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Abstract 

Geometry-limited Diffusion In The Characterization of 
Geometric Patches In Images 

Ross T. Whitaker 

Department of Computer Science, University of North Carolina 

Chapel Hill, North Carolina, 27514 

Much of image processing and artificial vision has focused on the detection 
of edges- particularly, edges that are measured by the gradient magnitude. 
Higher order geometry can provide a richer variety of information about objects 
within images and can also yield useful measurements which are invariant to 
certain kinds of intensity transformations. However, analyzing higher order 
geometry can be difficult because of the sensitivity of higher order filters to noise. 
Low pass filters can alleviate the effects of high frequency noise but tend to distort 
the geometry in ways that make the resulting measurements less useful. 

This paper suggests a generalization of anisotropic diffusion as a 
mechanism for making reliable and precise geometric measurements in the 
presence of blurring and noise. This mechanism is a generalized form of edge
affected diffusion that applies to multi-valued functions. We pursue the 
interpretation of multi-valued descriptors as positions in a feature space and 
describe how this premise yields a natural form for a set of coupled anisotropic 
diffusion equations that depend on one's choice of distance in the resulting feature 
space. The appropriate choice of distance allows one to measure areas of the 
image where the feature positions are changing rapidly and vary the conductance 
in the diffusion equation accordingly. These features can be the outputs of some 
multi-valued imaging device, or measurements made (via filters) on a single 
valued image. 

Feature spaces that consist of measurements made on single-valued images 
can reflect geometric properties of the local intensity surface. The anisotropic 
diffusion can be used to segment images into patches that share local geometric 
properties so that the boundaries of these patches are geometrically and visually 
interesting. The appropriate choice of distance in such feature spaces can yield 
meaningful geometric information. One such geometric feature space consists of 
the first order derivatives. This paper presents a distance measure in this space 
that results in a process for reliable and accurate detection of 'creases' and 
'corners'. These ideas can be generalized to other features, including higher 
order derivatives. The appropriate choice of distance in such feature spaces could 
yield meaningful higher order geometric information. 
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Introduction 
Koenderink [1, 2, 3] has argued that important information about an image 

can be discemed not only from the intensity value at every point in the image but 

from the local geometry of the intensity surface. He also shows that the 

appropriate procedure for measuring such geometry is convolution of the image 

with filters from within a family of receptive fields that resemble derivatives of 

Gaussians. TerHaar Romeny and Florack [4, 5] show that these derivatives can 

be combined to create certain invariant (independent of choice of coordinate 

systems) geometrical measures and that these invariants can be combined to 

form measurements that have visual significance, i.e. edges, corners, etc. 

Furthermore, gaussian blurring can improve the signal to noise ratio of higher 

order derivative filters. 

Lowpass filters such as the gaussian can have adverse effects on the 

characterization of objects whose shapes depend on high frequency information. 

Anisotropic diffusion has been proposed [6, 7, 8] as an altemative to the isotropic 

scale space, which corresponds to convolution with gaussian kernels. More 

specifically, edge-effected diffusion, in which conductance varies according to 

local gradient information, has been shown to reduce unwanted noise and 

preserve, or even enhance, edges. One can think of such edge-effected diffusion 
as a regularization process [8] which preserves areas of rapid change in intensity 

(large gradient magnitude). 

These authors propose edge-affected diffusion in the form of the equation, 

()f 
V'·g(IV'fi)V'f =-

dt (1) 

where g, the conductance modulating term, is some bounded, positive, decreasing 
function of I V'fl, and tis the time or evolution parameter. 

Whitaker [9] has shown that isotropic scale can be incorporated into the 

conductance term in order to account for the unreliability oflocal gradient 

measurements in the presence of correlated and uncorrelated noise. 

Furthermore, by decreasing the scale at which the gradient is measured over 

time, one can obtain boundary information that reflects both small scale and large 

scale gradient information. This results in the multi-scale anisotropic diffusion 

equation, 
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()f 
Y'·g(IV'G(s)*fi)V'f =-

Cit (2) 

in which "G(s)*" denotes convolution with a gaussian kernel of a particular 

size s(t), which generally decreases as the process evolves. 

The result of such processing is typically a set of smoothly varying regions 

that have relatively sharp boundaries - a kind of piecewise continuity. These 

images lend themselves to segmentation schemes that rely on local gradient 

measurements. The appropriate choices of s(t) can control the scale of the 

resulting smooth regions, and yet maintain accurate information at the 

boundaries of these regions, preserving their overall shapes. 
Eqs. (1) and (2) implicitly assume that a single intensity function is the 

appropriate measure to characterize points in the image. If we relax this notion 

and admit that there are many possible measures which could characterize 

points in the image, then we might expect there to be a regularization process 

which captures not only a single value in the image, but any number of values 

that are relevant to the task at hand. 

Multi-valued diffusion 
A conventional digital image (an array of pixels) can be viewed as a discrete 

sampling of some continuous function f:9tn-.. 9t. The domain is the space in 

which one typically views the image. For a photograph: n = 2, and the domain is 

the flat surface on which one views the picture. We call this the image space. 

The range is a number that characterizes each point in that picture - the 

intensity, or lightness. We call this the feature space. For digital images, the 

range is usually measured (or computed) and recorded at discrete locations in the 

domain on a rectilinear grid. The exact nature of this sampling is not directly 

important for the following discussion. 
A multi-valued image is a discrete sampling of the function f:9tn--> 9tm, in 

which the bold f designates it as multi-valued, and each point in the domain is 

characterized by its position in the feature space, recorded as a finite array of 

measurements at each pixel. At times it will be important to remember that the 

set of numbers used to record the position of a pixel in the range is not indicative 

of the shape or nature of that space. More specifically, one cannot assume that an 
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appropriate measure of distance in the range space follows directly from the 

array of measurements that one uses. 

Perhaps the most apparent examples of multi-valued data are the images 

that result from certain imaging devices that measure several physical quantities 

at the same location in space. Multi-echo MRI or multi-spectral Landsat data are 

two examples. One could treat each physical measurement in these datasets as a 

separate image, and perform the above edge-affected diffusion process separately 

for each measurement. However, if the goal of the edge-effected diffusion process 

is to capture dissimilarities between pixels across a number of these 

measurements, then the regularization process should reflect this. 

The diffusion process introduces a time or evolution parameter, t, into the 
function f:9\n x 9\+ ""'9\m so that there is a multi-valued function at each point in 

time, or each level of processing. The multi-valued diffusion equation is 

af 
Y'·g('D(G(s)*f))Df =-

dt (3) 

where '1J:9\m -> 9\ is a dissimilarity operator. The convolution, G(s)*f, incorporates 

the above notion CEq. (2)) of time varying, isotropic scale. Dfis the derivative off in 
the form of a matrix. The conductance, g, is a scaler, and the operator "Y'·" is a 

vector that is applied to the matrix gDf using the standard convention of matrix 

multiplication. Eq. (3) is a system of separate single valued diffusion processes, 

evolving simultaneously, and sharing a common conductance modulating term. 

ar 
Y'·c('D(G(s)*f))Y'fm = ~ 

dt 

Eqs. (3) and (4) describe a smoothing process that respects boundaries and 

operates on a set of images simultaneously. The boundaries are not defined on 
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any one image, but are shared among (and possible dependent on) all of the 

images in the set, as shown in Fig. 1. 

Fig. 1. Mult-valued diffusion is a system of diffusion processes that are coupled 
through the conductance function. 

Diffusion in a Feature Space 
The behavior of the system (3) is clearly dependent on the choice of the 

dissimilarity operator, 'D. In the single feature case, the gradient magnitude 

proves to be an appropriate measure. That is, 'Df = (Vf· V£) 112• For higher 

dimensions it is helpful to consider the range off as a feature space and to 

evaluate dissimilarity based on distances between pixels in this space. 

Applications of statistical pattem recognition to image segmentation are 

available in the literature [11, 12, 13, 14, 15]. Such approaches apply multi-variate 

statistics in order to find clusters of pixels in these feature spaces. Boundaries 

between clusters can be defined in a way that optimizes certain metrics. Pixels 

can be classified on the basis of their distance to groups of pixels that are nearby 

in the feature space. Effective use of such techniques requires an appropriate 

measure of distance. Typically, linear transformations are performed on the 

feature space in order to produce meaningful clusters. These transformations 

can be determined by statistical measures made on the available data. Coggins 

[16] has shown that multiple measurements of single valued images, obtained 

through sets of linear filters, can be treated using these same principles. 

The dissimilarity operator is constructed to capture the manner in which 

neighborhoods in the image space (n dimensional) map into the feature space. If 
f is a well behaved function (Lipschitz continuous for example), then for a point xo 

e 9\n in the domain off, and a neighborhood ofxo, there is a point Yo= f(xo) in the 

feature space and a corresponding neighborhood of YO· The dissimilarity at xo is a 

measure of the density of space in the neighborhood of xo after it is mapped to YO· 
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If the resulting space is dense, it will indicate that the neighborhood of x0 has low 

dissimilarity as shown in Fig. 2. There appear to be a number of ways to measure 

this notion of similarity on a multi-valued function. We propose a dissimilarity 

that is computed by trace of the square of the Jacobian. If J is the Jacobian off, 

then the dissimilarity is 

(5) 

In the case of m = 1, this expression is the gradient magnitude squared, as in 

edge-affected diffusion. It can be shown that the square root of this expression is a 

norm in the precise sense, and therefore can be thought of as a distance measure 

that measures the "length" of the matrix J. 

high dissimilarity 

image space feature space 

Fig. 2. Every neighborhood in the image space maps onto a neighborhood in the 

feature space. The 'size' of the neighborhood in the feature space indicates 

dissimilarity. 

This approach has several advantages over statistical pattern recognition 

approaches mentioned above. First, because the feature space is used in 

conjunction with the diffusion equation, the process combines information about 

the image space with position in the feature space. As the process evolves pixels 

that are nearby in image space will be drawn together in the feature space, except 

in cases where the dissimilarity is large enough to reduce the conductance. The 

result is a clustering that is sensitive to the spatial cohesiveness of the image 

space. Gerig [9] has shown experimentally that a pair of coupled nonuniform 

diffusion equations when applied to dual-echo MRI, can improve the distinction 
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between clusters of pixels in the two dimensional feature space. Mult-valued 

diffusion as described here constructs a generalized framework for such systems 

of coupled diffusion equations. 

The second advantage is that the dissimilarity depends only on the 

differential structure of f, and therefore does not rely on the global structure of the 

feature space. The dependence on the local structure of the feature space allows 

for a great deal of flexibility for transformations within that space. The 

dissimilarity measure can be generalized to allow for local coordinate 

transformations that are not required to preserve global notions of distance. If 

one considers coordinate transformations (rotations and rescaling of axis) to be 

changes in the relative importance of features in the calculation of distance, then 

the dissimilarity measure could allow the relative importance of various features 
to vary with position in the feature space. If <!>(y) is the local coordinate 

transformation, then the generalized dissimilarity becomes: 

(6) 

The practical implications of this can imagined by considering a multi

valued data set gathered by some imaging device. Suppose that the relative 

importance of each feature depends not only on it's own value but the values of the 
other features. Such behavior could be accounted for by choosing the proper<'!>. At 

this point it is still not evident how one would go about choosing <'!> given set of 

image data. It is conceivable that <'!> should depend on the statistical properties 

(local and global) of the feature space, the nature of the imaging device, and the 

task at hand. These are issues for future research. Instead, the following 

discussion will examine how these ideas can be applied to multi-valued data 

derived from a single-valued intensity function. 

Geometry Limited Diffusion 
The goal is characterize the shape of the local intensity surface of a single 

valued function at every point in the image, and represent this shape through a 

finite set of scalar values. A very convenient way to do this is to use the power 

series expansion of the image intensity in Cartesian coordinates. If I(x,y) is the 

original image (n = 2), then the local surface at each point in the image can be 

represented by a the function 
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f(x', y', x, y) = II + U x' + Iy·l y' + lx•y•l x'y' x,y x,y x,y x,y 

+ (l/2)Ix'x'l x'2 + (l/2)Iyyl y'2+ 
x,y x,y 

(7) 

The x' and y' are local coordinates that exist at each choice of x and y. The 

function, :ft:x', y', x, y), is the same function at every x and y, except that it is 

expressed in local coordinates. Thus £1:0, 0, x, y) = I(x,y) as can be seen in Eq. (7). 

In practice, the series can be truncated in order to produce a local approximation 

to the surface, and to produce a finite number of terms. Truncated versions of 

this function are no longer the same at each point in space - at each point there is 

a distinct local approximation to the surface structure. The coefficients of the 

truncated expansion can be considered a multi-valued function of the original 
image space. 

f(x,y) = Ul , Ix'l , Iyl , Ix) , 
x,y x,y x,y x,y 

(1/2)Ixxl , (1/2)Iyyl , .... ) 
x,y x;y 

If the local coordinates x' and y' are aligned with the image coordinates, then 

f(x,y) is the set of partial derivatives (to within a constant factor) ofl(x, y). 

f(x,y) = (I(x,y), Ix(x,y), Iy(x,y), Ixy(x,y), 

(1/2)Ixx(x,y), (112)Iyy(x,y), .... ) 

(8) 

(9) 

The range of this function is a feature space. Distances in the this feature space 

are measurements of the similarity of the underlying truncated power series 

expansion. In the case of a digital image, these functions will all be sampled on a 

grid. From this point of view, methods which attempt to segment images by 

measuring the gradient magnitude, are using only the first term in the series 

expansion. 

The strategy adopted in this paper is to make a set of measurements on the 

original image in order to create a multi-valued function. These measurements 
are obtained by applying derivatives of Gaussians [3] at a particular scale that is 

chosen so as not to compromise interesting visual features. The resulting 

function is-that ofEq. (9) with a finite number of terms that correspond to the set of 

initial measurements made on the image. The measurements are treated as 
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feature vectors in the multi-valued diffusion equation, with a choice of <P that 

captures geometric properties that are of interest and a choice of scale in the 

diffusion equation that eliminates unwanted fluctuations in the feature 

measurements. After some appropriate amount of processing, further 

measurements can be made on the resulting resulting set of features, and 

decisions about presence of certain geometric quantities can be made on the basis 

of those measurements. The goal is to divide the image into distinct regions that 

share a set of geometric properties (features) so that the boundaries between these 

regions form visually interesting areas. This strategy is depicted in Fig. 3. 

/7~§ 
original geometric 
image measurements 

multi-valued 
diffusion 

decisions 

Fig. 3. Geometry-limited diffusion in which features are geometric measurements 
made on a single valued image. 

Creases and First Order Geometry 
Because this approach has already been studied in the zero order case (edge 

effected diffusion based on gradient magnitude), a logical next step is to include 

first order derivatives as features. The resulting feature space is three 

dimensional. The remainder of this section will investigate the use of first order 

geometric features for the purpose of finding 'creases' (sometimes called 

'ridges'). 

Pizer [10, 18, 19] has shown that creases and the corresponding flank regions 

are very powerful for forming hierarchical segmentations of medical images. 

Although the notion of creases has no one precise definition (there are several) 

there is a reliable intuition that one can test via a simple experiment. Imagine an 

image as an intensity surface, and suppose that the intensity axis is aligned with 

a gravitation field so that the direction of increasing intensity is 'up'. If one 

places drops of water on the surface, then creases are places where a drop of 

water tends to split and run in two or more different directions. Likewise, one 

could turn the surface over and repeat the experiment. The results in the first 

case are 'ridges' and in the second case 'valleys'. Of course if the surface is 

continuous, every place on the image except local extrema has exactly one 
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downhill direction. However, if one considers the higher order structure of the 

surface (a larger drop of water) then one can imagine that creases are places that 

have a large disparity of gradient directions in an immediate neighborhood. If 

one characterizes flanks as contiguous regions that have the same (or nearly the 

same) uphill direction, then creases can be thought of as places where flank 

regions meet. 

This definition of crease is explicitly constructed to be independent of image 

intensity. For this reason, it is appropriate and convenient for this discussion to 

not include the zero order term as one of the features - including it would have no 

effect on the results. The resulting space is two dimensional, and consists of the 
features Ix and Iy. The local coordinate transformation, <!>, which determines 

the way local distances are measured in the feature space, is chosen specifically 
to capture the notion of creases. The appropriate choice of <I> can best be 
understood by considering the feature space IIx , Iy} as it is described by polar 

coordinates (Fig. 4). Each position, (x, y), in the image has a position in this 

feature space. The polar coordinates of each point in this feature space have a 

geometric interpretation. The magnitude of the gradient vector at that point in . 
the image is p, and e is the direction of that vector. 

/ 

local coordinate 
system 

de\/dp 

"\ (p, 9) 

Fig. 4. First order feature space as represented in polar coordinates. Every point in 
this feature space has a local coordinate system that is aligned with the dq and dr 
directions. 
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It is convenient to express <P as a rotation, R, followed by a scaling S. The 

matrix R is a rotation of the local feature space coordinates into a coordinate 
system which is aligned with dp and de in the polar coordinates. The matrix S 

controls the scaling, and thereby the relative effects, of each of these properties. 

This allows for control of the amount of influence that the gradient magnitude 

and gradient direction have on the dissimilarity operator. The notion of creases 

described above does not depend on the values of gradient magnitudes, only on 

direction. Therefore differences between pixels in the radial direction will not 

contribute to the dissimilarity. This has the effect oflocally collapsing the feature 

space onto a circle with its center at the origin. The perpendicular component, 
de, will be scaled by the inverse of the radius so that small changes in the in the 

de direction capture changes in the angle. The result is 

<P = S·R = 

: : ][ -sine cos e 

-sine cos e ]= 
p p 

= cos e sine 0 0 

-Ix ly (10) 

(1/+f;h cf?+I/l 

0 0 

The tilde over the the terms in this expression is to denote that these are not the 

derivatives of the image, but the values of these features after they have 

undergone nonuniform diffusion. Because the diffusion is non-linear, the partial 

derivatives do not commute with the operators in the process. It us understood 

that f,; and I;; are from the same time slice. It is not clear that f,; and I;; represent 

the derivatives of any image because after some amount of blurring the mixed 

partials are not necessarily equal. 
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Fig. 5. Clockwise from the upper left: (a)A noisy blob is created by blurring a white 
on black figure and then adding uniformly distributed random noise. (b) The 
initial values of the first order features Ix and Iy and (c) the dissimilarity measure 
on these features. 

This form for <I> when applied to the Jacobian is precisely the same as 

mapping all the points in this feature space to the unit circle, and then computing 

the Jacobian on the resulting functions. It has several desirable properties. 

First, it can be computed on discrete images by first dividing each pair of features 

by the length of the vector that they form, and then computing the local 
derivatives. Second, the 'E that results from the <I> describes above is invariant to 

any monotonic intensity transformation on the original image. This has the effect 
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of not discriminating between bright and dim features in the original image. 

Third, when using finite differences, this measure is bounded. The farthest that 

one pixel can be from a nearby neighbor is on the opposite side of the unit circle 

(this happens only at critical points of intensity in the original image), a distance 

of 2. Because this measure is bounded one can construct a conductance function 

that behaves properly for any number of images regardless of the units one uses to 

express intensity or the range intensity values within an image. The choice of 

scale at which to make the geometric measurements, and the range of scales over 

which to run the diffusion will depend on the image, the properties of the noise, 

and the size of the structures that one wishes to characterize. 

The test image in Fig. 5a is created by drawing a white figure on a black 

background, and then blurring the result. Uncorrelated random noise is added to 

the image so that the range of the noise is half the overall intensity of the 
foreground. Figs. 5b-d show the initial values of the features, Ix and Iy, and the 

dissimilarity measure at start of the diffusion process. Because the dissimilarity 

measure normalizes features with respect to the gradient magnitude, areas of the 

image that were initially flat are susceptible to noise. Fig. 6 shows the features 

and the dissimilarity measure after processing. The areas of high dissimilarity 

indicate boundaries between flank regions. The pixels within flank regions have 

been regularized so that they have virtually the same gradient values. 

Treating the resulting features as x and y derivatives of an image allows one 

to make measurements that indicate second order geometry. Consider the 

'diffused' Hessian. 

(11) 
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Fig. 6. Clockwise from the upper left: The result values of the first order features 
(a) Ix and (b) Iy after 150 iterations of the geometry-limited diffusion process and 
(c) the dissimilarity measure on these features. 

Fig. 7 shows the images that result from computing Tr[HH] and Tr[H] 

respectively. While Tr[HH] indicates the deviation from flatness, a possible 

quantitative measure of 'creaseness', Tr[H] (also the mean curvature) can be used 

to decide between between ridges and valleys. It is worth noting that these 

quantities could be computed on the original image, or some gaussian blurred 

version of that image. However, such measurements on noisy or blurred images 

do not offer an immediate and reliable means of making decisions about the 
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presence of second order features. By regularizing the first order information 

and confining second order variation to a limited number of boundaries by 

nonuniform diffusion, one can make a number of accurate decisions about the 

existence of second order features. 

Fig. 7. From the features shown in Fig. 6 the (a) trace of the square of the diffused 
Hessian and (b) the trace of the Hessian. 

Combining Information of Zero and First Orders· Corners 
In the example above the image intensity was not used as one of the features. 

It is conceivable that there exist a three dimensional feature space and an 
associated <I> that would allow segmentation on the basis of image intensity and 

gradient information in order to produce visually interesting regions and 

boundaries that do include image intensity. 

Consider the visual feature called a 'corner'. The difficulty of a finding 

corners using geometry-limited diffusion is that corners in 2D are zero order sets 

- they are points. Therefore, they cannot form boundaries between geometric 

patches. If one were to define a dissimilarity measure to capture corners, 

features in the surrounding space would most likely flow around these points and 

undermine the local changes in geometry which are indicative of the corner. An 

alternate strategy is to compute and process zero and first order feature spaces 

separately and then combine the information that results from each of these 

processes. A reasonable description of a corner is a place on the edge of an object 

where the boundary turns very sharply. In order for boundaries to turn suddenly, 

the gradients along those boundary must twist suddenly, which is precisely the 
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definition used for creases above. A corner is a place in the image that is both a 

crease and an edge. This suggests that one could obtain corners by combining the 

results of the crease calculations with edges discerned from zero order diffusion. 

Because a corner must have both a high gradient (derivative of zero order 

quantity) and a rapid rapid change in gradient direction (derivative of a first order 

quantity) it is natural to multiply the measurements that result from zero order 

diffusion with those of the first order diffusion described above. This strategy is 

depicted in Fig. 8. 

original 
image 

first order 
measurements 

multi-valued 
diffusion 

~/o/ 
creases \ 

/ 7_._ /0/ _._ /o 7:__.----4( 
original 
image 

edge-affected 
diffusion 

edges 

Fig. 8. The strategy for finding corners is to isolate the zero order and first order 
patches separately and then combine the results. 

The sample image in Fig. 9a is a white hexagon one a black background. 

Random noise as described above has been added to the image. The value of 

Tr[HH] that results from the first order diffusion processing and the value of 

VI· VI (or Tr[JJ]) that results from the zero order processing are shown in Figs. 9b

c. The image of Fig. 9d is the result of multiplying the pixel values of the images 

in Figs. 9b and 9c. The corners that result from a simple threshold of Fig. 9d are 

accurate to within 3 pixels. 
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Fig. 9. Clockwise from the upper left: (a) A test image composed of white hexagon 
on a black background with additive random noise. (b) The gradient squared after 
zero order diffusion. (c) The creases that result from first order diffusion. (d) The 
result of multiplying the edge and crease measures in order to detect corners. 

Conclusions 
Edge-affected diffusion can be generalized to capture regularities in images 

across multiple features simultaneously. Interpreting multiple scalar values at 

each point in the image as a position in a feature space provides a generalized 

dissimilarity operator that controls the conductance in the diffusion of these 

features. The gradient magnitude is an example of this operator in the case when 

there is only one feature. The dissimilarity operator incorporates a flexible notion 
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of distance in the feature space, and it allows for local transformations the feature 

space that do not require global interpretations of distance. 

Geometric measurements made on single valued images can be treated as a 

multiple features in the multi-valued diffusion. In particular, measurements 

that consist of mixed partial derivatives of the image can be used to characterize 

the local surface structure as described by a power series expansion. An 

appropriate choice for local distance in the feature space can produce a 

dissimilarity measure which captures boundaries between regions that share 

interesting geometric properties. Nonuniform diffusion blurs these 

measurements within boundaries, but enhances the boundaries themselves. The 

result is a distinct set of patches that have well defined boundaries. The richness 

of higher order data allows one to calculate a variety of measurements on the 

patches, and their boundaries. 

Creases can be described as boundaries between regions that have similar 

gradient directions. Application of multi-valued nonuniform diffusion to a first 

order (two dimensional) feature space provides a robust and accurate means of 

locating creases. Combining crease information with changes in zero order 

information (intensity) provides a means of accurately detecting corners. 

The richness of higher order information holds a great deal of opportunity for 

this approach to processing image. The difficulty lies in interpreting higher 

order information in a manner which produces useful boundaries. Future work 

will explore the use of second order information in order to locate the boundaries 

of objects ("edges"). This work will also explore conceptual frameworks which 

could systematically produce useful dissimilarity operators for higher order 

feature spaces. 
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