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Abstract 

A Multi-scale Approach to Nonuniform Diffusion 

Ross T. Whitaker and Stephen M. Pizer 

Department of Computer Science, University of North Carolina 

Chapel Hill, NC, 27514 

This paper examines a new method of image processing that combines 

information at multiple scales in order to locate boundaries. This method employs a 

technique of edge-affected diffusion, where blurring is limited by the presence of edges 

as measured at the scale of interest. By repeating such processing and measuring 

gradients at successively smaller scales one is able to trace a 'path' through scale space 

which can preserve accurate information about boundaries of objects, and yet selectively 

remove objects that fall below a scale of interest. This method is compared with the 

edge-affected diffusion technique described by Perona and Malik, which depends only on 

the local gradient of intensity of the processed image. This paper shows some examples 

which indicate that this method could be useful for boundary detection in the presence of 

blurring and noise and is also capable of performing grouping of distinct objects at 

various scales. This paper also examines the sensitivity of this process with respect to 

ones choice of parameters. 
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Introduction 
Given the task of dividing an discretely sampled image into a finite number of 

meaningful regions, there is a wide range of possible strategies. One reasonable 

approach is to group nearby pixels on the basis of similarity in intensity values. For 

such an approach, boundaries between regions are areas where pixels are dissimilar 

from pixels nearby. One measure of dissimilarity is the gradient vector. For a two 

dimensional image, I(x, y), the gradient vector is 

{
ar ar \ 

VI(x, y) = -, -~ 
ax ()y 

(1) 

The magnitude of this vector is the rate of change of intensity in the direction of 

maximal change. Using the gradient, there are a number of options for identifying 

divisions or boundaries between regions. Perhaps the simplest is to threshold the 

gradient magnitude. Pixels that coincide with gradients higher than a specified 

threshold serve as boundaries to separate other regions. More complex approaches 

include the Canny edge [1, 2] which identifies boundaries as local maxima of gradient 

magnitude in the gradient direction. In continuous images these Canny edges form 

closed curves. These approaches suffer from a common problem. The gradient is not a 

reliable metric when measured on the presence of unwanted, small scale, luminance 

fluctuations. That is, the gradient is susceptible to noise. 

One response to this problem is to compute the gradient of the image by a 

sampling process which includes some weighted averaging over a local neighborhood, 

or equivalently computing local derivatives on blurred versions of the original image. 

Koenderink [3, 4] argues that in the continuous case, with a fairly natural set of 

constraints, this sampling function is uniquely defined as a Gaussian that falls off with 

spatial distance. These Gaussian kernels incorporate a continuous scale parameter 

that allows one to create a dense set of blurred versions of the original image, a 'scale 

space'. Ter Haar Romeny and Florack [5, 6] show that in the case of Gaussian noise, the 

application of Gaussian blurring can improve the signal to noise ratio of image 

measurements that consist of derivatives of the image intensity. Linde berg [12] applies a 

similar set of constraints to discrete images and shows that the necessary blur kernels 

are modified Bessel functions. 

In order to understand the limitations of uniform Gaussian blurring, consider 

the example in Fig. 1a. It was constructed by drawing two overlapping equiluminant 

circles on a black background and then adding uniformly distributed random noise with 
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a range that is twice the intensity difference between the circles and the background. 

The image is noisy, and yet the outline of the shape formed by the overlapping circles is 

easily distinguishable. This visual boundary includes not only the smooth outline of the 

original circles, but the sharp cusp that is formed by their intersection. Fig. lb shows a 

display of the gradient magnitude of this image, that was determined by computing 

differences between nearest neighbor pixels. Although there are some areas of 

particularly high values that coincide with the borders of the original circles, these 

areas are incomplete and difficult to reliably characterize. 

Fig. 1. (a) A white figure on a dark background with additive noise that is uniformly distributed 
and has a range of twice the intensity difference of the foreground and background. (b) The 
gradient magnitude of the same image. 

Fig. 2 shows the effects of two levels of Gaussian blurring in the image and the 

gradient magnitude of these blurred images. The effects of the random noise have been 

dramatically reduced, and the gradient images are more coherent. However, the 

gradients have formed relatively wide bright bands that could introduce some ambiguity 

about the precise location of the boundaries in question. 

Once could interpret the 'fuzzy' response of the gradient measure at a pixel for a 

given scale as a graded membership function that indicates the likelihood of a boundary 

at that pixel. The width of these bands in the gradient image suggests a tolerance on the 

locations of boundaries that result from these measurements. Since the stated goal is a 

discrete segmentation of the image, this interpretation begs the question of how to decide 

the most likely location of boundary within an area of relatively high gradient measure. 

The approach of Canny is to choose as boundaries the set of points that are local maxima 
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of gradient in the direction of the gradient as boundaries. Effectively, this approach 

applies higher order information (directional second derivative) in order to resolve the 

ambiguity associated with smoothly varying intensity functions or intensity functions 

that are measured at finite scales. 

Fig. 2. Clockwise from the upper left: The image of Fig. la and the gradient magnitude of that 
image after blurring with Gaussian kernels. (a) standard deviation of 0.02 (relative to the width 
of the image) and (b) the gradient magnitude. (c) A kernel with standard deviation of 0.05 and (d) 
the gradient magnitude. 

Such an approach does not address all the difficulties of Gaussian blurring. 

Referring to Fig. 2, one can see that the sharp cusps where the circles meet which were 

apparent in the original image are much less distinct. The sharp points associated with 

these cusps degrade very rapidly with Gaussian blurring, even though they might be 
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important to the overall shape created by the two circles. The indiscriminate reduction 

of small scale information associated with uniform blurring can remove important 

information about features that have both small scale and large scale components. 

Ideally, one would like to improve the tolerance of gradient measurements at places in 

the image where the large tolerances associated with larger Gaussian kernels lead to 

poor decisions about boundary location. 

One possibility for making use of Gaussian blurred images is to combine 

information gathered at multiple scales. It is possible to imagine that large scale (large 

Gaussian kernel) information could be used to indicate the presence, in an imprecise 

way, of interesting boundaries, while smaller scale information could be used to 

determine more precisely the location of these boundaries. Baxter and Coggins [7] have 

combined information at multiple scales, by associating with each pixel measurements 

made at a number of discrete scales (samples in scale space) and treating the resulting 

measurements as positions in a feature space. He then applies some techniques of 

statistical pattern recognition to the resulting feature space in order to find pixels that 

have similar behavior through various levels of blurring. 

This paper explores another approach to combining information at multiple 

scales. This approach combines information from a nearly continuous range of scales 

via an nonuniform diffusion process. 

Edge-affected Diffusion 
Convolution with the Gaussian kernel is one time slice of the solution to the 

uniform diffusion equation (or heat equation) with the original image as the initial 

condition (Eq. (1)). 

Uniform diffusion 
ar 

V·cVI =-
at (1) 

The constant, c, is the conductance and controls the rate of blurring with respect to the 

time parameter. In most expressions of this equation, units are chosen so that c = 1, so 

that it does not appear explicitly. The full solution, I(x, y, t), is the continuous scale 

space mentioned above and each time slice is a version of the original image that has 

undergone some amount of blurring. This allows one to view Gaussian blurring as a 

continuous process that evolves from the original image. Nonuniform diffusion, as 

described by Grossberg [9] as well as Perona and Malik [10], uses a variation on the heat 

equation which allows the conductance to vary over space. 
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Nonuniform diffusion 
ar 

V· c(x, y, t)VI =-
at (2) 

More specifically, the above authors describe a type of edge-affected diffusion in which 

conductance varies i~ response to the presence of edges in the processed image (Eq. (2)). 

Edge-affected diffusion (3) 

In this case the conductance, g( I VI I ) depends explicitly on the gradient magnitude of 

the function itself. Thus Eq. (3), unlike (1) and (2), is nonlinear and its behavior is 

somewhat different than applying a different size Gaussian kernel at every point in the 

image. The solutions that result from (3) are not characterized by any explicit 

convolution with a kernel. Perona and Malik have shown that (3) can have the effect of 

limiting blurring near edges, and also increasing the steepness or gradient of edges that 

are sufficiently steep in the initial image. 

One way to describe Eq. 3 is the uniform diffusion equation applied to the image as 

it undergoes local warping of space and time. Let x' and t' be local coordinate systems 
that vary as functions of the local gradient and let x' = (1/g( I VI I ))x, t' = (1/g( I VI I ))t. 

The primed operators are computed with respect to these local coordinates. Then the 

uniform diffusion equation in the local coordinates becomes: 

d._ = gQ VI I)L, 
dt' dt' 

~ V·g(lvibvr = d.l 
dt 

Y"·V'I = .d..l 
d t' 

This local "stretching" of space and time near edges can reverse the sign of the laplacian 

operator (Fig. 3) and allow the 'sharpening' or 'enhancement' of edges near places of 

high gradient [10,11]. 

Obtaining the desired behavior from Eq. (3) depends on an appropriate choice of 
g( I VI I)_ Some constraints that yield behaved solutions are that g( I VI I) be positive and 

bounded, and in order to limit diffusion at edges, g( I VI I ) should be monotonically 

decreasing. Perona and Malik provide further constraints on g( I VI I) that enable (3) to 

exhibit the 'edge enhancing' behavior, and propose 
g(IVII) = e· (I VI 12/kz) 

as one possibility. This conductance function introduces a parameter, k. This 

- parameter controls the effect a given gradient value will have on the conductance. 

Ideally, k should be chosen to reflect the range of gradients in the image, or possibly the 

gradients in a local neighborhood of every point. For the examples in this paper k will be 
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expressed as some multiple of the root mean squared (rms) of the gradients at each pixel 

in image. This has the effect of making the process independent of the particular units 

in which one chooses to express intensity and thereby allows a small range of k values to 

apply to a wide variety of images. 

dl = (V· VI)dt di = (V'· V'I)dt' 

__l-.-
_-4e..------

I(x) 

dx dx dx' 

Fig. 3. The local stretching of space and time causes the laplacian operator to switch signs 
resulting in the sharpening of edges. 

dx' 

Fig. 4 shows the effects of allowing the process to run on a blurred disk. The 
algorithm employs the method of finite differences. It starts with the initial image and 

proceeds through discrete time steps. The gradient magnitudes are computed using 

nearest neighbor differences in orthogonal directions. Derivatives are computed on both 

a horizontal-vertical and diagonal grid in order to improve the overall behavior of the 
system. The boundary conditions are chosen to be adiabatic, so that the derivative of 

intensity is zero in the direction perpendicular to the boundary. The time increments 

are chosen in order to maintaip numerical stability [10, 13], and the total elapsed time is 

chosen in order to accentuate the edge enhancing effects of the algorithm. 

The diffusion process described above can blur images, reduce unwanted noise, 

and also preserve (or even enhance) boundaries. The images that result tend to have 

steep, distinct boundaries that adhere to the shapes of objects in the original image. 

Solutions with adequate values oft offer more reliable gradient measures then in the 

original image, and facilitate the use of Canny edges or even gradient thresholding as 
reliable indicators of boundaries. 

7 



Fig. 4. The result of nonuniform diffusion on a blurred disk. (a) The initial image. (b) The 
resulting image after 100 iterations with a k value of 5.5 rms VI. 

Scale Within Nonuniform Diffusion 
Despite the fact that solutions to (3) offer an improvement over Gaussian blurring, 

they still suffer from the problem of the unreliability of the local gradient measures that 

are used in calculating the conductance. Local gradients can be so poor in situations 

where the noise is substantial, that they can drive the process to undesirable results. 

Consider how solutions behave in the case of the blurred disk in Fig. 4 with the addition 

of uniformly distributed random noise that has a range of one half of the intensity of the 

original disk. Fig. 5 shows the original image and samples of the solutions for two 

distinct values of k. 

The algorithm described above has arbitrarily assumed that the scale of 

individual pixels (sometimes referred to as 'inner scale' [ 4]) is a meaningful scale at 

which to make measurements of the gradient. The additive noise introduced into the 

blurred disk makes the pixel scale a particularly poor scale for such measurements. 

The result is that the process is unable to capture the larger scale regularity in the 

image. 
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Fig. 5. Clockwise from the upper left: (a) A blurred disk with additive uniformly distributed 
noise. (b) The result after 100 iterations with a k value of3.0 rms 'VI and (c) a k value of5.5 rms 'VI. 

The edge-affected diffusion process can produce more reliable measures of image 

gradient for the purpose of making decisions about boundaries. However, in order to 

carry out this process one needs a best estimate of the image gradient at each point in 

the image and at each point in time. The problem appears to be circular. In the absence 

of any a priori information about the image, the best estimate of the gradient (for the 

conductance determination) that one could hope for [3] is the gradient of the Gaussian 

blurred image. This suggests that (3) should contain a scale parameter, s, as follows: 
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a I 
V·g(IVG(s)*I(x, y, t)I)VI =-

Clt 
(4) 

where G(s)* I(x, y, t) denotes a convolution (over x andy) of the image at time t with a 

Gaussian kernel of scales. It is important at this point to distinguish t and sin (4). The 

'evolution' or 'time' parameter, t, characterizes a particular level of nonuniform 

blurring. The scale parameter, s, describes a level of uniform blurring used to make a 

gradient measurement of the image at some value oft. The uniform blurring associated 

with s is not so much a transformation applied to the image, but a description of the 

another (uniform) diffusion process used to measure the gradient at each point in a 

single time slice. 

Scale as a Function of Evolution 
Edge-effected diffusion is an iterative process which uses tentative estimates of the 

gradient to make incremental changes to the image. Because of unwanted luminance 

fluctuations these tentative estimates are measured at some scale s. If the process 

works as we hope, then the unwanted luminance fluctuations should diminish more 

rapidly than the signal that we wish to ultimately characterize. That is, gradient 

measurements should become more reliable as the process evolves. This suggests that 

one should not measure gradients at a single scale throughout the process, but should 

decrease the scale parameter s to reflect an increasing confidence subsequent versions 

of the image. The argument above prescribes a diffusion equation of the form 

a I 
V·g(IVG(s(t))*I(x, y, t)I)VI =-

at (5) 

and suggests that s(t) should be some decreasing function of the evolution parameter as 

in Fig. 6. 

The result is a process which gradually 'narrows in' on edges that belong to 

objects which do not blur away at some chosen scale. If we consider the wide bands in 

the gradient image of Fig. 2, then we can see that as the process continues, and scale 

decreases, the bands will become progressively narrower and the nonuniform blurring 

will continue to smooth closer to the boundary of the desired object. Thus, it is possible to 

retain very accurate descriptions of edges that belong to objects which are sufficiently 

large in the initial image. 

It is important that s(t) not decrease too quickly, or else edges which are not 
sufficiently large at some scale s(tnl might 'resurface' at. some scale s(tn~l). Likewise, if 
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s(t) decreases slowly enough, then edges which are sufficiently small at one scale s(tn). 

will be adequately smoothed so that they cannot reappear in measurements made at 

some later time. On the other hand, reducing scale too slowly could allow important 

information about large scale objects to be lost. Unfortunately, the above arguments do 

not prescribe a precise form for s(t). It is conceivable that s(t) might not be the same, or 
even have the same form, for every image, but could vary according to some smoothness 

measurement made on the process itself. This analysis is an area of future work. 

s(t) 

t 

negative slope reflects increased 
confidence in gradient measurements 

Fig. 6. A typical scale 'path' for a multi-scale nonuniform diffusion process. 

For the following examples s(t) has been chosen so that the standard deviation of 

the Gaussian kernel that is applied to make the gradient measurement decreases 
linearly with evolution. The slopes and intercepts of these functions are determined 
empirically. The strategy is to choose an initial value for the scale function, s(to), that 

will screen out features that are not large enough to be interesting. An addition one 

must choose an appropriate value of k, and and some stopping value for the evolution 

parameter. 
Fig. 7 shows the results of this approach on the blurred disk and overlapping 

circles with additive noise from Figs. la and 5a. The images shown offer a dramatic 

improvement over Gaussian blurring and edge-affected diffusion with conductance 

measured at the inner scale. In both cases, the gradients for the conductance function 

·are measured initially with a Gaussian kernel with a radius of about 6 pixels. As the 
process evolves the size of this kernel is slowly decreased, so that measurements are 

made at the inner scale only in the final iterations. In the case of Fig. 7b, this process 

was able to preserve the sharp cusps where the circles meet. 
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Fig. 7. (a) The result of multi-scale nonuniform diffusion on the noisy blurred disk from Fig. 
5a after 200 iterations with a k value of 4.0 rms VI and Gaussian scale starting at 0.025 of the 
image width and decreasing linearly. (b) The overlapping circles from Fig. la after 130 
iterations with a k value of3.0 rms VI and Gaussian scale starting at 0.005 of the image width 
and decreasing linearly. 

Grouping and Subjective Boundaries 
The choices of the initial value and shape ofs(t) determine a lower limit on the 

size and intensity of objects that will appear in later stages of the diffusion process. This 

has a significant impact on the results of this type of processing. It's reasonable that 
s(to) should depend not only on the properties of the image, but the task one wishes to 

perform. The reasoning described above does not make any assumptions about what is 

considered noise, or what form that noise should take; it only assumes that there is an 

improvement in the signal to noise ratio with applications of Gaussian kernels. This 

provides a great deal of flexibility in the kinds of features that can qualify as noise. In 

particular it is possible to choose very large Gaussian kernels in order to prevent 

relatively large structures (of course they must be smaller than the objects one wishes to 

characterize) from contributing to the gradient measure. The only requirement is that 

regions of interest must have measurable intensity differences at some scale. 
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Fig. 8. An image composed of two distinct groups of dots and exhibiting subjective boundaries. 

Consider the example in Fig. 8. It consists of 33 white dots on a black background. 

The dots are readily distinguishable from the background by any of a number of very 

simple boundary criteria. The picture also has another interpretation; It consists of two 

light forms, one small and the other large, on a dark background. In the context of this 

interpretation, the white dots can be considered a kind of highly structured noise which 

serves to obscure the two light forms. It is even possible to ascribe boundaries to these 

larger forms, but these boundaries would inevitably pass through black areas of the 

image that have no luminance variation. We refer to these as subjective boundaries. 
By choosing an s(to) that has a kernel size larger than the white dots one can use 

the edge-effected diffusion to 'fill in' luminance across the larger forms and complete 

the subjective boundaries. Fig. 9 shows several time slices of the dotted image at 

different times in the process. These images show that the smoothing begins near the 

center of the object and flows outward toward the boundaries. 

The process has groups dots based on their averaged intensities as measured as 

some large scale. The result in Fig. 9d is a pair of objects that have virtually flat 

luminance functions with well defined boundaries. As in the earlier examples (Fig. 7), 

the presence of noise (dots) has influenced the shape of the boundary. The framework 

for diffusion described in this paper offers some flexibility in the amount of information 

retained at the boundaries. Allowing s(t) to decrease more slowly, choosing larger 

values of k, or beginning the process with a Gaussian blurred version of the original 

image, can all result in smoother boundaries. Of course, these measures do not 
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discriminate between the effects of noise along the boundary and desirable features of 

objects. 

Fig. 9. Clockwise from the upper left: (a) - (c) Consecutive time slices that demonstrate 'filling in' 
phenomenon associated with as the process evolves on the image from Fig. 8 and (d) the resulting 
gradient magnitude. 

Sensitivity to The Conductance Parameter 
The behavior described is sensitive to one's choice of parameters. In particular, 

the results of this processing are dependent on appropriate choices for the values of the 

conductance parameter, k, and the time, t, which measures the extent to which the 

process evolves. 
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Not all edges in an image in an image are enhanced- smaller edges are blurred 

away. Choices of k provide a lower limit on the gradients of edges that are enhanced. 
Define (for the one dimensional case) the flow, <j>(Ixl = g( I Ix I )Ix as in [10]. From Eq. (3) 

the change in image gradient over time becomes 

aix "I 2 'I -=<I> XX +<I> XXX 

at (6) 

The sign of the right hand side of Eq. (6) indicates whether gradients are increasing or 
decreasing. For a local maximum of gradient, Ixx = 0 and Ixxx < 0. Thus, edges that are 

local maxima of gradient are becoming more steep over time car,Jat > 0) provided that <I>' 
< 0. Perona and Malik [10] suggest choices of g( I Ix I) so that <j>'(Ixl has the property that 

there is some a such that 

<j>'(lx) { > 0 if Ix < a 
< 0 if Ix >a 

(7) 

The conductance function g( I VI I)= e· (I vi l'lk.'l has this property, and a= (1/2)112k. This 

suggests that one could choose k to reflect the lower bound on the steepness of edges that 
will be enhanced; edges below a will be blurred away while edges above a will be 

enhanced. Unfortunately, there are further constraints on the choice of k. Fig. 10 

shows the edge-affected diffusion applied to the blurred disk from Fig. 4a. For this 

analysis k was purposely chosen to be low; it is two times the root mean squared of the 

image gradient. The result is a 'staircasing' effect. Instead of isolating a single steep 

portion of the disk boundary as in the examples above, the process has broken the 

boundary into many discrete steps. 

In order to better understand this phenomenon we will analyze a particular case 

of the one dimension edge and then try to generalize the results. Consider an edge I(x), 

where 

I(x) = fAe·s'/Zcrds (8) 

This is equivalent to a Gaussian blurred step function. The advantage of using this 

function is that it has closed form analytical expressions for all of it's derivatives. The 

derivative of this function, 
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is the familiar bell shaped Gaussian and I(x) has a maximum gradient at xo= 0. The 

gradient at the most steep point, xo, is increasing for appropriate choices of the 

conductance coefficient (Eq. (6)). However, this says nothing about the way Ix changes in 

the neighborhood of xo. In order for this edge to become we would expect that the 

gradient at xo to increase more quickly than the gradients in a local neighborhood of x0• 

If the local neighborhood of xo increases it's slope more quickly than Ix(x0) then the edge, 

I(x), becomes steeper, but also 'flatter' as shown in Fig. 11. 

Fig. 10 The 'staircasing' effect as exhibited on the blurred disk of Fig. 4 resulting from choices of 
k that are too low. 

Characterizing this behavior requires analyzing at the manner in which higher 

order terms change over time. From (6) and (7) and expanding the exponential in a 

Taylor series 

dlx = [<l>"x2 Ae-x
2
(2cr + <l>'(x2 _ L)l Ae·x

2
/2cr 

at cr2 cr2 cr 

=-<!>'A +(<I>" A+~') AX
2 

+ O(x4) (9) 
Ci 2 c;2 

The local behavior of (JIJ(Jt is dependent on the sign of the expression (<!>''A+ (312)<1>'). For 

(<I>'' A+ (3/2)<1>') < 0, (Jixxxf(Jt is positive and edge becomes sharper in the neighborhood of xo, 

while (<I>'' A+ (312)<1>') > 0 creates the 'flattening' effect shown in figure 12. Because <1>' < 0, 

as required for the sharpening process, this flattening can only happen when <I>"> 0. 

Because the flow, <j>, is strictly positive and has a negative slope for sufficiently large Ix, 

any acceptable choice of gCixl will result in a positive <!>" for lx sufficiently large. 
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'Sharpening' of edges 'Flattening' of edges 

I 

A 
Fig. 11. 'Sharpening' is distinguished from 'flattening' by examining the manner in which the 
first derivative changes in a local neighborhood. 

In generalizing this analysis to edges other than step functions, it is helpful to 

define a new function 

e(Ix, Ixx. Ixxx ) = (Jix/dt = ~j>"(Ix)Ixx 2 + IJ>' (Ix)Ixxx 

which is Eq. (6) with a change in formal parameters. This function describes the rate of 

change of the first derivative at any location in the image, given the local properties of up 

to third order. In order for the process to accentuate the most steep portions of a smooth 
edge and reduce the steepness of other portions of the same edge, the function e(Ix, Ixx, 

Ixxx) should penalize locations that are not local maxima of gradient. We will consider 

its behavior in a neighborhood of xo where Ix(xo) is a local maxima. If we fix Ix and Ixxx 

in this neighborhood then this function is a quadratic in Ixx(x). 

e(Ixx) = q,"IxxCx) 2 + q,'Ixxx 
This quadratic has a local maxima at Ixx = 0 only if A = $" < 0. First and third order 

properties being equal, local maxima of intensity gradient Cixx = 0 and Ixxx < 0) increase 

maximally only if$"< 0. For $" > 0 places that have high curvature and only slightly 

lower gradients can increase their gradients more quickly than those places that are 
locally the most steep in the same smooth edge. For the conductance term g( I Y'I I) = e· c 1 

VI 
12

/k
2

) that was used in these examples, $" > 0 only for Ix < (3/2)112k. In the event that 

there are smooth edges with gradients larger than (3/2)112k, the staircasing described 

above can result. 
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This analysis suggests that for a given conductance function there is a limited 

range of gradient values that will produce edge enhancement without the staircasing of 

smooth edges as shown in Fig. 12. The choice of k will be very difficult for images that 

have a great variation in gradient values. For such images it might be impossible to 

characterize both dim and bright objects. Fortunately, experiments have shown that 

this staircasing tends to occur only on wide smooth edges as in the blurred disk. For a 

wide range of images that have only very narrow boundary regions, this phenomenon 

was not widespread. 

Sharpening 

~Blurring Staircasing 

<!>(lx) 

Fig. 12. Because of staircasing there is a limited range of gradient values which produce desirable 
results. 

Sensitivity to Total Elapsed Time 

The amount of processing that should occur on an image requires another 

important decision. In principle one would like to run this process for some period of 

time and use the result to make decisions about boundaries in the original image. If the 

process converged to some useful result, then one could carry out the process until it 

reached a point where changes were inconsequential. In the discrete algorithm 

described this is not the case. The conductance can never drop to zero because the 

gradients (as computed by finite differences) are bounded by the difference in minimum 

and maximum intensity values in the original image. Given enough time, the solutions 

as computed by finite differences will converge to a single value. This is best understood 

by considering solutions with di!dt = 0 in two dimensions. 
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dl = 'V·e·(VI-VI)!k\q 

dt 
= e·(VI-VI)/k\. _2_VI-VVI-VI + V-VI) 

k2 
2 2 = e·I. /k [(1 

The final expression is shown in gauge coordinates, and the subscripts w and v 

represent derivatives in the direction of the gradient and the direction tangent to the 

level set, respectively. This expression can hold if either the term in square brackets is 

zero (or approaches zero in the limit) or the exponential term approaches zero. 

One can argue that the term in brackets has only a trivial solution for some very 

simple examples. Consider an image which is half black and half white with a border 
running vertically down the center of the image. For such an image Ivv is zero 

(isophotes are straight) and Iww is zero only at the most steep point in the boundary 

between black and white and the flat areas on either side. There must be areas near 
that point that have non zero Iww . Therefore, with the boundary conditions discussed 

above, the term in brackets approaches zero for the entire image only as I becomes flat. 

It is conceivable that the exponential term could become zero within the precision 

of the numerical representation of the discrete image. A simple analysis shows that for 

floating point representation this happens only for images that have a large number of 

samples. For this analysis it is best to express kin terms of the expected value of the 
gradient magnitude squared over the entire image: k = f<lw 2>, where f is a constant 

and <lw 2> is the root of the mean of the gradient magnitude squared. If r is the number 

of bits in the mantissa and b is the base used, then the condition for exponential term to 

have no effect on the image is 
2 2 f-1 

e·L /f<I. > ~ b-2 

2 
..h._~ zr-! f lnlbl 
<lv 2:> 

Generally speaking, Iw 2/<lw 2> is proportional to the square root of the number of 

samples in the image. For the black on white image discussed earlier, Iw21<Iw2> is 

equal to the width of the image. For the this image and r = 16, b = 10, and f = 2 the image 

would need to be over 150,000 pixels wide in order for the numerical discretization in the 

exponential term to allow the process to stop changing. 

Edges, except for those that meet the above criteria, will continually 'leak' as the 

process evolves. This leaking is not like the blurring associated with Gaussian blurring 

- the edge remains distinct - but the grey levels on either side of the edge will slowly 
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approach a middle value. This analysis, combined with edges enhancing behavior 

discussed earlier, suggests that edges undergo an evolution of increasing gradient 

followed by a period of slow decay, until the gradient reaches the lower limit on the 
enhancing behavior (Ix < a), after which it decays rapidly. 

i 
edge enhancement slow leaking rapid decay 

Fig. 13. Edges undergo a period of enhancement followed by a period of slow decay due to the 
bounded nature of derivatives as measured by finite differences. 

Experiments have indicated that the leakage happens relatively slowly compared 

with the edge enhancement. The leaking, however, is greater for edges of lower 

contrast. In images that have a great disparity of contrasts, edges of less contrast could 

begin deteriorating while greater edges are still increasing in steepness. For the 

examples in this paper, the amount of time that the images evolved is chosen 

experimentally, in order to provide the best qualitative results in terms of distinctive 

edges and object separation. 

Nordstrom [11] shows that edge-affected diffusion can be described as 

regularization process and can be thought of as an iterative approximation to an optimal 

tradeoff between associated 'smoothness' and 'edgeness' cost functions. Nordstrom also 

introduces a variation on (3) that enables the process to have a nontrivial optimal (steady 

state) solution. 

Conclusions 
The edge-affected diffusion equation offers an attractive alternative to Gaussian 

blurring in detecting the boundaries of objects in the presence of limited amounts of 

noise. However, the edge-affected diffusion process requires requires measurements of 

image gradient that must be made at some scale. Previous work has implicitly 

assumed that the inner scale of the image is the appropriate scale to make such 

measurements, but in the case of large amounts of noise this is not a reasonable 

assumption and the process produces less than adequate results. 



One should make gradient measurements at each step in the process using 

Gaussian kernels, and choose the size of these kernels based on the nature of noise in 

the image. In addition, allowing the size of these kernels to decrease over time in 

response to the improved noise characteristics of the processed image produces a 

diffusion that gradually narrows in on edges. This diffusion process can reduce 

unwanted noise at a range of scales, and yet provides accurate boundaries of objects that 

are of sufficient size. This approach allows for the reduction highly correlated noise, so 

that larger objects can be formed from groups of smaller objects when the smaller 

objects are viewed as noise and the appropriately sized Gaussians are chosen. 

The results of this processing are sensitive to the conductance parameter and the 

amount of time allowed to evolve. This is especially true in images that have a wide 

range of contrasts. Future work will concentrate on developing conductance functions 

that are less sensitive to intensity transformations, so that dark and light objects in the 

same image will be treated equally. 
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