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GOO PEEL CHUNG. Accommodating latecomers in a system for synchronous collab­

oration (Under the direction of Professor Kevin Jeffay) 

Abstract 

This thesis deals with the problem of allowing a latecomer to join a computer­

based conference that is already in progress. A conference is a synchronous collab­

oration session where people at remote locations are cooperating through identical 

copies of windows generated by applications shared by all conference participants. 

The shared windows are displayed by window systems residing on the collaborators' 

workstations according to commands issued by the shared applications. A solution 

to the problem of accommodating a latecomer is found by recording the modifi­

cations to the window system's state implied in the series of commands generated 

by the applications, and later imposing these state modifications on a latecomer's 

window system. An efficient way to record the state modifications is introduced in 

this thesis. As a future goal, the study suggests that the recording and replaying 

functions be combined into the window system. 
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Chapter 1 

Introduction 

1.1 Motivation 

A group in the Department of Computer Science at the University of North Carolina­

Chapel Hill is studying how computers can be used to facilitate collaboration 

[Smith et a!. 90]. The thesis of the UNC researchers is that when people are work­

ing together, most of the effort is spent on building commonly shared conceptual, 

rather than physical, artifacts. This often happens in activities such as planning ex­

periments, software design, or working on construction blueprints. People suggest, 

understand, negotiate, consult, modify and decide as they collaborate. Conceptual 

artifacts are built and maintained in each individual's mind throughout this process. 

It is important that these artifacts are shared by all the members involved in the 

collaborations. The best and most coherent conceptual model would be achieved if 

one exceptional individual worked on the project alone. Unfortunately, the reality 

is that no one individual possesses such expertise. Therefore, it is necessary to com­

bine the resources of multiple humans in such a way that their collective efforts will 

bear fruit in the most efficient manner. 

The focus of the UNC project is on artifacts that groups produce in the course 

of their interactions. For example, people might explain their idea by drawing 

pictures or diagrams on a whiteboard or small pieces of paper. Some artifacts such 

as documents or drawings may be generated with the aid of computers. These 



artifacts are considered to be very important in forming the common conceptual 

model of the problem and its solution. 

Interactions among people working together can be grouped into two categories: 

asynchronous and synchronous. Asynchronous collaboration involves people ex­

changing artifacts in an asynchronous manner (i.e., the sending and receiving of 

artifacts are not coupled). For example, the collaborators convey ideas through 

documents such as electronic mail messages that are exchanged in an asynchronous 

manner. Characteristics of this style of interaction are that it usually spans a long 

period of time and the cast of people working together varies over time. 

Synchronous collaboration involves people working together at the same time 

such as in a meeting. They usually share a common physical space (like a room) 

and work on shared artifacts together. Synchronous collaborations are typically 

conducted as concentrated cooperative efforts to tackle problems in a rather short 

period of time. 

With advances in computer and communication technology, it has been suggested 

that computers be used as a medium for facilitating collaborations [Smith et al. 90]. 

More specifically, computers are considered to provide a useful and efficient means 

of representing artifacts produced in collaborative efforts. In fact, computers have 

already been used to create, store and manipulate artifacts by individuals. It would 

be desirable if we could apply this functionality to the conceptual and physical 

artifacts shared in collaborations. 

Computer support for asynchronous collaborations has existed for some time. 

Electronic mail and file transfer programs are some examples. With networked 

computers, augmented by audio and/or video communications, it is also possible to 

support synchronous collaborations when the collaborators are physically separated. 

All the participants of the meeting can work together from their respective offices. 

They share the same view of the artifacts constructed with the computers and can 

see any modifications made to them in real-time. 

The synchronous collaborations described above are referred to as conferences 

and the people working in such collaborations are called conferees. The computer 
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systems providing the facilities to hold the synchronous collaborations are referred 

to as the conference systems. 

People working in a conference can be considered to have access to a shared 

visual workspace through which they share a view on artifacts such as documents, 

images and programs. A shared visual workspace is often implemented as a shared 

window displayed on workstations of collaborators in the conference [Stefik et a!. 87, 

Abdel-Wahab & Feit 91, Crowley & Forsdick 89]. This shared window is the vehicle 

through which the shared artifacts can be displayed and modified. 

Special-purpose applications have been developed to allow multiple remote users 

to share the visual workspaces [Ellis et a!. 89, Lantz et a!. 89, Sarin & Greif 84, 

Stefik et a!. 87]. However, in many cases, conventional single-user applications are 

used to provide the mechanisms for sharing windows [Patterson 90, Watabe et a!. 90, 

Ahuja et a!. 90, Lantz 86]. This is because most applications in use today are single­

user applications. The ability to use familiar applications in a conference saves the 

conferees from the burden of learning how to use new applications. Modifying single­

user applications is not only a non-trivial task, but also impractical. The real-time 

conference systems using single-user applications to share the visual workspaces are 

referred to as shared window systems. 

1.2 Late Joining 

In conventional (i.e., non-computer-based) conferences, the cast of people interacting 

may change as the conference proceeds. An initial group starts the conference, others 

arrive late, and some may leave early. Similar behavior can be expected to occur 

during a conference using networked computers. For example, two people may start 

a conference to work on a program. Each conferee would have the same view of 

the program displayed on her workstation. At some point they may encounter a 

problem debugging a piece of program. They can ask a "guru" for help by allowing 

her to dynamically join their conference even while the guru is in a remotely located 

office. 
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Therefore, it is very important that conference systems provide facilities to ac­

commodate these kinds of spontaneous interactions in a conference. Specifically, 

allowing a latecomer to join an existing conference and enabling the new conferee 

to provide input to the conference is considered to be a very important feature of 

any conference system. The new conferee should be able to share windows that the 

shared applications create. Specifically, she should be able to see the output of the 

applications and provide input to the applications through the window system. 

While special-purpose ("collaboration-aware") applications provide the function­

ali ties to accommodate dynamic joining, single-user ("collaboration-transparent") 

applications are not designed to provide these functions. It is the conference system 

itself that should provide them. 

This thesis deals with an efficient method to provide this functionality in a shared 

window system; the ability to enable a latecomer to dynamically join a conference 

and share applications used in the conference. 

1.3 Overview of Thesis 

Shared window systems consist of application processes and window systems. Con­

necting all these processes in the center is an additional process called a conference 

agent. The conference agent is responsible for distributing output from applications 

to window systems, and for relaying input from window systems to associated appli­

cations. By sharing the output from applications, the users working at workstations 

can share the same copy of windows associated with the applications. It is also 

possible for the users to provide input to the applications. 

Applications usually set up their user interface environments by creating re­

sources they need to interact with the users. For example, they create windows to 

draw on, or to take input from the users. Window systems generally interact with 

several applications simultaneously. Therefore, the resources created by multiple 

applications and their attributes form a certain state the window systems main­

tain. Applications can be considered to change the state of the window systems by 
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creating resources and dynamically modifying the attributes of these resources. 

These state modifications are expressed in the output generated by each appli­

cation. If these state modifications can be projected to a new window system for a 

latecomer, the new participant can share the applications in the conference. N atu­

rally, the best place to monitor these modifications is in the conference agent, which 

handles all traffic between application and window systems. 

This thesis describes an efficient method implemented in the conference agent 

process to record the state modifications made by the applications to the window 

systems, and to project the modifications to a latecomer's window system. 

The next chapter describes two architectures (centralized and replicated) em­

ployed in shared window systems and the feasibility of accommodating a latecomer 

in each architecture. 

Chapter 3 discusses how we solved the problem of accommodating a latecomer. 

Some background information is provided on the X Window System and XTV, on 

which our solution is based. 

Chapter 4 is about implementation details of the system. Data structures, perfor­

mance figures, some difficult implementation problems are described in this section. 

We conclude in Chapter 5 with a discussion of future works for more efficient 

shared window systems and contributions our system can make to them. 
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Chapter 2 

Architectures for accommodating 

late joining 

There have been two major approaches to implementing shared window systems: 

centralized architectures and replicated architectures (Lauwers & Lantz 90]. Repli­

cated architectures maintain as many copies of each application and conference 

agents as there are conferees, whereas centralized architectures need only one copy 

of each application and a single conference agent (see Figure 2.1). 

In the replicated architectures, a copy of each shared application runs on ev­

ery workstation in the conference. Output from each copy of the applications is 

conveyed to the local conference agent, and then forwarded to the window system 

for the local display. As far as output is concerned, there is no communication 

between conference agents. Input from a window system is sent to the local con­

ference agent, which in turn distributes the input to all copies of the associated 

application. Because multiple window systems may provide input to an appli­

cation simultaneously, each copy of the application may receive a different input 

sequence. Control mechanisms are used to ensure that every copy of the appli­

cation sees the same input sequence. Because all copies of an application see the 

same input sequence, the state of each copy is synchronized. Examples of systems 

implemented in the replicated architectures include Vconf, Dialogo and MMConf 

(Ahuja et a!. 90, Crowley & Forsdick 89, Lantz 86, Lauwers et a!. 90]. 



App 11 

~ 
~ 
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App22 

App 12 

(a) 

Dis 1a 

App2 

App 1 

(b) 

Figure 2.1: (a) Replicated Architecture (b) Centralized Architecture. The bold 

dashed lines denote the machine boundaries, and the two subscripts used for appli­

cations in the replicated architecture identify the application and the replica respec­

tively. 

7 



In the centralized architectures, input events from all window systems are sent 

to the single conference agent. Since there is only one copy of each shared applica­

tion, the conference agent can forward the input events to their respective applica­

tions as the events arrive. Unlike the replicated architectures, the single conference 

agent is responsible for output to all the displays used in the conference. The con­

ference agent has to distribute every output message of the applications to each 

window systems associated with each display. Mermaid, Rapport, Shadows and 

XTV have adopted the centralized architecture [Watabe et al. 90, Ensor et al. 88, 

Patterson 90, Abdel-Wahab & Feit 91]. 

The centralized architecture is much simpler, but the performance has the po­

tential for degrading as the number of conferees increases. This is because a single 

conference agent has to take care of all input and output streams. In principle, one 

would expect the replicated architecture to have much better performance since the 

output stream is only directed to local window system. However, the replicated 

architecture is more complex because it is harder to maintain the identical state 

across all copies of an application. Moreover, the replicated architecture assumes 

that copies of applications are available on every site in the conference. This can be 

an unreasonable assumption if different machine types exist at the various sites. 

To accommodate a latecomer that wishes to join an existing conference, the 

shared state created by the application in the conference needs to be replicated on 

the new participant's workstation. In a centralized architecture, the window system 

state on the new participant's workstation needs to be brought up-to-date so that 

any subsequent output from the shared applications has the desired effect. In a 

replicated architecture, a copy of each shared application has to be created and 

brought up-to-date in addition to the window system state. It would be desirable if 

window systems and applications provided a means to download and upload their 

internal states. Unfortunately, no such window system or application exists. 

Therefore, given an input and output stream from a window system and ap­

plication, the conference agents have to record the relevant window system state, 

and later "project" this state onto the window system of a latecomer's workstation. 
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In a replicated architecture, the conference agent would record only the shared ap­

plication's state. The recording would take the form of an input sequence to the 

application. For centralized architecture, the conference agent would record only 

the local window system's state. The recording would take the form of an output 

sequence from the application. 

Efficiently recording the state information is difficult in a replicated architecture. 

This is because the input stream from a window system may not provide the confer­

ence agent information as to what state the application is in unless the conference 

agent knows all about the application. Currently, there is no support for dynamic 

joining in systems using replicated architecture. 

For the centralized architecture, the situation is better. There are ways to deduce 

the state of a window system at least in terms of the shared applications. Shad­

ows and Mermaid both accommodate latecomers. For example, Shadows provides 

this feature by compressing the history of resource declarations and then send­

ing this history to the latecomer's window system at the time the latecomer joins 

the conference [Patterson 90]. Other systems with a centralized architecture like 

XTV do not support it. XTV cites as reasons for not supporting latecomers that a 

great deal of state information maintained by the window system needs to be kept 

[Abdel-Wahab & Feit 91]. 

A more efficient way to keep the state of the window systems at least with 

respect to the shared applications will be explored in this thesis within the context 

of the centralized architecture. The method we introduce in this thesis is expected 

to be more efficient than Shadows' in terms of memory usage. Our method does not 

require the precise history of resource declarations to be recorded. 
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Chapter 3 

Architecture 

This chapter describes the overall architecture of the extensions to XTV that ac­

commodates latecomers. We begin with some background. Section 3.1 describes 

the X Window System, the window system used by XTV. Section 3.2 describes X 

TerminalView (XTV) on which the feature to accommodate latecomers is based. 

Section 3.3 provides a detailed description of the system architecture. 

3.1 X Window System 

The X Window System is a window-based User Interface Management System 

(UIMS) providing capabilities to easily create graphical interfaces for distributed ap­

plications independent of architectures the applications will be running on (Nye 89a]. 

X Window System applications such as terminal emulators and drawing programs 

are widely available. Because the X Window System is standardized and is largely 

independent of the host architecture, applications can be compiled and run on any 

machine that supports X. 

3.1.1 Client/Server Model 

The X Window System is built on a familiar distributed system model: the client/server 

model (see Figure 3.1). A server typically is a program that offers a service such as 

file access. A client is an application that requests the server to perform some ac-



Server 

Events -Replies 
Errors 

-Requests 

Figure 3.1: Client/Server model 

Client 

tion on its behalf [Comer 90]. All communication is conducted via message passing. 

Servers accept request messages, perform their service, and return the result to the 

requester. Clients send request messages and wait for a reply. 

The X Window System is a server that accepts requests to manipulate the display 

on the computer's console while reading input from the console's keyboard and 

mouse devices. An X server's clients are user applications such as terminal emulators 

and editors. X clients send request messages to the server asking it to perform 

operations such as create a window, draw a line on a window or destroy a window. 

All output on the display is generated by the server in response to requests from 

clients. Similarly, all input to X clients is provided by the server. The user interacts 

directly with the server using keyboard and mouse. 

Clients and servers may be on the same machine or different machines intercon­

nected by a communications network. Message passing is via asynchronous network 

protocols. The protocols provide transparency on the part of both the user and the 

programmer of the application. That is, whether or not the application is executing 

on a local machine is transparent to the user, and the programmer does not have to 

worry about from which machine the user is interacting with the application. 

Communication between an X client and an X server is via message passing. 

There are four classes of messages exchanged between the server and the client. 
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• Request messages are sent from a client to a server. X servers handle a wide 

variety of requests including requests that affect the display (e.g., drawing on 

a window), requests that affect internal data structures (e.g., changing the 

keyboard mapping), and requests that return data (e.g., returning the image 

contents in a window). 

• Reply messages are sent from a server to a client. These messages contain 

information requested by clients in previous request messages to the server. 

Not all the requests received by an X server require a response. For example, 

requests for creating windows do not require a reply from a server. 

• Event messages are sent from a server to a client whenever there is user input 

from the keyboard or mouse that is germane to the client. Some request 

messages may also cause events to be later generated. Events are sent to the 

client only if the client has previously requested that the servers do so. 

• Error messages sent from a server to a client tell a client that a previous request 

was invalid, e.g., the client specified a window that does not exist in a request 

for drawing, or asked for service that the server does not support. 

3.1.2 Resources 

The X application programming model presents six basic abstractions: window, 

cursor, graphics context, pixmap, colormap and font. Windows and pixmaps are 

referred to collectively as drawables. Instances of these abstractions are referred to 

as resources in X. Resources are created, manipulated and destroyed by the server 

in response to requests by clients. 

A Window is like a canvas on which the client may draw objects by sending 

pertinent request messages to the server. Once a window is created, it is in either 

of two states: mapped or unmapped. If a window is mapped, then the user can see 

any unoccluded portions of the window. Unmapped windows are never visible. 

Cursors are small pointers that move on the display according to movement of 

the mouse. They are usually associated with one or more windows so that when 
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the user moves the mouse inside the windows, a different cursor is displayed as an 

indicator to the user where the input pointer is located. 

Requests to draw graphics such as dots, lines, texts or images are called graphics 

requests. Much information is required to fully specify how a particular graphic 

should be drawn. For example, when drawing a line, we may want to specify its 

color, its width or the style (e.g., solid or dashed), or when writing texts, we may 

want to specify the font or its color. To simplify the specification process, X provides 

a graphics context (GC), a set of values for many of the variables. The appearance 

of everything that is drawn within a drawable is controlled by a GC that is specified 

with each graphics request. 

Pixmaps are like windows in that a client can draw on them using a set of 

graphics requests similar to those used for drawing on a window. However, pixmaps 

themselves are not visible. The contents of a pixmap can be seen only when it is 

copied into a window. Pixmaps are used for several purposes. 

• A pixmap can be used in a window as the background or border pattern. 

The background of a window is the drawing surface on which other graphics 

are drawn and the border of a window is the thin outer rectangular area 

surrounding the window. 

• A pixmap can be used as the tile, stipple or clip mask of a graphics context. 

Tile and stipple are alternate names for pixmaps when they are used for pat­

terning an area of a drawable. The only difference between them is that a 

stipple is a pixmap with color depth one (i.e., one of two colors). A clip-mask 

is used to restrict graphics operations to a subset of pixels. 

• A pixmap can be used as the source or mask of a cursor. The source of a cursor 

defines the cursor's pattern, and the mask is used to confine the pattern to a 

certain shape. 

Each pixel in a window is associated with a pixel value that represents the color 

of the pixel. This pixel value is an index into a list of entries called colorcells. A 
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colorcell holds three values; one for each RGB (Red, Green, Blue) value. The list of 

colorcells constitutes a colormap. Depending on which colormap is currently in use, 

a pixel can have a different color. Every window is associated with a colormap. 

Fonts are usually used as an attribute of graphics contexts. Each text-writing 

graphics request always specifies a graphics context with appropriate font set in it. 

Another usage of fonts is as the source or mask for cursors. Fonts used for this 

purpose contain pre-defined patterns and shapes of cursors. The client specifies the 

font when creating a cursor. 

Most of these resources are created by clients sending appropriate messages to 

the server. Some resources are created by the server by default (e.g., the default 

colormap and the root window). All the resources are referred to by resource IDs 

(unique integers). 

3.1.3 An Example 

A typical session is started by the client opening a connection (a communication 

channel) to the server. This is done by the client sending a message to a well-known 

address. After verifying the connection information sent by the client, the server 

allows the connection by sending the client information about the server and root 

window. The client can now send requests to create various resources and to make 

changes to them. 

Let us take a simple graphics application for illustration. This application draws 

red dots on a window with a white background at the positions where the user 

presses a mouse button. The window is surrounded by border tiled with a certain 

pattern. 

The application (the client) may start by preparing the border pattern of the 

window on a pixmap. To do so, it creates a pixmap and a graphics context with black 

foreground color. The client draws the pattern on the pixmap by using requests for 

drawing dots on drawables. All the dot-drawing requests specify the graphics context 

created above. The client wants to display a different cursor whenever the user puts 

the mouse inside the window. It creates a cursor to display on the window using one 

14 



of the pre-defined patterns stored in a special font. When all the resources needed 

for the window are ready, the client creates the window specifying the pixmap for 

the border pattern, white color for the background and the cursor. At this time, the 

client also requests that the server notify it with an event whenever a mouse button 

is pressed on the window. 

Because the client wants to use red color to draw dots on the window, it gets the 

pixel value for the color red by sending a request to allocate the color in the default 

colormap (the colormap associated with the root window). The server returns the 

pixel value in reply to the request. The client now sends a request message to change 

the foreground color attribute of the graphics context that was used to draw the 

border pattern of the window. 

The client is now ready to interact with the user. The client makes the window 

visible by mapping it. The user can see that whenever the mouse moves into the 

window, the cursor changes to a different pattern. Mouse button press events are 

delivered to the client when the user pushes any of the buttons. The event message 

contains the information of where the user pressed the button inside the window. 

With this information, the client draws a point using the graphics context with red 

foreground color. 

3.2 XTV 

Most X applications have been written to interact with a single user. When such an 

application is used, there is only one connection between an X server and a client 

through which input and output messages are exchanged. Most shared window 

systems are built by inserting a process in the connection between a server and a 

client. This process intercepts all message traffic and distributes it properly to make 

window sharing possible. 

XTV is a distributed system for allowing multiple remote users to view the output 

of X applications in real-time [Abdel-Wahab & Feit 91] (an extension of Remote 

Shared Workspaces system [Abdel-Wahab eta!. 88]). The system also makes it 
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Figure 3.2: XTV architecture 

possible for the users to provide input to the applications. The remote users are 

expected to be working at workstations running X servers and interconnected by a 

local area network. XTV looks like a client from the remote servers' points of view 

and like an X server from the shared X applications' points of view. 

XTV employs the centralized architecture (see Figure 3.2) where a process -

called the packet switch process (PSP) - is responsible for distributing the output 

of the shared applications to all of the remote servers. XTV refers to shared appli­

cations as "tools". The packet switch process opens a connection to the server for 

its own interface, and one for each shared application. 

The packet switch process cannot simply distribute each request message to the 

remote servers without any modification to it. Many request messages contain re­

source IDs that refer to the resources on the local server. The ID for a resource on 

the local server may be either invalid or refer to a different resource on a remote 

server. The resource IDs in a request message destined for a remote server should 

be corrected to refer to the corresponding resource on the remote server. Another 

process called the packet translator process (PTP) is run on every remote worksta-
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tion. The packet switch process sends the request messages received from the X 

applications to these translator processes rather than directly to the servers. The 

packet translator process modifies the messages so that they contain correct resource 

IDs and then sends them to the server. The packet translator process also opens 

separate connections for its own interface and for each shared application. 

At the heart of this approach are two important concepts: 

• Interception of traffic in the normal connection between a single client and a 

server. 

• Translation of resource IDs in messages sent through the connection. 

These concepts are explained in more detail below. 

3.2.1 Interception 

In the X Window System, communication with an X server is done via message pass­

ing. The server accepts messages from a port whose number is well known to all 

clients. The port number is defined symbolically in the X protocol as X_TCP _pQRT. 

The client refers to a UNIX Shell environment variable called DISPLAY when try­

ing to make a connection. DISPLAY takes the format hostname:display.screen, 

where hostname is the standard Internet host name or an Internet address (e.g., 

delta.cs.unc.edu or 128.109.136.99). When contacting an X server, an X client makes 

a connection to port number X_TCP _pQRT +display on the machine given by the 

hostname field. 

The packet switch process in XTV intercepts X client message traffic by creating 

a port numbered X_TCP _pQRT +SessionNumber (non-zero value). Clients that use 

a DISPLAY environment variable with a value of hostname:SessionNumber.O will 

connect to XTV rather than the X server. (hostname is the name of the Internet 

host the packet switch process is executing on.) Knowing the port number where 

the display server receives messages, the packet switch process can relay requests 

from clients to the server, while distributing the same requests to packet translator 
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processes participating in the conference. The packet switch and packet translator 

processes will therefore look like copies of the original clients from the remote servers' 

points of view. 

3.2.2 Resource ID Translation 

In X, resource IDs are assigned by the client. For each client, the server allocates 

a subrange of numbers representable in a 32 bit integer. The client always uses a 

number in this range for each resource it creates. This way, the client can ensure 

that the resource IDs it generates are unique. 

Because the integer subrange may be different for each connection from XTV 

(connections from the packet switch or the packet translator processes), resource 

IDs need to be changed to fit into the subrange allocated by each different server. 

This translation is done in the packet translator process. 

For example, suppose that for a shared application, the server for a packet 

translator process allocated 164 consecutive numbers starting from the hexadeci­

mal AOOOO for resource IDs, while the server for the packet switch process allocated 

164 consecutive numbers starting from the hexadecimal BOOOO. Upon receiving are­

quest message from the packet switch process, the packet translator process searches 

the message for resource IDs to translate. Each ID should have the form Bxxxx. For 

each ID so found, the packet translator process substitutes a corresponding resource 

ID in the subrange given by its local server (i.e., one of the forms Axxxx). Most of 

the time, a simple replacement of some number of significant hexadecimal digits is 

sufficient (the most significant hexadecimal digit in this example). The message is 

sent to the local server after all the translations are done. 

Messages received from the local server by each packet translator process (e.g., 

event, reply or error messages) go through an inverse translation to the client­

readable form. All resource IDs in these messages are translated back to the equiv­

alent client resource IDs by the packet translator process and sent to the packet 

switch process and eventually to the client. 
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3.3 Accommodating Latecomers 

3.3.1 Overview 

Multiple remote users can use XTV to share a set of applications. One of the 

users becomes the host of the XTV conference by executing XTV (i.e., creating 

and connecting to a packet switch process) on her workstation. Other users join 

the conference by executing XTV and connecting their translator processes to the 

packet switch process of the host (see Figure 3.2). The host can now execute X 

applications which will be shared by all the participants in the conference. 

Consider the case of a user who is late for the conference that is in progress. 

That is, all the shared applications have been in use for quite some time. Although 

the latecomer can join the conference by connecting to the packet switch process, 

the set of applications cannot be shared with the latecomer. This is because the 

server on the latecomer's workstation does not have any of the resources created 

by the shared applications, and hence request messages from the applications will 

make no sense to the new server. In other words, the latecomer's server is not in a 

state to receive requests from the shared applications. The problem is to change the 

state of the new server so that a late arriving participant can share the applications 

that have been in use. Currently, there is no direct method to capture the state 

of one server and impose it on a new server. The specification of X protocol does 

not provide a way to do it. Therefore, to change the state of the new server, we 

must depend on the requests that have been sent by the clients. That is, we can get 

the new server into the appropriate state by applying the changes implied by the 

sequence of requests that have been sent to the original servers. 

In addition to distribution and translation of client request messages, XTV -

more specifically, the packet switch process - now must maintain a record of the 

changes made to the server state by each client. A very simple solution to this 

problem is to keep a history log of all requests that came from the clients, and 

later replay the history to a new server (i.e., send each request to the new server) 

when a latecomer arrives. However, this can be very inefficient since storing all the 
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requests consumes a large amount of memory space. For example, a client sends 

about 300,000 bytes of requests for only 4 minutes after it starts interacting with 

a server (see Figure 4.7 (a)). Moreover, it will take proportionally longer time for 

a latecomer to catch up on the conference depending on how late she joins the 

conference. 

A quick improvement can be made to the above brute-force method. Since we are 

only concerned about the changes made to the server state, we can ignore requests 

that do not change the server state. Obviously, requests for acquiring information 

from the server such as query requests are in this category. This is a very minor 

improvement, because relatively few query requests are made by clients. What is 

needed is a more sophisticated approach to archiving requests. 

The following section describes how we can maintain the changes made to the 

server state more efficiently. 

3.3.2 Recording Modifications to Resources 

Our approach is to catalog changes a client can make to the server state. A client 

can change the server state as follows. A client may: 

• create private resources (e.g., a client can create a set of windows for its use), 

• change attributes of resources (Note that the client can change the attributes 

of resources it did not create itself. For example, a client can change the color 

of a window background (a private resource), or it can allocate more colorcells 

in the default colormap (a non-private resource)), or 

• change other miscellaneous environment properties such as the keyboard map­

ping, or the list of machines allowed to connect to the server. 

Modifications of the server state can be recorded by maintaining a list of the 

resources (private and non-private) that are handled by the client and ensuring 

that the attributes of these resources are kept up-to-date. When a latecomer joins 

the conference, the recorded modifications can be applied to the new server of the 
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latecomer. Private resources will be created with their attributes assigned current 

values. Resources that the client did not create but has modified must have their 

appropriate attributes updated. The miscellaneous environment properties can be 

also handled on a per-property basis. However, these properties are generally set 

only once by the client, and therefore, they can be saved in chronological order and 

replayed to a new server. 

This approach of concentrating on the modifications made to resources guar­

antees that a minimal set of information is kept about the changes made by the 

client to the server state. For example, many resources are created and then. later 

destroyed by the client. Consider pop-up menus. Pop-up menus are implemented 

as temporary windows. They are created and then destroyed after the user has 

selected an item in the menu. When the window is deleted, we can delete the data 

structures holding the information about these menu windows. Also, by keeping 

the up-to-date values for attributes of resources, we can save a lot of memory space 

that may otherwise be wasted for saving requests to change attributes of resources. 

This is because it is only the current attribute values of resources that count, and 

not the history of the attribute values since resource's creation. Only the current 

values will be used when creating resources on a latecomer's server. 

It would be desirable to keep track of the IDs of resources created by a client, and 

then later get the information on attributes of these resources from the server when 

a latecomer joins the conference. Unfortunately the X protocol was not designed 

to provide this service using query requests. We can get only limited information 

about the attributes of a resource. Therefore, we cannot avoid duplicating some of 

the functions of an X server and keeping track of the attributes of all resources. 

3.3.2.1 Images in Drawables 

Some further optimizations on this scheme are possible. The image attribute of a 

drawable (windows and pixmaps) need not be recorded. This attribute is changed 

by graphics requests sent by the client. One would expect that the graphics requests 

need to be recorded and replayed to a new server in chronological order. However, 
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it is the case that it is possible to ignore all graphics requests. This is because 

X servers do not guarantee that the contents of a window will be preserved when 

portions of the window become obscured. When portions of a window becomes 

visible, an X server will send expose event messages to the client that created the 

window. Each expose event specifies a rectangular region inside a window that has 

become visible. On receiving these event messages, a client is expected to send the 

appropriate graphics requests to draw an up-to-date image on its window. Given 

that the client will refresh the contents of the whole window when expose events are 

generated, graphics requests for windows need not be recorded. This is because the 

first time a window is displayed for the latecomer, the X server on the latecomer's 

workstation will send expose events for the client. 

The image in a pixmap cannot be seen unless it is copied into a window. Hence, 

there is no concept of an expose event for pixmaps. There is, however, a way to 

make the contents of a pixmap up-to-date other than recording all of the graphics 

requests for the pixmap. The client can obtain the image in a pixmap through a 

request message called Getlmage. When a new participant joins the conference, the 

packet switch process will send this request to its local server to get the contents 

of pixmaps used by the shared applications. The packet switch can then send a 

request called Putlmage to the new server. The Putlmage request will put the 

acquired image into the appropriate pixmap on the latecomer's server. 

Ignoring the graphics requests greatly reduces the memory requirements of XTV 

(see Section 4.3.2). This is because X clients generally go through two phases in their 

life time: a set-up phase and an interaction phase. In the set-up phase, the majority 

of a client's resources are typically created. In the interaction phase, the majority 

of requests are for graphics operations to draw objects on the client windows. For 

example the client may highlight a window used as a radio button, or display the 

output of the computations requested by the user. Since the interaction phase 

is generally much longer, the majority of messages sent from clients to server are 

requests for graphics operations. 
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3.3.2.2 Maintaining Resources 

Other than the image attributes of drawables, we have to keep the attributes of 

resources up-to-date. Whenever a new resource is created by a client, data struc­

tures within XTV are created to record the attributes of the resource. When a 

client changes the attributes of a resource, XTV will modify the data structure 

corresponding to the resource. When a client sends a request to free (destroy) the 

resource, XTV deletes its data structures for the resource. When a client first mod­

ifies attributes of a resource that it did not create, similar data structures are also 

created to keep the contents of changes. 

The Figure 3.3 shows the attributes the client sets and modifies for each resource 

category. The attributes are accompanied by the requests that set or modify them. 

(For a description of the function of each attribute see (Nye 89a, Nye 89b].) 

3.3.2.3 Dependency Relationships among Resources 

A problem arises if we naively apply the method in the previous section for all 

resources. For example, in idraw (Linton et aL 89] , a MacDraw-like X application, 

a cursor is created using separate pixmaps for its source and mask. The server will 

record the shape of the cursor in its internal data structures. Unless these pixmaps 

will be explicitly referred to later on, idraw can free these resources. If idraw does 

free those two pixmaps after the creation of the cursor, the data structures in XTV 

for these pixmaps would be deleted. But this should not be done because in order 

for XTV to later create the cursor on a new participant's local server, it has to create 

the very two pixmaps it no longer has any information on. The problem is that we 

need some method to prevent information on resources that are explicitly freed by 

a client from being thrown away when there are other resources that require this 

information. 

Creating Dependency Relationships To represent the relationships among 

resources, we define a dependency relation. A resource A depends on a resource B 

if the resource A has as one of its attribute values the resource B. For example, the 
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Resource Attribute Request 

Wmdow depth, window ID, class, visual, parent ID, Create Window, Change Win-
x, y, width, height, border width, background dow Attributes, Configure Win-
pixmap, background pixel, border pixmap, dow, Circulate Window, Repa-
border pixel, bit-gravity, win-gravity, rentWindow, Map Window, 
backing-store, backing-planes, backing-pixel, UnmapWindow, MapSubwin-
override-redirect, save-under,event-mask, dows, UnmapSubwindows, 
do-not -propagate-mask, colormap, DestroyWmdow, DestroySub-
cursor, state, properties associated with the windows, ChangeProperty, 
window, grabbing associated with the DeleteProperty, RotateProper-
window, relationship with siblings ty, GrabKey, UngrabKey, 

GrabButton, UngrabButton 

Pixmap depth, pixmap ID, drawable, width, height, CreatePixmap, FreePixmap 
state 

Graphics graphics context ID, drawable, state, function, CreateGC, CopyGC, 
Context plane-mask, foreground, background, ChangeGC, SetDashes, 

line-width, line-style, cap-style, join-style, 
fill-style, fill-rule, tile, stipple, tile-stipple-

SetClipRectangles 

x-origin, tile-stipple-y-origin, font, 
subwindow-mode, graphics-exposures, 
clip-x-origin, clip-y-origin, clip-mask, 
dash-offset, dashes, arc-mode,dashes, 
clip rectangles 

Colormap alloc, colormap ID, window, visual, state, CreateColormap, CopyColor-
colors in the colormap mapAndFree, FreeColormap, 

InstallColormap, Uninstall-
Colormap, AllocColor, Alloc-
NamedColor, AllocColorCells, 
AllocColorPlanes, FreeColors, 
StoreColors, StoreNamed-
Colors 

Font font ID, name, state, font path OpenFont, OoseFont, 
SetFontPath 

Cursor cursor ID, source, mask, hotspot, fore-red, CreateCursor, CreateGlyph-
fore-green, fore-blue, back-red, back-green, Cursor, RecolorCursor, 
back-blue, state FreeCursor, 

Figure 3.3: Resource attributes and requests for modifying them 
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c 

Figure 3.4: CreateCursor request 

CreateCursorrequest creates a dependency between a cursor C and two pixmaps P1 

(a source pixmap) and P2 (a mask pixmap). We can represent dependency relation 

using a directed graph, called a dependency graph, such as in Figure 3.4. A node 

represents a resource and an edge represents the dependency relationship with the 

interpretation that the node on the tail of the edge depends on the node on the head 

of the edge. XTV constructs such dependency relations as requests are encountered. 

For example, Figures 3.5 through 3.11 show the dependency graphs that result from 

common requestsl. 

Dashed edges represent optional attributes whose values need not be, and typ­

ically are not, set at the time of resource creation. These attributes can be set 

after the resource is created using requests such as Change WindowAttributes or 

ChangeGC. Adjacent edges annotated with the label OR cannot both appear in any 

actual instance of the graph . 

. 1 Details on the exact semantics of these requests can be found in [Nye 89a, Nye 89b]. 
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Figure 3.5: CreateWindow and ChangeWindowAttributes 
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Figure 3.6: CreateGC (create a graphics context) 
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Figure 3. 7: ChangeGC ( cha_nge attributes of a graphics context) and CopyGC (copy 
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Figure 3.10: CreateGlyphCursor 

Figure 3.11: CreatePixmap 
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Figure 3.12: E-R diagram of dependency relationships 

GC 

The dependency relations illustrated in Figures 3.4 - 3.11 can be summarized 

with an Entity-Relationship diagram (see Figure 3.12) [Ullman 88]. Note that some 

edges have been combined for simplicity into a single edge with a label representing 

the number of original edges. 

For any shared application, XTV will create an instance of the E-R diagram in 

Figure 3.12. For example, for xpostit, an X application for keeping small notes on 

the display, the dependency graph shown in Figure 3.13 is constructed inside XTV. 

Deleting Dependency Relationships When a request to free a resource R is 

encountered, XTV must check to see if any other resource depends on R. Only 

when no other resource depends on R can R's information be deleted from XTV's 

internal data structures. If there is another resource that depends on R, R's data 

structure should be marked as freed, but not actually deleted. The data structures 

of freed resources will be deleted later when all their dependency relations have 

been removed. Therefore, when a resource A removes a dependency on another 

resource B, XTV has to make sure that information on B is deleted if B is marked 

as freed and it has no other dependencies. Figure 3.14 shows the recursive depth-
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Figure 3.13: The initial dependency graph for xpostit 

first traversal algorithm that is applied to the node corresponding to the resource 

that has just been freed by the client. Note that the algorithm is applied after the 

associated node is first marked as freed. 

The algorithm first deletes all the optional edges leaving the current node. This 

can be done unconditionally because if a resource has optional attributes, then 

any other resource that uses this resource cannot depend on these attributes being 

correctly set. Next, all essential edges are deleted if the node has no edge coming 

into it (i.e., no resource depends on the resource corresponding to this node). For 

example, consider the graph in Figure 3.15 (a). White nodes represent non-freed 

nodes and black nodes represent freed nodes. If a request arrives from the client 

to free node B, we first mark B as freed (color it black) and apply DeleteNode 

algorithm (Figure 3.15 (b)). There are no optional edges, so the first For-loop does 

not apply. Since the node C still depends on node B, the algorithm does nothing 

on the graph. If next a request to free node C arrives, we color node C black 

(Figure 3.15 (c)), and apply DeleteNode to C. Since no node depends on C, it 

will be deleted and DeleteNode recursively calls on B. With the dependency on 
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DeleteNode( node) 

If node is marked as freed then 

For each optional edge leaving node 

Delete the edge; 

Apply DeleteNode to the node at the head of the edge; 

End For 

If node has no incoming edges then 

For each essential edge leaving node 

Delete the edge; 

Apply DeleteNode to the node at the head of the edge; 

End For 

Remove node; 

End If 

End If 

Figure 3.14: DeleteNode algorithm 
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Figure 3.15: An example of node deletions 

c 

B now gone, node B will be deleted and DeleteNode recursively called on node A. 

Since A has not been freed, the algorithm returns without taking any action on it 

(Figure 3.15 (d)). 

The DeleteNode algorithm works only with acyclic graphs. However, an ex­

amination of our E-R diagram (Figure 3.12) reveals that dependency graphs may 

contain cycles. The following example illustrates how the algorithm can fail when 

the graph contains a cycle. Consider the graph shown in Figure 3.16. If the client 

sends a request to free the remaining white node, all the nodes in the graph can be 

deleted. However, if we apply DeleteNode algorithm, it will terminate without tak­

ing any action because each node has an incoming edge. To enhance the algorithm 

to deal with cycles, we first observe that all cycles must contain a window node 

(see Figure 3.12). In fact, there are only 3 types of cycles as shown in Figure 3.17. 

We introduce a second procedure that is used to delete window nodes when a De­

stroy Window or DestroySubwindows request is encountered. The algorithm, shown 

in Figure 3.18 called WindowSpecial works by breaking the cycle and then applying 

DeleteNode to a node that the window was dependent upon. The recursive nature 

of DeleteNode will ensure all free nodes in the cycle are deleted. Note that we do 

not mark the window node as free before we apply the WindowSpecial algorithm. 

In summary, the problem of maintaining the server state for a client reduces to 

a graph maintenance problem requiring operations to create a new node, change 

some attributes of a node, add dependency relations to the graph, delete a node and 
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Figure 3.16: A cycle 
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Figure 3.17: Three possible cycles 
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WindowSpecial( node) 

For each edge going out of node /* These will all be optional edges. * / 
Delete the edge; 

Apply DeleteN ode to the node at the head of the edge; 

End For 

Mark node as black; 

If node has no incoming edges then 

Delete node; 

End If 

Figure 3.18: WindowSpecial algorithm 

delete a dependency relation. 

3.3.2.4 Modifying the State of a Latecomer's Server 

When a new participant joins a conference that is already in progress, we must 

set up the proper environment for each shared application in the conference on the 

server of the latecomer. The goal is to ensure that (1) future output requests from a 

shared application have the same effect on the latecomer's display as on the displays 

of participants that were already in the conference, and that (2) any messages from 

the new participant's server will be delivered to the shared application without 

errors. In terms of X, the packet switch process must generate a series of requests 

to the latecomer's server in such a manner that all of the resources that have been 

created for each shared application on the servers of current participants are also 

created on the latecomer's server. Furthermore, all attributes of each resource must 

be set correctly. 

All of the resources should be created without violating the dependency relations 
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among them. The dependency relations may be violated because of the existence 

of cycles. The key to the solution of this problem lies in the characteristics of the 

optional edges. The attributes associated with the optional edges do not have to 

be set at the time of the resource creation. (Recall they can be set at a later time 

using requests like Change Window Attributes or ChangeGC.) Therefore, we ignore 

optional edges going out of window nodes for now. Without these edges, we have 

a directed acyclic graph. We now can generate requests to create each resource 

without violating the dependency relations by traversing the graph in topological 

order. One possible method is to create requests to perform the following (in order); 

1. Create windows with no resource-related attributes set. 

2. Open fonts. 

3. Create colormaps and do all of the color related operations such as AllocColor 

and AllocColorCells. 

4. Create pixmaps and put the image of each pixmap acquired through Get/mage 

request. 

5. Create graphics contexts setting all attributes (essential and optional). 

6. Set the remaining attributes of windows. Use Change WindowAttributes re­

quests to do so. 

7. Map any windows that are currently mapped on remote servers. 

8. Generate other window related requests such as grabbing requests and prop­

erty changing requests. 

9. Set other environment parameters that are not necessarily related to the re­

sources using requests such as SetKeyboardMapping and ChangePointerCon­

trol. 

After creating all these messages, each message is sent in order to the packet 

translator process on the latecomer's machine. 
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Note that a shared application can generate requests while the new participant's 

server is being brought up-to-date. These requests are appended to a separate mes­

sage queue and will be sent after all the messages relating to joining the conference 

have been sent to the latecomer's packet translator process. Included in this message 

queue will be the graphics requests required to make the displayed image current. 

3.4 Summary 

In this chapter, we have identified that in order to bring a latecomer's server up-to­

date we need to record the modifications to the server state implied by the sequence 

of request messages from each shared application, and then later apply the recorded 

modifications to the latecomer's server. 

X applications modify the server state by creating private X resources and chang­

ing attributes of resources (private or non-private). Therefore, the modifications can 

be recorded by keeping attributes of each resource up-to-date in a data structure. 

A data structure is created when an application creates a resource or first modifies 

a non-private resource. When a resource is freed, the data structure containing 

information about the resource is deleted. 

Along with the attributes of resources, dependency relationships among resources 

should be maintained. This is to prevent information on freed resources from being 

deleted when other non-freed resources have the freed resources as attribute values. 

When a latecomer joins a conference in progress, requests to create private re­

sources with current attribute values and to modify attributes of non-private re­

sources are sent to the latecomer's server. These requests are generated while mak­

ing sure that no resource is created before all the resources it depends on are created 

on the latecomer's server. 
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Chapter 4 

Implementation 

4.1 Introduction 

In this chapter we describe our implementation of the system described in the pre­

vious chapter. Our system for accommodating latecomers contains approximately 

5,500 lines of code out of about 20,000 lines of code for the current release of XTV. 

The system is written in C programming language. Familiarity with C is assumed 

throughout. 

We briefly describe the data structures we use for maintaining client state infor­

mation and then discuss the performance of the system. We conclude with a brief 

discussion of some of the problems we encountered in the course of the implemen­

tation. 

4.2 Data Structures 

4.2.1 Attributes and Dependency Relationships 

The packet switch process in XTV maintains a data structure for each resource that 

contains the attributes of the resource and a record of the other resources that the 

resource depends on. These data structures form the nodes in the dependency graph 

for a tool (an application program used in a conference). If a resource A depends 



typedef struct _ToolState{ 
CursorObj 
FontObj 
GCObj 
PixmapObj 
ColormapObj 
InstalledColormapNode 
WindoWObj 
WindowObj 
char 
char 
CARD32 
char 
CARD32 
struct PixmapAndGC 
CARD32 

ToolState; 

*CursorList; /* to cursor list head */ 
*Font List; /* to font list head *I 
*GCList; /* to GC list head */ 
*PixmapList; /* to pixmap list head */ 
*ColormapList; /* to colormap list head */ 
*ICList; /* to installed colormap list */ 
*WindowList; /* to window tree root */ 
*Destroyeds; /* to destroyed window list */ 
*StartToolPacket; /* initial connection message */ 
*InternalAtom; /* InternAtom requests buffer */ 

InternalAtomSize; /* size of the buffer */ 
*SaveAlls; /* miscellaneous requests buffer */ 
SaveAllsSize; /* size of the buffer */ 
PAG [ 65]; I* drawable depth and GC *I 
RecentResourceiD; /* recently used ID */ 

Figure 4.1: Data structure for holding information about a tool 

on resource B, then resource A's data structure will contain a pointer to resource 

B's data structure. The pointers to resource data structures are the edges in the 

dependency graph. In addition, in resource B's data structure we maintain a count 

of the number of resources that depend on B. If resource A is destroyed and its 

corresponding node in the dependency graph can be deleted, then the packet switch 

process follows the pointer from A to B and decrements the counter value in B. 

If B's dependency counter is 0 and B has been freed by the client, then B's data 

structure can be deleted as well. 

Information about a Tool 

A list of all resources created or used by a tool IS maintained on a per-tool and 

per-resource type basis. Figure 4.1 shows this data structure for a generic tool. 

Lists for five of the six resource types (cursor, font, graphics context, pixmap 

and colormap) are implemented as a doubly-linked list. When a tool creates an 

instance of one of these resources, a new instance of the appropriate resource data 

structure is appended to the front of the resource list in the tool structure. The 

data structures for window resources created by the tool are organized as a tree. 

WindowList is the pointer to the root of the window tree structure. These resource 

lists will be discussed in more detail below. 

The initial connection message for the tool is contained in a buffer pointed to by 
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StartToolPacket. The connection message contains information needed to start 

the tool that the latecomer's packet translator process will need when connecting 

to its X server. It also contains information to help the packet translator process 

to translate resource IDs in subsequent request messages. This message will be the 

first one sent to the packet translator process on a latecomer's machine. 

InternalAtom points to a buffer containing information about atoms introduced 

by the tool, and InternalAtomSize is the size of the buffer. An atom is a four 

byte integer uniquely identifying a group of templates for storing and retrieving 

information. A group of templates usually has a string name of arbitrary length, 

and an atom is used when referring to the group so that arbitrary length string names 

need not be sent across the connection. Each template in a group is associated with 

a different window and is called a property of the window. A property is used by 

X clients to communicate arbitrary data with each other. The buffer pointed to by 

InternalAtom contains the string names and the atoms used by the X client to refer 

to the properties. 

SaveAlls points to a buffer containing miscellaneous messages that the tool 

sent to the server that are not related to resources. These messages are queued 

in chronological order and SaveAllsSize keeps track of the current size of the 

buffer. The messages include request messages such as ChangeKeyboardMapping 

and ChangePointerControl. 

Our approach uses Putlmage requests to bring the image attributes of pixmaps 

up-to-date. Every Putlmage request must specify a graphics context which has been 

created for use with drawables of the same depth as the destination drawable of the 

Put! mage request. A graphics context can have quite different effects on a drawable 

depending on how each of its attributes is set. If we use the graphics contexts 

created by the tool, we may have to change some of their attributes and change 

them back to the previous values. Even worse, graphics context for drawables of 

a certain depth may not exist. Therefore, we create graphics contexts as needed 

and destroy them after their use. PAG [65] is an array where element i contains 
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(1) the number of drawables1 (windows and pixmaps) whose depth is i and (2) a 

graphics context ID that can be used to draw on drawables of depth i. The number 

of drawables is recorded to reflect the current number of drawables of depth i for 

the tool. When a latecomer joins the conference, the packet switch process creates 

a graphics context for each depth of the drawables the tool created, and put its ID 

in PAG [] array. The variable RecentResourceiD has the most recent resource ID 

value that was created by the tool. The packet switch process uses this number to 

create its own graphics contexts to put in the PAG [] array. It uses as many numbers 

as are needed that are larger than the current RecentResourceiD value. Because 

we use the subrange of IDs allocated for the tool, the packet switch process must 

create request messages to free the graphics contexts created above after the image 

attributes of all pixmaps have been updated. 

ICList is a doubly-linked list of currently installed colormaps. This list is main­

tained in such a way that the internal data structure for a newly installed colormap 

is placed at the front of the list, and the data structures for colormaps that have 

been "uninstalled" are deleted. The packet switch process creates lnstallColormap 

requests for colormaps starting from the back of the list so that the most recently in­

stalled colormap gets installed last. This handling of colormaps is necessary because 

some high performance workstations maintain more than one installed colormaps 

simultaneously. The maximum number of installed colormaps can differ depending 

on the X server. The installed colormaps are recorded in an ordered queue inside 

the server so that the most recently installed colormap is placed at the front of the 

list. If a new colormap is installed when the queue is full, the colormap at the end 

is deleted(uninstalled) from the queue. 

Destroyeds is also a doubly-linked list of window data structures that have 

been destroyed by the tool, but cannot be deleted because other resources depend 

on them. Information on these windows is stored separately to simplify the handling 

of the window tree data structures. (This is because then the tree contains only data 

1 Image attributes of some windows need to be updated using Put/mage. See Section 4.4.1 for 

details. 
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structures for undestroyed windows.) The windows in Destroyeds are stripped of all 

optional attributes, and created as the children of the root window on a latecomer's 

server. These windows are destroyed as soon as other resources depending on them 

have been created on the latecomer's server. 

XTV maintains a list of data structures like the one shown in Figure 4.1 for all 

the shared applications. Figure 4.2 shows an instance of such a list. The first tool is 

xpostit (whose dependency graph is shown in Figure 3.13), and the n'th tool is the 

example X application introduced in Section 3.1.3. Note that only resource lists are 

shown for simplicity. Directed edges are used to represent the dependency pointers. 

Optional pointers are in dashed edges and essential pointers in solid edges. Bold 

dashed lines represent double links in each list. 

4.2.2.1 Resource Lists 

-, GCList, CursorList and FontList These are simple doubly-linked lists. For 

fonts, however, we store additional information. Font data is stored in UNIX files 

that can be located in different directories in the UNIX file system. The particular 

directory for a font is specified by SetFontPath request. The packet switch process's 

data structure for the first font resource to use a font in this directory will contain 

the SetFontPath request. This request will be sent to the new packet translator 

process before any OpenFont request expecting this directory is sent. 

WindowList Windows are maintained in a tree structure with the server's root 

window at the root of the tree. Because a window can have a variable number of 

children, each window structure has a single pointer to a doubly-linked list of its 

children (other windows). In addition, each window then has forward and backward 

pointers to its siblings. Figure 4.3 shows a window tree structure and the internal 

representation of the tree. 

ColormapList Data structures for colormap resources are stored in ColormapList. 

Each colormap structure contains a list of all the requests to perform an operation 
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Figure 4.4: A node in ColormapList 

on the colormap. These requests include CreateColormap, CopyColormapAndFree, 

AllocColor, and AllocNamedColor. In addition, each structure maintains a doubly­

linked list of other colormaps that depend on this colormap (generated by Copy­

ColormapAndFree requests). An offset from the beginning of the request list is kept 

to the place where the request CopyColormapAndFree should be sent. Figure 4.4 

illustrates the interconnections of these data structures. 

When the packet switch process generates requests related to a specific colormap 

(taken from the colormap's request list), it checks the next node in the list of de­

pendent colormaps so that it can generate CopyColormapAndFree requests at the 

right place. After generating all requests for a colormap, the packet switch process 

advances to the next colormap on ColormapList. 

PixmapList The list of pixmap data structures has a different organization be­

cause of the way pixmaps can be used. A pixmap's contents typically does not 

change over time. However, it is possible for a client to use a pixmap for different 

drawings. For example, the client may first draw a pattern on the pixmap to use 

as the source of a cursor, and then later erase the pixmap's contents and draw a 

different pattern on it to use as the background of a window. According to the X 
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Window System documentation, the effect of drawing into a pixmap after it was 

assigned to an attribute of a window or graphics context is not defined. The server 

may or may not save the pixmap contents in a private store. Cursors, however, are 

an exception. The shape of the cursor does get saved by the server on the cursor's 

creation. Therefore, if a pixmap is used in a cursor, and later used by others for a 

different drawing, the contents used for the cursor should be recorded in addition 

to the current contents. 

Although in general the reuse of pixmaps is undefined, we have chosen to deal 

with this problem. We record the drawings of a pixmap used for windows and 

graphics contexts as well as cursors. We distinguish between two different types of 

pixmap dependencies: dependencies on the contents of a pixmap, and dependencies 

on the pixmap itself. For the case of dependencies on the contents of a pixmap, a 

doubly-linked list of image structures is maintained in each pixmap structure (see 

Figure 4.5). Each of the pixmap image structures stores a different pixmap image, 

and the most recent image is contained in the image structure at the front of the 

doubly-linked list. Each image structure also has a linked list of information on what 

other resources depend on the image. Pointers from other resources that represent 

dependency relations are to the pixmap image structures rather than to the main 

pixmap structure. 

When generating requests for updating a latecomer's server, the following method 

is used to update resources that depend on the images in the pixmaps. Instead of 

traversing the doubly-linked list in each pixmap structure, we traverse the elements 

in CursorList in the order of their creations (from the back of the list to the front). 

For each cursor that uses pixmaps as the source and the mask, we follow the point­

ers in the cursor structure that represent the dependencies on the pixmap images. 

For each pixmap image structure we arrive at in this manner, we check if the cur­

rent image structure and any previous ones (i.e., pixmap image structures behind 

the current one) need to be "processed". By processing we mean first generating 

Put/mage request using the pixmap image available in a pixmap image structure, 

then generating requests such as Change WindowAttributes and ChangeGC to up-
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date resources that depend on the image in the image structure, and finally marking 

the pixmap image structure as processed. Note that except for the current pixmap 

image structure, these "unprocessed" structures should have only windows or graph­

ics contexts depending on them. This is because the "outmost loop" in this whole 

process traverses through CursorList in chronological order, and hence the first 

previous image structure involving a cursor must have been taken care of before 

along with other image structures that are behind it. The two pixmaps used for 

the current cursor should be good for use after processing those image structures 

traversed from both ends of the two pointers. 

The Create Cursor request is now generated. The pixmap image structures are 

marked as "unprocessed" after all requests have been generated for updating a 

latecomer's server. 

The images stored in pixmap image structures are acquired from the server as 

late as possible, that is, when the packet switch process cannot avoid getting the 

images. The packet switch process must get the image in a pixmap when: 

• a graphics request arrives for a pixmap and there is a dependency on the 

current image in the pixmap, 

• a request to free a pixmap arrives and there is a dependency on the current 
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image in the pixmap, or 

• we need the current image in a pixmap for generating requests to update a 

latecomer's server. 

This scheme minimizes the number of Getlmage requests because there are cases 

where dependency relationships on pixmap images are changed. If an image were 

acquired everytime a dependency on a pixmap image is created, we may have to 

delete the image data when the dependency is deleted and a new dependency is 

created on a different contents of the pixmap. 

As an aside, when getting the image of the pixmap from the server, the packet 

switch process uses the connection to the server that it opened on behalf of the tool 

in question rather than the connection it uses for its own communication with the 

server (see Figure 3.2). This is because the X Window System guarantees in-order 

execution of requests only for each client. If we use the connection established for 

the packet switch process, a race condition may exist between a client's request that 

modifies or frees the pixmap, and packet switch process's Get/mage request. As a 

result of this race condition, we may either get the wrong image or an error message 

(because the desired pixmap no longer exists). If we use the client's connection to 

the server to send the Get/mage request, then the race condition is eliminated. 

4.3 Performance 

In this section, we discuss the performance of our method for recording the requests 

sent by each client that change the state of the server. 

4.3.1 Speed 

Whenever a request arrives from the client, a function HandleincomingClientPacket 

is invoked from the packet switch process. This function is responsible for distribut­

ing the request message to all packet translator processes and recording the mod­

ifications to the server state. A function Archi vePacket is invoked from within 
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HandleincomingClientPacket to record the modifications. Figure 4.6 shows the 

percentage of the time spent in ArchivePacket to the time spent in 

HandleincomingClientPacket. Figure 4.6 (a) gives this percentage for idraw -

a client that generates a large number of graphics requests. Figure 4.6 (b) gives 

the percentage for xterm - a client which emulates a terminal in the X Win­

dow System and also generates a large number of graphics requests (especially 

text-writing requests). A UNIX system call getrusage was used to measure the 

elapsed times. getrusage system call returns information on how much time the 

process used since it started. The call was made at the beginning(A) and the 

end( D) of HandleincomingClientPacket, and at the beginning(B) and the end( C) 

of ArchivePacket. The difference between times measured at A and D, and that 

between times measured at B and C were calculated to find how long each function 

took to execute. Both graphs in Figure 4.6 show the overhead for a conference with 

one and four conferees. The observation interval for idraw was approximately 3 

minutes 30 seconds for one conferee and 5 minutes for four conferees. The interval 

for xterm was approximately 4 minutes 20 seconds for one conferee and 10 minutes 

for four conferees. 

Because the time required to record resource state information is independent of 

the number of conferees, the proportional cost of the recording function decreases 

as the number of conferees increases. Note that the cost of recording is the highest 

at the initial stage (the set-up phase) of client execution. This is because most of 

the resources are created at this time and the resource recording function has to do 

time-consuming operations such as initializing data structures, allocating memory 

space for new resources, and searching for resources to make dependency relations. 

In case of idraw (Figure 4.6 (a)), the client first sends some query requests to the 

server to get information on server. These are ignored by the recording routine, 

thereby creating temporary dips in the overhead curves. As the client progresses 

to the interaction phase (where most of the requests are graphics-oriented), the 

overhead percentage approaches a constant. In this phase, the majority of time is 

consumed checking to see if graphics requests are for pixmaps. Therefore, the more 
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pixmap resources the client creates, the greater overhead. Since idraw creates many 

more pixmaps than xterm, it forces the packet switch process to spend more time in 

resource recording. Note also that xterm begins the interaction phase much earlier 

than idraw because it does not have as many resources to create. 

If we assume that in practice the number of conferees is more than three, then 

in the limit, resource recording overhead accounts for approximately two percent of 

the overall message processing time in the packet switch process: i.e., it adds an 

insignificant overhead to performance as observed by the users. 

4.3.2 Memory Requirements 

Figure 4. 7 illustrates the memory requirements for maintaining the state of a client's 

resources using our methodology. The dotted lines represent the total number of 

bytes of requests sent by the client, while the solid lines represent the number of 

bytes used for recording state information. For both xterm and idraw, after the 

set-up phase, the memory required to store the state of client resources grows at 

a near zero rate while the memory required to store all client requests grows at a 

super-linear rate. 

As the client progresses, we realize a dramatic savings of memory (over the 

approach of saving every request), considering the small cost (in terms of time) of 

processing each request. 

Some additional facts about Figure 4.7 (a) are worth noting. !draw creates and 

later destroys a large number of resources everytime the user pulls down a menu. 

This behavior accounts for the small spikes in the memory requirement curve. The 

large spike near request 9,000 is due to a latecomer joining the conference. At that 

time the packet switch process creates a set of messages to send to the latecomer's 

server containing the resource information it has recorded. The creation of these 

messages accounts for the spike in memory use. Memory usage continues to increase 

after all messages have been created because the packet switch process appends 

requests corning from the client while the latecomer's server is being updated. The 

updating process is completed slightly before the lO,OOOth request is received from 
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the client. At this time the memory used for messages is freed. The slight increase 

in the memory usage after the latecomer's server has been updated is due to the 

image contents of pixmaps that were acquired while the packet switch process was 

creating messages for the server. These pixmap images are kept for future use. 

4.4 Hard Problems 

This section describes two of the more difficult and unsolved problems encountered 

in the process of accommodating latecomers. These problems are difficult because 

X does not directly support the use of clients by multiple users. It is largely because 

of this that we chose not to solve these problems. 

4.4.1 Images in Windows 

Images in windows do not have to be recorded because the client is expected to 

refresh the contents of its windows when expose events are sent from the server. 

There are, however, some exceptions. In rare cases, where it is extremely hard for 

the client to refresh the window's image, the client can request the server to do 

the refresh. The client requests this service by setting an attribute called backing­

store on its windows. The server then stores the contents of the windows and 

refreshes each window when it would have normally generated an expose event. 

The implication is that there may exist clients that depend solely on the server's 

backing store feature and hence will not handle expose events. This is a problem 

since we have based our scheme for recording the state of window resources on the 

fact that the server would generate, and the client would handle, an expose event2. 

In cases where we cannot depend on the client refreshing the contents of a win­

dow, there is a way to get the contents of a window from the server using the 

Getlmage request. This approach, however, is limited since the Getlmage request 

2N ote that the backing store attribute is not widely used for most windows since the X Window 

System definition states that it is possible for the server to stop providing the backing store feature 

at any time and that all clients are expected to be ready to refresh the contents of their windows. 
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requires that the window in question be viewable (i.e., the window and all of its 

ancestors are mapped) and fully contained within the root window (i.e., fully vis­

ible if there were no descendant or overlapping windows). If a conferee places a 

tool's window off the console display, then there is no way we can get the complete 

contents of the tool's window. 

4.4.2 Clients Changing others' resources 

In the X Window System, a client may modify the attributes of resources created by 

another client. If this occurs, then the changes made by clients not in a conference 

on the resources maintained by the packet switch process will not be reflected on a 

latecomer's server. This is a difficult problem to solve because there are not sufficient 

X query requests to get such information in the X Window System. 

4.5 Status and Use 

Our method for accommodating latecomers has been successfully integrated into 

XTV and works well for clients such as idraw, xterm, xclock, xcalc and bitmap. By 

providing this feature to XTV, XTV has gained flexibility in how it may hold and 

maintain a conference. 

The feature to accommodate latecomers in XTV is enabled by default when 

XTV is first invoked on the machine of the host of the conference. The feature can 

be disabled using a flag at the invocation. If the feature is enabled, an additional 

function is called inside a routine that receives and examines packets from the clients. 

The additional function is responsible for maintaining the changes to the server state 

for each client on the basis of each packet received. Consider a conference in which 

some number of clients (tools) have been used. When a new conferee wants to 

join the conference, she executes XTV with proper arguments in order to connect 

to the packet switch process of the conference. It is possible for any number of 

new participants to join the conference simultaneously. As soon as it receives the 

connection, the packet switch process sends all the requests generated from the state 
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information held in data structures for each tool. The new packet translator process 

handles these requests just like any other requests received from the packet switch 

process, except that it acknowledges each request. When the packet switch process 

completes the sending of packets it generated, the new packet translator process 

works just like any other normal packet translator processes. The new conferee is 

now indistinguishable from the original conferees. She may provide input to the 

remote clients and see the effect of other conferee's actions. 

XTV is being used in the Department of Computer Science at University of 

North Carolina-Chapel Hill for research into cooperative work among students and 

faculty. Students and faculty members use personal workstations (some augmented 

with audio/video links). 

4.6 Summary 

The dependency relations among the resources are represented using pointers and 

counters in data structures created for holding information about the resources. The 

data structures for resources are grouped into doubly-linked lists according to their 

classes. We have demonstrated that our method can efficiently (in terms of time and 

space) capture the necessary state of resources and create this state in a latecomer's 

server. 

While many problems are solved, there are some problems which are difficult. 

One is acquiring the image of a window solely depending on server's backing store 

feature, and another is clients modifying attributes of shared resources. These prob­

lems are due to the design of the X Window System assuming only single-user 

applications. 

53 



Chapter 5 

Conclusion 

5.1 Summary & Conclusion 

We believe that the ability to accommodate latecomers to a computer-based confer­

ence is important as it adds versatility and flexibility to an otherwise rigid system. 

In this thesis, the problem of accommodating a latecomer to an XTV conference 

already in progress is studied. XTV is an X window-based shared window system 

employing a centralized architecture for the distribution of the output of applications 

used in the conference. The objective of our study is to ensure that a latecomer (a 

new participant) is equivalent to an original participant with respect to conference 

input and output. Specifically: 

• The new participant can see the output of the applications used in the con­

ference through shared windows displayed on her workstation. 

• The new participant can provide input to the shared applications. 

• Any subsequent operations by the shared applications have the desired effects 

on the X display server on the new participant's workstation (as well as on 

other workstations in the conference). 

These goals are attained by first recording the environments that applications 

used in the conference create over time on X servers of original participants in the 



conference, and then creating these environments on the latecomer's X server when 

she joins the conference. The collective environment created on a server by the 

applications used in a conference is called the server state. Each X application 

modifies the server state by creating private resources (e.g., windows) or by making 

changes to attributes of resources (private or non-private). We have modified XTV 

to record the current state of a server by maintaining a list of the resources and 

their current attribute values used by each application in the conference. These 

lists are updated based on the contents of request messages sent from conference 

applications to the X server. 

This approach is complicated by dependency relations that exist among resources 

created or used by applications in the conference. A dependency relation is formed 

when a resource A has another resource Bas one of its attribute values. X servers 

record the attributes associated with resource A in their internal data structures, 

and hence, clients may later free resource B without affecting A's attributes. The 

problem is that the freed resource B must be created on a latecomer's server before 

any resource depending on it (A in this example) can be created. Therefore, when 

the request to free resource B arrives, XTV should not delete the information it 

has stored on resource B. The dependency relations are used to prevent XTV's 

internal data structure for a freed resource from being deleted when there exist 

other resources that depend on the freed resource. The dependency relations are 

identified by analyzing request messages sent from clients. Internally, dependen­

cies are represented as a directed graph where nodes represent resources and edges 

represent dependencies. The problem of recording the server state for a client thus 

is reduced to a graph maintenance problem. Algorithms to record the server state 

using nlinimum size graphs are also introduced in this thesis. 

When a latecomer joins the conference, the recorded state is projected onto the 

new participant's server by sending request messages to this server to create the 

private resources with current attributes and to modify (change the attributes of) 

non-private resources. These request messages are generated from the resource and 

attributes value lists maintained inside XTV in such a manner that dependency 
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relations are not violated. (I.e., no resource is created on the new server before all 

the resources it uses have been created.) After all the generated request messages 

are sent to the new server, the latecomer can share the applications used in the 

conference. 

The method presented in this thesis has been demonstrated to accommodate a 

latecomer in a practical and efficient manner. Saving all the request messages sent 

by the shared applications can consume a lot of memory, and hence the practical 

use of such a scheme is limited. By keeping the memory requirements for recording 

state information to a minimum, the ability to accommodate a latecomer does not 

unduly burden the conference system. Moreover, as demonstrated in Section 4.3, 

the execution time overhead of recording the server state is quite tolerable for con­

ferences of reasonable size. For example, with 4 participants the recording process 

increases XTV's overhead by 2% for an interactive drawing program - an appli­

cation that extensively modifies the state of the server - while consuming only a 

fifth of memory required to record all request messages. Moreover, as the conference 

progresses, the memory required to store the state of client resources grows at a near 

zero rate. 

5.2 Future Work 

5.2.1 Replicated Architectures Revisited 

As the method described in this thesis was developed on top of XTV, output mes­

sages from each application (destined for the X server) are used to record the mod­

ifications made to the server state by the application. While useful, this approach 

is not well suited for conferencing systems that employ a replicated architecture. In 

a replicated architecture, the messages coming from the servers (destined for the 

application) have to be examined in order to infer the state of each shared appli­

cation. In a replicated architecture, it is the state of the shared applications that 

will be projected onto a new copy of the same application when a latecomer joins 
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the conference. As discussed in Chapter 2, it is difficult to efficiently maintain the 

desired state in this case. 

If the definition of a replicated architecture can be expanded, then the method 

introduced in this thesis can be used in a replicated architecture. The resulting 

hybrid architecture can be described as follows. The conference is maintained in 

the "pure" replicated architecture until a latecomer joins the collference. While 

the conference progresses, a conference agent records the modifications made to 

the server state using the method described in this thesis. All latecomers contact 

this agent process, who in turn sends requests to update the latecomers' servers. 

Latecomers and the conference agent form a sub-architecture that is centralized. 

In this manner, latecomers share the copies of applications used by the conference 

agent instead of having local copies of the shared applications executing on this 

workstation. 

5.2.2 Extensions to Existing X Servers 

Although the approach suggested in this thesis provides an efficient method for ac­

commodating latecomers, it duplicates an identical set of information and functions 

contained in an X server (albeit the server maintains this information for all X ap­

plication that it communicates with). It would therefore be desirable to combine 

the capability to accommodate a latecomer into the window system itself; specifi­

cally the ability to obtain the dependency graph for an application. This will relieve 

the conference agent from the burden of maintaining the modifications made to the 

server state for each shared application and thereby eliminate the duplication of ef­

fort. Instead, the conference agent should be able to query the modifications made 

by an application by sending a special request message (e.g., "GetClientsServer­

State") to the local server. The server, in response, would send the appropriate 

information. This information would be identical to that maintained for each appli­

cation in our method (and possibly more accurate due to the problems mentioned 

in Section 4.4.2). There should also be another special request message to impose 

the changes (e.g., "PutClientsServerState") on a second server. This request would 
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be sent by the conference agent to a latecomer's server. 

In order to provide these services, the server should maintain its state on application­

by-application basis. The collective sets of information maintained by our method 

for each application form the collective server state. If this is implausible, a method 

should exist to identify the contribution to the server state modifications by each 

application. 

Ultimately, the collaboration-aware window systems should be developed. These 

combine all the functionalities of the conference agents, thereby making possible the 

direct communications between servers and clients. 
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