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Abstract

The problem of sorting a collection of values on a mesh-connected distributed-memory
SIMD computer using variants of Batcher's Bitonic sort algorithm is considered for the
case where the number of values exceeds the number of processors in the machine.   In this
setting the number of comparisons can be reduced asymptotically if the processors have
addressing autonomy (locally indirect addressing), and communication costs can be
reduced by careful placement of the data values.  We report on the implementation of
several related adaptations of Bitonic sort on a MasPar MP-1.

Keywords:  SIMD computing, parallel sorting, Bitonic sort, virtualization, domain
decomposition, addressing autonomy, MasPar MP-1.

1. Introduction

Many parallel sorting algorithms have been developed to sort P values on a distributed-
memory SIMD machine with P processors connected in an √P×√P mesh.  The most

widely known of these algorithms are adaptations of Batcher's Bitonic sort [Bat68] or
closely related algorithms such as odd-even merge [Bat68] to the mesh [Kum83, Nas79,
Tho77].  All of these approaches perform O(log2 P) parallel comparisons and make these
comparisons using the mesh interconnections in a way that yields communication costs
proportional to O(√P).

†This work supported in part by the Office of Naval Research, Contracts N00014-89-J-1873 and N00014-

86-K-0680.
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We are interested in the systematic adaptation of algorithms to settings where the
number of data elements N is larger than P, and have chosen Batcher's Bitonic sort for this
study because it is relatively simple and well-understood.

There are, however, other sorting algorithms that might be considered.  A number of
algorithms have been developed specifically to reduce the communication cost toward the
lower bound of 4√P communication steps on a mesh without wraparound or diagonal
connections [Pla89, Sch89, Kun88].  Other algorithms reduce the number of comparisons
when N»P to achieve optimal speedup with respect to the optimal sequential algorithm.
Although one of the variants of bitonic sort also achieves this performance, it does so for
values of N exponential in the number of processors, while other algorithms, such as the
parallel radix sort or one of the probabilistic samplesorts [Rei85] can achieve this
performance for smaller values of N.  As these latter algorithms depend on general routing
however, they incur a large overhead on a mesh-connected machine without hardware
routing support.   In the conclusions section we briefly compare the performance of our
Bitonic sort implementations with implementations of these algorithms.

The target of this work is the MasPar MP-1, a mesh-connected SIMD computer.  The
MP-1 evolved from the MPP [Bat81] and Blitzen [Ble88] but includes some additional
features.  The aspects of this machine that are important for our purposes are:

 • integrated controller
The parallel portion of the machine consists of a fully-programmable controller and an
array of processing elements.  The instruction stream specifies operations for the
processing elements in the array as well as operations for an integrated 32-bit general-
purpose scalar processor.  The scalar processor permits algorithms with complex
sequential control to be executed without interaction with the host processor.  The MPL
programming language [Mas90] is a data-parallel extension of C that is used to program
the parallel portion exclusively, and is a language roughly at the level of ∗Lisp for the

Connection Machine.

 • nearest-neighbor and global communication
Processors are arranged on a 2-D torus, with each processor connected directly to its
eight nearest neighbors.  Short distance regular communication is very efficient using
this network.  In addition, a short-diameter multi-stage crossbar router network is
available for arbitrary communication.  Since its bandwidth is 1/16 that of the mesh, it
is primarily attractive for non-regular communication or long-distance regular
communication.  The router provides a circuit-switched two-way connection between
processors.

 • indirect addressing
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Each processor has full addressing autonomy within its local memory.  However, an
indirect (locally developed) reference can take approximately 2-3 times longer than a
SIMD-style (same address at all processors) reference.

To sort arrays that have more elements than there are processors, a virtualization
technique must be employed.  Unlike the Connection Machine, virtualization is not
supported directly in the MP-1 instruction set or the MPL language. Instead, the physical
machine size is exposed, so that virtualization strategies must be programmed.  This yields
additional flexibility while retaining efficiency because MPL programs run directly on the
controller. Automatic virtualization can be provided by compilation from higher level
languages such as the data-parallel Fortran dialect.

2. Abstract Bitonic sort

Bitonic sort of N=2n elements can be understood as a relatively simple algorithm
operating on data arranged in an n-dimensional boolean hypercube A (an n-dimensional
array, where each axis has length two).  An index v∈{0,1} n specifies a single element in

the hypercube.  Our convention is that axes are numbered 1 to n and the coordinates on
each axis are placed from right to left when forming an index.  Figure 1 illustrates the
arrangement and indices of the values in a 3-dimensional boolean hypercube holding 8
values.  Here A[101] = 'f'.
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Figure 1.  Arrangement of values in a 3-dimensional hypercube

We identify values arranged in a hypercube with the sequence of values obtained by
arranging the values in order of increasing index interpreted in base 2 ("odometer" order).
For the hypercube in Figure 1, this yields the sequence [a,b,c,d,e,f,g,h].  The expression
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A[v≈] for |v|≤n yields the sequence (in order of increasing index) of elements whose index
is vw for some w∈{0,1} n–|v|.  For the hypercube in Figure 1, we have A[0≈] = [a,b,c,d].

The Bitonic sort algorithm is expressed on the boolean hypercube as follows:

for   i:= 1 to n do   {inv: I1}
for  j := i downto 1 do   {inv: I2}

compare-exchange on axis j of A
where (index(A) at axis i+1 is 1) do

exchange on axis j of A

To explain the algorithm we define some terms and state the invariants.  The compare
exchange (CE) operation on axis j compares, for every v∈{0,1} n–j and w∈{0,1} j-1 the

elements A[v0w] with A[v1w] and exchanges the two values if the former is larger than the
latter.  The proposition s⇑ holds if s is a monotonically non-decreasing sequence, s⇓ holds

if s is a monotonically non-increasing sequence, and s⇑⇓ holds if s is a bitonic sequence, i.e.

s is a circular shift of uv where u⇑ and v⇓.  For sequences s and t the relation s ≤ t holds if

every value in s is less than or equal to every value in t..

The invariant of the outermost iteration,

I1: for all a∈{0,1} n–i:  A[a0≈]⇑ and A[a1≈]⇓

states that at each iteration successive (i–1)-dimensional subcubes alternately hold
increasing and decreasing values.  From this it follows that all i-dimensional subcubes of A
are bitonic.  The invariant of the inner iteration,

I2: (for all a∈{0,1} n–j:  A[a≈]⇑⇓ )

and
(for all v,w∈{0,1} i-j   and a∈{0,1} n–i-1

v<w ⇒
   (A[a0v≈] ≤ A[a0w≈] and A[a1v≈] ≥ A[a1w≈]))

states that at each iteration successive subcubes of dimension j are bitonic, and that these
cubes are in order relative to each other (≤) although they may not be in order internally.
On termination of the inner loop, with j=0, we have, in each subcube of dimension i,
bitonic sequences of length 1 in order, yielding totally-ordered subcubes of dimension i.
These subcubes are alternately in increasing and decreasing order, allowing i to increase
while maintaining I1.  On termination of the outer loop, with i=n+1, the first n-dimensional
subcube of A (which is all of A) is in increasing order.
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When A[a≈]⇑⇓ for a∈{0,1} n–j, the compare-exchange operation on axis j guarantees

A[a0≈] ≤ A[a1≈] and A[a0≈]⇑⇓ and A[a1≈]⇑⇓.  To maintain I2 under decrement of j we must

insure the direction of the ordering is correct for the value of index i+1.  If the results of the
CE operations are exchanged on axis j, the inequality above is reversed and we end with a
decreasing sequence when j=0.  The index(A) operation yields a hypercube of size and
shape of A in which the elements are the corresponding indices of A, hence the where
condition holds for those elements that are in the larger index subcube of dimension i on
axis i+1.  Since the CE and the exchange operate on the same values, they can be combined
into a single operation and we shall count them as such.

Consequently, a simple analysis of the algorithm above confirms that it performs

∑
i=1

n
  ∑

j=1

i
 1   =  

n(n+1)
2   =  

log2 N + log N
2   =  O(log2 N)

parallel compare-exchange operations.

To adapt the abstract Bitonic sort to our target machine we have to solve two kinds of
problems.  First, with N> P elements we have to choose how to virtualize the algorithm to
apply when each processor holds multiple values in A..  Second, since the algorithm is
formulated on a hypercube and we are interested in implementing it on a machine with a
mesh topology, we have to embed the values on the hypercube into the mesh.  We consider
first the virtualization strategies.

3. Virtualization strategies

We assume that we have P = 2m processors, and N = 2n elements with m<n.  We
consider three different adaptations of the Bitonic sort algorithm reflecting three different
treatments of multiple values per processor.

The first and simplest virtualization strategy is to reduce the n dimensional hypercube to
an m dimensional hypercube, each element of which is an n–m dimensional hypercube.
Figure 2 gives an example of the decomposition.  The idea is that the m-dimensional
hypercube can be embedded in the P processor mesh while the n–m  dimensional elements
will reside within each processor memory.  We refer to this approach as hypercube
virtualization because it preserves the hypercube structure of the original algorithm,
although we must alter the interpretation of the CE operation.  Each parallel CE operation
on an axis in the m-dimensional hypercube corresponds to N/P successive comparisons of
P /2 parallel pairs of corresponding components of elements at each end of the axis.  A
parallel CE operation on an axis contained within the elements consists of N/2P successive
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comparisons of P parallel pairs of components of elements.  Since CE operations are
performed most frequently on lower numbered axes, the natural choice is to place these
axes within elements since fewer sequential comparisons are involved in CE operations on
axes within elements.

V0 V2
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Axis 1

Axis 5

Axis 3

Axis 4

Figure 2.  Hypercube virtualization of 5-dimensional hypercube into a
3-dimensional cube of 2-dimensional cube elements

There are log2 N parallel CE operations in the abstract algorithm and each CE operation
involves O(N/P ) parallel comparisons, hence the total number of parallel comparisons
using P  processors is

O 
 


 
N

P log2 N (1)

which is not work efficient relative to an N log N sequential sort.

A second virtualization strategy is to again reduce the problem to an m-dimensional
hypercube, but choose the elements to be sequences of size N/P.  We refer to this strategy
as sequence virtualization.; an illustration is given in Figure 3.
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Figure 3.  Sequence virtualization of 5-dimensional hypercube into a
3-dimensional cube of length 4 sequence elements
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For this strategy we change the interpretation of CE so that it operates on sequences of
length N/P.  For s and t  sequences, CE(s,t) operation yields sequences v, w such that
vw = perm(st) and v≤w (using the definition of ≤ for sequences).  Thus a CE operation
partitions two sequences into the smallest N/P values and the largest N/P values of the
combined sequences.  This definition satisfies the properties required of CE in the abstract
Bitonic sort algorithm to establish and maintain invariants I1 and I2.  On termination we are
guaranteed that the elements of the m-dimensional hypercube are totally ordered with
respect to ≤.  If, in addition, we know that each of the sequences is ordered with respect to
the ≤ relation on sequence elements, then we can conclude that all N  values are sorted.

If we start with a sorted sequence at each vertex of the P element hypercube, then the
CE operation on sequences can be implemented by a merge followed by a partition in half,
with each half remaining a sorted sequence.  Note that, in general, the merge step will lead
to a different merge order at each processor, hence the pattern of references must be locally
determined and requires addressing autonomy to implement.  An advantage of this
virtualization strategy is that N/P need not be a power of 2; any data-set of size c•P can be
sorted on a P processor machine for any positive integer c using this strategy.

A Bitonic sort using sequence virtualization performs O(log2 P) CE-operations, each of
which requires O(N/P) compare operations to perform the merge.  In addition, we must
sort the initial sequence of length N/P at each processor.  With indirect addressing, this
could be done with an O((N/P) log (N/P)) comparison sequential merge sort algorithm
which can be adapted for SIMD execution because the size and location of subsequences to
be merged in each step is fixed.  Thus, sequence virtualization performs

O 
 


 
N

P 
 


 
log N

P + log2 P (2)

compare operations which is an asymptotic improvement over (1) for large values of N
compared to P, and achieves optimal speed-up with respect to the sequential
algorithm.when P is less than (log N / log log N)2 [Bau78].

The final virtualization strategy is a variant of hypercube virtualization in which the
algorithm is transformed as follows to always perform CE operations on a the first k = n–m
axes.

for   i:= 1 to n do
for  j := i downto 1 do

if  j≥k then
transpose axis j and k of A
CE on axis k
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transpose axis j and k of A
if  j<k then

CE on axis j

Since the first k axes are placed in memory under hypercube virtualization, every CE
operation can be realized with N/2P successive parallel comparisons of P values.  Thus
fewer parallel comparisons are made using this approach.  Since the virtualization technique
varies the organization of data in the hypercube, we call it a varying hypercube
virtualization.

Figure 4 illustrates the data movement required in the hypercube to transpose an
element axis k (axis 2 in this case) with a hypercube axis j (axis 5 in this case).  In each
element there are N/2P values whose indices on axis j and k differ.  These values must be
exchanged with N/2P values in the element at the opposite side of axis j.  Hence a total of
N/P values move; this is the same number as are moved in bringing together the values for
a CE operation on a hypercube axis.
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exchange

exchange

Figure 4.  Data movement required for the transposition of a hypercube axis
(axis 5) with an element axis (axis 2).

4. Embedding

Now we consider the embedding choices.  To choose an embedding that minimizes
communication, we must examine the operations in the abstract algorithm and assess their
communication cost.  The only operations that involves communication are the CE
operations on hypercube axes and the transposition of hypercube axes.  Since the CE
operation is applied more frequently to lower dimensions of the hypercube, an embedding
that places values along lower-numbered axes closest together is desirable.

All the virtualizations have reduced the hypercube to the leading m axes, so that we are
considering the embedding of an m-dimensional hypercube in P = 2m processors arranged
in a 2m/2 × 2m/2 mesh.  We assume m is even; it is simple to extend the following to the

case where m is odd.  For simplicity we will renumber the hypercube axes 1..m .
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A row-major embedding of a boolean hypercube maps each successive dimension to
processors successive powers of two apart along the first row, wrapping across rows
when the stride exceeds the number of processors per row on the mesh. Hence the stride
on the mesh between elements along hypercube dimension i is given by:

Crm(i) = 
 

2i-1 direction East, if i-1 < m/2
2i–m/2–1 dir South, if i-1 ≥ m/2

The row-major embedding can be improved by using the short-distance strides in both
directions on the mesh first.  This is the balanced-axis embedding, in which the stride
between the elements along the mesh between elements along hypercube dimension i is:

Cba(i) = 
 

2((i-1)/2) direction East, if i odd
2((i-2)/2) direction South, if i even

Since

∑
i=1

n
  ∑

j=1

i
 Crm(i)  ≥  ∑

i=1

n
  ∑

j=1

i
 Cba(i)

a balanced axis embedding results in lower communication cost than row major
embedding, although the final sorted sequence is not in row-major order.

Thus far we have treated the MP-1 only as a mesh-connected machine, and have
ignored diagonal connections and the torus topology.  The xnet embedding uses these
connections on a square mesh [Law90].  Its stride function is given by

Cxn(i) = 

 



1 direction NE, if i=1
1 direction SE, if i=2
1 direction E, if i=3
2((i-2)/2) direction NE, if i even
2((i-3)/2) direction SE, if i odd

and results in lower communication cost than either of the other embeddings.

Finally, as pointed out in [Fla82], it is not necessary that the embedding be fixed
throughout the course of the algorithm.  We can use this observation to perform an
additional transformation of the varying hypercube virtualization of Bitonic sort with
k = n-m: :

The idea is that a function M[ j] records which original hypercube axis currently
occupies axis j.  The function M changes whenever a transposition is performed.  To
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implement the transpose between axis k and j, we find the axis M-1j] currently occupied by
j and perform the transpose with axis k:

let M be the identity function on 1..n
for   i:= 1 to n do

for  j := i downto 1 do
if  j≥k then

transpose axis M-1[j] and axis k of A
M[k],M[M -1[j]] := j, M[k]
CE on axis k

if  j<k then
CE on axis j

For a given initial embedding of the hypercube, the total communication distance for the
transformed algorithm is the same as that obtained if the embedding were fixed.  The
advantage lies in the fact that only one transpose operation is required per CE instead of
two, hence half the values are moved.

5. Analysis

The cost of Bitonic sort under each choice of virtualization and embedding is given by
the expression

Ti,j  (N,P) = (ai,j Ci  +  bijTj ) • Li

where aij  and bij  are implementation-specific constants and the remaining factors are
determined as follows:

virtualization i comparisons Ci loading Li
sequence log N/P  +  log2 P 2N/P

hypercube (log2 N) 2N/P

var.-hypercube (log2 N) N/P

embedding j unit shift steps Tj
row-major (log 16√P)√P – 3/2 log P – 4
balanced-axis 7√P – 2 log P – 7
xnet 5√P – log P – 5
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5. Implementations

Figure 5 illustrates the space of possible implementations corresponding to the
virtualization and embedding strategies discussed.  The implementations actually
undertaken are identified in the Figure.  Some implementations were not attempted because
their performance would clearly be inferior.
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Figure 5.  Implementation choices and implementations attempted.

The Sequence Row Major (SRM) and Hypercube Row Major (HRM) variants were
implemented to show how CE operations affect performance. The two Balanced Axis
(SBA1 and SBA2) implementations were used (1) to show how decreased communication
affects performance and (2) to study more closely the costs of indirect addressing.  The
Varying Hypercube virtualization was implemented with two intitial embeddings (FLA and
XNET). The following remarks are based on  the implementations described above.

initial sort
For the initial one-time intraprocessor sort in sequence virtualization we used a merge-
exchange sort [Dij87] [Bat68], which is an O(n log2 n) sort.  Although it is possible to
write an asymptotically better merge sort as suggested in the previous section, the
constants are worse for achievable values of N/P with the current per-processor
memory size.  A radix sort becomes competitive at the largest values of N/P, but all
such sorts require extra space.  The pre-sort is the only operation in sequence
virtualization that need be non-linear in N/P (each CE in sequence virtualization is a
linear-time merge) and we find that only at the very largest feasible inputs can we notice
this asymptotic effect, suggesting that the comparisons at the pre-sort stage are
dominated by the comparisons in the bitonic stage.  The merge-exchange sort is
oblivious [the comparison pattern is independent of the comparison outcomes] and
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hence need not use indirect addressing, yet unlike bitonic sort works for any sequence
size, not just those with length a power of 2.

sequence compare-exchange
In sequence virtualization the CE operation is a merge of two sequences followed by a
split in half.  The two sequences can be merged most rapidly into a fixed destination
sequence.  Each step places one element in the next position of the destination
sequence, hence the destination sequence can be directly addressed.  By including
sentinels at the end of the two sequences to be merged we can eliminate "run-out"
sections of code which have surprising performance implications in this setting.
Consider that in different processors different merge orders are found hence it is
possible that a merge loop followed by the two cases of run-out loops all run the
maximum number of iterations (four times the length of the sequences to be merged).

The half of the merged sequence that is returned to the other processor on the
hypercube axis depends on the value of index(A) at axis i+1.  A separate copy step is
used in SBA1 to make this split in all processors.  An alternative implementation in
SBA2 used three rotating buffers for the merge.  The conditional reversal of the merged
sections was then accomplished by a pointer swap.  This makes the number of
references small but all are indirect.  Note that sequence virtualization requires storage
at each processor that is three (SBA2) or four (SBA1) times the space required for
hypercube virtualization.

hypercube compare-exchange
In the transpose and hypercube CE operation the axes of the hypercube elements are
mapped into memory identically at each processor, hence these operations need not use
any indirect addressing.  Since the N/P element CE can be carried out as N/P single
element communication and compare steps, no extra space is needed for these
implementations.

communication
We use the mesh connections for all regular communication, because of their great
bandwidth advantage over the router.  On a 64x64 processor machine even the longest
stride movement (length 32) is competitive with the routing time.  The router was used
to restore layouts produced by the non row-major order embeddings (SBA1, SBA2,
FLA, XNET) to row-major order.  We decided arbitrarily that row-major order was
required of the result.
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6. Performance

It is useful to analyze performance in relation to the virtualization ratio VPR = N/P.  For
a given size of machine and choice of embedding the communication costs are linear in
VPR and independent of the virtualization technique.  The comparison costs grow non-
linearly with increasing VPR, and are independent of the embedding.  In sequence
virtualization the only non-linear component of comparison cost is in the initial sort, while
in hypercube virtualization the cost grows proportional to log2 N.  Since both virtualization
approaches incur comparison costs from the inter-processor CE operations, the effect of
comparison costs becomes pronounced when N is significantly larger than P.

The sort time of the implementations described on a 4096 processor MP-1 sorting 32-
bit integer data values are shown in Figure 6 and displayed graphically in Figure 7.  The
times are in milliseconds/VPR.

Hypcube Sequence Var. Hypcube

rowmaj rowmaj balaxis balaxis balaxis xnet

VPR HRM SRM SBA1 SBA2 FLA XNET

2 19.8 21.4 21.4 30.3 6.8 5.0

8 19.5 20.7 19.5 25.9 5.8 4.7

32 19.4 19.6 18.0 23.7 5.9 4.9

128 20.4 19.7 18.1 23.3 6.5 5.4

512 22.1 19.7 18.2 23.5 7.1 5.9

2048 24.0 7.8 6.5

Figure 6.  Implementation timings in milliseconds/VPR on 4096 processor
MP-1

It is clear from the numbers that the comparison operations contribute a relatively small
amount to the cost of all implementations.  This is likely due to the basic speed of the ALU
compared with the speed of communication.  Only at large input problem sizes do
comparison costs differ significantly between virtualization techniques and the magnitude
of this effect is small by comparison to the improvements due to superior embeddings.  On
large machines the point at which sequence virtualization becomes significantly faster will
be reached at higher VPR than on smaller machines due to higher communication costs.

It is interesting to note that SBA2 replaces 4 indirect references and 6 direct references
within a CE (per element of the sequence) with 6 indirect references and zero direct
references yet SBA2 runs 34% slower than SBA1.  This suggests a factor higher than 2-3
for indirect vs. direct memory references.  It is likely that this represents limitations of the



–14–

current MPL compiler or conflicts in overlapping indirect memory references with
computation.  But it also suggests that any speedup of indirect addressing will improve the
relative performance of sequence versus hypercube virtualization.

With the cost to route the sorted results to row-major embedding included, the balanced
axis (SBA1) and the varying balanced axis (FLA) implementations still are superior to a
bitonic sort using a row-major embedding.

The performance of FLA and XNET may appear anomalous compared to the other
implementations.  Even given that FLA has half the communication cost of HRM and uses
a better embedding, a performance improvement ratio of >3 seems high.  It is likely that
some of the difference can simply be attributed to programming.  FLA and XNET's
transpose operations fits the machine particularly well and both implementations were
programmed last.
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Figure 7.  Performance of implementations

7. Conclusion

The bitonic sort algorithm is suitable for distributed memory implementation precisely
because the structure of the hypercube guarantees that each value is involved in exactly one
CE operation at a time (no contention).  It is suitable for a mesh-connected SIMD computer
because the regularity of the CE operations on the hypercube can be preserved in the
embedding into lower-dimensional meshes.
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In the course of this work it became clear that the notions of virtualization and
embedding as we defined them were orthogonal, and their impact on performance could be
separated.  Although sequence virtualization offers the asymptotically best sort, for the
range of VPR that we can accommodate on our current machine, the improvement is
relatively small and the space penalty severe. Hence our conclusion is that the most
reasonable large-array sort for this machine is a varying-hypercube virtualization with the
processor axes transposed dynamically within an xnet embedding.  However, the xnet
embedding requires a square mesh, and thus MasPar machines with an odd power of 2
processors (2048, 8192) could not run this implementation.  Thus the vbsort
implementation that we distribute uses the balanced axis embedding and runs on all MasPar
machines.  As can be seen in Figure 7, this implementation achieves nearly the same
performance as the xnet embedding.

The vbsort implementation of bitonic sort is fast and the most usable sort we have
developed on MasPar MP-1 machines to date.  We also undertook implementation of radix
and samplesort [BL+91].  Both of these algorithms have significantly higher memory
requirements and, in fact, samplesort is not realistically implementable on current MasPar
machines since the splitter table used at each processor has size proportional to the number
of processors and exceeds the local memory capacity on MasPar machines with large
numbers of processors.  Radix sort becomes competitive with vbsort when n/p > 128 and
has better scaling behavior thereafter.  There two disadvantages of radix sort are that it
performs poorly at small n/p and that it is difficult to efficiently sort arbitrary-sized records.
Bitonic sorting offers some significant advantages over both of these sorts:  in-place
operation and deterministic performance independent of input distribution.  Hence the
vbsort implementation has developed significant use in practice.
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