
Work-efficient Techniques for the Parallel 
Execution of Sparse Grid-based Computations 

TR91-042 

Jan F. Prins 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

UNC is an Equal Opportunity/Affirmative Action Institution. 



Work-efficient techniques for the parallel execution 
of sparse grid-based computations 

Abstract 

Jan F. Prins 

Department of Computer Science 
University of North Carolina 
Chapel Hill, NC 27599-3175 

prins@cs.unc.edu 

Computations that consist of repeated applications of a local function to every data item in a 
grid are easily and efficiently implemented in mesh-connected parallel computers. When 
grids are large and grid elements requiring recomputation are sparsely distributed, the work 
performed in such implementations is non-optimal compared to an optimal sequential 
solution. A technique is described to achieve work-efficient (optimal speedup) 
implementations for this class of problems that is largely insensitive to the clustering and 
distribution of the elements participating in the computation. 

1. Introduction 

This note describes a method for achieving work-efficient parallel execution of certain large 
grid-based computations. The class of computations addressed is characterized by the 
repeated evaluation of a local function! fat every point of data in a grid, and includes fmite 
difference problems, cellular automata simulations and image processing problems. By 
work-efficient we mean that the parallel algorithm using P processors yields optimal 
speedup with respect to the best sequential algorithm on problems of size O(P) or larger. 
That is, the parallel algorithm using P processors rnns approximately P times faster than the 
best sequential algorithm for such a problem rnns on a single processor . 

It is well known that this class of computations is well-suited to speedup through parallel 
execution on locally-connected parallel computers when the data grid can be decomposed 
over processors in such a manner that local function evaluation need only use local 
communication in the machine. Since the performance of local communication can remain 
essentially constant with increasing numbers of processors (the same can not hold for 
global communication), such computations can achieve optimal speed-up even with large 
numbers of processors. 

1 A pointwise function is local if its value at any given point on the grid depends only on nearby points. 
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We are concerned here with extension of optimal speedup to cases where, in a sequential 
algorithm, an asymptotic improvement can be achieved by avoiding re-evaluation of the 
local function fat locations on the grid that define a local fixed point for f. This occurs, 
for example, in edge-directed diffusion [Beghdadi] where each pixel's value is adjusted by 
a weighted average of its neighbor's values unless that adjustment would result in a change 
smaller than some threshold. When a pixel value reaches a local fixed point for the 
averaging function, it need not be re-evaluated until a neighboring pixel's value changes 
sufficiently. 

An efficient sequential implementation of such a problem recomputes f only on "active" 
grid points in each iteration, while a simple-minded parallel algorithm might re-evaluate fat 
each grid point, regardless of whether it is active. If active grid points are sufficiently 
sparse, a sequential algorithm performing an iteration in O(active points) time will 
outperform a parallel algorithm on a P processor machine performing an iteration in 
O(grid points/P) time. The technique described here remedies this situation to achieve 
0( active points/P) performance in the parallel case. 

2. Example application 

We illustrate the application of the technique in the par;illel evaluation of the familiar "life" 
cellular automaton designed by [Conway]. This automaton is described by a particularly 
simple set of rules on a two-dimensional grid of cells in which each cell's state is either 
occupied or empty. The state of a cell evolves each generation according to a local function 
defined as follows on the state of the current generation: 

• an empty cell becomes occupied if it has exactly 3 occupied neighbors. 

• an occupied cell becomes empty if it has fewer than 2 or more than 4 occupied 
neighbors, otherwise it remains occupied. 

The application of the rules to a sample configuration is illustrated in Figure I. 

• • • • - • • • • • • 
Fig. I. Application of the Life rules to a sample configuration. Solid circles denote 

surviving occupied cells, shaded circles denote newly occupied cells. 

It follows from the rules that the ouly cells that can change state are occupied cells or their 
immediate neighbors. All other grid positions defme a local fixed point under the rules 
above (unoccupied cell with unoccupied neighbors), and need not be evaluated in the 
computation of the next generation. Since each occupied cell has a constant number of 
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neighbors (eight), an O(occupied cells) sequential algorithm can be written for the Life 
cellular automaton. 

Work-efficient parallel implementations of the sparse and dense cases of the life 
computation were developed for the MasPar MP-1 and their performance quantified. In 
both cases we consider a square cellular automaton grid of size ffi X ..JN. In the dense 
case all N cells are updated in each generation; in the sparse case L cells are updated in each 
generation where L is O(occupied) and L << N. The timings of the dense case 
implementation are included to characterize the relative performance of the two approaches. 

The MasPar MP-1 is a distributed-memory SIMD machine with processors connected in a 
2-D mesh with torus topology. For simplicity we consider the machine to be of size 
P = 22m, with processors arranged in a square mesh of size 2m x 2m. All 
implementations described in this note extend to "rectangular" machines of size P = 2k for 
odd k. The key architectural features of the MP-1 used in the implementations are 
processor addressing-autonomy (each processor can access a locally-specified memory 
location in a single step) and the toroidal mesh interconnect. 

3. Dense Implementation 

The simplest implementation of the life automaton is obtained when each processor 
computes the state of exactly one cell, i.e. when N = P. Under these circumstances an 
MP-1 programmed in MPL takes 33J.1s to compute the next generation. This is independent 
of the total machine size P, hence the update time per cell TD(P ,P) = 33/P J.l.S or about 
2 ns/cell for a P = 16K processor machine. 

\ 

remark: The number of occupied neighbors S(ij) of cell (i,j) can be evaluated in four 
communication steps on the mesh (instead of eight) by expanding the sum of the eight 
neighboring occupancy values A(i±l,j±l) and factoring: 

T(i,j) = A(i-l,j) + A(i,j) + A(i+l,j) 
S(i,j) = T(i,j) + T(i,j-1) + T(i,j+1) -A(ij) 

end of remark. 

When the problem size is larger than the number of processors, some sort of virtualization 
strategy is required for the algorithm based on the decomposition of data to processors. 
Suppose that N = kP, then the strategy that minimizes communication in the 
implementation is a hierarchical decomposition that places a {k x ...fk "tile" of neighboring 
cells at each processor. 

To compute the next generation, it is necessary to obtain the state of the 4-Yk. + 4 cells 
surrounding the tile from the neighboring cells, followed by k local evaluations of the state 
change function. Hence the sequential update time per-cell TD grows as: 
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ID(N,P) = (Ccomo + Ccomm + Covh) 
P --/NP N 

For P = 16K processors and N = 589824 (NIP= 36 cells per processor) the generation 
time is 3 ms and TD(N,P) is 16 ns/cell. The increase in cost over the single-cell per 
processor case is due to the control overhead and could be improved substantially with 
careful attention to the representation of the cells and coding of the program. 

4. Sparse Implementation 

Next we consider how to adapt the parallel implementation to operate only on active cells 
only. Maintaining a "worklist" of active cells in each tile of the hierarchical decomposition 
as defmed above is a possible approach but leads to large variations in worklist length over 
processors since the distribution of active cells is typically not uniform on the grid. In fact, 
activity in the life automaton typically occurs in clusters as illustrated in figure 2. A 
computation based on active cells per processor under a hierarchical decomposition will 
typically exhibit poor load balance. 

Figure 2. Distribution of active cells (shaded) in a typical large life automaton. Each 
small square delineates a region of cells placed in a single processor under a 
hierarchical decomposition. 

A better distribution of cells is obtained using a "cut-and-stack" decomposition: processor 
(i,j) holds all cells (x,y) on the grid satisfying (i,j) = (x,y) mod 2m. That is, 
i = x mod 2m and j = y mod 2m. Under this decomposition a clump of nearby cells will 
tend to be scattered among processors in a uniform fashion. Although the worst-case 
distribution of active cells can still yield very poor load balance, such distributions become 
very unlikely as the size of the grid becomes large relative to the number of processors. 

The torus topology guarantees that neighboring cells in the automaton will be placed in 
neighboring processors in the machine under the cut-and-stack decomposition, so that the 
distribution need not destroy the locality in the update step. 



Each processor now has a list of occupied cells B. We represent an occupied cell in grid 
position (x,y) by entering the value (x,y) div zm on list B in processor ((x,y) mod zm). A 
given cell (x,y) with (i,j) = (x,y) mod zm and (r,s) = (x,y) div zm has an occupied 
neighbor at (x, y-1) in the grid precisely when B at processor (i, j-1) mod zm contains the 
value (r,s) if j oF- 0, or contains (r,s-1), if j = 0. Similar definitions hold for neighbors in 
other directions on the grid 

Figure 3. Cut and stack decomposition. Cells in the same processor are located at 
the intersection points of a single grid. Two grids are shown, corresponding to 
the cells in two different processors. 

In order to achieve constant time evaluation of the rules in the neighborhood of each 
occupied cell, a total order is introduced on representations of occupied cells, and the list B 
at each processor is kept in sorted order according to that relation. A simple total order is 
the natural lexicographic ordering on the tuples in B. To apply the rules at a given 
processor, that processor computes the merge M of all lists B in its own and its 
neighboring processors. Eight merge operations can be reduced to four merge operations 
using a factoring analogous to the factoring of the neighbor sum in section 3. Since the 
lists are kept in sorted order each merge operation takes constant time per element. The 
only elements that appear in the lists are occupied cells, consequently the total merge time is 
easily seen to be O(active cells) in the neighborhood of each processor. 

In computing the merge at processors on the four edges of the mesh, we increase by (0, 1) 
all tuples arriving from the west into processor column 0, and decrease by (0, 1) all tuples 
arriving from the east into processor column zm-1. Similarly we increase by (1,0) all 
tuples arriving from the north into the top row of processors and decrease by ( 1 ,0) all 
tuples arriving from the south into the last row of processors. With this adjustment, the 
number of times that a value (r,s) appears on a list M on processor (iJ) gives the number 
of occupied cells at or neighboring the grid position corresponding to (r,s) on processor 
(iJ). Hence a single traversal of M and B is sufficient to generate the occupied cells in the 
next generation in sorted order (see Figure 4). The cell represented by (r,s) at processor 
(iJ) will be occupied in the next generation precisely when: 

(r,s) occurs three times in Mat (i,j), 

(r,s) occurs four times in Mat (iJ) and once in B at (iJ). 
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In the implementation constructed, an additional rule is included that prohibits the creation 
of cells on the edges of the computational grid. 

(0,8) 

(0,8) ( 1 '1) 
(1 ,3) 

( 1,1) 

(0,8) 
( 1,1) 

Figure 4: Each pair represents an occupied cell. Merging all nine lists of occupied 
cells yields the list [(0,8),(0,8),(0,8),(1,1),(1,1),(1,1),(1,1),(1,1),(1,3),(1,3)] at 
the middle processor. Application of the rules yields the list [(0,8)] at the middle 
processor in the next generation. 

The update time per generation is linear in A max. the largest number of occupied cells in 
any processor (i.e. the maximum length of of B over all processors). For a given number 
L of occupied cells distributed over P processors, the expected size of Amax can be 
bounded with high probability by some function <j>(L,P). Thus the per-active-cell update 
time is given by 

Where cis the per-element time for the merge and update calculations. Empirically, 
<j>(L,P) ~ 2L/P when LIP> 50. On a 16K MP-1, a large clustered life simulation varying 
between 280,000 and 4,000,000 active cells (17 ~LIP ~ 244) achieves an average per
active-cell update time of 125 ns. Simulations oflarge numbers of randomly occupied cells 
typically lead to per-ceil update times on the order of 250 ns. 

Although these times are an order of magnitude larger than the per-ceil update times in the 
dense case, it must be remembered that as long as the active cells are sparse (less than 1 in 
10 cells active on average), the active-cell simulation will be faster. In particular, for the 
large simulation cited above, the average generation time is 48ms, while in the dense case 
the generation time (in this case the automaton size is 16384 x 16384) is nearly 5 seconds 
or about one hundred times slower. 

A sequential implementation of the active cell strategy requires complex data structures to 
represent the active cells and to organize the evaluation of all active cells and their 
immediate neighbors. Efficient sequential implementations, however, use word-parallel 



logical operations in the computation that can offset this overhead. Nevertheless, for large 
simulations we found a 4K MP-1 typically 10 times faster than a DECstation 5000 using 
the efficient sequential algorithm described. 

4. Conclusion 

We have adapted an iterative local computation on a grid to update only active elements in 
the computation given that these elements may be irregularly distributed and sparse. The 
general approach was to use a cut-and-stack decomposition to obtain load balancing and to 
carefully choose a representation of the active points that makes application of the local 
computations simple and efficient. 

The technique presented can be used in a large class of grid-based iterative problems, even 
some that at first appear not to exhibit local fixed points. For example, simulations that 
require different time scales at different places on the grid can be viewed as operating on the 
fmest time scale and dynamically introducing local fixed points for those grid points that 
may be updated in larger time steps. 
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