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Abstract

Previous papers from this reseach group have suggested that we group object boundaries

not by tracking around the boundary but by pairing boundary points across the object. Such

pairings can be used to compute the medial axis as described by Blum. In this paper, the results of

a fuzzy (non-binary) operator sensitive to object boundaries are combined to create a response

function of three variables: two spatial and one of scale. The value of this response function at any

spatial position and scale is the likelihood of that spatial position being on the medial axis where the

scale corresponds to the width of the object at that spatial position. These boundary-sensitive

operators are applied at every spatial position and at a number of scales, and the results of these

operators are combined using a technique similar to the Hough transform to produce the desired

response function.

Introduction

Pizer and colleagues have suggested that we observe object boundaries by pairing

corresponding points on opposite sides of the boundary [1]. These pairings can then be used to

compute the medial axis of the object [2].

One simple approach to this might involve applying edge-sensitive operators (each

producing a characteristic function describing the “edginess” of the point), making some type of

decision to turn this fuzzy characteristic function into a binary one, and then computing the medial

axis of this binary structure in a straightforward manner. Unfortunately, this approach throws out

information at early stages of processing, thus making it unavailable to later steps.

Another approach is to retain the fuzzy nature of the computation until the highest level

possible. This could be done by using the fuzzy characteristic function for edges to compute a

similar characteristic function for points on the medial axis. This approach produces an axis

characteristic function that can be used by still higher order processes or by a decision process that

extracts the optimal binary form of the axis. We have termed this axis characteristic function a

“medialness response function” in the sense that it responds to medial properties.
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This paper presents one such method for combining the outputs of the individual edge

measurements into a medialness response function that captures both the axis position and the

associated radius (scale) of the object at that position.

Why Use Edges at All?

A response function can also be created by applying a single operator centered at the

potential axis point that reports its result at that position and scale. Such an operator must be

sensitive to changes at the boundaries of the object. The response of the operator is, in a sense, the

fit of the operator to a particular position in the object. An operator of the scale of “best fit” should

produce a greater response than a slightly larger or slightly smaller operator. Similarly, an operator

positioned exactly on the axis should produce a greater response than a neighboring off-axis

operator. Such a best fit operator is termed an “axis-centered operator”. An example of this is

shown in Figure 1a. Compare this for a moment to the alternative of applying individual “edge-

centered” operators and combining their results as shown in Figure 1b.
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Figure 1. Axis-centered (a) vs. edge-centered (b) operators. In both cases, the best response is for
operators of the correct scale that are centered on the axis. Response decreases for larger scales,
smaller scales, and points off the axis.

Using an axis-centered operator is attractive in that it is the best fit to a region rather than to

edges. It has several advantages and has been used for specific applications [1] [3] [4]. However,

combinations of individual edge-centered operators have the following advantages:

• Axis-centered operators require integration over the entire width of the object. This

makes it sensitive to internal variations within the object. It is also physiologically
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improbable as a human visual model. Edge-centered operators can integrate information

over smaller areas.

• Axis-centered operators are equally sensitive to changes on either side of the operator.

Small differences in the strength or nature of the boundary on the two sides of the

object can pull the response to one side or the other. Combinations of edge-centered

operators are not necessarily sensitive to small differences between the individual

operators—these differences can change the overall strength of the response, but do not

change the relative spatial pattern of the response.

• Edge-centered operators can rectify the response of individual operators, producing

pairings between boundary transitions of opposite polarity. For example, it can pair

boundaries that are lighter than the background on one side and darker than the

background on the other. This property cannot occur with simple linear operators.

• Edge-centered operators, since they operate on each edge individually, can combine

edges of different natures to produce a medial response. That is, it can detect objects

that are bounded by different types of boundaries at different parts of the object. These

might include luminence boundaries, texture boundaries, line boundaries, or any other

detectable type of edge.

There is also psychophysical evidence that indicates that the human visual system (for

sufficiently large separations) individually localizes each target when measuring distances between

scene targets. We will revisit this point in later discussion.

Edges cannot then be rejected in a segmentation model, but rather are a necessary part of

scene perception. The key is to use edges in a proper way—as a fuzzy characteristic function rather

than explicit edge detection.

Relating Edge Scale to Object Width

A key characteristic of the human visual system is that it uses scale information appropriate

to the task performed [5]. The significance of small-scale fluctuations must be interpreted in the

context of the overall scale of the task. This behavior is incorporated into a medial axis response

function by using edge operators of a scale proportional to the radius associated with the medial

axis.

It must be emphasized that this refers to the scale over which the edge or boundary is

localized. The underlying information may be of smaller scale (higher frequency) [6].

Computing The Response Function

Let R(x,y;r) be a measure of how “medial” a particular spatial position (x,y) is with respect

to a certain object half-width (r). By Blum’s definition of the medial axis, the circle of radius r
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centered at (x,y) must be at least doubly tangent to the object boundary. So, R(x,y;r) is related to

the amount of edge response for points on this circle. Furthermore, since this circle is tangent to

the object boundary, R(x,y;r) is related to the directional response for points on this circle in the

direction from the point to the center of the circle. This is illustrated in Figure 2.

(x,y) r

Directional
Edge-Sensitive
Operator

Figure 2. Individual edge-sensitive directional operators combine to produce a medial response.

In addition, the edge response must be measured at a scale appropriate to the size of the

object. Letting the scale of the edge operator (σ) be proportional to the radius (r) gives

σ = kr (1)

Where k is the proportionality constant, typically 2. In practice, this is approximated by

σ = kr + c (2)

with a small value of c. This allows a slightly larger scale to be used at extremely small object

widths where the inner scale of the image itself limits the size of meaningful operators. The effect

of this constant becomes negligible for larger values of r so that σ/r approaches a constant value.

Adding the directional response along the points in the circle in Figure 2 gives the medial

response for the point (x,y) and radius r. This response is

R(x,y;r) = 
– ∞

∞

Dθ x ',y ',σ  W x,y , x ',y '  dx' dy'
– ∞

∞

(3)

where

σ = kr + c (see Eq. 2),

θ is tan–1 
y – y'
x – x'

, the direction between (x,y) and (x',y '),
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Dθ(x',y',σ) is the directional response at position (x',y'), scale σ, and direction θ, and

W((x,y),(x',y')) is a weighting function of the distance between (x,y) and (x',y') that has
value one at distance r from (x',y') and positive value less than one elsewhere, decreasing
as the distance between (x'y') and (x,y) increases.

Equation 3 is a continuous form of the response equation. For discrete spatial sampling, this is

approximated by

R(x,y;r) = 1r   Dθ x ',y ',σ  W x,y , x ',y '∑
y '

∑
x '

(4)

Equation 4 may be interpreted as the summation of the directional edge response of the

appropriate scale at all points approximately distance r from (x,y). Since the number of such points

is approximately proportional to r, the summation is normalized by a factor of 1/r.

If the directional edge response is linearly separable (e.g., luminance gradient), then it can

be calculated by:

Dθ x ',y ',σ  = G(x',y ',σ) cos θ – Tx ',y ',σ , (5)

where

Dx and Dy are the directional response in the x and y directions respectively (for luminance,
these are the components of the gradient at scale σ),

G(x',y',σ) = √Dx2 + Dy2, the magnitude of the (gradient) vector whose components are
Dx and Dy, and

T(x',y',σ) = tan–1(Dy/Dx), the direction of the (gradient) vector whose components are Dx
and Dy.

This can be used to reduce the computation required for such linearly separable directional edge

response, since the edge must only be sampled in two directions rather than all possible

orientations.

For edge-sensitive operators that are not linearly separable, three approaches are possible.

The applicability of these approaches depends on the type of operator. One approach is to compute

a single optimal edge direction and choose an appropriate tuning curve for the angular difference

from this direction. The case of linear separability is a subset of this approach using a cosine tuning

curve. Another approach would be to sample the directional response in each of a number of

directions and interpolate for intermediate angles. The final approach would be to actually compute

the directional response in exactly the direction required.
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Figure 3. Influence of a single edge response at a single scale. Combination of response strength
weighting, angular weighting, and distance weighing.

Contribution of an Individual Spatial Point

Equation 5 can be used to describe the influence of edge operators at an individual spatial

point. Consider a spatial position (x,y). At this position directional edge-sensitive operators are

applied in the x and y directions at some scale σ. From this, the edge magnitude G(x,y,σ) and

orientation T(x,y,σ) are computed. Using Equation 2, an appropriate radius r is determined. That

is, this edge response only affects the axis response for an axis of radius r. The weighting function

W also limits the spatial influence to points at or near r. According to Equation 5, the response is

also weighted by the strength of the edge magnitude. Equation 5 also says that the effect is

weighted by the cosine of the angle between the affected point and the optimal direction T(x,y,σ).

That is, the affected area is circular, with strongest effect in the direction across the edge and zero

effect along the edge direction itself. All of these factors combine to limit the extent of the influence

of a single edge response as shown in Figure 3.

The edge response at (x,y) is not sampled only at a single scale s, but at a series of scales

σ1, σ2, ... , σn, each with their corresponding r1, r2, ... , rn. Each edge response sampled at (x,y)

and scale σi produces an effect in R(x,y;ri) that is a circle of approximate radius ri centered at

potential axis position (x,y). The total influence of all scale samples at a single spatial position is a

cone in R(x,y;r) as shown in Figure 4. The influences from multiple edge points interact with each

other in an additive fashion to produce the axis response function R(x,y;r).



7

x

y

r

Figure 4. Influence in R(x,y;r) space of the responses to a single edge position at multiple
scales.

Algorithm

This pattern of influence and the cumulative effect of individual spatial points is the basis

for an algorithm similar to the Hough transform. In the case of linearly separable directional

operators,

1. Apply edge-sensitive operators at every position in the image at a number of scales;

2. For each position and scale, compute the magnitude and direction of the edge; and

3. For each position and scale, compute the contribution of the response at that position

and scale to the axis response R(x,y;r) using Eq. 4 and Eq. 5 and add that response to

an accumulator for R(x,y;r).

The result of this algorithm is a transformation from a (x,y;σ) edge-response scale-space to a

(x,y;r) axis-response scale-space. Note that this response gives information not only on axis

position (x,y), but also object width (r).

The multiscale medial axis can be determined as a "scale-space ridge" of the medialness

response according to the methods described in Pizer, et. al. [1]

Results

The following results were computed using first derivative Gaussian gradient operators.

The constant of proportionality between the scale of the Gaussian (σ) and the radius of influence

(r) was two. Scale-space was sampled in a self-similar fashion [7] such that

si = s0 ki (6)

where, for these experiments s0 = 1.0 and k = 1.1. Enough scales were sampled to provide for a

corresponding radius as large as the size of the image.



8

These original images are all 128 x 128 8-bit images. Each is a simple foreground shape

with a non-branching axis. Each object is constant intensity with anti-aliased edges. The shapes

have been given descriptive names for simplicity of reference.

Tube

The object with the simplest medial axis (other than the trivial case of a circle) is one with a

straight-line axis and constant radius. Such a shape is seen in Figure 5 and is called a “tube”. First-

derivative Gaussian operators were applied in the horizontal and vertical directions for 32 scales.

These edge responses were combined using the previously described algorithm to produce the

R(x,y;r) medial axis response shown in Figure 6. At small scales, the only effect is near the

boundaries. As the scale and corresponding radius increases, the influence of the edge moves

farther from the boundary. The influence of the edge can be thought of as a wave propagating

outward from the edge and upward in scale space. Even at scales less than the radius of the object,

the wave starts to compress on itself at the rounded top and bottom of the tube. At successively

larger scales, this wave compresses more and more until it ultimately forms the single high

response at the end of the axis. At the same time, the two sides of the boundary are moving in

towards the center until they meet to form a high response signifying to the medial axis.

Each of the subimages in Figure 6 shows the response at a fixed r. Similarly, we can take

cross-sections of the response for a fixed value of x or y. Figure 7a shows the response at all

scales along the horizontal midline of the image. Observe the influence of each edge spreading

outward and upward through scale space. Figure 7b shows the response at all scales along the

vertical midline of the image. Since the medial axis of the object itself lies along this vertical

midline, Figure 7b can also be interpreted as a plot of radius (ordinate) vs. arc length (abscissa)

along the axis. Since the radius increases exponentially but is displayed linearly, the ordinate

should actually be interpreted as log r. Compare this to the graph of log r vs. arc length shown in

Figure 8.

Teardrop

Different shapes can have the same axis but a different associated set of radius values. It is

critical that R(x,y;r) capture not only the position of the axis, but the associated radius as well. The

shape in Figure 9 has the same straight-line axis as the tube but a linearly increasing radius

function. Such a shape is called a “teardrop”.

The calculated response function R(x,y;r) for this teardrop is shown in Figure 10. As with

the tube, the influence of the edges propagates outward from the edges as the radius parameter

increases. Since the teardrop has a zero radius (a sharp corner or point) at the tip, the two edges

add to produce a point of high response there immediately—this is shown by the bright spot at the
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tip of the teardrop at the smallest scales. As the radius parameter increases, this high response

moves down the axis until it eventually reaches the point where the axis terminates. As with the

tube, the rounded end of the teardrop has been compressing and increasing in response until it

meets with the point moving down the axis to form the high response at the end of the axis.

Again, as with the tube, cross-sections of the response function can be taken along the

horizontal and vertical midlines of the image (i.e., across and along the axis) as shown in

Figure 11. This time, the vertical cross-section shows the increasing radius of the teardrop.

Compare this to the actual radius as shown in Figure 12.

Dumbbell

The shape in Figure 13 also has the same straight-line axis as the tube and the teardrop, but

has a parabolic radius function. Such a shape is called a “dumbbell”.

The response function for the dumbbell is shown in Figure 14. Like the response for the

teardrop starting at the tip and moving to the other end, observe the high response in the dumbbell

starting at the pinched middle and moving outward towards the ends as the radius increases. Also

observe the now-familiar compression of the rounded ends ultimately forming the very high

response at the end points of the axis.

Again taking cross-sections as shown in Figure 15, the cross-section along the axis shows

the parabolic shape of the radius. Compare this to the actual radius shown in Figure 16.

Paisley

Different shapes can also have the same radius function but a different axis. Such shapes

can be thought of as produced by bending another shape. The shape in Figure 17 has the same

linearly increasing radius function as the teardrop, but a curved axis. Such a shape is called

“paisley”.

The response function for the paisley pattern is similar to that for the teardrop and is shown

in Figure 18. Again, the high response starts at the tip and moves along the axis to the other end as

the radius increases. Notice that this time the point of high response moves not in straight line

down the axis, but curves as the axis itself does. Thus, the response function R(x,y;r) accurately

captures changes in position as well as radius.

Noise

To test the behavior of the algorithm in the presence of noise, zero-mean Gaussian noise

was added to the image of the tube as shown in Figure 19. In the first test, the standard deviation

of the noise in each pixel was half the intensity difference between the foreground and background.

Observe the small deviations in the boundary caused by the noise. The computed response function
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for this image is shown in Figure 20 with cross-sections in Figure 21. Notice how at smaller

scales, the gradients caused by the noise have significant influence, but at larger scales more

appropriate for the width of the object, the response function is little changed from that of the

noise-free version of the image.

In the second test, the standard deviation of the noise in each pixel was equal to the

intensity difference between the foreground and background. The results are identical to those with

the lesser noise, but the effect of the noise extends to higher scales. In this case, the noise is just

strong enough to have an effect at the scale of the object.
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Figure 5. A tube. Simple medial axis shape with straight, non-branching axis and constant radius.

Figure 6. Response function R(x,y;r) for a tube. Each subimage is the response at each spatial
position for increasing radius values. The upper right subimage is for the smallest radius with
radius increasing from left to right and top to bottom.
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Figure 7. Cross-sections of the response function R(x,y;r) shown in Figure 6 along the horizontal
midline (top) and vertical midline (bottom).
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Figure 8. Log radius vs. arc length for the tube.
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Figure 9. A teardrop. A medial axis shape with straight-line, non-branching axis and linearly
increasing radius (from top to bottom).

Figure 10. Response function R(x,y;r) for a teardrop. Each subimage is the response at each spatial
position for increasing radius values. The upper right subimage is for the smallest radius with
radius increasing from left to right and top to bottom.
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Figure 11. Cross-sections of the response function R(x,y;r) shown in Figure 10 along the
horizontal midline (top) and vertical midline (bottom).
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Figure 12. Log radius vs. arc length for the teardrop.
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Figure 13. A dumbbell. A medial axis shape with straight-line, non-branching axis and parabolic
radius.

Figure 14. Response function R(x,y;r) for a dumbbell. Each subimage is the response at each
spatial position for increasing radius values. The upper right subimage is for the smallest radius
with radius increasing from left to right and top to bottom.
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Figure 15. Cross-sections of the response function R(x,y;r) shown in Figure 14 along the
horizontal midline (top) and vertical midline (bottom).
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Figure 16. Log radius vs. arc length for the dumbbell.
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Figure 17. Paisley. A medial axis shape with curved, non-branching axis and linearly increasing
radius. This can be considered a curved or bent teardrop.

Figure 18. Response function R(x,y;r) for paisley. Each subimage is the response at each spatial
position for increasing radius values. The upper right subimage is for the smallest radius with
radius increasing from left to right and top to bottom.
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Figure 19. A tube with noise added. The standard deviation of the noise is half the difference
between the foreground and the background.

Figure 20. Response function R(x,y;r) for a tube in the presence of noise. Each subimage is the
response at each spatial position for increasing radius values. The upper right subimage is for the
smallest radius with radius increasing from left to right and top to bottom.
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Figure 21. Cross-sections of the response function R(x,y;r) shown in Figure 20 along the
horizontal midline (top) and vertical midline (bottom).
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Figure 22. Another tube with noise added. The standard deviation of the noise is equal to the
difference between the foreground and the background.

Figure 23. Response function R(x,y;r) for a tube in the presence of noise. Each subimage is the
response at each spatial position for increasing radius values. The upper right subimage is for the
smallest radius with radius increasing from left to right and top to bottom.
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Figure 24. Cross-sections of the response function R(x,y;r) shown in Figure 23 along the
horizontal midline (top) and vertical midline (bottom).
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Discussion

It is apparent from the results in Figures 6–18 that this axis response function does capture

the positional as well as the scale parameters of simple shapes. This representation should allow

determination of the actual axis and radius functions themselves.

Figures 19-24 show that by using gradient operators proportional to the width of the

object, small fluctuations and deviations in the boundary are smoothed away. This has been one of

the principal criticisms of the medial axis since under normal conditions even the tiniest fluctuation

in the boundary can produce long branching arms extending from the principal axis. However, by

adding an appropriate sense of scale based on the width of the principal axis, such minor detail is

ignored when judging the overall shape of the object. Such detail should, however, be captured at

some lower scale. This is the subject for future investigations.

Another observation made during the presentation of the results involved the collapsing of

rounded object ends to form extremely high response axis endpoints. The reason for this comes

from the definition of the medial axis. Since the medial axis is the locus of all maximal circles,

endpoints of the medial axis naturally correspond to locally circular parts of the boundary. In other

words, the maximal circles at normal points on the axis are bitangent to the object boundary and

therefore receive input from more than one edge point. However, maximal circles at the end point

of a medial axis can be tangent to the boundary not only at two points, but along an entire arc. Each

of the points along this arc contributes to the axis response at the end point. The same should in

theory be true of points where the medial axis branches—there the maximal circles are tritangent or

more depending on the degree of the branching and thus also produce an axis response that is

stronger than the rest of the axis. This property is a useful one in that the points where the response

is highest are the point that most define the axis: end points and branch points.

Future Work

As mentioned, detection of details at appropriately small scales is a subject for future

investigation. It is also suspected that this detail axis may not be connected in scale space with the

principal axis. This relation between large and small scale information is still unknown.

The principal item for future research is the extraction of the axis itself from the response

function presented here. Research is proceeding using geometric as well as connectionist means. A

connectionist algorithm would make use of excitatory connections to allow points on the axis to

stimulate other axis points, thus filling in points that may have been lost due to noise, occlusion, or

other interference with the boundary. This filling in could be the basis for producing illusory

contours based on figural, rather than edge, interpolation.
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One problem with this and any other Hough transform method is that edge points are

allowed to cast votes in the accumulator indiscriminately. Often, the interpretation of one feature of

the image is lost in the noise produced by other, stronger features. It is possible to make multiple

passes through the transformation process, limiting the voting of edge points at subsequent stages

based on the results of previous transformations [8]. This allows voting in the accumulator to be

more selective based on the previous voting pattern. Such a mechanism could be used here, where

at each subsequent iteration each input edge point downgraded its votes for axis points where there

was little agreement with other input points. Such downgrading should produce a sharpening of

the response function making interpretation more accurate and in some cases, making features

detectable where they otherwise might not have been. Such sharpening should also allow the

system to settle into one of several possible interpretations in the case of bistable images.

It might even be possible to allow interaction between this sharpening process and the

previously described axis-excitation process. Such interaction could be thought of as simultaneous

neural processes. One fills in gaps in the axis, while the other allows those filled-in gaps to cause

their inputs to be more selective, thus perhaps allowing a cleaner response in another part of the

image, leading to further refining of another axis, and so on.

Another area for future work involves the inputs used for the edge-sensitivity

measurements. These not only could be luminance edges as implemented here, but could be bar

detectors (for line-drawn boundaries), texture difference operators (for textural boundaries), or any

other operator capable of producing a magnitude and orientation for the boundary. Some, such as

the texture difference operators, could be composite operators. That is, operators that consist of

one operator applied to the outputs of other, perhaps smaller scale, operators. Such composite

operators are consistent with psychophysical evidence that seems to indicate that we have both

detection and localization mechanisms, operating on different scales. For example, high-frequency

textures with zero low-frequency content could be detected by high-frequency mechanisms and

used as input into a larger scale localization operator. It might even be possible to use the axis

response itself as input into calculating the axis of larger, composite objects.

One difficulty with the edge-centered operators is the relatively large separation of edges

required. If a radius to scale constant of two is used, then the smallest measurable object width is

four times the scale of the smallest edge operator. However, at such a small separation, it becomes

reasonable to use axis-centered operators. There is evidence that the human visual system might to

a similar switch between mechanisms at large and small separations [5]. A hybrid large-scale edge-

centered, small-scale axis-centered response function might be interesting.
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Conclusion

The edge-centered response function R(x,y;r) is able to capture both the positional and

scale information of the medial axis. A significant characteristic of this axis response function is

that it is computed entirely without explicit (binary) edge determination using scales appropriate for

the width of the object. Such a system should be both more accurate and more robust than

calculations based on explicit edge determination, since it allows more information to be retained at

higher levels of processing. There is much more work to be done, but these initial results are

encouraging.
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