
Geometric Image Description Using 
the Multiscale Orientation Field 

TR91-036 

August, 1991 

Kah-Chan Low 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

UNC is an Equal Opportunity/Aflirmative Action Institution. 



Geometric Image Description Using the 
Multiscale Orientation Field 

by 

Kah-Chan Low 

A thesis submitted to the faculty of the University of 
North Carolina at Chapel Hill in partial fulfillment of the 

requirements for the degree of Master of Science in the 
Department of Computer Science. 

Chapel Hill, 1991 

Approved by: 



@1991 

Kah-Chan Low 

ALL RIGHTS RESERVED 

ii 



KAH-CHAN LOW. Geometric Image Description Using the Multiscale Orientation Field 

(Under the direction of JAMES M. COGGINS.) 

Abstract 

An investigation was conducted to determine the strengths and limitations of the Multiscale 

Orientation Field (MOF), which was proposed by Coggins as a multiscale representation of 

the local orientation at each pixel of an image. The MOF is obtained by filtering the original 

image with an orientation filter bank and subsequently combining the outputs using vector 

algebra. The design of the filter bank, together with the method of computing the MOF, 

provide a uniform orientation sensitivity along the orientation axis. 

The MOF and its computation method was compared with similar algorithms developed 

by Grossberg, Hsieh, and Zucker using a number of criteria. The comparison provided a 

number of predictions regarding the utility of the MOF. The MOF's of several simple binary 

image structures were computed and the patterns of orientation vectors on these MOF's 

were observed and accounted for. These experiments provided direct verifications of the 

predictions made above. 
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Chapter 1 

Introduction 

The objective of this thesis is to investigate the configurations of the Multiscale Orienta,. 

tion Field (MOF) in the neighborhoods of a number of image structures. The MOF is 

formally defined in section 3.2. For now, the MOF can be understood as containing multi

scale representations of the local orientation at each pixel of an image. It is the output of a 

computational architecture proposed by Coggins called the Artificial Visual System (AVS) 

([2]). Figure 1.1 is a schematic diagram showing the configuration of the AVS. The AVS 

consists of two components- a filter bank and a recombination algorithm which operates on 

the output of the filter bank to produce an inference about the scene. 

The filter bank disperses information from the original image into separate bands of 

scale or orientation. In this thesis, the filter bank to be investigated consists of 10 sets of 

orientation filters (see Chapter 3). Each of the 10 sets are identical except for their sizes (or 

scales). The particular recombination algorithm used here combines the output of the filter 

bank using vector algebra to produce the MOF. This recombination algorithm is dependent 

on the specification of the orientation filter bank. 

In the process of computing the MOF, some image features in the original image are 

inevitably destroyed while others are preserved, even enhanced. In order to use the MOF 

in an object-definition or segmentation algorithm, it is very important to have a thorough 

understanding of the different configurations of the MOF that might arise in response to 

different image structures. These configurations can be used to ascertain whether the MOF 

destroys, preserves, or enhances particular image features. If structure is destroyed, we must 

determine the extent to which the final goals are compromised by the loss. If the feature is 



Filter 
bank 

Image Multiple 
Convolutions 

Recombination 
algorithm 

Figure 1.1: The Artificial Visual System (taken from [1]) 

enhanced, we must explore the manner in which the feature is enhanced. Closely tied to the 

question of feature destruction and enhancement is the utility of the MOF - its strengths 

and limitations need to be carefully mapped. 

In this thesis, orientation vector field configurations that arise in response to a number 

of edges with different curvatures and corners will be observed and recorded across several 

scales. Configurations of the MOF corresponding to a straight step edge will be examined 

first, followed by a straight but blurred edge, a noisy edge, edges of an elliptical and a 

circular disc, and two types of corners. These image structures are increasingly difficult to 

capture using the MOF. The above certainly does not represent an exhaustive list of image 

structures whose representations need investigation and, if possible, characterization, if the 

properties of the MOF are to be thoroughly understood. However, it is necessary to have 

a good grasp of the representations of simple image structures such as these before those 

belonging to more complicated image structures are explored. 
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Chapter 2 

Relevant Research 

The visual field in primates is covered by overlapping receptive fields that come in a number of 

sizes and shapes. Research in the past two decades has revealed several important properties 

of receptive fields. In particular, knowledge of the filter-like behavior of receptive fields and 

the preponderance of receptive fields that are orientation sensitive ([7])-have led a number 

of researchers to formulate computer vision algorithms within the framework of receptive 

field-like filtering operators in which orientation sensitivity plays an important role. 

2.1 Grossberg's and Mingolla's Boundary Contour System 

In the Boundary Contour System (BCS) ([5]), Grossberg and Mingolla employs a neural 

net implementation to account for subjective contours in illusory images such as Kanizsa's 

triangle. In the particular implementation described in [5], an image was first filtered using 

four pairs of elongated step edge filters, with each pair sensitive to one of the four orientations 

of preference which are spaced 45' apart. Each pair of oriented edge filters consists of two 

filters with the same preferred orientation but different polarities. The output of these filters 

are fed, in successive stages, into five layers of "neural cells", with a feedback loop linking 

the second the fifth layers. Within these stages, the cells perform a series of positional 

competitions and cooperations. More relevant to this thesis, orientation competitions at 

a particular location occurs between cells on the second and third layers. During these 

competitions at a particular location, responses derived from filter pairs that are 90' apart 

cancel each other. In this fashion the final orientation preference of an edge can be determined 

or at least approximated. 



More recently the BCS has been modified and further extended by Neumann and Steihl 

([12],[13]) to include corner and junction detection. 

2.2 Hsieh's connectionist algorithm for image segmentation 

The goal of Hsieh's algorithm ([6]) is to segment both artificial and natural images. In 

particular, the algorithm is designed to have the capability of performing segmentation 

based not only on real edges but also on subjective contours. In devising the algorithm 

Hsieh adopts a connectionist approach. A block diagram depicting the processing involved 

can be found in figure 2.1. The algorithm allows for a multiscale approach but does not have 

any provision for cross-scale interactions, which could resolve ambiguities about boundary 

locations and grouping of image features into objects. Within each scale several sets of 

filters having different degrees of elongation are used. Each set of filters consists of four pairs 

of the first derivative of Gaussians, with each pair having a different preferred orientation. 

For each filter pair, the two constituent filters are identical except that they have opposite 

polarities. Explicit corner detection and a number of spatial coherence checks are also 

provided to counter the adverse effects of noise and false positive responses given by some 

of the edge filters in the presence of arbitrarily complicated image structures. Hsieh found 

it necessary to subtract responses of perpendicular filters. This operation is called artifact 

cancellation. Hsieh suggests that artifact cancellation counters the adverse effects of aliasing 

due to discrete sampling. 

2.3 Zucker's relaxation labeling approach towards oriented 

patterns 

An objective of Zucker's research described in ([16]) is to infer orientations at locations 

on images with oriented patterns on them. The algorithm uses an approximation to the 

Laplacian of elongated Gaussians with different preferred orientations as filters. A relaxation 

labeling algorithm ([8]) is applied on the output images of these filters to determine the 

preferred orientation at every location on the image. Zucker attempts to address the problem 

of estimating orientations at locations where the oriented patterns are curved. In addition, 

he distinguishes between two types of oriented patterns, which he calls Type-I and Type-II 

4 



• • • 

Scale 1 

,..----~ 

Spatial I 
Coherence 

Scale 2 

8 Later Visual 
Process 

Figure 2.1: A block diagram describing the processing stages of Hsieh's algorithm (Taken 

from [6]) 
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patterns. Type-I patterns are characterized by well-defined and non-overlapping oriented 

contours; whereas in Type-II patterns, oriented contours are, at certain locations, often 

occluded by other contours which are oriented differently from the former. Contour lines in 

Type-II patterns are therefore more implicit than those of Type-I patterns, and interpolations 

across "gaps" are required to extract these contour lines. 

As a step toward solving the problem of estimating orientations of curved contour lines, 

Zucker defines the orientation of a point on a curved line to be the orientation of the tangent 

touching that point. The orientation of a point on the curved line is then estimated by 

matching the configuration of the orientation field lines in the neighborhood of that point 

to that produced by seven types of osculating circle templates for each preferred orientation 

of the filters. Two different classes of osculating circle templates are introduced - one for 

Type-I patterns and the other for Type-II patterns. Each of the seven Type-I templates 

consists of simple oscuiating circles. In contrast, each of the Type-II templates consists of a 

family of oscuiating circles, which are the result of laterally interpolating an osculating circle. 

The matching process is formulated in terms of a response matching problem, which is solved 

via relaxation labeling. Details on the compatibility function used can be found in [14]. 

At this point, the relevance of the foregoing algorithms to this thesis is not immediately 

obvious. In Chapter 3, the filters used to produce the MOF will be mathematically specified. 

The exact method by which the MOF is computed will also be explained. After that, I shall 

explain the relevance of these algorithms and compare the computational method used in 

this thesis with the algorithms above. 
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Chapter 3 

The filter bank 

A filter set belonging to a particular scale (cr) in the filter bank employed in this thesis is an 

instance derived from the following general formula: 

l¢(r,IJ;cr,8,w) = kGa(r)S¢(1J;8,w) <P=w,2w, ... ,8 (3.1) 

<Pis a dependent parameter indicating the preferred orientation of an individual filter. (r, IJ) 

are the polar coordinates of a point; k is a normalizing constant that makes the filter's total 

energy equal to unity; Ga(r) is an isotropic Gaussian with a standard deviation of cr; and 

S¢ ( IJ; 8, w) is the orientation sensitivity function for the filter, to be described in section 3.1. 

The parameters 8 and w are explained in detail in [11]. Briefly, 8 is the angular periodicity 

of a filter class (or equivalently, the length of the orientation dimension on which the filter 

class is defined); that is, l¢(r, IJ) = l¢(r, (} + k8) where k is an integer. e and w totally 

specify the shape (but not the size, which depends on cr) of the filters in a filter set. The 

number of filters constituting a filter set is given by the expression ~· The filter bank used 

here is created with 8 = 1r and w = ~· Ten different values of cr are used. The smallest cr is 

1; the largest cr is 16v'2; and consecutive cr's differ by a multiplicative factor of v'2. 

With these values of 8 and w, the filter set corresponding to a particular a has six 

constituent filters. The preferred orientations(¢) of these filters are: ~' !, ~' 2:f, 5
,;', and 

1r. Because 8 =,.,a filter with¢= 1r is identical to the one with¢= 0 ([ll]). For the sake 

of clarity, a filter belonging to a filter set produced with 8 = 1r and w = ~ will henceforth 

be referred to as an orientation filter. 



Figure 3.1: A photograph of !Zf(r, 0; 16y'2, ,., ~) 

3.1 The Orientation Sensitivity Function 

The orientation sensitivity function, whose complete derivation can be found in [2] and [11], 

is: 

"' o/ if¢>-w<8<</>+w 
S¢(0;G,w) = smU 

{ 

sin(s:J-ll[B-"[) 

0 otherwise 

"= 27rw 
"- e 

Substituting e =,. and w = ~'equation 3.2 becomes: 

{ 

sin( f:-218-¢1) if 1> - ;!!: < e < 1> + ;!!: 

S (n. ~) _ sm f 6 6 
t/J u,1r, -

6 0 otherwise 

(3.2) 

(3.3) 

Figure 3.1 shows a photograph of the orientation filter f'!;(r, 0; 16y'2,,., ~). The filter derives 

its peculiar shape from its orientation sensitivity function, which is designed such that the 

orientation filter set to which the filter belongs provides equal support for all orientations 

around a circle, although the filter set covers only six discrete orientations ([2],[11]). 

3.2 Computation of the MOF 

To recombine the output of a set of orientation filters, an abstract feature space, which is 

a polar-ruled plane, is defined. Each pixel is mapped into the abstract feature space using 
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a b c 

Figure 3.2: Mapping the filter responses to the Abstract Feature Space (Taken from [11]) 

the responses from each orientation filter set corresponding to a particular scale (u). The 

mapping is performed as follows: at pixel (x, y), the response p to filter I¢ (figure 3.2a) is 

mapped onto the abstract feature space as a vector jJ having magnitude p and phase angle 

2</1 (figure 3.2b). The phase angles of these vectors are evenly distributed from 0 to 21r in 

the abstract feature space just as the spatial orientations of the orientation filters are evenly 

distributed from 0 to 1r. These vectors in the abstract feature space, one corresponding to 

the output of each orientation filter, are summed to yield a resultant vector (figure 3.2c). 

The phase angle of the resultant vector is divided by 2 to map it back to the spatial domain. 

A vector field thus derived from an original image and an orientation filter set is called 

an orientation vector field. A collection of orientation vector fields derived from the same 

original image but using orientation filter sets of different scales are collectively known as 

the Multisca/e Orientation Field (MOF). It should be noted that the specific way in which 

the filter responses are mapped onto the abstract feature space and back is dependent on 

the shape specification of the filters in the filter bank (i.e. 8 and w). The general mapping 

formula can be found in [11]. For the sake of brevity, the specific mapping and vector 

computation described above will henceforth be referred as Coggins' method. 

Due to the way in which the response of an orientation filter is mapped onto the abstract 

feature space, the responses of orientation filters that are perpendicular to each other will 

cancel each other. Pairs of orientation filters that are related in such a way will be referred to 

as antagonistic filter pairs. In addition, a member of an antagonistic filter pair is called the 

antagonistic filter of the other member in the same pair. A set of orientation filters consists 

of three antagonistic filter pairs. 
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Mutual cancellation of responses between antagonistic filter pairs (or pairs of filters with 

a similar configuration) seems to be a rather common technique employed in computations 

that involve orientations of image structures. For instance, Kass and Witkin ([9]) employ a 

method that closely resembles Coggins' method to compute orientations of oriented patterns. 

Kindred methods can also be found in Grossberg's BCS and Hsieh's algorithm described in 

Chapter 2. A comparison between Coggins' method and the two foregoing algorithms can 

be found in Chapter 4. 

3.3 Implementation of Coggins' method 

Coggins' method, if naively implemented, requires an original image to be filtered six times 

before an orientation vector field can be computed. Although the six filtering operations can 

be performed in parallel, there is certainly room for reducing the method's computational 

requirement. Since the computation of an orientation vector field is a linear process, the 

orientation filters can be designed such that the step of computing the orientation vector 

field can be partially incorporated into the filters themselves. Consider the step where the 

vector sum is performed in the abstract feature space. A convenient way to sum the vectors 

is to perform two independent summations in the x and y directions: 

5 

Vx = L cos( ii) [it< 0 I] 
i=O 

(3.4) 

5 

Vy = I:sin(ii) [it• 0I] 
i=O 

(3.5) 

where Vx and Vy respectively are the resultant x and y vector components in the abstract 

feature space. it• is the orientation filter with a preferred orientation of ifi; and I denotes 

the original image. Finally, 0 denotes the convolution operator. Because convolution is 

distributive over addition, equations 3.4 and 3.5 can be rewritten as: 

V, = [~ it;cos(ii)] 0 I= F:c 0 I 

V.,= [~it;sin(ii)] 0I=Fy0I 

(3.6) 

(3.7) 

It is obvious that F:c and Fy can be implemented as two filters. Thus, only two filters are 

needed to compute an orientation vector field. F:c and Fy will from now be respectively 

10 



referred to as the X- and the Y-orientation filters. Because of this simple manipulation, the 

computational and memory requirements are now reduced by ~ over the naive implementa

tion. 

3.4 Two possible models for analysis 

As a result of the above mathematical manipulation, an orientation filter set can be regarded 

as consisting of six orientation filters or two composite filters. This means that visualizations 

(as used in "thought experiments") can be performed using either the six-filter model or 

the two-filter model as circumstances warrant. In addition, as mentioned in section 3.1, 

individual orientation filters are designed such that the orientation filter set to which a filter 

belongs provides equal support for all orientations around a circle. This means that it is 

possible to mentally "rotate" the set of the filters arbitrarily to simplify visualization, as 

long as the relative positions of the component filters to each other remain unchanged. 

11 



Chapter 4 

A Comparison Between Related 

Methods 

The four computational frameworks defined by Grossberg and Mingolla, Hsieh, Zucker, and 

Coggins share an underlying theme of orientation determination of image structures. To this 

end all of them employ receptive field-like filters to perform preliminary feature extraction. 

On the other hand, the actual architectures of the four frameworks differ, and the results of 

orientation determination are used for different purposes. 

In this chapter, Coggins' method will be compared with the three algorithms discussed 

in Chapter 2 from the following perspectives: 1) number of filters needed; 2) computational 

requirement; and 3) computational mechanism; 4) the accuracy with which orientations of 

several general image structures can be estimated. 

4.1 Number of filters required 

Eight filters are used in the algoritms defined in [5] and [16]. Hsieh's algorithm needs at least 

eight filters for each scale. Coggins' method only requires two filters at each scale. Because 

an orientation vector field is a linear combination of the outpnts of the orientation filters, 

a reduction of the number of filters needed can be achieved by partially building the vector 

computing stage directly into the filters (section 3.3). It is difficult to imagine how such an 

incorporation can be implemented in the cases of BCS and Zucker's algorithm, since the oper

ations involved are highly non-linear. In Hsieh's algorithm, the filter responses are partially 

retained for performing corner /junction detections and spatial coherence checks. In fact, 



Hsieh's requirement reveals not so much a shortcoming than a trade-off- incorporating the 

vector sum computation in the design of two composite filters means that responses of indi

vidual orientation filters are unavailable for further processing. These individual orientation 

filter responses might be useful for distinguishing image structures that are indistinguishable 

in the MOF. 

4.2 Computational requirement 

Of the three algorithms described in Chapter 2, only Zucker's algorithm can be readily 

used for comparison with Coggins' method under this criterion. Both BCS and Hsieh's 

algorithm require enormous computational power, but they do much more than orientation 

determination, and in both cases, it is not easy to isolate orientation measurement from the 

rest of the computational frameworks. In contrast, Zucker's algorithm is totally devoted 

to orientation determination. To understand the difference in computational requirement 

between Zucker's and Coggins' algorithms, a precis of the steps involved in the former is in 

order. 

In Zucker's algorithm, eight elongated Laplacian-of-Gaussian filters having different pre

ferred orientations are convolved with the original image. Each pixel is then matched against 

seven osculating circle templates (section 2.3) by relaxation labeling. The time-complexity 

of Zucker's algorithm is dependent on both the size of the original image and the size of the 

neighborhoods over which relaxation labeling is performed. 

In contrast, the computation of an orientation vector field is a non-iterative, one-step 

process. No neighbor pixel needs to be consulted in the process. Thus, the computational 

cost increases only linearly with the number of pixels in the original image. Recall also that 

Coggins' algorithm requires two filters (per scale), while eight are used in Zucker's algorithm. 

4.3 Computational mechanism 

In computing the MOF, the responses of the orientation filters are mapped onto an abstract 

feature space such that responses derived from an antagonistic filter pair cancel each other 

(section 3.2). The counterparts of this mechanism exist in the BCS and Hsieh's (but not 

Zucker's) algorithm. 

In the BCS, this mechanism, known as orientation competition (section 2.1), constitutes 
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one of the two competitive stages, which in turn make up an integral part of the neural net 

feedback loop. Consequently, unlike the computation of the MOF, orientation competition 

can potentially be performed many times before the neural net reaches an equilibrium state. 

In addition, orientation competition does not destroy or discard orientation variables that 

initially contain responses of individual filters with different preferred orientations. This is 

borne out by the need to store (and possibly update) the values of individual responses for 

subsequent rounds of orientational competition. In contrast, in Coggins' method, responses 

of individual filters can be totally discarded after computation of the MOF is completed. 

In Hsieh's algorithm, artifact cancellation (section 2.2) is an one-step operation. In 

contrast to the BCS, only one variable will be retained for a pair of antagonistic filters after 

artifact cancellation has been performed. The final value of the variable is the difference 

between the responses of its corresponding antagonistic filter pair, and the orientation of 

that final value is the preferred orientation of the edge filter possessing the larger response in 

the antagonistic filter pair. Thus, Hsieh uses an approach that is half-way between Coggins' 

and BCS' approaches. 

Hsieh comments on the loss of image structure information due to artifact cancellation. 

In particular, artifact cancellation destroys corner and junction information. Therefore Hsieh 

implements an explicit processing stage for corner and junction detection. Since Coggins' 

method does not retain resultant responses of antagonistic filter pairs as does Hsieh's alga. 

rithm, I expected Coggins' method to lose of image structure information, especially around 

corners and junctions. 

4.4 Accuracy of orientation estimates 

4.4.1 Straight lines and edges 

Since the orientation filters are mathematically formulated to provide equal sensitivity for all 

orientations ([2],[11]), it can be safely predicted that, within the limits of pixelization errors, 

the MOF will yield the exact orientations of straight lines and edges. In contrast, the filters 

used by Grossberg and Mingolla, Hsieh, and Zucker are not similarly corrected. As a result, 

at least for cases involving straight lines and edges, the foregoing three algorithms, however 

sophisticated, are bound by sampling theory to contain errors due to the discrete sampling of 

orientation. In Chapter 5, I shall demonstrate the efficacy of the MOF in providing accurate 
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orientation estimates for straight edges. 

4.4.2 Curved lines and edges 

Grossberg and Mingolla and Hsieh do not explicitly cover this subject. Zucker's algorithm, 

however, devotes a large amount of computational power to the accurate determination of 

the orientations of curved lines. In fact, the enormous computational requirement of Zucker's 

algorithm is a direct consequence of Zucker's belief that accurate orientation determination 

of curved, linear structures can not be taken for granted. His sophisticated treatment does 

enhance the robustness of his algorithms in the face of curved linear structures. However, 

an upper bound is inherently imposed on the accuracy of the estimates because of the 

discretization of orientation values that is necessitated by the relaxation labeling technique. 

In order to maintain uniformity across all pixels, Coggins' method does not have a special 

provision for dealing with curved lines and edges. If we accept Zucker's proposition that 

special provisions have to be made in order to perform good orientation estimates of curved 

lines and edges, then it is quite likely that the absence of such a provision in Coggins' method 

is going to limit the MOF's ability to capture curved image structures. I shall attempt to 

verify this perceived shortcoming in Chapter 6. 

4.4.3 Corners and junctions 

Because of the discontinuous nature of corners and junctions, naive differentiation-based 

methods always encounter difficulties in their presence. To overcome this problem, Hsieh 

has included in his algorithm an explicit stage for detecting corners and junctions. Gross

berg and Mingolla are less clear regarding their handling of corners and junctions, but it 

appears that at corners and junctions with balanced edge strengths, the final responses for all 

preferred orientations at these locations approach zero, implying that there is no preferred 

orientation. Zucker excludes corners and junctions altogether from his problem domain. 

Similarly, Coggins' method gives no special consideration to these structures. This decision 

limits the MOF's ability to represent corners and junctions. In Chapter 7, the effects two 

types of corners have in their neighborhoods on the configurations of the MOF will be noted. 

I shall also discuss the degree to which the MOF is compromised by the lack of corner and 

junction consideration. 
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Chapter 5 

Experiments on Straight Edges 

In this chapter the MOF configurations in the vicinities of several straight edges are observed. 

The straight edges used are a noiseless step edge, a noiseless blurred edge, and a noisy 

blurred edge. Where warranted, observations on these MOF are explained. In addition, the 

accuracy of orientation estimation of the noiseless blurred edge using its MOF will also be 

demonstrated. 

5.1 A Straight Step Edge 

In this section, the MOF of a straight step edge will be investigated. Figure 5.11 is first 

filtered with the filter bank as described in Chapter 3. The MOF is computed as explained 

in section 3.2. 

5.1.1 Magnitude profiles of orientation vectors 

Figure 5.2 shows a graph of vector magnitude profiles along row 128 across several scales 

(a's). Although the curves look different, vectors at column 127, which is a part of the edge 

in the image, vanish in all cases. The existence of these vanishing points can be accounted 

for by performing a thought experiment in which the X-orientation filter at a particular scale 

is superimposed on figure 5.1 such that the center of the filter is located at the edge as in 

figure 5.3. The Y-orientation filter is not taken into consideration because of the symmetry 

1Locations on an image are specified by the coordinates ( row,column). (0,0) is the top left corner of the 

image. This convention applies to all subsequent images. 



Figure 5.1: A straight step edge 

of the image in figure 5.3. Responses derived from different parts of the Y-filter exactly 

cancel each other out. 

As the X-orientation filter moves away from the edge in a perpendicular direction to the 

orientation of the edge into the bright half of the image (figure 5.4), the response cancellation 

effect weakens, as the filter now covers the bright half considerably more than the dark half. 

Consequently, the computed vector magnitude becomes larger. The computed magnitude 

peaks when 75% of the area under the filter is within the bright half. After that, the response 

cancellation effect makes a comeback and vector magnitudes vanish when the filter is totally 

inside the bright half. 

Thus, in the vicinity of an edge a vanishing point can be found sandwiched between two 

magnitude peaks. As a matter of fact, as we shall see in section 5.2.1, the term "vanishing 

point", as applied to describe the abrupt diminution of vector magnitudes at an edge, is a 

misnomer. Due to a number of reasons, vector magnitudes in general do not vanish at these 

"vanishing points" at the edges. Consequently, "local minima" is a more appropriate term 

for describing these points. For the sake of clarity and brevity, a local magnitude minimum 

sandwiched between two magnitude peaks both of which can be ascribed to the same edge 

shall from now on be referred to as a magnitude trough. 
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Figure 5.3: Thought experiment: the center of the X-orientation filter on top of the edge 

Figure 5.4: Thought experiment: the center the X-orientation filter at an offset from the 

edge 
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Figure 5.5: Thought experiment: an edge with high curvature 

Magnitude troughs are most pronounced in the case of straight edges (zero curvature), 

or at least edges that are approximately so with respect to the sizes of the :filters used. 

They become progressively less well defined as the curvature (with respect to the sizes of 

the filters) of an edge increases, because there simply doesn't exist a point in the vicinity of 

the edge where exactly ! of the area under a filter covers each side of the edge. In the case 

portrayed in :figure 5.5 magnitude troughs are all but absent. 

5.1.2 Phase angles of orientation vectors 

Figure 5.6 depicts the vector phase angles of row 128 of the orientation vector :field at u 

= 1. It can be observed that the majority of the vectors belonging to pixels on the bright 

(left) side of :figure 5.1 have phase angle of go'. The dark (right) side of :figure 5.1 generally 

produces vectors having phase angle of o'. There are, however, a few columns of maverick 

vectors on the bright side of :figure 5.1 that have phase angles of o'. Similarly, some vectors 

corresponding to the dark side of :figure 5.1 have phase angles equal to go'. 

Whereas it makes intuitive sense that vectors on the bright side of :figure 5.1 that are 

near the edge have phase angles of go', there are two observations that are counter-intuitive. 

First, the existence of "maverick vectors" is indeed bothersome. Second, phase angles of 

vectors near the edge on the dark side of :figure 5.1 read o', instead of go'. 

We see in :figure 5.2 that these maverick vectors have very small magnitudes. Hence, the 

reliability with which we can interpret the phase angles of these vectors as the orientations 
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of underlying image structures is low. As we shall see, the phase angle of a long orientation 

vector is not necessarily reliable either. With this notion in mind, the maverick vectors are 

much less bothersome now, since their phase angle values are virtually meaningless. However, 

low reliability of phase angles does not imply that they are useless, since they represent a 

certain amount of information regarding the image structures at these locations. 

Since the magnitude of a vector is related to the reliability of its computed phase angle, 

it is desirable to make vector magnitude an absolute quantity. In this way, similar image 

structures belonging to different images can be expected to yield similar vectors in terms 

of both magnitude and phase angle. With this in mind, the grey scale of all images used 

in the experiments of this thesis are normalized to between 0 and 255. Otherwise, vector 

magnitudes of corresponding pixels derived from two images that are identical in all aspects 

except for their grey level ranges are going to be different. 

5.1.3 Remarks 

Recall the counter-intuitive result that the resultant vectors corresponding to the dark side 

of figure 5.1 generally have a phase angle of o' instead of go'. This result is not at all 

surprising on closer observation- the orientation filters are constructed to respond to bright 

oriented structures rather than dark ones. As a result, dark oriented structures respond 

to the filters in a way that bright structures which are oriented with an angular offset of 

go' would have. Because of this ambiguity, if an orientation vector is examined alone, it 

is impossible to determine with absolute certainty the orientation of the underlying image 

structure that gives rise to this vector. 

From the preceding observations, we can see that two striking features arise near and 

at a straight step edge. We see that if we march along the direction perpendicular to 

the orientation of the edge, we encounter a local minimum where the vector at that point 

vanishes. This point is preceded and followed by a local vector magnitude peak. In addition, 

there is a sudden switch of vector orientation by go' at the edge. These two observations 

apply equally well for vector fields derived from orientation filters belonging to different u's. 

It must be noted that these two observations should not be taken as a characterization 

of the behavior of orientation vectors in the presence of edges in general. What has been 

used here is an ideal step which seldom occurs in real images. The next step is to observe 

whether these observations still hold if the constraints hitherto imposed are loosened. 
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Figure 5.7: A fuzzy edge 

5.2 A Blurred Edge 

Perfect step edges almost never occur in real images. As the first step towards a more 

realistic modeling of real edges, the preceding perfect step edge is Gaussian-blurred to make 

it look "fuzzy". At the same time, it is rotated 35' in the anti-clockwise direction (figure 5.7). 

The intention here is to see how accurately the orientation vector phase angles reflect the 

underlying orientation of image structures. The same filtering and vector field computation 

processes are then performed on this image. 

5.2.1 Magnitude profiles 

Vector magnitude profiles produced by filters of different sizes along row 135 2 are plotted 

on figure 5.8. These graphs are quite similar in shape to the corresponding ones in figure 

5.2. As in figure 5.2, a magnitude trough- which occurs at column 131 -exists between two 

peaks for each curve. Strictly speaking, in this case, the vectors do not disappear altogether 

at that point. However, the vector magnitudes at these points turn out to be much smaller 

than the two peaks that flank each of the points. Also as in figure 5.2, these magnitude 

2The approximate location of row 135 is indicated by a black horizontal line across figure 5.7. 
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troughs all coincide at one location. However, the vectors magnitudes in figure 5.8 are in 

general less than those in figure 5.2 belonging to the same scales. This observation is, of 

course, expected, since the edge involved in figure 5.7 is much fuzzier than that in figure 5.1. 

5.2.2 Phase profiles 

If we look at the phase angle profile in the vicinity of the fuzzy edge along the same row, a 

sudden 90' switch of phase angle can still be seen occurring between columns 131 and 132, 

the former being the location of magnitude troughs of all the curves. 

Figure 5.9 shows the phase angles of vectors in the vicinity of the edge. Readings at 

the same locations but belonging to different scales are marked differently. In addition, 

phase angles of vectors at different locations derived from the smallest filter ( o- = y'2) fluc

tuate somewhat. Those derived from progressively larger filters exhibit greater and greater 

consistency. 

In figure 5.9, phase angles of vectors at column 132 and above are not shown. In general, 

the phase angles have readings that are in the neighborhood of 35' due to the 90' switch that 

occurs when one crosses from over a straight edge between a bright and dark region. Other 

than the actual phase angle values, the distribution of phase angles around the theoretically 

correct 35' is very similar to that around 125' as depicted in figure 5.9. 

5.2.3 Orientation estimation 

With all these different phase angle values, a question inevitably arises: which one of them 

represents the best estimate of the edge's orientation - 125' from the horizon? Since we 

have suggested that the longer an orientation vector is, the more reliable its computed phase 

angle will be, a natural way to find the best estimate is to select the computed phase angle 

of the longest orientation vector in the vicinity of the edge across all scales According to the 

data, the best orientation estimate along row 135 is 125.0078', which occurs at columns 128 

and 127. This value is produced with the filters with 17 = 16yl2. The corresponding vector 

lengths at these locations are however not impressive, being only 42.85402 and 34.07756. The 

longest vector, also derived from the same filters, measuring 114.86032, occurs at column 

111, and its computed phase angle is 125.0098'. Taking factors such as discretization and 

computer arithmetic errors into account, I find the estimate, which is only 0.0098' off the 

mark, to be very good indeed. 
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Figure 5.10: A noisy and fuzzy edge 

5.3 The Effect of Nbise on Orientation Vector Lengths 

We have seen that, except for minor differences, the configuration of the MOF of a straight 

but fuzzy edge largely mirrors that of an ideal step edge. Such a similarity is expected- for 

both images, grey level changes monotonically in the direction perpendicular to the edge's 

orientations. It therefore will be worthwhile to investigate the configuratio of the MOF of 

an image that violates that condition. To that end, white Gaussian noise (JL=O, u2=500) 

has been introduced to the fuzzy edge image (figure 5.10). 

Figures 5.11 and 5.12 depict vector magnitude profiles corresponding to row 135 of figure 

5.10. As can be seen, filters with u's equal to ../2 and 2../2 produce orientation vector fields 

that are almost random. However, orientation vector fields derived from filters with u's equal 

to 8../2 and 16../2 preserve their general configurations. In particular, curves with u's equal 

to 4../2, 8../2, and 16../2 have distinct magnitude troughs, which are located at columns 131, 

131, and 132 respectively. 

A closer comparison between the curve in figure 5.11 derived from the filter with u = ../2 

and the corresponding curve in figure 5.8 reveals that in many cases, the vector magnitude at 

a particular location in figure 5.11 is larger than the corresponding one at the same location 
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in figure 5.8. The same holds for the curves derived from the filter with a = 2y'2, and 

to a lesser extent for those derived from the filter with a = 4y'2. However, this does not 

imply that these longer vectors in figure 5.11 reflect the underlying image structures more 

accurately than the shorter vectors in figure 5.8 do. We see that the curves in figure 5.8 

corresponding to small a's are diminutive versions of those corresponding to larger a's. By 

contrast, the shapes of magnitude curves corresponding to smaller a's in figure 5.11 are 

scarcely repeated by those corresponding to larger a's. The implication is that the noise in 

figure 5.10 contributes to the dissimilarity between magnitude curves oflarge a's and those 

of small a's. It follows that magnitude profile patterns on the curves corresponding to small 

a's that are not mirrored by those corresponding to larger a's can be ascribed to noise and 

duly disregarded. Conversely, profile patterns corresponding to small a's that are repeated 

at higher scales reflect the presence of bona fide image structures, even though the vectors 

corresponding to small a's might be comparatively small. 

It is not clear how the two measures of phase angle reliability (vector length and vector 

field consistency across scales) can be numerically combined. While vector length can be 

clearly expressed in number, a quantification for the degree of consistency between vector 

field configurations over a neighborhood across several scales is yet to be formulated. For 

instance, it is not obvious which are the discrete scales (a's) whose vector fields need to 

be taken into consideration in the computation of this "degree of consistency". Even if a 

reasonable quantification had been formulated, it is not clear how vector length and vector 

field consistency across scales can be effectively combined. 

5.4 Summary 

• We see that if we march along the magnitude profile of an orientation vector field in the 

direction perpendicular to the orientation of an edge, we would encounter a magnitude 

trough, which is preceded and followed by a local vector magnitude peak. In addition, 

orientation vectors located near a straight, noiseless step edge but on the two different 

sides of the edge have an angular difference of 90'. However, it is premature to regard 

these phenomena as an edge signature. 

• The reliability of the phase angle of an orientation vector should always be considered 

in the light of the vector's magnitude. 
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o As described in section 5.1.3, an angular ambiguity exists for every orientation vector. 

Consequently, if an orientation vector is examined alone, it is impossible to determine 

with absolute certainty the orientation of the underlying image structure that gives 

rise to this orientation vector. 

o The configuration of the MOF of a straight, fuzzy (Gaussian-blurred) but noiseless 

edge is largely similar to that of a straight, noiseless step edge, since the grey-level 

changes across the edge are monotonic. 

o The orientation filters can be used to measure the orientation of a straight, fuzzy, but 

noiseless edge with very good accuracy, although the reading should be taken from the 

bright side of the edge. The orientation vectors are rotated by 90• if the reading is 

taken from the other side. This confirms the prediction made in section 4.4.1. 

• When noise is introduced, the magnitudes of vectors that derive from small orientation 

filters can be quite misleading. Tracing the vector field configurations of a neighbor

hood across scales might help to counter the ad verse effects of noise. Consistency across 

scale can be used complementarily to length to arrive at a reliability measure for an 

orientation vector. However, problems of quantification and scale selection remain to 

be overcome. 
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Chapter 6 

Curved Edges and Elongated 

Structures 

There are two objectives pertaining to this chapter: 

• To introduce the notion of macro-geometry of an object and to identify and account 

for the influence of the object's macro-geometry on its MOF. 

• To qualitatively observe and account for the behavior of the MOF in the presence of 

curved edges of varying curvatures. In particular, the differences in the MOF resulted 

from a change of edge curvature will be noted and also explained in terms of macro

geometry. These differences will also be linked to the lack of provision for dealing with 

curved structure on the part of Coggins' method (section 4.4.2). 

To these ends the images of a highly eccentric elliptical disc and a circular disc are used. 

Observations are made on the MOF of the elliptical disc along its major axis as well as its 

minor axis .. By doing so, one can readily see the differences reflected on the MOF by a 

difference in edge curvature. Finally, the MOF of a circular disc is computed so that one 

can qualitatively compare it with the MOF of the elliptical disc. 

6.1 The macro-geometry of an object 

The macro-geometry of an object (or a part of an object) refers to the overall geometrical 

shape of the object (or a part of the object) in an observation window. I refrain from using 

the term large-scale geometry because some geometrical structures of an object exist at small 



Figure 6.1: An elliptical disc centred at (127,127) 

scales, but they nevertheless could in some cases be crucial in defining the overall shape of 

the object (e.g. corners). In the context of the MOF of an object, "macro-geometry" is used 

in cases where the configurations of the orientation vector fields in an observation window 

are shaped by the overall geometrical shape, rather than the edge(s), of the object. 

6.2 An Elliptical Disc 

For a start, the MOF of an elliptical disc (major axis=50 pixels, minor axis=15 pixels, center 

at (127,127)) as shown in figure 6.1 is computed. 

6.2.1 Vector profiles along the minor axis 

Figure 6.2 shows the vector magnitude profiles of figure 6.1 along row 128 as produced by 

filters with tJ = 2, 2yl2, 8 and 8yl2. Table 6.1 shows the locations of vector magnitude 

troughs and peaks along row 128 of figure 6.1. Readings are taken for tJ = 1 through 16yl2. 

Magnitude peaks 

Each of the curves corresponding to tJ's ranging from 1 to 4 has four magnitude peaks, with 

one corresponding to each side of the two edges. As tJ increases, the two interior peaks move 
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I u I Magnitude troughs I Magnitude peaks j 
1 122,132 121,123,131,133 

v'2 122,132 121,123,131,133 

2 122,132 121,123,131,133 

2v'2 122,132 120,124,130,134 

4 122,132 120,126,128,134 

4v'2 122,132 118,127,136 

8 121,133 116,127,138 

8v'2 119,135 113,127,141 

16 117,137 108,127,146 

16v'2 114,140 101,127,153 

Table 6.1: Locations (columns) of magnitude troughs and peaks along row 127 of figure 6.1 

closer and closer together until they merge at u = 4.j2. Meanwhile, the two external peaks 

move farther and farther away from the edges of the ellipse. Tracing across the magnitude 

peaks across scales, it can be observed that the value of external peaks assume a maximum 

at u=4 (length: 132.6717), and the interior peaks assume a maximum at u=8 (length: 

254.9616). 

What distinguishes these two maxima is the difference of their sizes. This difference 

can be ascribed to the fact that the two maxima reflect underlying image structures that 

are quite different. The former indicates the existence of an edge in its vicinity; whereas 

the latter reflects the presence of an elongated structure centered at that location. The 

difference in magnitude can be intuitively explained from the observation that the latter 

maximum derives its value from the spatial support provided by the disc's interior between 

its two edges. This happens when the filters used are of the size ( u = 8) that can capture 

the overall geometrical shape of the disc. As such, the vector field configuration at this scale 

is shaped by the macro-geometry- not the edges - of the disc. In addition, in this instance 

the macro-geometry of the disc is such that it allows the response of one orientation filter 

to decisively prevail over that of its antagonistic filter (section 5.1). In contrast, the former 

maximum is shaped by the edge of the disc. 

Since both edges and elongated image structures give rise to vector magnitude peaks, a 
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question naturally arises: how could one distinguish between a vector magnitude peak caused 

by an edge and one caused by the presence of an elongated image structure? Tracing vector 

magnitude peaks across scales seems to provide the answer. One can start from a vector 

magnitude peak of the lowest scale and try to search for the closest vector magnitude peak 

belonging to the next higher scale. The process is repeated until the highest scale is reached. 

At any one point, if a vector magnitude peak corresponds to two peaks belonging to the 

scale immediately below the one on which it resides, one can conclude that the magnitude 

peak reflects the presence of an elongated structure. Otherwise, we can conclude that the 

peak indicates the existence of an edge. 

The method described above does not constitute an algorithm for distinguishing these 

two types of magnitude peaks. For instance, it is not yet known how well the method would 

perform in the presence of noise or arbitrarily complex image structures. 

Magnitude troughs 

Two magnitude troughs can be found at columns 122 and 132 for magnitude curves corre

sponding to cr=1 to 4y'2 (table 6.1). Magnitude troughs corresponding to cr's larger than 

4y'2 move away from the center of the elliptical disc as the value of cr increases. 

The edges of the ellipse in figure 6.1 occur between columns 122 and 123, and between 

columns 132 and 133. As can be seen, the presence of the edges are accurately captured by 

the curves with corresponding cr values ranging from 1 to 4y'2 as magnitude troughs. Vector 

magnitude troughs for curves corresponding to larger cr's match the edges of the ellipse less 

well. This is expected, since filters having larger cr's are larger than the width of the entire 

ellipse. Thus, the filter responses are affected by the macro-geometry of the ellipse and not 

just the edge. 

The phase angles 

Table 6.21 shows the computed phase angles of the vectors whose magnitudes are magnitude 

peaks. There is really no surprise here - phase angles that correspond to local magnitude 

peaks that are outside the ellipse have readings that are close too' or 180' (the two quantities 

1 Numbers inside parentheses indicate the columns {or rows) at which the peaks occur. For entries with 

four columns only the middle two correspond to positions inside the disc. For those with three columns only 

the middle ones correspond to positions inside the disc. The same conventions apply to tables 6.4. 
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I u I Phase angles (in ') 

1 0.6960695{121) 90.71532{123) 89.28468{131) 179.3039{133) 

./2 0.4458724{121) 90.47514{123) 89.52486{131) 179.5541{133) 

2 0.2833135{121) 90.31390{123) 89.68610{131) 179.7167{133) 

2./2 0.1439175{120) 90.13898{124) 89.86102{130) 179.8561{134) 

4 0.09011207{120) 90.01866{126) 89.98134{128) 179.9099{134) 

4./2 0.05985141{118) 90.00000{127) 179.9402{136) N.A. 

8 0.1014575{116) 90.00000{127) 179.8985{138) N.A. 

8./2 0.1877978{113) 90.00000{127) 179.8122{141) N.A. 

16 0.3264695{108) 90.00000{127) 179.6735{146) N.A. 

16./2 0.5417737{101) 90.00000{127) 179.4582{153) N.A. 

Table 6.2: Phase angles corresponding to magnitude peaks along row 127 of figure 6.1 

being identical in our computations). As also expected, the interior peaks have readings 

equal or close to 90' (see section 5.1.2). These observation show that, in the presence of a 

slightly curved edge, the edge itself still constitutes a major factor in shaping the resulting 

vector field configurations in its vicinity. These vector field configurations are therefore little 

different from those of a straight edge. 

6.2.2 Vector profiles along the major axis 

In examining magnitude profiles along the ellipse's major axis, I have been able identify 

two factors that give rise to local vector magnitude maxima- edge and macro-geometry. 

The angular profile is rather uninteresting - the data yield nothing more than what has 

been discovered in section 5.1.2. The angular profile of vectors along the major axis of the 

elliptical disc should be more interesting due to the high curvatures at points along the edge 

there. 

Magnitude peaks and troughs 

Figure 6.3 shows the vector magnitude curves of figure 6.1 along column 127 corresponding 

to four selected scales. A major difference between the curves in this figure as compared to 

those in figure 6.2 is that the vector magnitude troughs of the curves are very poorly defined. 
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Figure 6.3: Vector magnitude curves of figure 6.1 along column 127 ( 0' = 2,2yl2,8,8yl2) 
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I 0' I troughs (col. 127) I peaks (col. 127) I 
1 78,176 77,79,175,177 

v'2 78,176 77,80,174,177 

2 78,176 77,81,173,177 

2v'2 N.A. 84,170 

4 N.A. 89,165 

4v'2 N.A. 95,159 

8 N.A. 127 

8v'2 N.A. 127 

16 N.A. 127 

16v'2 N.A. 127 

Table 6.3: Locations (rows) of magnitude troughs and peaks along columns 127 of fifure 6.1 

It should be noted that the local magnitude minima located near row 127 of the magnitude 

profiles corresponding to o-=2 and 2v'2 are not magnitude troughs, since the magnitude 

peaks on their two sides are derived from different edges. 

It can also be observed that pairs of local magnitude peaks and troughs corresponding 

to the edges of the ellipse move closer and closer to each other as scale increases until they 

finally merge at u = 2j2. This phenomenon is clearly reflected on table 6.3. Magnitude 

troughs are absent from all entries following the entry corresponding to o-=2. At the same 

time, the number of magnitude peaks per entry is reduced from 4 to 2, implying that the 

outer magnitude peaks have merged with their corresponding magnitude troughs. 

An explanation for the poor definition of magnitude peaks and troughs 

Figure 6.4 shows three pairs of antagonistic filters of different sizes superimposed near the 

tip of a bright, elongated structure. If we compare figure 6.4 with figure 6.5, which depicts 

a straight edge, it is easy to deduce that the combined outputs of the antagonistic filter 

pairs in figure 6.4 are larger than that produced by the corresponding filter pairs in figure 

6.5. This is because the responses to individual orientation filters in an antagonistic filter 

pair are more or less equal to each other in figure 6.5. However, the same can not be said 

of figure 6.4. The resultant orientation vectors at the centers of the filters in figure 6.4 are 
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Figure 6.4: Filters of different sizes superimposed on an elongated structure 

Figure 6.5: Filters of different sizes superimposed on a straight edge 
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I (! I Phase angles (in •) 

1 go.00000(77) 90.00000(7g) go.00000(175) go.00000(177) 

,j2 go.00000(77) go.00000(80) go.ooooo(174) go.00000(177) 

2 go.00000(77) go.oo000(81) go.ooooo(173) go.00000(177) 

2,j2 go.00000(84) go.00000(170) N.A. N.A. 

4 go.ooooo(8g) 90.00000(165) N.A. N.A. 

4,j2 90.00000(95) 90.00000(159) N.4. N.A. 

8 90.00000(127) N.A. N.A. N.A. 

8,j2 90.00000 ( 127) N.A. N.A. N.A. 

16 go.00000(127) N.A. N.A. N.A. 

16,j2 90.00000(127) N.A. N.A. N.A. 

Table 6.4: Phase angles corresponding to magnitude peaks along column 127 of figure 6.1 

(see footnote on page 37 for explanations) 

therefore going to be longer than their counterparts in figure 6.5. The implication is that 

at a particular scale, the magnitude troughs are more well defined in the case of a straight 

edge than in that of a highly curved edge. 

It is also evident in figure 6.4 that the combined responses of the antagonistic filter pairs 

increase as the size of the filters increases. This means that the corresponding magnitude 

troughs become more and more poorly defined as scale increases until they finally disappear. 

However, a magnitude trough can only disappear via a merger between itself and a magnitude 

peak. This accounts for the second observation described above. 

The phase angles 

If we compare table 6.2 with table 6.4, we can see that the switching of vectors by go• that 

occurs when one passes from outside the elliptical disc to inside it does not take place at all 

when the view is taken along the major axis of the disc. Vector magnitude peaks situated 

both inside and outside the disc has phase angles of go•. While vector magnitude peaks 

situated outside the disc are expected to have phase angles measuring go• regardless of the 

curvature of its edge near which the peaks occur, the high curvature of the edge seems to 

be responsible for the magnitude peaks within the elliptical edge registering phase angles of 
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Figure 6.6: Filter superimposed on a highly curved edge 

90°. 

This observation is portrayed in figure 6.82 . Each patch in figure 6.8 having uniform grey

level represents a pixel on the original vector field. The relative intensities of these patches 

are to be interpreted as relative lengths of the orientation vectors. The little thin rod within 

each patch indicates the phase angle of the vector at that location. Neighborhoods with 

low edge curvatures exhibits large angular differences between vectors inside and outside the 

ellipse. The angular differences become progressively ill-defined in neighborhoods having 

progressively high edge curvatures. The angular difference disappears altogether in the 

neighborhood that contains a curvature maximum of the edge. 

An account for the lack of angular differences 

Figures 6.6 and 6. 7 are a couple of schematic diagrams showing the effect curvature has on 

the phase angles of magnitude peaks. In these figures, only X-orientation filters (section 

3.4) are used, since the elliptical disc is symmetrical along the its major axis. Basically, 

there is a tug-of-war between the bright (positive) horizontal vanes and the dark (negative) 

vertical vanes of aX-orientation filter. If the underlying image has a highly curved edge with 

respect to the size of the filter applied, as in figure 6.6, then at locations inside but near the 

edge, the bright vanes might not cover enough area to offset the negative effect of the dark 

vanes, since they have considerable negative effect because the lower vane and a small part 

2The black dotted line on the figure marks the approximate locations of the object's edge elements. 
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Figure 6.7: Filter superimposed on a slightly curved edge 

of the upper vane are within the bright region of the underlying image. If that is indeed the 

case, then according to the way orientation vectors are computed (section 3.2), the resultant 

phase vector at that point would be 90'. If the underlying image has a flat curve relative to 

the size of the filters applied (figure 6.7), then the bright vanes would get enough support 

from the image's bright region and the computed phase angles along the major axis would 

be o' or 180'. As larger filters are used, the edge concerned has to have smaller and smaller 

curvature for the computed phase angles to measure 0' or 180'. 

Comments 

The macro-geometry of the elliptical disc is responsible for the phenomena as observed in 

this section (6.2.2). In other words, the increased elongation, which goes in hand in hand 

with increased curvature, of the disc as one moves towards the edge curvature maximum 

corresponding to the disc's major axis primarily causes the poor definition of magnitude 

peaks and troughs, and the lack of angular differences between orientation vectors on opposite 

sides of the disc's edge. 

6.2.3 Comments 

Foregoing observations have shown that angular differences between vectors on one side of 

an edge and those on the other side and in the vicinity of the edge can vary considerably. In 

particular, such angular differences and magnitude troughs are ill-defined at locations with 
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Figure 6.8: Vector field configuration (0'=1) in the vicinity of an edge curvature maximum 

in figure 6.1 
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high edge curvatures. This observation eliminates the suggestion that a sudden switch of 

vector phase angles together with the presence of a sharp magnitude trough along a certain 

line of observation can be used as an indication of an edge. 

It is important to note that the foregoing peculiar behavior of the orientation vector field 

corresponding to u = 1 reflects the macro-geometry - and not the presence of an edge -

of the elliptical disc in the neighborhood of the edge curvature maximum. There are two 

implications to this statement. First, the macro-geometry of an object (or a part of it) is not 

captured exclusively by large filters. It seems that the size of the filters needed to capture 

the macro-geometry of a part of an object decreases as the edge curvature of that part of 

the object increases. The second implication is that theoretically such a peculiarity in vector 

field configuration can be avoided by using filters that are small enough that the resulting 

orientation vector field would be shaped by the edge, rather than the macro-geometry in 

the neighborhood of the edge curvature maximum. As long as the edge curvature is not 

infinite, the suggestion above is valid. In real life, however, discretization errors prevent us 

from constructing arbitrarily small filters. 

Finally, as observed in section 6.2.2, for an orientation vector field at a particular scale 

different edge vicinities in figure 6.8 are subject to different amounts of influence from the 

macro-geometry as well as the edge of the elliptical disc. This makes uniform interpretation 

of orientation vectors a difficult and error-prone process. This shortcoming reflects the lack 

of provision for handling curved image structures in Coggins' method, thus proving Zucker 

right that orientation determination of curved image structures has to be specially dealt 

with (section 4.4.2). A more desirable way of computing is to control the influence of the 

two factors by adaptively adjusting the size of the filters used according to the nature of 

macro-geometry at particular vicinities. At this point, it is not at all clear how this might 

be accomplished, nor is it known whether such an algorithm exists at all. The problem does 

not go away because the size of filters needed to escape the influence of macro-geometry may 

get arbitrarily small. The use of filters incorporating higher order derivatives may provide a 

new approach to solving this problem. 

6.3 Summary 

• In the presence of a slightly curved edge, the edge itself still constitutes a major factor 
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Figure 6.9: A circular disc (centred at (127,127)) 

I a I magnitude troughs I magnitude peaks / 

1 112,142 111,113,141,143 

v'2 112,142 111,113,141,143 

2 112,142 111,114,140,143 

2v'2 112,142 110,114,140,144 

4 113,141 110,115,139,144 

4v'2 114,140 110,117,137,144 

8 116,138 109,119,135,145 

8v'2 N.A. 109,145 

16 N.A. 108,146 

16v'2 N.A. 106,148 

Table 6.5: Locations (columns) of magnitude troughs and peaks along row 127 of figure 6.9 
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Figure 6.11: Orientation vector field configuration near the edge of the circular disc in figure 

6.9 at a= 8J2 (Dotted line explained on page 42) 
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in shaping the resulting vector field configurations in its vicinity. These vector field 

configurations are therefore little different from those of a straight edge. 

• High edge curvature causes the magnitude trough on the magnitude profile curve to be 

less well defined. Similarly, it diminishes the angular differences between orientation 

vectors located on the opposite sides of an edge. This observation rules out the sugges

tion that a sudden switch of vector phase angles together with the presence of a sharp 

magnitude trough along a certain line of observation can be used as an indication of an 

edge. These observations indicate that the macro-geometry of the elliptical disc now 

plays an important part in the dispositions of the relevant orientation vector fields. 

• Besides the existence of an edge, a peak on a magnitude profile curve can also arise 

when the orientation vector field concerned captures the macro-geometry of an object. 

• The size of the filters needed to capture the macro-geometry of a part of an object 

decrease as the edge curvature of that part of the object increases. This implies that 

the above quantity is variable in an image where different parts have different edge 

curvatures. This means that uniform interpretation of of the phase angles and magni

tudes of orientation vectors on a orientation vector field is error-prone. In these cases, 

uniform processing, which is an important attribute of Coggins' method, becomes less 

applicable. However, at this point, the possibility of formulating an effective adaptive 

algorithm is still a research question. 
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Chapter 7 

Corners 

In the foregoing experiments it seems that angular differences between vectors that are on 

the two different sides of an edge in the neighborhood of that edge get smaller as the edge 

curvature progressively increases. It will be interesting to observe the configuration of the 

orientation vector field in the neighborhood of a point whose edge curvature is infinite, i.e. a 

corner. More important, it will be educational to see whether the prediction made in section 

4.4.3 can in fact be verified. 

In this experiment, corners with openings measuring 30' and 150' are used. They are 

shown in figures 7.1 and 7.2 respectively. The opening of the former forms an acute angle 

while the latter forms an obtuse angle. Because of this the image structure from which the 

corner in figure 7.1 derives is more elongated than the corresponding image structure in 

figure 7.2. Figures 7.3 and 7.4 respectively show the vector field configurations at a=2 in 

the neighborhoods of the corners in figures 7.1 and 7.2. Vector fields belonging to other a's 

are not shown, since they do not offer additional insights. 

7.1 The 30' corner 

In figure 7.3 vectors belonging to border pixels that are relatively far away from the corner 

exhibit the now familiar configuration that suggests the presence of a (relatively) straight 

edge. As in the case of figure 6.8 the angular differences between vectors located on the two 

sides of the edge essentially disappear at the few pixels where the corner can be said to be 

located. The vector magnitudes at these pixels are relatively large, which seems to contradict 

one's intuitive prediction that the orientation preference at this locality is ill-defined. 



Figure 7.1: A 30° corner 

Figure 7.2: A 150° corner 
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Figure 7.3: Orientation vector field configuration for figure 7.1 at 0"=2 (Dotted line explained 

on page 42) 
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Figure 7.4: Orientation vector field configuration for figure 7.2 at 0'=2 (Dotted line explained 

on page 42) 
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Figure 7.5: Thought experiment on an acute corner 

I Pixel location I Magnitude I Phase angle I 
(126,128) 117.172195 174.862885' 

(126,129) 150.207001 6.529789' 

(126,130) 193.218887 13.328004° 

(126,131) 216.458984 15.303263' 

(126,132) 215.584061 15.430973' 

(127,128) 128.582443 22.607244' 

(127,129) 144.372299 25.519289' 

(127,130) 140.869064 27.067478' 

(127,131) 121.525391 27.554371' 

(127,132) 96.097267 27.075390' 

(128,128) 100.564995 46.707012' 

(128,129) 105.356613 55.033375' 

(128,130) 101.833786 63.129478' 

(128,131) 98.585449 70.896576' 

(128,132) 98.990242 77.600044' 

Table 7.1: Orientation vectors in the immediate neighborhood of the corner in figuer 7.1 
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I Pixel location I Magnitude I Phase angle I 
(126,125) 38.956779 61.071079° 

(126,126) 24.129566 146.732773° 

(126,127) 52.344913 158.478195° 

(126,128) 73.119606 171.759460° 

(126,129) 99.072830 177.547119° 

(127,125) 135.296265 61.964439° 

(127,126) 118.647255 64.859787° 

(127,127) 84.846024 70.551071° 

(127,128) 46.269466 75.744041° 

(127,129) 14.590264 74.742706° 

(128,125) 125.460617 63.606365° 

(128,126) 147.371719 68.202316° 

(128,127) 154.719498 74.731964° 

(128,128) 145.083893 81.659805° 

(128,129) 13{).141205 86.347122° 

Table 7.2: Orientation vectors in the immediate neighborhood of the corner in figuer 7.2 

., 
Figure 7.6: Thought experiment on an obtuse corner 
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Table 7.1 shows the magnitudes and phase angles of orientation vectors over a 5x3 (pixels) 

region containing the corner, which I designate to be located at (127,130). Note that in a 

discrete (and by implication aliased), grey-level image such as figure 7.1, it is not always 

easy to pin-point the exact location of a fine image structure such as a corner without any 

ambiguity. With this disclaimer thus made, I have failed to observe any distinguishing 

quality pertaining to pixel (127,130) that sets it apart from the others. 

Among the vectors recorded in table 7.1, the one at pixel (126,131) is the longest. Since 

I have attached some importance to the length of a vector (section 5.1), it will be worthwhile 

to account for the length of the vector at (126,131). Figure 7.5 shows an antagonistic pair of 

orientation filters with their centers superimposed upon the corner. This schematic diagram 

is necessarily a simplification because the filter pair depicted are not the only antagonistic 

pair that has influence on the final computed orientation vector at the corner. This qualifica. 

tion notwithstanding, they are the most influential pair in determining the final disposition 

of the vector. It can be easily inferred from figure 7.5 that the outcome of the competition 

between the antagonistic filter pair heavily favors the "horizontal" orientation filter, since 

the "vertical" orientation filter does not get much spatial support from the bright region in 

the figure. Consequently, the phase angle of the final orientation vector is more or less in 

the same direction as the preferred orientation of the "horizontal" orientation filter. This 

accounts for the lengths and phase angles of the orientation vectors in the vicinity of the 

corner. 

7.2 The 150• corner 

Table 7.2 shows the magnitudes and phase angles of vectors computed with a = 2 (figure 

7.4) in a 5x3 neighborhood surrounding the corner, which is located at (127,127). As in the 

case of figure 7.3, there is nothing distinguishing about the orientation vector at the corner. 

Moreover, the vectors depicted in table 7.2 are in general shorter than those depicted in table 

7.1, although in both cases, the vectors are taken from small neighborhoods containing the 

corners. Figure 7.6 is a self-explanatory diagram that accounts for the foregoing observation. 

Unlike figure 7.5, the vertical filter in figure 7.6 derives considerable spatial support from the 

bright part of the figure 7.2 and therefore has been more effective in canceling the response 

of the horizontal filter. As a result, the orientation vectors in figure 7.4 are in general shorter 

56 



than those figure 7.3. 

7.3 Comments 

The final disposition of the orientation vectors at the two corners, like the one at the edge 

curvature maximum in section 6.2, is shaped by the macro-geometry of the bright triangles 

in the neighborhoods of the two corners. I suggested there that, at least theoretically, 

the influence of the macro-geometry of the elliptical disc in the neighborhood of the edge 

curvature maximum can be effectively diminished by using small enough filters. I later 

pointed out that this is infeasible, as discretization errors effectively put a lower bound on 

the size of the filters that can be meaningfully constructed. In the case of a corner, however, 

it is not just a practical, but a theoretical impossibility to construct filters that are small 

enough to avoid the influence of the macro-geometry surrounding the corner, since the spatial 

extent at the corner is infinitely small. As a result, even orientation filters that are infinitely 

small can capture the macro-geometry around the corner. 

Because the vector field configuration (as produced by the smallest orientation filters 

that can be meaningfully constructed) in the neighborhood of a corner is largely similar to 

that of a point of very high (but not infinite) edge curvature (compare figure 7.3 with figure 

6.8), it follows that a corner is indistinguishable from a point of high edge curvature on 

an orientation vector field. In other words, the MOF is not very good in preserving corner 

information. This verifies the prediction made in section 4.4.3. 
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Chapter 8 

Summary and Evaluation 

The objective of this thesis has been to conduct a preliminary investigation on the strengths 

and limitations of the MOF, which was proposed by Coggins as a multiscale representation 

of image structures. In order to provide a basis on which the MOF (and the computational 

method leading to the MOF) can be objectively assessed, a number of related computational 

frameworks and algorithms were summarized. After that, observations were made on the 

MOF of several image structures through 1-D as well as 2-D windows. I also attempted to 

account for all phenomena whose origins were not immediately obvious. In the process I 

introduced a number of concepts, which will be summarized below. 

8.1 A final summary 

8.1.1 Observations 

1. If one marches along the magnitude profile of an orientation vector field in the di

rection perpendicular to the orientation of an edge, we would encounter a magnitude 

trough, which is preceded and followed by a local vector magnitude peak. In addition, 

orientation vectors located near a straight, noiseless step edge but on the two different 

sides of the edge have an angular difference of 90'. A similar configuration can also 

be observed on the MOF of a straight, Gaussian-blurred, but noiseless edge. In the 

case of a noisy image, some randomness is introduced onto the orientation vector fields. 

However, the degree of randomness decreases dramatically as the size of the orientation 

filters used increases. 



2. An interpretive ambiguity exists for the phase angle of every orientation vector. Con

sequently, if an orientation vector is examined alone, it is impossible to determine with 

absolute certainty the orientation of the underlying image structure that gives rise to 

this orientation vector. 

3. Whereas the orientation vectors of a slightly curved edge are little different from those 

of a straight edge, the magnitude trough on the the magnitude profile curve of a highly 

curved edge are rather poorly defined. The angular differences between orientation 

vectors located on the opposite sides of an edge are similarly diminished. 

4. One would expect the preferred orientations of orientation vectors at a corner and its 

immediate vicinity are very poorly defined or even undefined. However, it had been 

observed on the MOF that the quantities described above are rather well defined. 

8.1.2 Theoretical findings and evaluations 

1. Other factors remaining constant, the phase angle of a long orientation vector is con

sidered to be more reliable (see section 5.1.2) than that of a short one. 

2. One factor that affects the validity of the above statement is the noise level in an image. 

When noise is introduced, the orientation vector magnitudes that derive from small 

orientation filters can be quite misleading. Tracing the vector field configurations of a 

neighborhood across scales might help countering decreased validity of vector length 

as a reliability measure. It was proposed that consistency across scale, on top of its 

length, be used to arrive at a reliability measure for an orientation vector. However, 

problems of quantification and scale selection remain to be overcome. 

3. The MOF can be used to measure the orientation of a straight, fuzzy, but noiseless 

edge with very good accuracy, although the reading should be taken from the bright 

side of the edge. 

4. The idea of the influence of macro-geometry was introduced to account for the second 

and third observations noted in point 3 of section 8.1.1. The observations indicate that 

the macro-geometry of the elliptical disc played an important part in the dispositions 

of the relevant orientation vector fields. 
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5. Besides the existence of an edge, a peak on a magnitude profile curve can also arise 

when the orientation vector field concerned captures the macro-geometry of an object. 

6. The size of the filters needed to capture the macro-geometry of a part of an object 

decreases as the edge curvature of that part of the object increases. Thus the above 

quantity is variable in an image where different parts have different edge curvatures. 

Therefore different parts of the orientation vector field derived from a particular a are 

subject to different degrees of influence from the object's.macro-geometry. This fact 

undermines the effectiveness of uniformly interpreting the phase angles and magnitudes 

of orientation vectors. As a result, the MOF's ability to perform orientation estimation 

at highly curved edges is compromised. 

7. Due to the influence of macro-geometry, orientation vectors at corners have relatively 

large magnitudes. Common sense would be violated if the magnitudes of these ori

entation vectors were to be interpreted as point 1 in this section. Worse, designing 

a filter that would avoid the influence of the corner's macro-geometry is a theoretical 

impossibility, as a corner has by definition an infinitely small spatial extent. I am 

therefore forced to conclude that the MOF is not good at extracting corners. 

8.2 Future research directions 

The main problems associated with the MOF are summarized as follows: 

1. There is an inherent interpretive ambiguity of the phase angle of every orientation 

vector. 

2. A method of scale-tracing for the MOF so that the consistency of the vector field 

configurations in a neighborhood can be quantitatively measured is yet to be devised. 

3. Information present in the MOF still can not used adaptively across several scales so 

that the influence of macro-geometry can be held at a constant level. 

4. The MOF is unsuitable for extracting corners. 

These four problems will have to be solved or compensated for by other means before the 

MOF can be effectively used to perform multiscale image segmentation. Problem 1 can be 
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avoided altogether by using single-lobe instead of double-lobe orientation filters (see figure 

3.1). This modification has in fact been undertaken by Fritsch ([3]). 

Scale-tracing had been attempted by Lifshitz and Gauch ([4], [10]). At this point, it is 

not clear how their methods can be adapted for use in conjunction with the MOF. A future 

research direction clearly involves a thorough investigation of these two methods so that 

their relevance to the MOF can at least be ascertained. 

Appropriate adaptive use of information across several scales is a very difficult problem 

for which one can provide a satisfactory solution. The first step towards the realization of a 

solution is the determination of the" appropriate" scale(s) at which an image structure can 

be meaningfully analyzed. Back et a/ ([1]) attempted to solve this problem for 1-D edges. 

A promising future research direction is to generalize this approach to encompass other 2-D 

image structures. 

Point 4 forces me to agree with Hsieh ([6]) that corners have to be explicitly extracted 

in MOF. Future work therefore includes finding a way to integrate the output of a corner 

detecting algorithm with the MOF. 
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