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Abstract _
This paper examines a new method of image processing that combines
information at multiple scales in order to locate boundaries. This method employs a
technique of edge-affected diffusion, where blurring is limited'by the presence of edges
as measured at the scale of interest. By repeating such processing and measuring
gradients at successively smaller scales one is able to trace a ‘path’ through scale space
which can preserve accurate information about boundaries of objects, and yet selectively
remove objects that fall below a scale of interest. This method is compared with the
edge-affected diffusion technique described by Perona and Malik, which depends only on
the local gradient of intenSit)'r of the processed image. This paper shows some examples
which indicate that this method could be useful for boundary detection in the presence of
blurring and noise and is also capable of performing grouping of distinct objects at
various scales. This paper also examines the sensitivity of this process with respect to

ones choice of parameters.



Introduction

Given the task of dividing an discretely sampled image into a finite number of
meaningful regions, there is a wide range of possible strategies. One reasonable
approach is to group nearby pixels on the basis of similarity in intensity values. For
such an approach, boundaries between regions are areas where pixels are dissimilar
from pixels nearby. One measure of dissimilarity is the gradient vector. For a two
dimensional image, I(x, y), the gradient vector is
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The magnitude of this vector is the rate of change of intensity in the direction of
maximal change. Using the gradient, there are a number of options for identifying
divisions or boundaries between regions. Perhaps the simplest is to threshold the
gradient magnitude. Pixels that coincide with gradients higher than a specified
threshold serve as boundaries to separate other regions. More complex approaches
include the Canny edge [1, 2] which identifies boundaries as local maxima of gradient
magnitude in the gradient direction. In continuous images these Canny edges form
closed curves. These approaches suffer from a common problem. The gradient is not a
reliable metric when measured on the presence of unwanted, small scale, luminance
fluctuations. That is, the gradient is susceptible to noise.

One response to this problem is to compute the gradient of the image by a
sampling process which includes some weighted averaging over a local neighborhood,
or equivalently computing local derivatives on blurred versions of the original image.
Koenderink [3, 4] argues that in the continuous case, with a fairly natural set of
constraints, this sampling function is uniquely defined as a Gaussian that falls off with
spatial distance. These Gaussian kernels incorporate a continuous scale parameter
that allows one to create a dense set of blurred versions of the original image, a ‘scale
- space’. Ter Haar Romeny and Florack [5, 6] show that in the case of Gaussian noise, the
application of Gaussian blurring can improve the signal to noise ratio of image
measurements that consist of derivatives of the image intensity, Lindeberg [12] applies a
similar set of constraints to discrete images and shows that the necessary blur kernels
are modified Bessel functions. .

In order to understand the limitations of uniform Gaussian blurring, consider
the example in Fig. 1a. It was constructed by drawing two overlapping equiluminant
circles on a black background and then adding uniformly distributed random noise with



a range that is twice the intensity difference between the circles and the background.
The image is noisy, and yet the outline of the shape formed by the overlapping circles is
easily distinguishable. This visual boundary includes not only the smooth outline of the
original circles, but the sharp cusp that is formed by their intersection. Fig. 1b shows a
display of the gradient magnitude of this image, that was determined by computing
differences between nearest neighbor pixels. Although there are some areas of
particularly high values that coincide with the borders of the original circles, these
areas are incomplete and difficult to reliably characterize.

Fig. 1. (a) A white figure on a dark background with additive noise that is uniformly distributed
and has a range of twice the intensity difference of the foreground and background. (b} The
gradient magnitude of the same image.

Fig. 2 shows the effects of two levels of Gaussian blurring in the image and the
gradient magnitude of these blurred images. The effects of the random noise have been
dramatically reduced, and the gradient images are more cocherent. However, the
gradients have formed relatively wide bright bands that could introduce some ambiguity
about the precise location of the boundaries in question.

Once could interpret the ‘fuzzy’ response of the gradient measure at a pixel for a
given scale as a graded membership function that indicates the likelihood of a boundary
at that pixel. The width of these bands in the gradient image suggests a tolerance on the
locations of boundaries that result from these measurements. Since the stated goal is a
discrete segmentation of the image, this interpretation begs the question of how to decide
the most likely location of boundary within an area of relatively high gradient measure.
The approach of Canny is to choose as boundaries the set of points that are local maxima



of gradient in the direction of the gradient as boundaries. Effectively, this approach
applies higher order information (directional second derivative) in order to resolve the
ambiguity associated with smoothly varying intensity functions or intensity functions
that are measured at finite scales.

Fig. 2. Clockwise from the upper left: The image of Fig. 1a and the gradient magnitude of that
image after blurring with Gaussian kernels. (a) standard deviation of 0.02 (relative to the width
of the image) and (b) the gradient magnitude. (c¢) A kernel with standard deviation of (.05 and (d)
the gradient magnitude.

Such an approach does not address all the difficulties of Gaussian blurring.
Referring to Fig. 2, one can see that the sharp cusps where the circles meet which were
apparent in the original image are much less distinct. The sharp points associated with
these cusps degrade very rapidly with Gaussian blurring, even though they might be



important to the overall shape created by the two circles. The indiscriminate reduction
of small scale information associated with uniform blurring can remove important
information about features that have both small scale and large scale components.
Ideally, one would like to improve the tolerance of gradient measurements at places in
the image where the large tolerances associated with larger Gaussian kernels lead to
poor decisions about boundary location.

One possibility for making use of Gaussian blurred images is to combine
information gathered at multiple scales. It is possible to imagine that large scale (large
Gaussian kernel) information could be used to indicate the presence, in an imprecise
way, of interesting boundaries, while smaller scale information could be used to
determine more precisely the location of these boundaries. Baxter and Coggins [7] have
combined information at multiple scales, by associating with each pixel measurements
made at a number of discrete scales (samples in scale space) and treating the-resulting
measurements as positions in a feature space. He then applies some techniques of
statistical pattern recognition to the resulting feature space in order to find pixels that
have similar behavior through various levels of blurring.

This paper explores another approach to combining information at multiple
scales. This approach combines information from a nearly continuous range of scales
via an nonuniform diffusion process.

Edge-affected Diffusion
Convolution with the Gaussian kernel is one time slice of the solution to the
uniform diffusion equation (or heat equation) with the original image as the initial

condition (Eq. (1)).

V.eVI = a—I—

Uniform diffusion . 3t ' (1)
The constant, c, is the conductance and controls the rate of blurring with respect to the
time parameter. In most expressions of this equation, units are chosen so that ¢ = 1, so
that it does not appear explicitly. The full solution, I(x, y, t), is the continuous scale
space mentioned above and each time slice is a version of the original image that has
undergone some amount of blurring. This allows one to view Gaussian blurring as a
continuous process that evolves from the original image. Nonuniform diffusion, as
described by Grossberg [9] as well as Perona and Malik [10], uses a variation on the heat
equation which allows the conductance to vary over space.
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More specifically, the above authors describe a type of edge-affected diffusion in which
conductance varies in response to the presence of edges in the processed image (Eq. (2)).

ol
Edge-affected diffusion Vg dVIl) Vi= at (3)

In this case the conductance, g(|VI|) depends explicitly on the gradient magnitude of
the function itself. Thus Eq. (3), unlike (1) and (2), is nonlinear and its behavior is
somewhat different than applying a different size Gaussian kernel at every point in the
image. The solutions that result from (3) are not characterized by any explicit
convolution with a kernel. Perona and Malik have shown that {3) can have the effect of
limiting blurring near edges, and also increasing the steepness or gradient of edges that
are sufficiently steep in the initial image.

One way to describe Eq. 3 is the uniform diffusion equation applied to the image as
it undergoes local warping of space and time. Let x” and t” be local coordinate systems
that vary as functions of the local gradient and let x” = (1/g(1VII)x, t" = (1/g(1 VIi)Hit.

The primed operators are computed with respect to these local coordinates. Then the
uniform diffusion equation in the local coordinates becomes:

d_=glvipd-, d_=gvipd, v.vi=dl
dx’ dx’ dt’ dt’ dt’

= V-g(vihvi=dl
dt

This local “stretching” of space and time near edges can reverse the sign of the laplacian
operator (Fig. 3) and allow the ‘sharpening’ or ‘enhancement’ of edges near places of
high gradient [10,11].

Obtaining the desired behavior from Eq. (3) depends on an appropriate choice of
g(IVIIl). Some constraints that yield behaved solutions are that g(iVI1} be positive and
bounded, and in order to limit diffusion at edges, g(| VI|) should be monotonically
decreasing. Perona and Malik provide further constraints on g(!{VII) that enable (3) to
exhibit the ‘edge enhancing’ behavior, and propose

g(IVI) = ¢ (1 V1 k%)
. as one possibility. This conductance function introduces a parameter, k. This
" parameter controls the effect a given gradient value will have on the conductance.
Ideally, k should be chosen to reflect the range of gradients in the image, or possibly the
gradients in a local neighborhood of every point. For the examples in this paper k will be



expressed as some multiple of the root mean squared (rms) of the gradients at each pixel
in image. This has the effect of making the process independent of the particular units
in which one chooses to express intensity and thereby allows a small range of k values to
apply to a wide variety of images.' ' o

dI = (V- VD)dt ’ o dI = (V- VD

I(x)

L3 — —H
dx dx dx’ dx’

Fig. 3. The local stretching of space and time causes the laplacian operator to switch signs
resulting in the sharpening of edges.

Fig. 4 shows the effects of allowing the process to run on a blurred disk. The
algorithm employs the method of finite differences. It starts with the initial image and
proceeds through discrete time steps. The gradient magnitudes are computed using
nearest neighbor differences in orthogonal directions. Derivatives are computed on both
a horizontal-vertical and diagonal grid in order to improve the overall behavior of the
system. The boundary conditions are chosen to be adiabatic, so that the derivative of
intensity is zero in the direction perpendicular to the boundary. The time increments
are chosen in order to maintain numerical stability [10, 13], and the total elapsed time is
chosen in order to accentuate the edge enhancing effects of the algorithm.

The diffusion process described above can blur images, reduce unwanted noise,
and also preserve (or even enhance) boundaries. The images that result tend to have
steep, distinct boundaries that adhere to the shapes of objects in the original image.
Solutions with adequate values of t offer more reliable gradient measures then in the
-original image, and facilitate the use of Canny edges or even gradient thresholding as

reliable indicators of boundaries.



Fig. 4. The result of nonuniform diffusion on a blurred disk. (a) The initial image. (b) The
resulting image after 100 iterations with a k value of 5.5 rms V1.

Scale Within Nonuniform Diffusion
Despite the fact that solutions to (3) offer an improvement over Gaussian blurring,

-they still suffer from the problem of the unreliability of the local gradient measures that
are used in calculating the conductance. ILocal gradients can be so poor in situations
where the noise is substantial, that they can drive the process to undesirable results.
Consider how solutions behave in the case of the blurred disk in Fig. 4 with the addition
of uniformly distributed random noise that has a range of one half of the intensity of the
original disk. Fig. 5 shows the original image and samples of the solutions for two
distinct values of k.

The algorithm described above has arbitrarily assumed that the scale of
individual pixels (sometimes referred to as ‘inner scale’ [4]) is a meaningful scale at
which to make measurements of the gradient. The additive noise introduced into the
blurred disk makes the pixel scale a particularly poor scale for such measurements.
The result is that the process is unable to capture the larger scale regularity in the

image.



Fig. 5. Clockwise from the upper left: {a) A blurred disk with additive uniformly distributed
noise, (b) The result after 100 iterations with a k value of 3.0 rms VI and (¢) a k value of 5.5 rms VL

The edge-affected diffusion process can produce more reliable measures of image
gradient for the purpose of making decisions about boundaries. However, in order to
carry out this process one needs a best estimate of the image gradient at each point in
the image and at each point in time. The problem appears to be circular. In the absence
of any a priori information about the image, the best estimate of the gradient (for the
conductance determination) that one could hope for [3] is the gradient of the Gaussian
blurred image. This suggests that (3) should contain a scale parameter, s, as follows:
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where G(s)+*I(x, y, t) denotes a convolution (over x and y) of the image at time t with a
Gaussian kernel of scale s. It is important at this point to distinguish t and s in (4). The
‘evolution’ or ‘time’ parameter, t, characterizes a particular level of nonuniform
blurring. The scale parameter, s, describes a level of uniform blurring used to make a
gradient measurement of the image at some value of t. The uniform blurring associated
with s is not so much a transformation applied to the image, but a description of the
another (uniform) diffusion process used to measure the gradient at each point in a
single time slice. |

Scale as a Function of Evolution _

Edge-effected diffusion is an iterative process which uses tentative estimates of the
gradient to make incremental changes to the image. Because of unwanted luminance
fluctuations these tentative estimates are measured at some scale s. If the process
works as we hope, then the unwanted luminance fluctuations should diminish more
rapidly than the signal that we wish to ultimately characterize. That is, gradient
measurements should become more reliable as the process evolves. This suggests that
one should not measure gradients at a single scale throughout the process, but should
decrease the scale parameter s to reflect an increasing confidence subsequent versions
of the image. The argument above prescribes a diffusion equation of the form

V-g(IVG(s()*I(x, y, VI = i—i (5)

and suggests that s(t) should be some decreasing function of the evolution parameter as
in Fig. 6.

The result is a process which gradually ‘narrows in’ on edges that belong to
objects which do not blur away at some chosen scale. If we consider the wide bands in
the gradient image of Fig. 2, then we can see that as the process continues, and scale
decreases, the bands will become progressively narrower and the nonuniform blurring
will continue to smooth closer to the boundary of the desired object. Thus, it is possible to
retain very accurate descriptions of edges that belong to objects which are sufficiently
large in the initial image. |

It is important that s(t) not decrease too quickly, or else edges which are not
sufﬁciently large at some scale s(t,) might ‘resurface’ at some scale s(tn.1). Likewise, if
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s(t) decreases slowly enough, then edges which are sufficiently small at one scale s(ty),
will be adequately smoothed so that they cannot reappear in measurements made at
some later time. On the other hand, reducing scale too slowly could allow important
information about large scale objects to be lost. Unfortunately, the above arguments do
not prescribe a precise form for s(t). It is conceivable that s(t) might not be the same, or
even have the same form, for every image, but could vary according to some smoothness
measurement made on the process itself. This analysis is an area of future work. .

negative slope reflects increased .
confidence in gradient measurements

t

Fig. 6. A typical scale 'path’ for a multi-scale nonuniform diffusion process.

For the following examples s(t) has been chosen so that the standard deviation of
the Gaussian kernel that is applied to make the gradient measurement decreases
linearly with evolution. The slopes and intercepts of these functions are determined
empirically. The strategy is to choose an initial value for the scale function, s(tg), that
will screen out features that are not large enough to be interesting. An addition one
must choose an appropriate value of k, and and some stopping value for the evolution
parameter.

' Fig. 7 shows the results of this approach on the blurred disk and overlapping
circles with additive noise from Figs. 1a and 5a. The images shown offer a dramatic
improvement over Gaussian blurring and edge-affected diffusion with conductance
measured at the inner scale. In both cases, the gradients for the conductance function
-are measured initially with a Gaussian kernel with a radius of about 6 pixels. As the
process evolves the size of this kernel is slowly decreased, so that measurements are
made at the inner scale only in the final iterations. In the case of Fig. 7b, this process
was able to preserve the sharp cusps where the circles meet.
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Fig. 7. (a) The result of multi-scale nonuniform diffusion on the noisy blurred disk from Fig.
5a after 200 iterations with a k value of 4.0 rms VI and Gaussian seale starting at 0.025 of the
image width and decreasing linearly. (b) The overlapping circles from Fig. 1a after 130
iterations with a k value of 3.0 rms VI and Gaussian scale starting at 0.005 of the image width

and decreasing linearly.

Grouping and Subjective Boundaries

The choices of the initial value and shape of s(t) determine a lower limit on the
size and intensity of objects that will appear in later stages of the diffusion process. This
has a significant impact on the results of this type of processing. It’s reasonable that
s(tg) should depend not only on the properties of the image, but the task one wishes to
perform. The reasoning described above does not make any assumptions about what is
considered noise, or what form that noise should take; it only assumes that there is an
improvement in the signal to noise ratio with applications of Gaussian kernels. This
provides a great deal of flexibility in the kinds of features that can qualify as noise. In
particular it is possible to choose very large Gaussian kernels in order to prevent
relatively large structures (of course they must be smaller than the objects one wishes to
characterize) from contributing to the gradient measure. The only requirement is that
regions of interest must have measurable intensity differences at some scale.



Fig. 8. An image: composed of two distinet groups of dots and exhibiting subjective boﬁn’daries_.’ o

Consider the example in Fig. 8. It consists-of 33 white dots on a black -béckgtbi-md.
The dots a_ré- readily distinguishable from the background by any of a number of very
simple boun'dar'y criteria. The picture also has another interpretation: It'gﬁonsiSt_s:df two
light forms, one small and the other large, on a dark background. In the c'ongt'ext of this
interprefétion, the white dots can be considered a kind of highly structured noise ‘which
serves to obscure the two light forms. It is even possible to ascribe boundaries to tlie's'.e
larger forms, but these boundaries would inevitably pass fhrough black ai_feas of the
image that have no luminance variation. We refer to these as subjrective boundaries.

By choosing an s(to) that has a kernel size larger than the white dots one cari'.{ise
the edge-effected diffusion to Gl in’ Iuminance across the larger forms and Completé
the subjective boundaries. Fig. 9 shows several time slices of the dotted image at
different times in the process. These images show that the smoothing begins near the
center of the object and flows outward toward the boundaries.

The process has groups dots based on their averaged intensities as measured as
some large scale. The result in Fig. 9d is a pair of objects that have virtually flat
luminance functions with well defined boundaries. As in the earlier examples (Fig. 7),
the presence of noise (dots) has influenced the shape of the boundary. The framework
for diffusion described in this paper offers some flexibility in the amount of information
retained at the boundaries. Allowing s(t) to decrease more slowly, choosing larger
values of k, or beginning the process with a Gaussian blurred version of the original
image, can all result in smoother boundaries. Of course, these measures do not



discriminate between the effects of noise along the boundary and desirable features of

objects.

Fig. 9. Clockwise from the upper left: (a} - (¢} Consecutive time slices that demonstrate filling in’
phenomenon associated with as the process evolves on the image from Fig. 8 and (d) the resulting

gradient magnitude.

Sensitivity to The Conductance Parameter

The behavior described is sensitive to one’s choice of parameters. In particular,
the results of this processing are dependent on appropriate choices for the values of the
conductance parameter, k, and the time, t, which measures the extent to which the

process evolves.
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Not all edges in an image in an image are enhanced - smaller edges are blurred
away. Choices of k provide a lower limit on the gradients of edges that are enhanced.
Define (for the one dimensional case) the flow, ¢(Iy) = g(11;1)I as in [10]. From Eq. (3)

- the change in image gradient over time becomes

aI 7 ’
_a;" - ¢ Ixx + ¢’ Ixxx (6)

The sign of the right hand side of Eq. (6) indicates whether gradients are increasing or
decreasing. For a local maximum of gradient, Iyx = 0 and Ixxx < 0. Thus, edges that are
local maxima of gradient are becoming more steep over time (d1/dt > 0) provided that ¢’
< 0. Perona and Malik [10] suggest choices of g(1I4!1) so that ¢’(Ix) has the property that
there is some ¢ such that : L

0 ifly . '
(L) { >0 iflx <o @
<

ifly>a

The conductance function g(1VIIl) = g VI '2/?‘2) has this property, and o = (U2)Y2k. This
suggests that one could choose k to reflect the lower bound on the steepness of edges that
will be enhahced; edges below o will be blurred away while edges above o will be
enhanced. Unfortunately, there are further constraints on the choice of k. Fig. 10
shows the edge-affected diffusion applied to the blurred disk from Fig. 4a. For this
analysis k was purposely chosen to be low; it is two times the root mean squared of the
image gradient. The resultis a ‘staircasing’ effect. Instead of isolating a single steep
portion of the disk boundary as in the examples above, the process has broken the
boundary into many discrete steps.

In order to better understand this phenomenon we will analyze a particular case
of the one dimension edge and then try to generalize the results. Consider an edge I(x),

where
_ - 2/2
I(x) —f Ae-$1:0dg )

This is equivalent to a Gaussian blurred step function. The advantage of using this
function is that it has closed form analytical expressions for all of it’s derivatives. The

derivative of this function,
‘ X320
Ix(x) = Ae »



is the familiar bell shaped Gaussian and I(x) has a maximum gradient at xg= 0. The
gradient at the most steep point, xg, is increasing for appropriate choices of the
conductance coefficient (Eq. (6)). However, this says nothing about the way I changes in
the neighborhood of xy. In order for this edge to become we would expect that the
gradient at xg to increase more quickly than the gradients in a local neighborhood of x,.
If the local neighborhood of xgincreases it’s slope more quickly than I (x¢) then the edge,

1(x), becomes steeper, but also ‘flatter' as shown in Fig. 11.

Fig. 10 The 'staircasing’ effect as exhibited on the blurred disk of Fig. 4 resulting from choices of
k that are too low,

Characterizing this behavior requires analyzing at the manner in which higher
order terms change over time. From (6) and (7) and expanding the exponential in a

Taylor series

_al)-(_ — q)”KE'Ae-XZ/ZG + (Df(ﬁ _ ]__) Ae-xz/ZG
Jt G2 G2 o]
2
= 0B+ (A +24) AL+ O(x*) ©
2 o2

The local behavior of dI/0t is dependent on the sign of the expression (§”A + (3/2)¢"). For
(0"A + (3/2)0") < 0, dIxxx/0t is positive and edge becomes sharper in the neighborhood of xg,
while (¢”A + (3/2)¢") > 0 creates the ‘flattening’ effect shown in figure 12. Because ¢" <0,
as required for the sharpening process, this flattening can only happen when ¢” > 0.
Because the flow, ¢, is strictly positive and has a negative slope for sufficiently large Iy,
any acceptable choice of g(I,) will result in a positive ¢” for I sufficiently large.
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"Sharpening' of edges 'Flattening' of edges

Iie
/\_, | xx/\_.,

Fig. 11, ‘Sharpening’ is distinguished from ‘flattening’ by examining the manner in which the
first derivative changes in a local neighborhood.

In generalizing this analysis to edges other than step functions, it is helpful to
define a new function
e(Ix’ Iixs Lixx ) - aIx/at = ¢”(Ix)1xx2 + ¢ (Ix)Ixxx
which is Eq. (6) with a change in formal parameters. This function describes the rate of
change of the first derivative at any location in the image, given the local properties of up
to i_:hird order. In order for the process to accentuate the most steep portions of a smooth
edge and reduce the steepness of other portions of the same edge, the function e(Iy, Iyx,
Iixx ) should penalize locations that are not local maxima of gradient. We will consider
its behavior in a neighborhood of xg where I,(xg) is a local maxima. If we fix Iy and Iy
in this neighborhood then this function is a quadratic in I (x).
e(lxx) = ¢”Ixx(x)2 + ¢Txxx
This quadratic has a local maxima at I;y = 0 only if A = ¢” < 0. First and third order
properties being equal, local maxima of intensity gradient (Iyx = 0 and Iy < 0) increase
maximally only if ¢” < 0. For ¢” > 0 places that have high curvature and only slightly
lower gradients can increase their gradients more quickly than those places that are
locally the most steep in the same smooth edge. For the conductance term g(IVI|)=¢’
VIR that was used in these examples, ¢” > 0 only for I, < (3/2)Y2%k. In the event that
there are smooth edges with gradients larger than (3/2)V2k, the staircasing described

above can result.

(l
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This anélysis suggests that for a given conductance function there is a limited
range of gradient values that will produce edge enhancement without the staircasing of
smooth edges as shown in Fig. 12. The choice of k will be very difficult for images that
have a great variation in gradient values. For such images it might be impossible to
characterize both dim and bright objects. Fortunately, experiments have shown that
this staircasing tends to occur only on wide smooth edges as in the blurred disk. For a
wide range of images that have only very narrow boundary regions, this phenomenon
‘was not widespread.

<4 Blurring Staircasing =~ ————P
&(1x)
Ix
Fig. 12, Because of staircasing there is a limited range of gradient values which p.roduce desirable
results,
Sensitivity to Total Elapsed Time

The amount of processing that should occur on an image requires another
important decision. In principle one would like to run this process for some period of
time and use the result to make decisions about boundaries in the original image. If the
process converged to some useful result, then one could carry out the process until it
reached a point where changes were inconsequential. In the discrete algorithm
described this is not the case. The conductance can never drop to zero because the
gradients (as computed by finite differences) are bounded by the difference in minimum
and maximum intensity values in the original image. Given enough time, the solutions
as computed by finite differences will converge to a single value. This is best understood
by considering solutions with dI/dt = 0 in two dimensions.
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dt
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k
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k

The final expression is shown in gauge coordinates, and the subscripts w and v
represent derivatives in the direction of the gradient and the direction tangent to the
level set, respectively. This expression can hold if either the term in square brackets is
zero (or approaches zero in the limit) or the exponential term approaches zero.

One can argue that the term in brackets has only a trivial solution for some very
simple examples. Consider an image which is half black and half white with a border
running vertically down the center of the image. For such an image Iy is zero
(isophotes are straight) and Iy is zero only at the most steep point in the boundary
between black and white and the flat areas on either side. There must be areas near
that point that have non zero Iyy . Therefore, with the boundary conditions discussed
above, the term in brackets approaches zero for the entire image only as I becomes flat.

It is conceivable that the exponential term could become zero within the precision
of the numerical representation of the discrete image. A simple analysis shows that for
floating point representation this happens only for images that have a large number of
samples. For this analysis it is best to express k in terms of the expected value of the

- gradient magnitude squared over the entire image: k = f<Iw2>, where f'is a constant
and <Iw2> is the root of the mean of the gradient magnitude squared. Ifr is the number
of bits in the mantissa and b is the base used, then the condition for exponential term to

have no effect on the image is
r-1
oL E<L’> < b2

2
" > ol £ bl
<y
Generally speaking, I 2/<ly?> is proportional to the square root of the number of

. samples in the image. For the black on white image discussed earlier, IW2/<Iw2> 18
equal to the width of the image. For the this image and r = 16, b = 10, and f = 2 the image
would need to be over 150,000 pixels wide in order for the numerical dlscretlzatzon in the
exponential term to allow the process to stop changing.

Edges, except for those that meet the above criteria, will continually ‘leak’ as the
process evolves. This leaking is not like the blurring associated with Gaussian blurring
- the edge remains distinct - but the grey levels on either side of the edge will slowly
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approach a middle value. This analysis, combined with edges enhancing behavior
discussed earlier, suggests that edges undergo an evolution of increasing gradient
followed by a period of slow decay, until the gradient reaches the lower limit on the
enhancing behavior (I, < &), after which it decays rapidly.

VAR E

edge enhancement slow leaking rapid decay

Fig. 13. Edges undergo a period of enhancement followed by a period of slow decay due to the
bounded nature of derivatives as measured by finite differences.

Experiments have indicated that the leakage happens relatively slowly compared
with the edge enhancement. The leaking, however, is greater for edges of lower
contrast. In images that have a great disparity of contrasts, edges of less contrast could
begin deteriorating while greater edges are still increasing in steepness. For the
examples in this paper, the amount of time that the images evolved is chosen
experimentally, in order to provide the best qualitative results in terms of distinctive
edges and object separation. '

Nordstrom [11] shows that edge-affected diffusion can be described as
regularization process and can be thought of as an iterative approximation to an optimal
tradeoff between associated ‘smoothness’ and ‘edgeness’ cost functions. Nordstrom also
introduces a variation on (3) that enables the process to have a nontrivial optimal (steady
state) solution.

Conclusions

The edge-affected diffusion equation offers an attractive alternative to Gaussian
blurring in detecting the boundaries of objects in the presence of limited amounts of
noise. However, the edge-affected diffusion process requires requires measurements of
image gradient that must be made at some scale. Previous work has implicitly
assumed that the inner scale of the image is the appropriate scale to make such
measurements, but in the case of large amounts of noise this is not a reasonable
assumption and the process produces less than adequate results.

2



One should make gradient measurements at each step in the process using
Gaussian kernels, and choose the size of these kernels based on the nature of noise in
the image. In addition, allowing the size of these kernels to decrease over time in
response to the improved noise characteristics of the processed image produces a
diffusion that gradually narrows in on edges. This diffusion process can reduce
unwanted noise at a range of scales, and yet provides accurate boundaries of objects that
are of sufficient size. This approach allows for the reduction highly correlated noise, so
that larger objects can be formed from groups of smaller objects when the smaller
objects are viewed as noise and the appropriately sized Gaussians are chosen.

The results of this processing are sensitive to the conductance parameter and the
amount of time allowed to evolve. This is especially true in images that have a wide
range of contrasts. Future work will concentrate on developing conductance functions
that are less sensitive to intensity transformations, so that dark and light objects in the

same image will be treated equally.
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