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Abstract 

The various tasks of computer vision dealing with objects, such as 
recognition, registration, and measurement, have typically required the 
intermediate step of finding an object edge, or equivalently the list of 
pixels in the object. This paper proposes a means for characterizing object 
structure and shape that avoids the need to find an explicit edge but rather 
operates directly from the image intensity distribution in the object and its 
background, using operators that do indeed respond to 11 edgeness 11

• The means 
involves a generalization of medial axis descriptions from objects defined by 
characteristic functions to those described by intensity distributions. The 
generalized axis is called the multiscale medial axis because it is defined as 
a branching curve in scale space. The result is stable to calculate and can be 
used to subdivide an image object into subobjects and detail subshapes as well 
as to characterize the shape properties of the objects, subobjects, and detail 
subshapes. 

The dominant train of thinking in object recognition, registration, and 

measurement has been that grouping is based on the local detection and 

tracking of edges. These edges or the regions enclosed by them'are first 

found. Then various measurements are made on the result, such as edge 

curvatures, medial axes, or moments of the object, and the final recognition, 

registration, and measurement are based on these. The difficulty of this 

approach is two-fold. First, from the point of view of physics, for an object 

in an image there exists no edge locus without a tolerance since the object 

can exist only via imaging and visual (here computer visual) measurements 
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which have an associated spatial scale, and thus spatial tolerance 

[Koenderink, 1990b). Second, the design of methods of detection of object 

boundary regions, even with tolerance, has been tried by innumerable 

scientists with limited general success, probably due to the fact that it is 

hard to build global properties into the edge-finding process. 

In addition to the problems of finding edge loci, it is hard to see how to use 

the local measurements that determine edges to get at the global properties 

that have to do with finding an object, such as the relation that between 

opposite points on two sides of an object, called involutes (see figure 1 for 

examples) . 

Medial Properties 

The above difficulties are ameliorated with an encoding scheme responding to 

the opposite object edges simultaneously, sensing the object region 

Figure 1: Involutes: visually related opposite points on an object 

rather than its separate edges. Beginning with Blum [1967), many in the field 

of computer vision have been attracted by a scheme of this type in which an 

object is represented in terms of a medial axis or skeleton running down the 

center of the object, together with a width value at each point on the medial 

axis. Leyton [1984, 1987) has suggested that the long known fact that corners 

and other object boundary locations of locally maximal curvature are 

perceptually important is related to the correspondence of these locations to 

endpoints of these central axes. It has also been noted [von der Heydt, 1984) 

that subjective edge perceptions derive especially strongly from extensions of 

edges from corners, and this idea has been generalized for computer vision by 

Heitger & Rosenthaler [1991). 
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The Blum medial axis is formally defined as the locus of centers of maximal 

disks in the object (see figure 2). As a result every axis point corresponds 

to two (or occasionally more) object boundary points where the maximal disk 

tangentially touches the boundary. These two boundary points appear to 

correspond to each other in a way consistent with the visual percept. The 

medial axis carries with it (in the radii of the disks) straightforward access 

to the angle of the object boundary at each of these two boundary points 

relative to the axis direction at the corresponding axis point. Moreover, the 

curvature of the axis and of the boundary pair relative to the axis is also 

straightforwardly accessible. The maximal disks at axis endpoints select the 

visually important vertices of protrusions via the locations at which their 

disks touch the boundary, and the axis branch points correspond to 

indentations, i.e., branching, in the object itself. 

Figure 2: The medial axis for an object 

Blum also suggested a more general form of the medial axis: the locus of the 

centers of all disks that are tangent to the object boundary over two or more 

connected boundary segments. This global form of the axis includes sections in 

which the tangent disks are external to the object; these sections select 

indentations into the object or equivalently protrusions in the object•s 

background. Global axis sections for which the disks overlap the object and 

its background select symmetries of larger width than the object, for example, 

the longer symmetry of a rectangle. 

Mult iscale ('..eomet ry Detectors 

Many investigators have suggested that grouping into objects must be based on 

measurements in scale space, i.e., by sets of detectors that sense a regional 

rather than curvilinear (e.g., edge) property, with each detector sensing t~e 

same property but at different spatial scales. Among the detector kernels 

suggested have been derivatives of Gaussians [Koenderink, 1990a], differences 

of Gaussians [Crowley, 1984], Gabor functions [Daugman, 1980; Watson, 1987], 
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Wigner operators [Wechsler, 1990], and wavelets [Mallat, 1989, 1991]. The most 

persuasive case for how to choose the form of receptive fields, by ter Haar 

Romeny et al [1991], is that any visual system, including computer vision 

systems, that must be invariant to translation, rotation, and size change must 

have multiscale receptive fields which are solutions to a diffusion equation, 

e.g., linear combinations of derivatives of a Gaussian. These receptive 

fields or combinations of them can be thought of as measuring geometrical 

properties such as "edgeness", "cornerness", and "t-junctionness", in many 

.cases with an orientation. The Laplacian of the Gaussian has certainly been a 

popular choice [Marr, 1982]. 

The Mpltjscale Medial Model 

Collectively the above ideas have led us to the development of a new model for 

visual grouping and description of object shape. This model appears reasonable 

not only for computer vision but also at the neural level as a model of human 

visual processing. It produces a group of global-form medial axes by 

rnultiscale, regional, two-edge-engaging geometric measurements. It is based on 

a set of measurements R(x,s) in scale space (location (x) x scale (s)) that 

have a particularly strong response relative to nearby positions and scales 

when the measurement has a strong contribution by two opposing boundary 

regions at a distance s from x. That is, R measures "medialness" in the sense 

that points which are medial between two boundaries and have a scale 

corresponding to the distance between the medial point and the boundary give 

strong responses. An example of R(x,s) from the literature is the difference 

of Gaussians normalized by its absolute value integral [Crowley, 1984], where 

s is the standard deviation of the larger Gaussian. Other response functions R 

that we find promising will be given in the next section. 

The notion of having a strong response relative to nearby positions and scales 

is formalized to mean a sort of ridge in scale space (see figure 3), as 

follows. A medial point :z: should have two properties. First, a slightly 

larger or slightly smaller scale should give a smaller response there, and 

second, this response should form a ridge in image space. To be more precise, 

1) R(x,s) must be a relative maximum with respect to s for that fixed x. 

Let M be the set of (:z:, s) such that R(x,s) l:z: is a such a relative 

maximum with respect to s. Partition M into its connnected subsets, Mi, 

i = 1,2, In each Mi there exists a connected region of image points 

x not necessarily covering the whole image space, and there exists at 

most one scale s associated with any such position :z:. 
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2) For each Mi, project R(x,s) for (x,s) E Mi onto x to form the image or 

subimage Rmaxi(x): Rmaxi(x) = R(x,s) for (x,s) E Mi. Then (x,s) is in 

the multiscale medial axis if x is a ridge point in any such portion of 

Rmaxi(z) for any i. 

Among the many non-equivalent ridge definitions in literature, we use the 

definition that a ridge point of a function f(x) is a place where a level 

curve of f has maximal curvature, i.e, a place where the orientation of the 

gradient of f changes maximally along the direction perpendicular to the 

.gradient. 

Figure 3: Scale space medial axis traces for an object. Dotted traces are less 
strong than solid traces. 

Such a scale-space ridge is a possibly branching trace in scale space {x,y, 

scale) . The x,y positions of these ridges form a medial axis for an object, 

and their scales specify its width at each axis point. Just as with the Blum 

medial axis, width (scale) angles and curvatures (boundary orientation and 

curvature relative to the axis) are straightforwardly available. Also, 

excitatory connections along the ridge and inhibitory connections across the 

ridge should produce subjective edges in the appropriate way. Note that this 

operation applies to grey scale objects with fuzzy edges as well as those with 

sharp edges. 
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As seen in figure 3, the unbranching component of the axis at the largest 

scale describes the gross orientation and width properties of the object. It 

establishes the boundary of the object only to a tolerance proportional to the 

width of the object. The branches into smaller scales correspond to smaller 

boundary detail (see figure 3) or objects within the main object (see figure 

4), either with boundary tolerance proportional to their widths. Yet tighter 

tolerance on the boundaries can be obtained from smaller scale operators 

responding to single boundaries within the boundary regions associated with 

the medial ridge. 

Fig~re 4: Scale space medial axis traces for an object within an object. 
~otted traces are less strong than solid traces. 

Medial response f~~ctions can be tr.ought of as produced via an axis-centered 

opera~or or an edge-centered operator. An axis-centered operator is ce~tered 

at a point that responds to edgeness at some range of distances from it. An 

edge-centered operator measures edgeness of some orientation at a given sca:e 

and contributes to a medial response at that scale but at a distance frcm tte 

meas:..:.re:nent point proportional to the scale of rneas:..:::-e:ne::t a:-:.d in a di::e.:tic:-. 

pe:::-pe:1dicular to the orientation at which the edgeness was measured (see 

fig':..lre 5). An example of the first approach is that based on the ncrrr,alized 

Laplacian of a Gaussian (Crowley [1984] uses a similar normalizaticn on a 
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difference of Gaussians) . The second approach has the flavor of a Hough 

transfor.m -- each point is voting for medial points in scale space. 

Figure 5: Two examples of the effect on the response function of an edge­
centered response at an orientation. The circle indicates the scale of a 
directional derivative and the arrow its orientation. The heavy dots indicate 
the center of the region where the result is applied as votes. Note that 
derivatives at any point are taken in all orientations, including the non­
orthogonal ones shown above. 

Among the axis-centered operators that we are investigating are the Laplacian 

of the Gaussian at the scale in question (i.e., the trace of the Hessian at 

the selected scale}, the maximum over directions of applying the second 

directional derivative of a Gaussian (i.e., the maximum eigenvalue of the 

Hessian at the selected scale), the sum of the the squares of the eigenvalues 

of the Hessian at the selected scale (sometimes called the deviation from 

flatness), and the magnitude of the determinant of the Hessian at the selected 

scale, and, per Crowley, scale-normalized versions of these such that the 

maximal response to a step edge for each position is independent of the 

distance from that edge [Fritsch, 1991]. A multiscale medial axis from a 

scale-normalized LaPlacian at each scale is given in figure 6. Other rotation­

and translation- and scale change-invariant operators can be derived as linear 

combinations of the receptive field sets of Koenderink [1990]. The 

difficulties with such operators is that they cannot analyze an object that 

has contrasts of different polarity at different positions along the boundary. 
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Figure 6: a) Scale-normalized Laplacian response function values, b) scale 
space ridge Rmax(x), and c) multiscale medial axis superimposed on the 
original image. 

The Hough-like approach has been tried with the magnitude of the result of 

applying the first directional derivative of a Gaussian as the vote strength 

[Morse, 1991] . The vote, with weight given by this scaled derivative 

magnitude, is produced for each combination of derivative orientation and 

point location. This vote is fuzzily applied at a distance from that point 

proportional to the standard deviation of the Gaussian in both directions 

along the orientation of the derivative. A scale-space ridge from this 

approach is given in figure 7. 
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Figure 7: a) Response function values derived from magnitude of edge-centered 
derivative of Gaussian, b) scale space ridge Rmax{x), and c) multiscale 
medial axis superimposed on the original image. 

Implementation and results 

The calculation of the response function itself is simply the application of 

various filters, possibly followed by the calculation of a sum or product 

(e.g., to obtain a trace or determinant) of these results at each position. 

All of the response relative maxima across scale are calculated independently 

at each pixel by scanning the response values across scale at that pixel. We 

calculate the ridges in all loci of these relative maxima that are continuous 

in scale space. These ridges are calculated using the geometry-limited 

diffusion approach of Whitaker [1991], with the conductance equal to the 

exponential of the negative square of the gradient of intensity gradient 

orientation. The means of specification of continuity in scale space is still 

being researched. 
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We are applying these analysis techniques to medical images. An example is 

given in figure 8. 

Figure 8: Multiscale medial axis superimposed on an MRI image of the head. The 
response function used is a scale-normalized Laplacian. 

Discussion 

The multiscale medial axis has many fine properties. Like Blum's global medial 

axis, it 

1) separates object curvature from width properties, thus preserving shape 

measures across small changes in local orientation produced by warping 

or bending, 

2) allows the identification of the visually important ends of protrusions 

and indentations, i.e., points of extremal boundary curvature, 

3) allows the identification of involutes, i.e., visually opposite points 

on the boundary, for a range of scales of symmetry, and 

4) naturally incorporates size constancy and orientation independence. 
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However, unlike Blum's medial axis it provides this information at a scale 

appropriate to the object width, does not require the unstable preliminary 

calculation of a boundary, and is a more stable property of the object. This 

stability derives from the two facts that it is tied to the center of the 

object and so cannot get lost like an edge boundary can, and that it 

incorporates the "noise averaging" inherent in Gaussian convolution, i.e .. in 

considering objects in scale space . 

. The definitions and implementations of the multiscale medial axis all extend 

to three dimensions. 

Moreover, the multiscale medial axis has many potential uses in computer 

vision: 

1) The object-subobject relationships it defines can be computed for any 

image to produce a quasi-hierarchy that can be used in interactive 

computer systems for the fast definition of objects in images [Pizer, 

1989] . These defined objects can in turn serve 3D display and object 

measurement. 

2) The groupings defined by this approach can be used to define object 

inclusion likelihoods that in turn can be used to produce automatic 

measurements of object volumes, e.g. tumor volumes, or other object 

properties such as integrated metabolic function. 

3) The position and scale co-ordinates along the medial ridges and the 

outputs of various receptive fields there can be used as a basis for 

matching of structures in tasks involving registration between objects 

in rather different images of the same anatomy, such as a simulation and 

a portal image in ra.diation oncology. 

Work in all of these directions is proceeding in our laboratory. 
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