comprehension and increases potential for concurrent access to the program's 
components. Many common structures, such as documents, can be represented by trees. 
Unfortunately, large documents result in large trees, making it difficult to visualize and browse the 
document or to allow multiple users concurrent access for making revisions. Figure 2 illustrates a 
partitioned document structure and Figure 3 shows a more complex example -- organizing public 
and private parts of an artifact. 
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Figure 2: Using Node Content and Structure to Represent a Document 

While composition and structure are necessary for organizing complex artifacts, they are 
not sufficient •• many useful relationships among parts of the artifact cannot be modeled as 
structure. Some examples are: references in a document to glossary entries, figures, or related . 
sections; private annotations made by a reader but not intended to be part of the document; 
declarations for classes referenced in an object-oriented program; and references in a specification 
document to a requirements document In each case, the relationship cuts across normal structural 
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boundaries. To express these relationships, we define a more flexible kind of link, called a 
hyper/ink (H-link), that can represent any semantic relationship between two nodes. H-links are 
used for associations between nodes in different S-graphs or non-structural relationships between 
nodes within the same S-graph (see Figure 4). Links similar in function to H-links are usually the 
key elements of conventional hypertext systems. H-links and the nodes they link are grouped into 
hypergraphs (H-graphs). An H-graph is a set ofH-links and nodes such that the set of nodes is 
exactly equal to the set of all source and target nodes for the H-links. There are no type constraints 
on H-graphs. 
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Figure 3: Organizing Public and Private Parts of an Artifact 
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H-links alone are often not sufficiently precise. For example, a group of users might want 
to use a node to store the glossary of terms common to their project. It would be desirable to create 
an H-link from the occurrence of a term in a document node to its definition in the glossary node. 
Unfortunately, an H-link can link the two nodes which contain the term and the glossary, but it 
cannot link the term itself to its definition. 

S-graph 

H-graph 

Figure 4: H-Links and H-Graph 

To achieve finer-grained H-links, the data model provides the concept of an anchor within a 
node. An anchor identifies part of a node's content, such as a function declaration in a program 
module, a definition in a glossary text, or an element of a line drawing. An anchor can be used to 
focus an H-link onto a specific place within the content of a node. An anchored H-link is one 
which is paired with one or more anchors in its source or target nodes. H-links can be anchored in 
their source node, in their target node, in both, or in neither. Furthermore, an H-link can be paired 
with more than one anchor within the same node and several H-links can be associated with one 
anchor (see Figure 5). Applications are responsible for maintaining an anchor's value so it always 
identifies the same part of the node content even as the content changes. 

In the remainder of this paper, the terms link and graph are used when the discussion 
applies equally to S- or H- objects of these types. 

Finally, the data model includes attributes and values that are associated with nodes, links, 
and graphs. Some attribute variables for nodes and links are called common attributes because 
their values are the same in all contexts, i.e., the attribute value is the same no matter how many 
graphs contain the node or link (common attributes can also be defined for graphs). Nodes and 
links also have context-sensitive attributes that are meaningful only in the context of one particular 
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graph that contains the node or link; these are called graph attributes. For example, consider a 
node contained in both a tree S-graph and a list S-graph. A tree browsing application would store 
the position of the node within the tree in a graph attribute for the tree S-graph in terms of its 
relationship to its parent and sibling(s), while a list browser would store the position of the node in 
a graph attribute for the list S-graph in terms of its predecessor and successor nodes. Graph 
attributes have proven very useful for maintaining such context-dependent information for nodes 
that are members of multiple graphs. 

another section. 

Figure 5: Examples of anchored hyperlinks 

All node, link, and graph objects are identified by a 96-bit object identifier (OlD) that is 
universal and unique. Once an object is created, its OlD is never changed and the value is never 
reused even if the object is deleted. An OlD is treated as an "opaque" (uninterpreted) value by 
applications and users. An important implication of maintaining an unique, unchanging OlD can 
be seen by considering the semantics of copying objects. Two copy operations for objects are 
supported -- copy by reference and copy by value. Copy by reference just makes a copy of an 
object's OlD; copy by value creates an exact duplicate of an object and creates a new OlD for the 
second object. Copy by value has the side effect that any existing links and graphs refer to the 
original object, not the new copy. 
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4. Group-Related Design Issues 

In the previous section we showed how the data model encourages and supports 
composition of large artifacts from smaller components. Since small graphs are easier to 
comprehend and share, the model encourages users to group their nodes into many small graphs 
rather than a few large ones. Partitioning the artifact improves the storage system's ability to scale 
up to support larger groups by adding capacity incrementally. Moreover, opportunity for 
concurrent access to objects by multiple users is increased by finer granularity. Performance is 
also improved when data can be parceled out for storage near people who need it. This is 
especially important when groups are widely distributed geographically. 

Users occasionally need to access parts of a shared artifact concurrently. A major issue is 
defining appropriate semantics for overlapping operations by two or more users' applications. We 
expect applications will read attribute and content values much more frequently than they will write 
them (in the following discussion, we refer to a user's application that changes an object as a writer 
and one that only reads as a reader). Given strong support for an artifact composed of small 
elements, we expect multiple concurrent writers of an object to be rare. Multiple concurrent 
readers of an object, however, will be common and, furthermore, readers will often need to create 
anchors in node content (e.g., for private annotations or reference links). To create valid anchors, 
an application must be processing the most recent version of a node's content. If a reader is 
allowed to create anchored H-links while a concurrent writer is changing the content of the same 
node, the new anchor values could be incorrect. We have adopted an approach that allows multiple 
concurrent readers to create anchors, but only when there is no concurrent writer. 

To specify allowable concurrent accesses, we define access modes that determine the 
operations that are allowed on a node, link, or graph. Read access allows operations that do not 
change graph membership, linking information, or attribute or content values. To support the 
special case of reading and creating anchored H-links, read access to a node allows anchor creation 
and deletion. Read-no-anchor access to a node allows all operations of read access except anchor 
creation. Read_ write access allows all operations. Before a user's application can access a node, 
link, or graph object, it must explicitly open that object in one of the three access modes. 

We can now specify rules for concurrent opens of a single object: 

• For links and graphs, multiple opens with read access and a single open with 
read_ write access are allowed (as is the weaker case of multiple read opens alone). 

• For nodes, multiple opens with read_no_anchor access and a single open with 
read write access are allowed (as is the weaker case of multiple read and/or 
read]zo_ancfwropens alone). 

• No other cases of opens for concurrent access are allowed. 

Changes to an object are not visible to any applications with overlapping opens of the 
object until it is closed by the writer and then only to applications that open it after the close 
completes. Because graphs and nodes are opened independently, the system encourages browsers 
that read structure and semantic relationships (in graphs) and applications that write content (in 
nodes) and vice-versa. The greatest concurrency among applications and browsers is achieved in 
these cases. 

An ideal storage system for group artifa,cts would create the abstraction of a central, unique 
copy of each object which can be shared by all users simultaneously (an arbitrary number of 
concurrent readers and writers). To maintain this abstraction, each update should be synchronized 
with all viewers of the object. This capability is an open research problem and, consequently, the 
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first version of our system provides a much weaker guarantee. Future versions will approximate 
the single copy illusion with increasing fidelity. 

Groups can control access to parts of the artifact by specifying access authorizations for 
node, link, and graph objects. Authorizations are expressed in an access control list stored with 
each object. An access control list maps names of users or groups of users to categories of 
operations they are allowed to perform on the associated object. No user is allowed to access an 
object unless that user has proper authorization for operations implied by the access mode specified 
on open. Access authorizations are given in Table 1. In addition to access authorizations, users 
can have administrate authorizations for objects. A user with administrate authorization can 
perform operations such as changing the object's access control list. 

Object Type Authorizations and What They Provide 

read read write 
node read anchors, node change anchor values. 

attributes, and content node attributes, and 
content 

I ink read link attributes and change link attributes 
content and content; create/delete 

anchors for the link 
graph read common attributes, change common 

graph attributes of nodes attributes, graph 
and links in the graph, attributes of nodes and 
structure of graph links in the graph, 

structure of graph 

Table 1: Authorizations and what they provide. 

Private views are created by individuals or small sub-groups for their own uses such as 
creating annotations or personal reference links in the shared artifact. Private views should not 
interfere with or clutter the public view of the artifact. Private views are especially important with 
respect to anchored H-links because a node may have more anchors and links than many users 
want to see. In addition, S-graph owners may want to restrict the set of users who have 
authorization to create publicly viewable H-links to their S-graphs. H-graphs are the primary 
mechanism for distinguishing public views from private views. By so grouping links and using 
access authorizations on graphs, users can establish desired levels of control over views of links 
and anchors. 
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5. Implementation Design 

In this section we discuss the implementation of the storage system with emphasis on key 
design decisions. A fundamental decision was to optimize for fast response to the most frequent 
application requests. For hypermedia navigational-style browsers that provide the user interface to 
the artifact, we expect most requests will represent simple queries with bounded scope (i.e., related 
to a single node or link, or to members of one graph). Some examples are: 

• What are all the links from node 6 in H-graph 50? 

• What is the value of attribute "XY position" of node 10 inS-graph 100? 

• What are the sibling nodes of node 25 inS-graph 100? 

More complex queries involving many graphs can also be used but performance may be 
considerably Jess responsive. Content search is not currently supported. 

Given the expected composition of the artifact from small elements and anticipated modes 
of interaction through browsers, we believe many characteristics and access patterns of objects will 
strongly resemble those observed in distributed file systems supporting software teams using 
workstations [Baker, et. al., 1991]. Our working hypothesis is that an effective implementation 
can be achieved by applying design ideas such as local caching, bulk-data transfer, and minimal 
client-server interactions pioneered in high-performance, scalable file systems such as Andrew 
[Howard, et. al., 1988] and Sprite [Nelson, et.al., 1988]. 

The basic structure of the system is shown in Figure 6. An application process acts on 
behalf of a user to read and modify objects. Each host machine rnns a single graph-cache manager 
process that services all applications running on that machine. Application requests are directed 
over local interprocess communication facilities to the graph-cache manager. The graph-cache 
manager maintains a local copy of node, link, and graph objects used by application processes and 
is responsible for implementing all graph operations except for anchor table merging. It is also 
responsible for maintaining the consistency of typed S-graphs. 

When an application opens an object, the graph-cache manager, in turn, opens the object at 
the storage server and retrieves it using a simple file-oriented protocol. The received object is 
converted from its representation in a file to a representation designed for fast access in memory. 
As the application makes requests, the graph-cache manager performs those operations on its local 
copy. Write operations are reflected in the storage server only when the graph-cache manager 
closes the object and returns the file representation to the storage server. Each file retrieved from 
the storage server contains either a whole node, a whole graph, or a group of links. The structure 
of each type of file is shown in Figure 7. Nodes and graphs are stored individually, whereas links 
are grouped according to the graph in which they were created. 

Storage server processes are responsible for permanent storage of data on disk. The file
oriented interface to the storage server is designed to isolate it as much as possible from the 
representation and semantics of objects. The primary responsibility of the storage server, 
therefore, is to store and control access to files indexed by an object's OlD. Storage servers also 
provide services for creating unique OIDs and anchor IDs, and for merging anchor table 
information created by concurrent readers of the same node. 

The storage server must perform several checks before completing an open request. First, 
it must determine whether the user who is running the application has the correct authorizations to 
open the object in the requested access mode. Then, the storage server must determine whether the 
requested access mode is in conflict with any overlapping opens. An open request will fail if the 
user Jacks proper access authorization or if the open conflicts with other opens in progress. 
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Figure 8 shows a more complete view of the system structure with multiple clients and 
servers, including servers that provide protection services and mappings from an OlD to the host 
system that is the custodian for that object. Object location is based on dividing the artifact store 
into non-overlapping collections of nodes, links, and graphs called partitions. Partitions form 
boundaries for administrative controls such as space quotas, load balancing among servers, and 
replication of data. The partition number of an object is embedded in its OlD but this substructure 
is never made visible outside the storage service. An object must remain in the same partition for 
its entire lifetime because its OlD cannot be changed. We distinguish the partition number of an 
object from its absolute physicallocation(s) and, by introducing a level of indirection, it is possible 
to change the physical location of objects while preserving all link and composition relationships 
with other objects (see Figure 9). We expect, however, that in most cases one storage server will 
maintain both the partition directory and data storage for an object 

6. Current Status 

An initial prototype of the storage system using a database-oriented design was 
implemented in Smalltalk over a year ago. Experiences from constructing and using this prototype 
were invaluable in refining the requirements, data model, and programming interface. The 
performance of this prototype was, however, very disappointing -- it was capable of supporting 
only a very small number of (very patient) users. Given this experience, we recently embarked on 
a reimplementation of the system using the file system-based design described above and 
programmed in C and C++. A prototype usable for developing browsers and other applications 
will be completed by August, 1992. We plan to have a version suitable for distribution to other 
groups by mid-year 1993. 
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7. Review of Related Work 

Although many systems provide some suppon for groups, no system currently suppons 
collaborations among large (10-100 persons), widely distributed groups. Current systems differ 
widely on factors such as the data model supponed, scalability, concurrent reader/writer semantics, 
and protection. Because hypermedia systems and applications provide many functions required in 
our storage system, we will briefly compare ABC/DOS with several hypermedia systems that have 
significant capability for supponing collaborating groups (Interrnedia: [Haan, 92], Y ankelovich, 
1988]; Telesophy: [Caplinger, 1987], [Schatz, 1987]; HyperBase: [Schutt & Streitz, 1990]; KMS: 
[Akscyn, 1988]; Augment: [Engelban, 1984]; and HAM: [Campbell & Goodman, 1988], [Delisle 
& Schwanz, 1986], [Delisle & Schwanz, 1986]). 
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A distinguishing characteristic of a hypermedia system is its data model. While most 
systems include some concept of a collection of objects and a notion of object-to-object reference 
links, each system has its own flavor. For example, Intermedia and DGS provide explicit 
mechanisms for associating links with anchor points within nodes, whereas HyperBase and HAM 
suggest that applications use attributes to store this information. An advantage of the former 
approach is that it allows the storage system to provide guarantees about the consistency of link 
and anchor information (e.g., eliminating "dangling" anchors). 

Table 2 characterizes each of the systems listed above, based on features such as whether 
nodes and links can be collected into named groups (called aggregates), whether these aggregates 
can themselves be grouped, and a description of which object types can be the endpoints of links. 
We also include the Dexter Reference Model (an abstract description of a generic hypermedia data 
model) [Halasz, 1990] in Table 2 even though there is no existing system implementation. 

Suppon for a full spectrum of aggregate types is a distinguishing feature of DGS, 
HyperBase, and the Dexter model. However, in contrast to the last two models, our data model 
disallows links that have aggregates or other links as their endpoints. Whereas Shutt and Streitz 
[ 1990] advocate links to links, we are concerned that this complicates the data model, making it 
more difficult for humans and automated agents to maintain the consistency and completeness of 
artifacts over time. For similar reasons, our data model requires that a link to an aggregate be 
represented using an equivalent but simpler construct, i.e., by creating a link to the node which 
contains the aggregate. As a result, DGS has the full power of aggregates without sacrificing the 
elegance of its graph theoretic data model. · 

Hypennedia Aggregate Object Aggregates of 
System 

Nodes Links 

Inwnnedia Webs Yes Yes 

Telesophy Composite Yes No 
lnfonnation Units 

HyperBao;e Complex Objects Yes Yes 

I 

Dexter Composite Yes Yes 
Components 

Augment Hierarchically Yes No 
Organized Files 

HAM Contexts Yes Yes 

DGS Graphs Yes Yes 

I Can be overcome by usmg cross-conwxt ltnks 
2 Link to node containing agggregate 

Nodes can Links 
be in more can be in Aggregates than one more 

of aggregaw? than one Aggregates 
aggregate 

? 

Yes No No 

Yes No Yes 

Yes Yes Yes 

Yes Yes Yes 

No No No 

Nol No No 

Yes Yes Yes 

Endpoints 
of links 

Nodes 

Nodes, 

'rr=rrates 

Nodes, 
!--inks, and 
I rr"""rrates 

Nodes, 
t..inks,and 

tes 

Nodes 

Nodes 

:-<odes and 
ws2 

Table 2: Data Model Features of Selected Hypermedia Systems 
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Strong!) 
Typed 
Aggre-
gates 

No 

No 

No 

No 

No 

No 

Yes 



Another area in which systems differ substantially is in the reader/writer semantics and 
protection mechanisms that they provide (see Table 3). Many systems have recognized the need 
for flexible protection mechanisms. However, DGS is the only system that provides an 
administrate permission that allows users to assign capability to change access authorizations to 
others. This feature is especially important since the lifetime of the next generation of hypermedia 
data may span decades [Malcolm, et. a!., 1991]. Thus, responsibility for protecting an object may 
change hands many times. 

Hypennedia Concurrent Reader/Writer Semantics Protection of Objects 
System 

lntenncdia Supports multiple users reading and annotating, Provides read, write, and annotate permissions 
and a single writer. First user to write an object that can be granted to users and groups of 
locks out other ootential writers. users. 

Telesophy Supports multiple concurrent readers and writers. could not be determined 
When writers overlap, the last writer completely 
overwrites the work of the others. 

HvoerBa'le could not be determined could not be determined 

KMS Uses an optimistic concurrency method. When a Owner can protect a frame from modification 
writer attempts to save a node, he may be denied or read access. In addition, an intermediate 
because someone else has concurrently written to form allows users to add annotation items, but 
the same node. In this case, the human user must not to modify existing items. 
manuallv merge the two conflictin~: versions. 

Augment Can have multiple readers of documents that have Objects in the Journal are read-only. Access to 
been submiited to the Journal system. Journal entries can be restricted afsubmission . time . 

.HAM could not be delermined Access Control Lists (optional): Access, 
annotate. undate, and destrov uermissions. 

DGS Supports multiple non-annotating readers and a Access Control Lists: Access (read or 
single writer OR multiple annotating and non- read/write) and administrate permissions. 
annotating readers. Applications must declare 

Rather than associate a single annotate their intent at the time that they open an object. 
Intent can be one of: read and annotate; read only; permission with a node, the DGS provides a 

read/write and annotate. more flexible mechanism of associating 
annotate permission with the graphs which 
contain the node. Thus, a user might be 
allowed to annotate a node within his personal 
context at the same time that he is denied the 
ability to annotate the node in a public 
context 

Table 3: Concurrent Reader/Writer Semantics and Object Protection 

These systems also differ in their capability to scale up to large numbers of users (and 
objects) while preserving the illusion of location transparency. Both Telesophy and DGS have 
made scalability a central issue in their designs. However, DGS provides more flexibility in its 
data model and stronger consistency semantics. In addition to Telesophy and DGS, the Distributed 
Hypertext approach of Noll and Scacchi [1991] is also noteworthy since they use hypertext to 
integrate diverse information repositories that are distributed across a wide-area network. 
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Some additional dimensions one could use to compare hypermedia systems are support for 
an open architecture, change notification, and versioning. A system is considered open if it allows 
non-hypermedia applications to be integrated easily (as DOS does). The Sun Link Service [Pearl, 
1989] is also a noteworthy example of an open hypermedia system. We say that a system supports 
notification if it provides methods for users and applications to be notified of actions that are taking 
place in the storage system. For example, a user may wish to be notified when a particular node is 
updated. Despite the importance of notification for distributed, asynchronous collaboration, no 
current system (including DOS) appears to support this well, although some promising work on 
this problem is taking place at Purdue [Dewan, 1991]. Finally, HAM's use of contexts [Delisle & 
Schwartz, 1987] to provide versioning and its notification support are still noteworthy and unique. 

8. Summary and Conclusions 

Collaborative groups face many problems, but one of the hardest and most important is to 
meld their thinking into a conceptual structure that has integrity as a whole and that is coherent, 
consistent, and correct. Seeing that construct as a single, integrated artifact can help. But groups 
must also be able to view specific parts of the artifact in order to understand it and to manage it. 
Our Distributed Graph Storage System is guided by these requirements, along with others 
discussed above. The graph-based data model permits us to both partition the artifact and to 
compose those pieces to build larger components and the whole. The distributed architecture, in 
turn, permits us to build a system that can scale up in terms of the size of the artifact, the number of 
users, and their geographic distances from one-another. 

As we look to the future, additional issues we will explore pertain to wide-area network 
access, content search, notification, graph traversal, and support of a richer set of graph and set 
operations and queries. · 
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