
Space resection by collinearity 1

Space resection by collinearity
Mathematics behind the optical ceiling head-tracker

Ronald Azuma Mark Ward
University of North Carolina at Chapel Hill

November 1991

Space resection by collinearity 2

0.0 Abstract

At SIGGRAPH ‘91, UNC Chapel Hill demonstrated an electro-optical tracking system for Head-
Mounted Displays that can track a user inside a room-sized volume. The mathematics that the
system uses to compute the position and orientation of the user’s head is based on a
photogrammetric technique called space resection by collinearity. This paper gives a detailed
description of this technique and its behavior in our working system.

1.0 Introduction

 1.1 The optical ceiling head-tracker

UNC Chapel Hill is actively conducting research in Head-Mounted Displays (HMDs). An HMD
consists of a pair of video displays mounted in front of the user’s eyes, a tracking system, and an
image generation system. The tracker senses the position and orientation of the user’s head and
relays those measurements to the image generation system, which in turn updates the images on the
video displays. As the user moves and tilts his head, the HMD changes the images based on his
head position and orientation, generating the illusion of being inside a “virtual world.”

At SIGGRAPH ‘91, UNC demonstrated an electro-optical system that can track a user’s head
inside a room-sized volume [Ward92]. It consists of a head-mounted unit, a 10’ by 12’ ceiling,
and supporting hardware and software. The head-mounted unit has four camera-like devices,
which we will call photodiode units, aimed toward the ceiling. Each photodiode unit contains a flat
10x10 mm2 detector that is sensitive to infrared light. Implanted in the ceiling are 960 infrared
Light Emitting Diodes (LEDs). Based upon the known locations of the LEDs, the projected
images of the LEDs on the photodiode detectors, and the fixed geometry of the photodiode units on
the head-mounted unit, we can compute the position and orientation of the user’s head.

Figure 1: Conceptual drawing of the electro-optical tracking system

Space resection by collinearity 3

Figure 2: Head-mounted frame with four photodiode units, surrounded by supporting hardware

Figure 3: User wearing HMD under ceiling

Space resection by collinearity 4

 1.2 Space resection by collinearity

The problem of a camera viewing a set of beacons, where the beacon locations are known but the
camera position is not, falls in the domain of photogrammetry. It should then be no surprise that
we apply results from this field to our particular problem. In particular, we use a method called
space resection by collinearity. We must stress that collinearity is not a new technique; it appears
in introductory photogrammetry textbooks, such as [Wolf83]. What we present here is our
adaptation of this technique to our problem, in enough detail to enable the reader to write code that
implements this routine.

A quick overview of the remainder of the paper:

Section 2.0: Description of the math
Section 3.0: Observed behavior of collinearity in our working system
Section 4.0: Acknowledgements
Section 5.0: References
Section 6.0: Appendices

2.0 Description

 2.1 Overview

How can we recover the position and orientation of the user’s head from observations of beacon
positions? We start in Section 2.2 by first defining the coordinate systems and relationships we
need. Then in Section 2.3 we describe the known geometrical relationships. For example, we
know:

• the 3D locations of all the LED beacons in the ceiling
• the images that the photodiode detectors see
• the relative position and orientation of each photodiode unit with respect to the others
 (because the photodiode units are fixed in position on the head-mounted frame)

With these known parameters and some basic geometry, we form the collinearity condition
equations: a set of equations that must be true, given the true values of all the parameters. We
know all the parameters except the true position and orientation of the user’s head (which we are
trying to find) and several scale factors (which we do not care about). By doing some algebra in
Section 2.4, we produce another set of equations that removes the scale factors from the system.
Then in Section 2.5 we apply Taylor’s theorem to generate a linear approximation of our system.
We can use these linearized equations to generate an iterative solution to our problem.

The Taylor expansion requires that we take partial derivatives of all of the expressions in the
equations in 2.5; some of these derivatives are fairly messy, so we save them for Section 2.6.

 2.2 Definitions

This section defines the coordinate systems, points, vectors, and transformations that we will need
to express the geometric relationships in our system.

We have three classes of coordinate systems: one World space, one Head space, and a Photodiode
space for each photodiode unit on the user’s head. All are right-handed coordinate systems.

World space is the global coordinate system, aligned with the ceiling, and centered at one corner.

Space resection by collinearity 5

Ceiling

X

Y
Z

Figure 4: World space

Head space is a local coordinate system for the cluster of photodiode units mounted on the user’s
head.

X

Y

Z

Figure 5: Head space

Photodiode space is a local coordinate system aligned with a particular photodiode unit. Each
photodiode unit consists of a frame, a lens, a square surface that detects light, and supporting
electronics for the detector. Each photodiode unit has its own associated Photodiode space, with
its origin at the center of the detector.

Lens

Detector

X

Y

Z

Photodiode
unit

Figure 6: Photodiode space

All three types of coordinate spaces are shown in the following overall view:

Space resection by collinearity 6

X

Y

Z
X

Y

Z

Photodiode unit #1

Photodiode unit #2

Photodiode units
#3, 4

WORLD

HEAD

Figure 7: Overall view of all three coordinate spaces

We need to establish relationships among these spaces. We can express points and vectors in all
three classes of coordinate systems, and we change representations from one to another by
performing a rotation, followed by a translation. (A scale factor is not required because all spaces
use the same measurement units.) Rotation is performed by multiplying the coordinates of one
representation by a 3x3 matrix (see Section 6.1). We define the following rotation matrices:

M i = 3x3 matrix that rotates Photodiode space #i coordinates to Head space coordinates
M = 3x3 matrix that rotates Head space coordinates to World space coordinates

Front principal point

Rear principal point

ø

ø

Imaged point on
detector

Detector

LED #j

T i j

ti j
Photodiode
unit #i

Figure 8: optical model

We use a simple optical model for our photodiode unit (see Figure 8). Light from an LED enters at
a front principal point and leaves at a rear principal point, creating an imaged point on the

Space resection by collinearity 7

photodiode. The angle of entry to the front principal point is the same as the angle of exit from the
rear principal point.

Now we can now define the vectors and points of interest, segregated by what space they are in:

In Photodiode space:
xij , yij , 0 = coordinates of an imaged point on detector

for photodiode #i and LED #j

Origin

Imaged point
on detector

xi j

yi j

Figure 9: imaged point on photodiode detector

In Head space:
tij = vector from the rear principal point to the xij , yij , 0

imaged point for photodiode unit #i and LED #j (see Figure 8)

di = vector from the origin of the Head coordinate system to
the center of the detector of photodiode unit #i

ei = vector from the origin of the Head coordinate system to
the rear principal point of photodiode unit #i

f i = vector from the origin of the Head coordinate system to
the front principal point of photodiode unit #i

di

f i

Front principal pt Rear
principal pt

Center of detector

Detector

Head
coordinate
system

X

Y

Z ei
Photodiode
#i

Figure 10: vectors d, e, f

In World space:
X0, Y0, Z0 = location of the origin of the Head coordinate system
X j, Yj, Zj = location of LED #j
Tij = vector from LED #j to the front principal point of photodiode unit #i

Note that knowing M , X0, Y0, and Z0 is equivalent to knowing the position and orientation of the
user’s head. Thus, these are the variables that we will eventually solve for.

Space resection by collinearity 8

 2.3 Geometry

Now that we have defined the various vectors and points that we need, let’s see what kind of
geometrical relationships we can establish among them.

Collinearity, reduced to its essense, is nothing more than similar triangles. Look at Figure 8 again.
Collinearity expresses the observation that the vector from the LED to the front principal point (Tij)
and the vector from the rear principal point to the imaged point on the photodiode’s surface (tij)
differ only by a scale factor. That is, if the two vectors were placed at the same start point, they
would be collinear. In equations:

∃ λ ∈ Reals: T ij = λ M t ij (1)

where λ is the scale factor
and M transforms t ij from Head space coordinates to World space coordinates

Now we expand this basic relationship by generating expressions for Tij and t ij in terms of the
other vectors already defined, then substituting those back into equation (1).

Head
coordinate
systemX

Y

Z

Rear
principal pt

Photodiode
unit #i

Center of photodiode
detector

Imaged pt caused by LED #j

diei

xi j , yi j , 0

-t i j

Figure 11: expressing tij in terms of other vectors

First, we write an expression for t ij (see Figure 11). Starting at the origin of the Head coordinate
system, we can reach the rear principal point by two paths. First, we can follow di to the center of
the detector in photodiode unit #i. From the center we move to the imaged point projected onto the
photodiode by LED #j, then take -tij to the rear principal point of the lens. But we can also reach
the rear principal point by starting at the origin of the Head coordinate system and following vector
ei. Expressing this algebraically we get:

di + M i
xij
yij
0

 - t ij = ei

The matrix M i is applied to [xij , yij , 0] so that all vectors are expressed in Head space coordinates.
Rewriting this expression yields:

t ij = di - ei + M i
xij
yij
0

(2)

Space resection by collinearity 9

LED #j

X

Y

Z

World
coordinate
system

Head
coordinate
systemX

Y

Z

Photodiode
unit #i

Front principal pt

f i

X0, Y0, Z0

X j , Yj , Zj

-T i j

Figure 12: expressing Tij in terms of other vectors

Now let’s work on Tij (see Figure 12). This time we start at the origin of the World coordinate
system and work our way to LED #j. We can reach this by two paths. The direct path is to follow
the vector represented by [Xj, Yj, Zj], the known coordinates of the LED in World space.
Alternately, we can take a more indirect route by first following [X0, Y0, Z0] to the center of the
Head coordinate system, then following vector fi to the front principal point, and finally taking
vector -Tij to LED #j. The algebraic expression that equates these two paths is:

X0
Y0
Z0

 + M f i - T ij =
X j
Yj
Zj

where matrix M is applied to vector f i to express everything in World space coordinates. If we
rewrite the expression in terms of T ij , we get:

T ij =
X0 - Xj
Y0 - Yj
Z0 - Zj

 + M f i (3)

Now we substitute both (2) and (3) into equation (1), yielding

X0 - Xj
Y0 - Yj
Z0 - Zj

 + M f i = λ M di - ei + M i
xij
yij
0

(4)

If we rewrite (4) slightly, we get the collinearity condition equation cij, for photodiode #i and LED
#j:

cij :
X0 - Xj
Y0 - Yj
Z0 - Zj

 + M f i + λ M ei - di - M i
xij
yij
0

 = 0 (5)

Space resection by collinearity 10

 2.4 Equation setup

Let’s look at equation (5). We can divide the variables in the equation into known and unknown
components:

Known:
X j, Yj, Zj (all LED locations in the ceiling are fixed and known)
x ij , yij (locations of imaged points are read from the photodiode detectors)
d i, ei, f i, M i (photodiode unit locations are fixed and known with respect to the head)

Unknown:
X0, Y0, Z0 (head position)
M (head orientation)
λ (scale factor)

Also note that equation (5) really contains three equations: one each for X, Y, and Z components.
But to extract these three equations, we need to replace the M ’s by the 3x3 rotation matrices they
represent and multiply everything out so cij becomes one massive equality between 3x1 vectors.

What do rotation matrices look like? In Section 6.1, we define a rotation matrix R to be:

R =
r11 r12 r13
r21 r22 r23
r31 r32 r33

where the nine components r11, r12… r33 are functions of three rotation parameters ω, α, and κ.
See Section 6.1 for the definitions of these functions. Using Euler angles to represent rotation
opens the possibility of gimbal lock, which is also discussed in Section 6.1. In practice, we do not
see gimbal lock because positions that can cause it are positions that do not have point the
photodiode units toward the ceiling, so we lose tracking at those positions.

We will be using two types of rotation matrices, M and M i. To distinguish between the
components of M and the components of M i, we will use the following notation:

r11M is the r11 term for matrix M
r11Mi is the r11 term for matrix M i

Now let’s look at what we have:

• When photodiode unit #i sees LED #j, we can write a cij to express the geometry
 of that event
• Each cij is really composed of three separate equations
• 6+N total unknowns: 3 of position, 3 of orientation, and N scale factors, where N is the
 number of LEDs that we see

Note that we have N unknown scale factors because each cij generates a different scale factor. In
contrast, the 6 variables of position and orientation that we are trying to find are the same in every
cij. We don't need the scale factors, and since they are potentially numerous, it is worthwhile to
eliminate them. We can do this by rewriting the three equations in cij so that all components with
the scale factor lie on one side of the equals sign and all components without the scale factor lie on
the other side. Then we divide the first and second equations by the third, eliminating the scale
factor and the third equation. This should not lead to a division by zero because (Z0 - Zj) is always
non-zero in our system, and because it is impossible to make the r31, r32 and r33 terms
simultaneously zero. Our situation then becomes:

Space resection by collinearity 11

• When photodiode unit #i sees LED #j, it generates a cij which in turn yields two
 independent equations
• Six total unknowns: 3 of position and 3 of orientation

For a linear system involving 6 unknowns, we need at least 6 independent equations to find a
unique solution. Since each LED that we see produces 2 equations, our photodiodes must see at
least 3 LEDs or we will not have enough information to determine the position and orientation of
the user’s head. (Our equations are actually nonlinear, but we make a linear approximation later in
Section 2.5).

Now let’s actually do the math that we just described. First, some notation. We need to break
vectors and equations up into their X, Y and Z components, so we use the following notation:

cij =
cij x
cij y
cij z

di =
di x
di y
di z

Now if you expand the M ’s into their matrix representations and do the matrix multiplication, you
get the following three equations of cij:

cij<x>: X0 - Xj + r11M f i x + λ ei x - di x - J

 + r12M f i y + λ ei y - di y - H

 + r13M f i z + λ ei z - di z - L = 0

cij<y>: Y0 - Yj + r21M f i x + λ ei x - di x - J

 + r22M f i y + λ ei y - di y - H

 + r23M f i z + λ ei z - di z - L = 0

cij<z>: Z0 - Zj + r31M f i x + λ ei x - di x - J

 + r32M f i y + λ ei y - di y - H

 + r33M f i z + λ ei z - di z - L = 0

where J = r11Mi
 xij + r12Mi

 yij

H = r21Mi
 xij + r22Mi

 yij

L = r31Mi
 xij + r32Mi

 yij

Now if we rewrite cij<x>, cij<y>, and cij<z> so that all terms with the scale factor are on one side
and all terms without the scale factor are on the other side, the result is:

cij x :
 X0 - Xj + r11M fi x

+ r12M fi y
+ r13M fi z

 = -λ
r11M ei x - di x - J

+ r12M ei y - di y - H
+ r13M ei z - di z - L

cij y :
 Y0 - Yj + r21M fi x

+ r22M fi y
+ r23M fi z

 = -λ
r21M ei x - di x - J

+ r22M ei y - di y - H
+ r23M ei z - di z - L

cij z:
 Z0 - Zj + r31M fi x

+ r32M fi y
+ r33M fi z

 = -λ
r31M ei x - di x - J

+ r32M ei y - di y - H
+ r33M ei z - di z - L

Space resection by collinearity 12

Finally, we divide cij<x> and cij<y> by the third equation, cij<z>, to eliminate the scale factor.
This produces two independent equations, which we express as Gij<1> = 0 and Gij<2> = 0:

Gij 1 =

X0 - Xj + m11M fi x
+ m12M fi y
+ m13M fi z

Z0 - Zj + m31M fi x
+ m32M fi y
+ m33M fi z

 -

m11M ei x - di x - J
+ m12M ei y - di y - H
+ m13M ei z - di z - L
m31M ei x - di x - J

+ m32M ei y - di y - H
+ m33M ei z - di z - L

 = 0 (6)

Gij 2 =

Y0 - Yj + m21M fi x
+ m22M fi y
+ m23M fi z

Z0 - Zj + m31M fi x
+ m32M fi y
+ m33M fi z

 -

m21M ei x - di x - J
+ m22M ei y - di y - H
+ m23M ei z - di z - L
m31M ei x - di x - J

+ m32M ei y - di y - H
+ m33M ei z - di z - L

 = 0 (7)

 2.5 Iterative solution

Equations (6) and (7) express a relationship that is geometrically true. We know that if the correct
values are plugged in for all the values in Gij, then they will indeed equal zero. We know all of the
values except the six variables representing position and orientation. So what can equations (6)
and (7) tell us about those missing six variables?

One approach is to first make an initial guess of the position and orientation, then rewrite equations
(6) and (7) in such a way that when this guess is plugged in, it provides correction factors that we
can add to our six guesses to get a more accurate guess. We can then plug in this new guess and
calculate new correction factors. This cycle repeats until the correction factors become so small
that we converge to a solution.

The requirement of needing an initial guess of the user’s position and orientation is actually quite
reasonable in our particular application. We usually have a very good initial guess available: the
last known position and orientation. Since our system can track the user’s head at rates between
20 and 100 Hz, the last known position and orientation will almost certainly be very close to the
current position and orientation. The only times when we run into trouble is when we have no idea
where the user is, such as at system startup or when the user orients his head so that too few
photodiode units can see the ceiling. We discuss recovering from such degenerate situations in
Section 3.5.

To get these correction factors, we linearize equations (6) and (7) by using Taylor’s theorem to get
the first-order linear approximation:

0 = Gij 1 PO +
∂Gij 1
∂X0 PO

 dX0 +
∂Gij 1
∂Y0 PO

 dY0 +
∂Gij 1

∂Z0 PO
 dZ0

+
∂Gij 1

∂ω PO
 dω +

∂Gij 1
∂α PO

 dα +
∂Gij 1

∂κ PO
 dκ

0 = Gij 2 PO +
∂Gij 2
∂X0 PO

 dX0 +
∂Gij 2
∂Y0 PO

 dY0 +
∂Gij 2

∂Z0 PO
 dZ0

+
∂Gij 2

∂ω PO
 dω +

∂Gij 2
∂α PO

 dα +
∂Gij 2

∂κ PO
 dκ

where: PO stands for the guess of the user’s position and orientation,
 Gij 1 PO is the value of Gij given a PO,

Space resection by collinearity 13

∂Gij 1
∂ω PO

 is the value of the partial derivative given a PO,

etc.

Every LED that our system sees generates two such equations. Say that we see N LEDs. Then we
can write the 2N generated equations in matrix form as follows:

G0 + ∂G * D = 0 (8)
 2Nx1 2Nx6 6x1 2Nx1

vector matrix vector vector

where the vectors and matrices are defined as follows:

G0 =

Gi1,j1 1 PO
Gi1,j1 2 PO

GiN,jN 2 PO

D =

dX0
dY0
dZ0
dω
dα
dκ

∂G =

∂Gi1,j1 1
∂X0 PO

∂Gi1,j1 1
∂Y0 PO

∂Gi1,j1 1
∂Z0 PO

∂Gi1,j1 2
∂X0 PO

∂Gi1,j1 2
∂Y0 PO

∂Gi1,j1 2
∂Z0 PO

∂Gi1,j1 1
∂ω PO

∂Gi1,j1 1
∂α PO

∂Gi1,j1 1
∂κ PO

∂Gi1,j1 2
∂ω PO

∂Gi1,j1 2
∂α PO

∂Gi1,j1 2
∂κ PO

∂GiN,jN 2
∂X0 PO

∂GiN,jN 2
∂Y0 PO

∂GiN,jN 2
∂Z0 PO

∂GiN,jN 2
∂ω PO

∂GiN,jN 2
∂α PO

∂GiN,jN 2
∂κ PO

where i1, j1 = Photodiode unit #i1 and LED #j1
i2, j2 = Photodiode unit #i2 and LED #j2
etc.

D is what we want to find, because it holds the correction factors that we will use to modify our
guess of the position and orientation of the head. So how do we rewrite equation (8) to extract D?
We now list several ways to recover D:

We need to see at least three LEDs to generate six equations, or our system will be
underdetermined. If we see exactly three LEDs, then ∂G becomes a 6x6 matrix and we can invert
it to get:

D = ∂G
-1

 * -G0 (9)
6x1 6x6 6x1

But if we see more than three LEDs, our system becomes overdetermined and we can use a least
squares approach by taking the pseudo-inverse of ∂G:

D ≈ ∂G
T
 * ∂G

-1
 * ∂G

T
 * -G0 (10a)

6x1 6x2N 2Nx6 6x2N 2Nx1

Space resection by collinearity 14

We can also use weighted least squares by introducing a new matrix P that weighs the values from
each LED measurement differently. LEDs that are far away from our head generate more noisy
measurements than LEDs that are close, because of the reduced signal/noise ratio and because of
the limited resolution of our photodiodes. Although we don't currently do this, we could create a
P to reduce the contribution of LEDs far from the user’s head. The formula to extract D then
becomes:

D ≈ ∂G
T
 * P * ∂G

-1
 * ∂G

T
 * P * -G0 (10b)

where P is a 2Nx2N diagonal matrix of the form:

P =

p1
p1 zeroes

zeroes pN
pN

and p1 to pN are the weights for each LED measurement.

Finally, we can use singular value decomposition to extract D. This is currently our method of
choice because it handles ill-conditioned ∂G matrices better than the other methods can. For a
description of how this method works, please see Section 6.2.

We can now outline the main loop of collinearity in psuedocode:

Generate initial guess of head position and orientation
repeat
{

With our current guess, compute G0 and ∂G
Compute D using equation (9), (10a), (10b), or singular value decomposition
Add the correction factors in D to our current guess to generate a new guess

}
until ((magnitude of D is small enough) or (counter > iteration_limit))

if (counter > iteration_limit)
convergence failed

else
computed position and orientation = our guess

Some implementation notes:

• Currently we set iteration_limit to 10, because collinearity tends to converge quickly when
it can find a solution (see Section 3.3).

• What does it mean for D to be “small enough?” We currently use the following criteria:

A) ∂X0
2
 + ∂Y0

2
 + ∂Z0

2
 < 0.1 mm and

B) ∂ω2
 + ∂α2

 + ∂κ2
 < 0.1 degrees

 because these limits provide adequate accuracy while still permitting convergence within a
 reasonable number of iterations

 2.6 Partial derivatives

Space resection by collinearity 15

To compute the terms in the matrix ∂G, we need to find the partial derivatives of Gij<1> and
Gij<2> with respect to the three variables of position and the three of orientation. Since some of
these are messy, we have saved them for this last section.

What should the partial derivatives look like? Let’s look at the Gij expressions in equations (6) and
(7). Notice that the only places where the position variables X0, Y0 and Z0 occur are in the first
fraction, and the variables have no coefficients associated with them. This should make the partial
derivatives with respect to position fairly easy to do. In contrast, the three variables of orientation
are “hidden” inside rotation terms r11… r33. These terms occur in all of the numerators and
denominators in Gij. Therefore, the partial derivatives with respect to orientation may be fairly
complicated, although with shorthand notation we can reduce their complexity.

Let’s work out the partial derivatives with respect to position first. To make the results a bit
cleaner, we define the following expressions to use as shorthand:

A1 = X0 - Xj + r11M fi x + r12M fi y + r13M fi z
A3 = Y0 - Yj + r21M fi x + r22M fi y + r23M fi z
B1 = Z0 - Zj + r31M fi x + r32M fi y + r33M fi z
A2 = r11M ei x - di x - J
 + r12M ei y - di y - H
 + r13M ei z - di z - L
A4 = r21M ei x - di x - J
 + r22M ei y - di y - H
 + r23M ei z - di z - L
B2 = r31M ei x - di x - J
 + r32M ei y - di y - H
 + r33M ei z - di z - L

With these definitions, equations (6) and (7) can be rewritten as:

Gij 1 = A1
B1

 - A2
B2

 = 0

Gij 2 = A3
B1

 - A4
B2

 = 0

And now we can list the partial derivatives of Gij with respect to X0, Y0, and Z0:

∂Gij 1
∂X0

 = 1
B1

∂Gij 2
∂X0

 = 0

∂Gij 1
∂Y0

 = 0
∂Gij 2
∂Y0

 = 1
B1

∂Gij 1
∂Z0

 = - A1
B12

∂Gij 2
∂Z0

 = - A3
B12

We’re halfway done. All we have left are the partial derivatives of Gij with respect to orientation.
First, note that all of the rotation terms r11… r33 (defined in Section 6.1) depend on orientation,
so we first calculate the partial derivatives of those, since we will need them later:

Space resection by collinearity 16

∂r11
∂ω

 = 0
∂r12
∂ω

 = sin κ sin ω + cos κ sin α cos ω

∂r11
∂α

 = -cos κ sin α ∂r12
∂α

 = cos κ cos α sin ω

∂r11
∂κ

 = -sin κ cos α ∂r12
∂κ

 = -cos κ cos ω - sin κ sin α sin ω

∂r13
∂ω

 = sin κ cos ω - sin ω cos κ sin α ∂r21
∂ω

 = 0

∂r13
∂α

 = cos ω cos κ cos α ∂r21
∂α

 = -sin κ sin α

∂r13
∂κ

 = cos κ sin ω - cos ω sin κ sin α ∂r21
∂κ

 = cos κ cos α

∂r22
∂ω

 = -cos κ sin ω + cos ω sin κ sin α ∂r23
∂ω

 = -cos ω cos κ - sin ω sin κ sin α

∂r22
∂α

 = sin ω sin κ cos α ∂r23
∂α

 = cos ω sin κ cos α

∂r22
∂κ

 = -sin κ cos ω + sin ω cos κ sin α ∂r23
∂κ

 = sin ω sin κ + cos ω cos κ sin α

∂r31
∂ω

 = 0
∂r32
∂ω

 = cos ω cos α ∂r33
∂ω

 = -sin ω cos α

∂r31
∂α

 = -cos α ∂r32
∂α

 = -sin ω sin α ∂r33
∂α

 = -cos ω sin α

∂r31
∂κ

 = 0
∂r32
∂κ

 = 0
∂r33
∂κ

 = 0

Next, we define a few more shorthand expressions:

Ei x = ei x - di x - J
Ei y = ei y - di y - H
Ei z = ei z - di z - L

And finally, we can write the partial derivatives with respect to orientation, expressed in terms of
the partials of r11… r33 that we previously calculated:

∂Gij 1
∂ω

 =
B1

∂r12
∂ω

 fi y +
∂r13
∂ω

 fi z - A1
∂r32
∂ω

 fi y +
∂r33
∂ω

 fi z

B12
 -

B2
∂r12
∂ω

 Ei y +
∂r13
∂ω

 Ei z - A2
∂r32
∂ω

 Ei y +
∂r33
∂ω

 Ei z

B22

∂Gij 1
∂α

 =
B1

∂r11
∂α

 fi x +
∂r12
∂α

 fi y +
∂r13
∂α

 fi z - A1
∂r31
∂α

 fi x +
∂r32
∂α

 fi y +
∂r33
∂α

 fi z

B12
 -

B2
∂r11
∂α

 Ei x +
∂r12
∂α

 Ei y +
∂r13
∂α

 Ei z - A2
∂r31
∂α

 Ei x +
∂r32
∂α

 Ei y +
∂r33
∂α

 Ei z

B22

Space resection by collinearity 17

∂Gij 1
∂κ

 =

∂r11
∂κ

 fi x +
∂r12
∂κ

 fi y +
∂r13
∂κ

 fi z

B1
 -

∂r11
∂κ

 Ei x +
∂r12
∂κ

 Ei y +
∂r13
∂κ

 Ei z

B2

∂Gij 2
∂ω

 =
B1

∂r22
∂ω

 fi y +
∂r23
∂ω

 fi z - A3
∂r32
∂ω

 fi y +
∂r33
∂ω

 fi z

B12
 -

B2
∂r22
∂ω

 Ei y +
∂r23
∂ω

 Ei z - A4
∂r32
∂ω

 Ei y +
∂r33
∂ω

 Ei z

B22

∂Gij 2
∂α

 =
B1

∂r21
∂α

 fi x +
∂r22
∂α

 fi y +
∂r23
∂α

 fi z - A3
∂r31
∂α

 fi x +
∂r32
∂α

 fi y +
∂r33
∂α

 fi z

B12
 -

B2
∂r21
∂α

 Ei x +
∂r22
∂α

 Ei y +
∂r23
∂α

 Ei z - A4
∂r31
∂α

 Ei x +
∂r32
∂α

 Ei y +
∂r33
∂α

 Ei z

B22

∂Gij 2
∂κ

 =

∂r21
∂κ

 fi x +
∂r22
∂κ

 fi y +
∂r23
∂κ

 fi z

B1
 -

∂r21
∂κ

 Ei x +
∂r22
∂κ

 Ei y +
∂r23
∂κ

 Ei z

B2

3.0 Behavior

In this section we describe some empirical observations of how collinearity behaves in our system.

 3.1 Number of LEDs to use

One can write a program that implements collinearity as we just described it, place it in a simulator,
and discover that it will converge to an exact solution given only three LEDs. In a real system,
however, many potential sources of error exist that can degrade our solution. These include:

• Errors in the positions of the LEDs
• Lens distortion
• Nonlinear response of the photodiode unit detector
• Misplacement of a detector within its photodiode unit
• Photodiode unit detector resolution limits
• Analog to Digital conversion resolution limits
• Noise in the analog signals
• Errors in the positions and orientations of the photodiode units on the head unit

Collinearity has the nice feature of being able to reduce some of these errors by using more than
three LEDs to generate a solution. As shown in equations (10a) and (10b), collinearity uses the
extra information to get the best possible solution in a least squares sense. Because of this fact, we
usually like to run on 12 to 14 LEDs in our real working system.

Using more than three LEDs is not a panacea. From simulation runs we have found that it can help
reduce certain types of errors, but it cannot compensate for other types. Examples include:

Space resection by collinearity 18

Errors that can be reduced:
• Resolution limits
• Random errors in the positions of the LEDs

Errors that are not reduced:
• Nonlinear response of the photodiode detector
• Lens distortion
• Systematic errors in the positions of the LEDs

 3.2 Photodiode unit configuration

In theory, we can track using any 3 LEDs that we can find. In practice, these 3 LEDs should be
widely separated from each other, because of the limited resolution of our photodiode detectors and
other system errors. Tracking using widely-separated LEDs gives more “geometric strength” to
the system of equations that we generate and yields a better solution. We can try to build some
intuition about this by comparing it to the problem of triangulation.

The accuracy of triangulation depends heavily on how physically separated the three points are.
Say that an earthquake occurs in Santa Cruz, CA, and we have three seismographs at Eureka, Los
Angeles, and Sacramento. Since those three detectors are widely separated, they should be able to
locate the epicenter of the earthquake accurately.

Santa Cruz

Eureka

Los Angeles

Sacramento

Figure 13: Spread seisomographs

Now take the same earthquake but place the three seismographs at UCLA, USC, and Pepperdine.
Because those three detectors are close to each other, it will be much harder to accurately locate the
epicenter by triangulation.

UCLA
USCPepperdine

Santa Cruz

Figure 14: Close seismographs

Space resection by collinearity 19

To improve the solution, we need to add a seismograph that is far away from the Los Angeles
region. Adding another seismograph near Los Angeles (at Cal Tech, perhaps) will not help nearly
as much as adding one at, say, Fresno. Analogously, we discovered that in practice we usually
cannot converge on a good solution based on the LEDs seen by only one photodiode unit, because
our lenses have narrow fields of view. The LEDs that one photodiode unit sees are simply too
close together. We need some distance between our LEDs to get a good solution. Therefore, we
need to have two or three photodiode units viewing LEDs or we may not get a reasonable solution.

 3.3 Convergence properties

How many iterations does it take for collinearity to converge on a solution? This depends on how
close our intial guess of the user’s position and orientation is to the true value. Under normal
conditions, our guess should be very close, because our system tracks at rates up to 100 Hz and
the user cannot move his head very far between two consecutive samples. In these cases,
collinearity converges within one or two iterations.

If the guess is far away from the true value, collinearity will take many more iterations to converge
to a solution, or it may not converge at all. If the guess is close enough to converge, then
collinearity typically reaches a solution within six or seven iterations.

How close does our guess have to be to get collinearity to converge? This depends on the
geometry of the system and how much error exists. We do not have an analytical statement that
expresses how close the guess has to be, but we ran some experiments and generated the following
rules of thumb for our actual system:

• Position should be within 6 feet
• ω should be within 30 degrees
• α should be within 30 degrees
• κ should be within 45 degrees

where rotation parameters ω, α, κ are as defined in Section 6.1.

 3.4 Computation time

Collinearity is a computationally-intensive routine that demands a fast floating-point number
cruncher if it is to run in realtime. If the system sees N LEDs, then at each iteration collinearity
computes the values in the 2Nx1 matrix G0 and the 6x2N matrix ∂G, then does the matrix
operations required to extract D, which includes inverting a 6x6 matrix. It may take a few
iterations to reach a solution. And we would like to generate positions and orientations at a rate of
60 Hz or more.

Because of the amount of floating-point power required, we currently run collinearity on an Intel
i860. Although we have not completely optimized our routine for the i860, we have found it yields
satisfactory performance. A single iteration of collinearity, using 12 LEDs, usually takes about 6
milliseconds on the i860.

 3.5 Generating initial guesses

Collinearity requires an initial guess of the user’s position and orientation. Normally we have a
very good guess: the last known position and orientation. But sometimes we do not know where
the user is. This occurs at startup or when we lose track of the user because he tilts his head so far
that the an insufficient number of photodiode units no longer face the ceiling. This usually means
one or fewer photodiode units, although occasionally even two are insufficient. Under these
degenerate conditions, we must generate initial guesses.

We do this by looking up a series of guesses stored in a table. In Section 3.3 we described how
close a guess needs to be to the true value for collinearity to converge to a correct solution. Based
on these empirical results, we space our guesses along each dimension as follows:

Space resection by collinearity 20

ω: 30 degree increments from 60o to -60o, for a total of 5 steps
α: 30 degree increments from 30o to -30o, for a total of 3 steps
κ: 45 degree increments across 360o, for a total of 8 steps

We use only one guess for position. It is directly underneath the center of our ceiling, with height
Z in World space set to 5’ 8” (a typical height for a user).

Therefore, our table has a total of 120 guesses (5*3*8*1 along the four dimensions). When we
lose track of the user’s position, we get a guess out of the table and insert that into collinearity. If
collinearity converges to a reasonable solution, then we have found the user. Otherwise, we get
another guess out of the table and try again. We keep circling through the table until collinearity
converges to a proper solution, reestablishing our lock on the user’s location.

4.0 Acknowledgements

Carney Clegg optimized some of the collinearity code to run on a Skybolt i860 board. Mark Mine
and Stefan Gottschalk reviewed drafts of this report. Special thanks go to Dr. John F. Hughes of
Brown University for providing detailed and constructive criticism of both the wording and the
mathematics. This work was partially supported by ONR grant #N00014-86-K-0680, DARPA
grant #DAEA18-90-C-0044, and a Pogue Fellowship.

5.0 References

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes. Computer
Graphics: Principles and Practice, Second Edition. Addison-Wesley, USA, 1990.

[Press88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling.
Numerical Recipies in C. Cambridge University Press, USA, 1988.

[Shoe89] Ken Shoemake, "Animating Rotation with Quaternion Curves," SIGGRAPH '89
course notes #23 (Math for SIGGRAPH)

[Ward92] Mark Ward, Ronald Azuma, Robert Bennett, Stefan Gottschalk, Henry Fuchs, "A
demonstrated optical tracker with scalable work area for head-mounted display
systems," to appear in Proceedings of 1992 Symposium on Interactive 3D
Graphics, Cambridge, MA 1992

[Wolf83] Paul R. Wolf. Elements of Photogrammetry with Air Photo Interpretation and
Remote Sensing. McGraw-Hill, USA 1983.

6.0 Appendices

 6.1 Rotation matrix

For general information about rotation matrices, see any introductory computer graphics text, such
as [Foley90].

We can represent any 3D rotation as a 3x3 matrix R that operates on the 3x1 coordinates of a point
P, where

R =
r11 r12 r13
r21 r22 r23
r31 r32 r33

 P =
x
y
z

Space resection by collinearity 21

To rotate P to a new point P’, we set P’ = R P.

Although R has nine terms, they are not all independent. We reduce this to three parameters by
taking an Euler angle approach, saying that this rotation is the combination of three separate
rotations around the three axes. This is simple and is the approach photogrammetrists usually take.
We arbitrarily choose these three parameters as follows:

ω = angle of rotation around the X-axis
α = angle of rotation around the Y-axis
κ = angle of rotation around the Z-axis

X

Y

Z

ω

α
κ

Figure 15: Rotation parameters

Rotations are not commutative, so we arbitrarily define our rotations to occur in the following
order: first rotate the point around the X-axis, then around the Y-axis, and finally the Z-axis. We
also define our coordinate system to be right-handed. With this we can define our matrix R:

 Rotation around Z-axis Rotation around Y-axis Rotation around X-axis

R =
cos κ -sin κ 0
sin κ cos κ 0

0 0 1

cos α 0 sin α
0 1 0

-sin α 0 cos α

1 0 0
0 cos ω -sin ω
0 sin ω cos ω

Multiplying the three individual rotations yields our desired rotation matrix:

R =
cos κ cos α
sin κ cos α

-sin α

-sin κ cos ω + cos κ sin α sin ω
cos κ cos ω + sin ω sin κ sin α

sin ω cos α

sin κ sin ω + cos ω cos κ sin α
-sin ω cos κ + cos ω sin κ sin α

cos ω cos α

Therefore, the terms are:

r11 = cos κ cos α
r12 = -sin κ cos ω + cos κ sin α sin ω
r13 = sin κ sin ω + cos ω cos κ sin α

r21 = sin κ cos α
r22 = cos κ cos ω + sin ω sin κ sin α
r23 = -sin ω cos κ + cos ω sin κ sin α
r31 = -sin α
r32 = sin ω cos α
r33 = cos ω cos α

However, this approach suffers the possibility of gimbal lock, which means that in certain
positions, you lose one degree of rotational freedom. For example, if α is 90 degrees, then both ω
and κ end up rotating around the Z-axis. However, our four photodiode units are not arranged in a
way that allows a user to reach a gimbal lock orientation and still keep enough photodiode units
aimed toward the ceiling to maintain tracking.

Space resection by collinearity 22

However, a larger ceiling or more photodiode units on the user's head will increase the orientation
range to the point where we will have to seriously worry about gimbal lock. The first step is to
change the order of the rotations so that the gimbal lock orienation occurs when the user tries to tilt
90 degrees along the X-axis (roll), which is the least likely to occur head rotation. In the unlikely
case that even that orientation is achievable, more drastic measures are called for. One solution is
to treat all nine r11..r33 terms as variables, subject to six constraints (that the 3 column vectors that
form a rotation matrix are orthonormal). We get an initial guess for all nine variables, change our
system to produce deltas for all nine variables, and use the Gram-Schmidt process at each iteration
to enforce the six constraints. Another possibility is to use quaternions (see [Shoe89]), which do
not suffer from gimbal lock. Rewriting all of the math to use quaternions is a nontrivial process,
however.

 6.2 Singular value decomposition

When solving the linear system expressed in equation (8), we can run into trouble when the matrix
∂G becomes singular or nearly so. To address this problem, we currently use the method of
singular value decomposition (SVD) to solve for D. This method warns you when ∂G is
becoming ill-conditioned and generates better solutions than direct methods can when ∂G is ill-
conditioned.

When can ∂G become ill-conditioned? In theory this should not happen. As long as we can see
three LEDs, no matter where they are, we should have enough information to converge on a
correct solution. But as discussed in Section 3.2, resolution limits and system errors prevent this
from being the case in a real working system. ∂G usually becomes ill-behaved if only one
photodiode sees LEDs, occasionally if only two photodiodes see LEDs, and almost never if three
or more photodiodes see LEDs.

When ∂G becomes ill-conditioned, it may be difficult or impossible to invert it because of the
limited resolution of floating-point numbers. If we blindly feed our matrix into an inversion
routine, we could get division by zero errors. We now provide an overview of how the SVD
routines are applied in our system, but do not go into the details about how they work. For that,
please see [Press88]. We use the routines almost exactly as listed in that reference.

SVD is based on a theorem from linear algebra: any mxn matrix A can be factored into three
matrices U, W, and VT :

 A = U W VT (11)
mxn mxn nxn nxn

where W is a diagonal matrix

W =
w1

wn

and the columns of U and VT are orthonormal; that is, they satisfy the following relationship:

UT U = VT V = I

The diagonal entries w1, w2, … wn of matrix W tell how singular A is. Small values wj mean that
A is ill-conditioned. We can measure this by computing the condition number of the matrix, which
is defined as:

condition number =

MAX
all j

w j

MIN
all j

w j

Space resection by collinearity 23

If the condition number is too large, we may not be able to invert the matrix. This limit is
determined by the precision of the floating-point numbers. For single precision, we usually check
for the following:

1
condition number

 ≤ 10-6

When this equation is satisfied, it states that the contributions from the smallest wj are so small that
their values are corrupted by round-off errors, due to the limited precision of our floating-point
numbers. They may end up “pulling” our solution far away from any reasonable answer. Under
this situation, you can often get a better approximate solution by setting the smaller wj to zero,
removing their contribution to the solution and relying only on the wj that are considered valid.
We set a wj to zero if it meets the following criterion:

set wj to zero if wj ≤ MAX
all i

w i * 10-6

After zeroing some of the wj's, we get a new matrix W’ that in turn generates a new matrix A’ by
equation (11). Then for the standard linear system

A’ x = b

we can solve for x directly, or alternately use a backsubstitution routine listed in [Press88].

To apply these routines to our particular problem, we note that our linear system (8) can be
rewritten as:

∂G * D = -G0

so ∂G plays the role of matrix A, to which we apply SVD.

