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MANISH PANDEY . RISC Microprocessor Implementation with Resource Allocation 

Balanced for Instruction Mix 

(Under the direction of Akhilesh Tyagi.) 

Abstract 

This thesis explores the Reduced Instruction Set Computer (RISC) philosophy the 

most fundamental principle of which is the efficient utilizaton of the scarce silicon real 

estate. It is conjectured that in keeping with the RISC philosophy one can tailor the 

datapath to allow each unit in it an area which is justified by the frequency of use of 

the unit. This would allow one the ability to reallocate the area of different units in 

a processor to obtain a balanced implementation for a gain in performance. 

In an experiment to explore the feasibility of the preceding ideas the integer dat­

apath for the DLX architecture [HP90] is implemented for several design points. The 

design points implemented include an implementation with a slow (ripple-carry) AL U 

and a fast (barrel-shifter) shifter. This implementation supports single cycle execution 

of instructions. 

Another design point is implemented with a fast ALU (parallel-prefix) and a slow 

. (linear shift-register) shifter. The extra area taken up by the faster adder is balanced 

by the savings in area achieved by the slower shifter. In this implementation the cycle 

time falls even though the CPI increases. The result is that the time per instruction 

falls when the dynamic instruction mix has far fewer shift instructions than ALU 

instructions. The implications are that if balancing even a small portion of the chip 

leads us to a significant performance gain, surely balancing the entire chip gives us 

even greater opportunities for improved performance. 
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Chapter 1 

Introduction 

Reduced Instruction Set Computer (RISC) approaches to computer design have come 

of age and the strengths of the RISC approach are leading to a rapidly increasing 

market share for RISC architectures at the expense of the so called Complex In­

struction Set Computer (CISC) architectures [Ros90j,[HP90],[GM87],[KF89], [Tab87]. 

The RISC approach started as a response to the ever increasing complexity of pro­

cessor instruction sets which was intended to close the semantic gap between the 

operations provided in high-level languages (HLLs) and in the machine architectures 

[Pat85],[Sta90]. However it was discovered that attempts to make instruction set 

architectures close to HLLs was not the most effective strategy. Instead, compiling 

programming languages to simple instructions which were most frequently used and 

making the instruction cycle time as fast as technology would allow, was found to be 

a better approach [Pat85]. 

Advances in semiconductor technology have made it possible to fabricate chips 

containing hundreds of thousands of transistors operating at tens of megahertz fre­

quency [Hen84]. Single chip processors now have a performance comparable to 

medium to large mainframes of the early eighties. The ever increasing packing density 

of MOS circuits allows more and more parts of a system to be fitted in a single chip. 

This helps avoid the speed and cost penalties of having multiple chips in the imple­

mentation of a system. Thus, MOS technology has made Very Large Scale Integration 

(VLSI) an attractive implementation medium for architectures. This introduction of 



VLSI has put forth a new problem - that of resource management of both area and 

time. At any given time the maximum area of a VLSI chip is fixed. This makes the 

chip area a valuable resource. This brings up the question - What is the best way of 

allocating the chip area for obtaining maximum performance? The RISC approach 

is an answer to this question but we feel that current VLSI RISC implementations 

have still some way to go before the question above can be fully answered [PT91]. 

1.1 Effective Silicon Utilization 

This thesis explores the Reduced Instruction Set Computer (RISC) philosophy, 

[HP90], [GM87], [KF89], [Tab87] the most fundamental principle of which is the 

efficient utilizaton of the scarce silicon real estate. RISC processors today empha­

size, among other things, the single cycle execution of instructions ([GM87], [PatS-5], 

[Kat84], [HJP+83],[PGH+84],[Cho89]) in an effort to get a low value of Cycles Per 

Instruction (CPI)[HP90]. However, there is nothing sacred about single cycle execu­

tion of all instructions and this may not necessarily lead to the best possible use of 

silicon. 

To test this hypothesis the datapath for the DLX architecture [described in Hen­

nessy, Patterson [HP90]] is implemented at various design points. The initial design 

point contains a slow (ripple-carry) ALU and a fast (barrel-shifter) shifter. This im­

plementation supports single cycle execution of all instructions. Available benchmark 

data for several application programs indicate that the dynamic instruction mix for 

the DLX processor contains approximately 5% shift class instructions and 35% ALU 

instructions. So another design point implemented is one where we use a fast AL U 

(parallel-prefix) and a slow (linear shift-register) shifter. The extra area taken up 

by the faster adder is balanced by the savings in area achieved by the slower shifter. 

Even though each shift-class instruction now takes several cycles, the small frequency 

of the shift class instructions together with the decreased cycle time actually results 

in a substantial increase in performance. 

This demonstrates the feasibility of obtaining performance enhancements when 

the area allocation is balanced with the instruction mix and points to the need for 
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further investigation of such tradeoffs. 

1.2 Contributions of this Work 

The new ideas presented in this thesis are the following: 

1. The concept of balanced implementation achieveable by design-space explo­

ration of datapath units in a RISC processor. 

2. In RISC processor desig1:s, reducing CPI value as close to one as possible should 

not be the only concern [pagel-4,[Ka88]]. Any idea of processor performance is 

incomplete without the machine cycle time [page 36,[HP90]J. So, the emphasis 

in RISC processor design should be shifted from reducing CPI to reducing the 

value of the Average Time Per Instruction (ATPI), where 

AT PI= (average CP !)(Machine Cycle Time). (1.1) 

1.3 Overview of this Thesis 

· The remainder of the thesis consists of the following four chapters: 

1.3.1 Chapter 2 : An Overview and Assessment of RISC 

"This chapter traces the origins of RISC and then goes on to explore some of the 

features in contemporary RISC implementations. It ends with a discussion of the 

manner in which current implementations utilize their chip area. 

1.3.2 Chapter 3 : The Design of a RISC Datapath 

This chapter describes the decisions made in the selection and implementation of 

the DLX architecture [HP90] and then describes the more important datapath units 

implemented. 
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1.3.3 Chapter 4 : Results and Applications 

The area-time measures of the various datapath units in the DLX processor are 

presented here. The significance of the various measures is explained and the possible 

applications are mentioned. 

1.3.4 Chapter 5 : Conclusion and Further Work 

The basic question is how to effectively utilize silicon. Our work has answered only 

a part of the question. Further work and its possible directions are given here. This 

chapter also discusses a C compiler, which is a modification of the Gnu C Compiler 

(GCC), targeted to our processor implementation. This compiler will possibly give 

us better performance with the DLX processor than the standard GCC compiler. 

4 



Chapter 2 

An Overview and Assessment of 

RISC 

The concept of RISC is not merely a set of rules dictating the use of few and simple 

instructions which can be executed by a pipeline that can be implemented efficiently. 

It goes beyond this. It is a design philosophy dependent on the technology available 

and the application domain. In the sections that follow we describe the features of 

current RISC machines. We go on to suggest that further performance gains can be 

achieved in these designs by adopting a balanced design methodology. 

2.1 What is RISC? 

Though RISC architectures today emphasize 

• instruction sets which are small and simple to decode 

• highly optimized pipelines 

• single cycle execution of instructions 

there is no strict definition of what constitutes a RISC architecture. Rather it is the 

design philosophy which defines RISC. 



2.1.1 The Underlying Philosophy 

According to several authors ([Kat84],{Pat85J,[GM87]) the design philosophy is basi­

cally the one where 

1. Target applications are analyzed to determine operations which are most fre­

quent. 

2. Those operations which are most frequent are implemented in hardware. 

3. An additional instruction/resource is included only if its inclusion does not slow 

more frequently used operations/resources. 

The RISC philosophy espouses freedom to make tradeoffs across boundaries of 

architecture and implementation, hardware and software, and compile-time and run­

time. These tradeoffs can be of different nature depending on the implementation 

technology, but today with VLSI technology being the technology of choice, most 

RISC processors have many features in common. We mention some of these features 

in Section 2.2. 

2.2 Common Features of RISC Designs 

RISC designs typically have the following features in common (Tab87J,(GM87]: 

1. Small register-register oriented instruction set with relatively few addressing 

modes. 

2. Fixed instruction formats to facilitate simple hardwired instruction decoding. 

3. Instruction set designed for a specific application class. 

4. Complex operations are decomposed into several simple instructions. 

5. Highly pipelined datapath. 

6. Large high speed register file. 

7. Hierarchical memory organization with large caches for instruction and data. 
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8. Single cycle execution of instructions. 

9. Heavy dependence on optimizing compilers for performance gains. 

An implementation without one or more of the above features is not necessar­

ily non-RISC. What is RISC depends on the specific application domain and the 

implementation technology used. 

2.3 Making Existing RISC Designs More RISCy 

As seen in the previous section, single cycle execution of all instructions seems to be a 

goal of most RISC implementations today [GM87], [HP90], [Kat84], [Cho89], [Ka88], 

[Pat85]. According to Kane [page 1-4,[Ka88]], 

The goal of RISC designs is to achieve an execution rate of one machine 

cycle per instruction. 

This leads to a reduced value of CPI and a lower CPI is indicative of a better perfor­

mance. But CPI alone does not give one a complete picture of things for it does not 

include the machine cycle time. This observation is also made in [page337,[HP90]] 

where two VAX implementations, the 8650 and 8700 are compared. The 8650 has a 

CPI advantage of 20% over the 8700, but the 8700 has its clock 20% faster than the 

8650. The consequence of this is that they both have the same performance [page 

36,[HP90Jl but it is important to note that 8700 does it with much less hardware. So 

if a processor design results in increased CPI, it does not automatically follow that 

its performance will go down. Performance will still improve if the increased CPI is 

offset by a larger decrease in the machine cycle time. 

2.3.1 The Scarce Silicon Real Estate 

In [page8,[Kat84Jl Katevenis asks the question: 

Soon, VLSI chips will have significantly more transistors than were used 

by RISC I or RISC II. What will these additional transistors be used for? 

7 



Designers today use the extra silicon real estate available to add on-chip caches for 

instructions and data, floating point multipliers and adders, graphics support units 

etc. [KF89],[Cho89],[Ka88J. The possibilities are enormous but is there a systematic 

way to utilize the extra area? 

Chip area will never be sufficient. No matter what the technology, there will always 

be yet another subsystem that can benefit from being put on-chip thus creating area 

shortages. The limiting situation is where we can put an entire computing system on a 

chip including all the processing units, memory etc. but we are still far from this today. 

There is a good reason for putting subsystems on-chip - intra-chip communication is 

much faster and much less bandwidth constrained than communication off-chip. So 

the silicon resource is indeed a valuable resource and must be judiciously spent. 

2.3.2 RISC is Balanced 

Since we are interested in high performance, this means that those subsystems which 

improve performance the most must be allowed to be on the chip. The current RISC 

trend is a step in the right direction but leaves much to be desired in terms of the 

tradeoffs between the subsystems which must be present on-chip. The RISC ap­

proach applies this analysis across the software-hardware boundary. Why not extend 

this analysis to hardware design as well? In other words, of the functions to be imple­

mented in hardware, those which are more frequent must be allowed a greater share 

of chip area. This may be possible, perhaps, at the expense of those functions which 

are relatively less frequently used and in doing so we do not incur a performance loss 

[PT91]. 

We investigate the resource tradeoffs in the design of a datapath of a processor. 

According to the principle above we should be allocating the area to each datapath 

unit according to its frequency of use. We term such an implementation a balanced 

one. A balanced implementation is surely a RISC approach for it conforms to the 

underlying RISC philosophy (Section 2.1.1). 
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2.4 Problem Statement 

This work is an attempt to answer the question whether it is possible to use a balanced 

implementation methodology to enhance performance without changing the total area. 

2.4.1 A Balanced Datapath 

In this work we investigate the possible tradeoffs between two datapath units in the 

implementation of a RISC architecture (DLX) described in [HP90]. We try to take a 

balanced approach to the implementation starting with a conventional implementa­

tion and then reallocating area for the two datapath units based on the frequency of 

their use. 

2.4.2 Previous Work 

There is no known work in literature addressing the general question of balanced 

implementation techniques. Kung [Kun86] considered a theoretical model for a com­

puter architecture to study the trade-off between processing rate and I/0 bandwidth. 

Holman and Snyder [HS90b] demonstrate architectural trade-offs in parallel com­

puter design. Our analysis is budget-constrained in their terminology. Ho and Snyder 

[HS90a] give a mathematical formulation of the following principle of balanced de­

sign: The cost of a given pari relative to the cost of the entire system must be equal 

to the time on the critical path spent by that part, relative to the total running time. 

Their model, however, fails to consider the balance achievable by exploring the design­

spaces of datapath units. In particular, their analysis is limited to the design-space 

points derived by variation of the gauge of an implementation a datapath unit, i.e., 

ways of realizing 32-bit shift with 4-bit, 8-bit or 16-bit shifter implementations. This 

research draws on a broader design-space for the datapath unit implementations e.g., 

for an adder/ ALU many schemes such as ripple-carry, carry-select, parallel-prefix, k­

bit look-ahead are considered. In addition, this work is more empirical than analytical 

in nature. 
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Chapter 3 

The Design of a RISC Datapath 

This chapter discusses the design decisions made for the implementation of a RISC 

core data path for the DLX architecture. It gives a brief overview of the DLX architec­

ture which we selected and the important subsystems in the hardware implementation 

of the instruction sets. 

3.1 Design Decisions 

Before we could test the ideas presented in the previous section, we had to have a 

testbed for exploring them. This meant first deciding on an architecture and then 

implementing it. 

The resources available for this experiment were very limited both in terms of 

time and manpower. With one graduate student and the time available being less 

than two semesters, there were severe constraints on the magnitude of the project. 

The first option was to work with an already implemented RISC machine [Cho89]. 

It was rejected because the amount of effort required to first understand the implemen­

tation, simulate and measure it and then modify it would have been overwhelming. 

So it was decided to first select a 32 bit RISC architecture and then implement it. 

Again because of the resource constraints we decided to restrict the implementation 

to only those features on the datapath which were absolutely essential. For the same 

reason it was decided to rely on automating the design to the fullest extent wherever 



possible. 

3,1.1 Selecting an Architecture 

We selected the DLX architecture described in (HP90] because of the following rea-

sons: 

1. Public-domain availability of a compiler and a simulator, 

2. DLX embodies the essential traits of most contemporary RISC machines. 

3.1.2 Selection of Features for Balancing and Performance 

Gain 

Benchmark studies ((with CCC, SPICE, TFfK and US Steel COBOL )(HP90]] for the 

DLX indicate that ALU instructions constit~te 35% of the dynamic instruction-mix 

and shift instructions constitute 6% on an average. For any one program from this 

list the shift frequency is below 5%. This disparity in the relative frequency of the 

two classes of operations suggests an experiment where the DLX processor can be 

designed along several design points where we can trade-off the resources required 

by the ALU and the shifter unit. This can partly answer the question we posed in 

Section 2.4. 

Prior to the experiment there was no available information about the nature of 

trade-offs between the two hardware units so two extreme design points were chosen 

for the study. The first design point selected was an implementation containing a 

slow ripple-carry ALU with a barrel shifter and the other extreme design-point was 

one with a fast parallel-prefix ALU and a slow linear shifter. 

In the second implementation the shifter would take more than one machine cycle 

to complete the shift operation. There definitely would be a penalty because of the 

multi-cycle shift operation but this may be minimized by some methods presented in 

Section 5.2 and in Pandey and Tyagi (PT91]. 
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3.1.3 Selection of an Implementation Methodology 

Since this experiment involves building the processor datapath for different design 

points, we decided to build the datapath elements which were the object of the trade­

off study by using OASIS, a standard cell based layout synthesis system [KB88]. To 

save time, often, random logic in the processor circuit was also implemented with 

OASIS. 

Parts of the design which were regular and could not be automatically synthesized 

were designed in the full custom methodology using Magic, a layout editing program 

[SMH+86]. 

3.1.4 The Influence of MIPS-X on DLX 

The similarity of the architectures of DLX and MIPS-X [Cho89] led us to borrow many 

implementation ideas from the latter (Figure 3.1). This was done to minimize the 

time redesigning parts for which good designs were already available and to shorten 

the turn-around time. 

The pipeline of the MIPS-X processor is borrowed for DLX in an essentially un­

changed form. The strategy for instruction decoding is the same in both except for 

the hardware implementation. Since the instruction formats for both the processors 

are different and only the DLX datapath is implemented, the actual decoding logic for 

both the processors is quite different. Many of the cells used in the MIPS-X data path 

were adopted for our design. 

We have all along made decisions that allowed us to successfully complete the 

experiment. Implementing every instruction in the instruction set was not feasible. 

Also it would not provide us much better results than an implementation of a care­

fully chosen subset of instructions. The objective of our experiment was to balance 

the ALU and shift instructions. Therefore, incorporating instructions like multiply, 

divide and floating point operations would not have contributed much to this ob­

jective because these instructions were not a part of the trade-off study. The areas 

required for implementing these operations would have remained the same across our 

design points. For this reason, we have chosen not to implement several instructions 
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(and their comcomitant hardware), the most notable of which are the multiply and 

divide instructions. Consequently, we do not have the multiply/divide register in our 

circuit. In Figure 3.1, the MD register, Tags Unit and the Instruction Cache were 

not implemented. 

Interrupts are not implemented because of the complexity of hardware needed to 

deal with them and for the same reason we stall the pipeline whenever we encounter 

a branch instead of having elaborate hardware to minimize the penalty. When the 

shift operation takes more than one cycle to complete, we again stall the pipeline for 

the desired number of cycles. 

3.2 DLX Overview 

3.2.1 The DLX Architecture 

This section summarizes some of the more important features of the DLX architecture 

[HP90]. A complete list of DLX instructions can be found in Appendix A. 

o The architecture has thirty-two 32-bit general-purpose registers(CPRs). 

• Memory is byte addressable in Big Endian mode with a 32-bit address. All 

memory references are through loads or stores between the memory and the 

CPRs. 

• All instructions are 32 bits and must be aligned. 

• Any CPR may be loaded or stored. The first CPR has 0 hardwired into it. 

• There is a single addressing mode, base register plus a 16-bit signed offset. 

• All ALU instructions are register-register instructions. 

• Control is through a set of jumps and branches. The jumps use a 26-bit signed 

offset which is added to the program counter. 
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3.2.2 Implementation Medium for DLX 

The technology available to us for designing the datapath was scalable Ct,IOS (MOSIS 

SCM OS version 7) with two metal layers and a single polysilicon layer. The minimum 

channel length was 2.0flm. 

3.2.3 The DLX Pipeline 

The D LX pipeline1 ( adopted from [ Cho89] ) is 5 stages long (Fig 3.1). The stages in 

the execution of an instruction are 

• Instruction Fetch (IF). 

• Register Fetch (RF). 

• ALU operation (ALU) 

• Memory load/store (MEM). 

o Writeback results (WB). 

I F_ 1 shown before IF (Figure 3.2) occurs during WB of the previous Stage. The figure 

gives the details of the operations occuring during each phase. The AL U operation 

begins during ¢1 of the ALU stage continues after the end of ¢1 but is guaranteed to 

be complete before the end of ¢2. 

3.2.4 Important DLX Subsystems 

In the datapath implementations some of the processor subunits have a nontrivial 

complexity. In this section we discuss the important subunits in some detail. The 

linear shifter design is discussed in greater detail because of its unusual design. 

The implementation of the processor subunits was done in two ways. Highly regu­

lar structures or structures which could not be implemented by the suite of standard 

cells available with OASIS were custom built using Magic, a layout editing program 

[SMH+86]. This included many basic units on the datapath like latches, tristate 

1The clocking used by DLX is a two phase non-overlapping scheme. 
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memory instruction 

PC displacement adder latch '¢:: branch displacement from 
Immediate Bus 

Output memory data register <=: Src2 register or bypass source 

ALU ¢1 Do ALU operation, shifter operation, PC displacement adder addition 
Increment PC (calculate next sequential instruction address) 
Precharge Result Bus 

</>2 Result Bus ..;:: ALU 
Result bypass register -<= Result Bus 
Memory address pads -<= Result Bus 

MEM </>1 No action 
¢2 Input memory data register {::: Result register or Memory data 

pads (load instruction) 
Memory data pads ..;:: Output memory data register (store 

instruction) 

WB ¢1 Destination register {::: Input memory data register 
</>2 No action 

Figure 3.2: The DLX Pipeline 
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__ ,_-8~----------------------+--+--wordlinei 

bit bit b 

Figure 3.3: The 6-transistor 2-port memory cell used in the register file. 

drivers, buffer drivers, memory cells and comparators for bypassing logic in the regis­

ter file. These units were simulated using CAzM [ERN +89] and were fine tuned to get 

the best possible performance. Random logic or other combinational circuits which 

were not very regular were generated using OASIS from their LOGIC-III descriptions. 

Register File Unit 

The Register File Unit consists of a 32 by 32 register array with decoders, sense 

amplifiers and drivers, bypassing logic and memory data registers [Cho89]. 

The register array uses a 6-transistor RAM cell (Figure 3.3) described m 

[SKP+84]. The cell layout was done using Magic and was tested with CaZM 

[ERN+89]. Because of the small size of the array, sense amplifiers were not nec­

essary and just an inverter sufficed to detect the signal changes in the array bit and 

bit_b (complement ofbit) lines [page52, [Cho89]]. 
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Figure 3.4: Ripple Carry Adder for n bits. 

ALU 

The ALU was implemented primarily using OASIS. LOGIC-III descriptions [KBSS] of 

the various subunits, notably the adder-carry structure and the boolean function unit, 

were compiled. The tristate drivers [page 46,47 [Cho89]] for driving the buses were 

custom designed and tested. Then they were combined with the standard cell layouts 

generated by OASIS in order to form the complete ALU unit. Another approach tried 

was to include the tristate drivers as standard cells, in OASIS and then use them for 

generating the complete ALU unit. Because of the problems with characterizing non­

combinational cells and the stringent layout requirements for OASIS standard cells, 

the latter approach was abandoned. 

The adder is the basic unit around which other arithmetic functions like subtrac­

tion etc. are built. We implemented two flavours of adders: ripple carry (Figure 3.4) 

and parallel prefix (Figure 3.5) [HP90]. The parallel prefix adder is referred to as a 

complete carry-lookahead tree adder in Hennessy and Patterson [page A-35 [HP90]]. 

The design points implemented contain a 32-bit ripple carry adder, a 32-bit parallel 

prefix adder and four 8-bit parallel prefix adders joined end to end in ripple carry 
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Figure 3.5: Parallel Prefix Adder for 8 bits. 
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fashion(Figure 3.6). Appendix A.l contains the LOGIC-III description of a ripple 

carry adder and A.2 contains the LOGIC-III description of a parallel prefix adder. 

OASIS was used to generate the standard cell layouts from the LOGIC-III descriptions 

for the modules mentioned above. 

The boolean function unit implements the operations logical OR, logical AND 

and logical XOR. OASIS was used to generate this unit. 

Shifter 

In this experiment we include two types of shifters in our designs, namely a barrel 

shifter and a linear shift register. The barrel shifter (Figure 3. 7) is described in 

LOGIC-III in Appendix B.3. A standard cell layout for this shifter was generated 

using OASIS. 

The barrel shifter completes the shift operation in one machine cycle time. The 

linear shifter takes more than one machine cycle time because a shift by amount n 

is done with n linear shifter shifts which takes n clock time periods. Simulations 
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Figure 3.6: 32-bit Adder using 8-bit Parallel Prefix Adders. 

indicated that the linear shifter could function much faster than the global machine 

clock. So it was decided that the linear shifter would be clocked at the maximum 

possible speed at which it could run. This was done so that a shift would take the 

minimum number of machine cycles. This minimizes the performance penalty due to 

making the shift operation a multicycle operation. 

Conceptually the simplest way to run the linear shifter at a rate faster than the 

global machine clock would have been to have another faster clock externally input 

to the processor. But this approach was rejected because of problems like clock 

distribution, clock synchronization and extra pins required for this additional input. 

Instead, it was decided to have an internal source of clock signals to drive the linear 

shifter. This was achieved using self timed circuits to generate the necessary signals. 

The linear shifter is a self timed circuit. It was· implemented in the full-custom 

methodology. Figure 3.8 shows a part of the circuit. The lower part of the figure 

shows a chain of inverters made up of transistors q1 through q10 • Since there are an 

odd number of inverters in the chain, there exists a possibility of oscillation when the 

output of the rightmost inverter can reach the input of the leftmost inverter. This is 

possible when the signal go is high. A counter stores the value of the shift amount in 

a shift instruction and decrements it with each shift. The signal go remains high as 
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Figure 3. 7: 8-bit Barrel Shifter. 
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Figure 3.8: Shift register circuit including a ring oscillator for generating shift signals. 

long as the counter value is non-zero. 

The W /1 ratios of transistors q7 through q10 in Figure 3.8 have been chosen 

carefully so as to provide the desired frequency of oscillation (which allows reliable 

shifting). Transistors q3 through q6 have exceptionally large W /1 ratios2 to allow 

them to drive phil and phi2 of all the 32 shift register stages [WE85]. 

2Width/Length ratios qs:40, q4:80, qs:25, qs:50. 
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Program Counter 

The Program Counter (PC) closely follows the organization given in [Cho89]. There 

is an incrementer for incrementing the value of the PC to the next sequential value. 

Also there is a displacement adder for adding to the PC branch displacements etc .. 

We have used two adders in the PC unit. These adders are similar to the one in 

the ALU because the time required for generating a new address by the PC unit or 

the time for computing a new result by the ALU must both satisfy similar timing 

requirements. 

Instruction Register and Decode Circuitry 

The important parts of this unit are a register array and a decoder array [pagel51-

158, [Cho89]]. The register array is implemented as a shift register of two or three 

stages for each bit in the instruction. This array serves as the input to the decoder 

array which generates the control signals for various units. The decoder array is 

implemented in standard cells with the help of OASIS. 

3.3 Implementing DLX at Various Design Points 

The first design point to be implemented was one where all instructions have uniform 

cycle length. This implementation contained a ripple carry adder in the AL U and a 

barrel shifter in the shifter unit. The PC adders were two ripple carry adders. 

The second design point implemented was one with a parallel prefix adder in the 

ALU and a linear shifter. The PC unit, as above, contained two parallel prefix adders. 

The third implementation used 4 cascaded 8-bit parallel prefix adders (Figure 3.6) 

in the ALU and PC units and retained the linear shifter. 

Because of the use of a barrel shifter, each shift operation in the first implementa­

tion took only one cycle. This implementation followed the one instruction per cycle 

paradigm followed by most RISC implementations today [GM87]. 

The second and third implementations took more than one cycle for shift amounts 

greater than one. The reason for this is that a shift by amount n is done by n successive 
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shifts on the linear shifter (Figure 3.8). In these implementations, the pipeline was 

stalled till the shift operation was completed. 
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Chapter 4 

Results and Applications 

In this chapter area-time measures of the various DLX implementations are given 

and the significance of the various measures is explained. The possible applications 

of this work are mentioned in the last section. 

4.1 Area-Time Measurements 

The results of the simulations carried out to determine the worst case processor cycle 

time are given in Section 4.1.1 . The area of the layouts of the various units can be 

found in Section 4.1.2 . 

4.1.1 Simulation of DLX 

Several simulation tools were used for testing the various units individually and then 

the complete system. 

The Register File (RF) unit was simulated completely using CAzM [ERN+89]. 

This was done because switch level simulation tools failed to accurately simulate the 

6-transistor memory cell. However, the complete 32 by 32 RF was not simulated 

using CAzM at the same time because of the very large amount of simulation time 

required. Instead, one complete row together with one complete column in the 32 

by 32 register file was selected and simulated. This was done because involving a 

complete row would accurately model the total capacitances on the bit and biLb lines 



unit delay (ns) 

ALU with Ripple Carry Adder 93 

ALU with Parallel Prefix Adder (PPA) 33 

ALU with 4 8-bit PPA 66 

Barrel Shifter 27 

Linear Shifter (worst case time) 320 

Table 4.1: Delay Figures for ALU and Shifter unit. 

(Figure 3.3) [page 52, [Cho89Jl and including the column would accurately reflect the 

total wordline delays [page 53, [Cho89]]. It was found that the worst case delays were 

10 ns to either read or write from the register file unit alone. 

However, all control signals are generated by the controller which has a worst case 

delay of 4 ns and then the signals are distributed by large AND drivers [page 48, 

[Cho89Jl which have a worst case delay of 6 ns. Also if some functional unit puts 

some data on a bus there may be a maximum delay of up to 3 ns. 

So the register file mentioned earlier actually has a read/write time of 10+4+6 ns 

i.e. 20 ns when it is integrated into the complete system. 

The ALU and Shifter units were tested with LDVSIM [Bri89] for functionality and 

then switch level simulation was done using RNL [1.187] to determine their delays. 

The results of their simulation are presented in Table 4.1. The delay figures in the 

table include all the delays including the controller delay, buffer delay and time taken 

for the result to be written on the bus. The program counter unit is faster than the 

AL U by 3 ns and it is not on the critical path. 

4.1.2 Layout 

The first design point implementation with a barrel shifter and a ripple carry adder 

in shown in Figure 4.1. The area figures for the various datapath units in this im­

plementation are given in Table 4.2. The datapath areas with a linear shifter and 

various adders are in Tables 4.3 and 4.4. 
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Figure 4.1: The Datapath using a Ripple Carry Adder and a Barrel Shifter. 

unit area (P) 

Register File 3 X 106 

32-bit Ripple Carry ALU 3.2 X 106 

Barrel Shifter 1.9 X 106 

PC with 32-bit Ripple Carry Adder 4.2 X 106 

Table 4.2: Area Figures for the Datapath with Barrel-Shifter (First Implementation). 

unit area (.X2 ) 

Register File 3 X 106 

Shifter 0.2 X 106 

ALU with 32-bit Parallel Prefix Adder 3.8 X 106 

PC with 32-bit Parallel Prefix Adder 5.4 X 106 

Table 4.3: Area Figures for the Datapath with a 32-bit Parallel Prefix Adder (Second 

Implementation). 
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unit area ( ,\2 ) 

Register File 3 X 106 

Shifter 0.2 X 106 

ALU with 4 8-bit Parallel Prefix Adder 3.3 X 106 

PC with 4 8-bit Parallel Prefix Adder 4.4 X 106 

Table 4.4: Area Figures for the Datapath with 4 8-bit Parallel Prefix Adders (Third 

Implementation). 

4.2 Comparison of Various Implementations 

According to our simulations the ALU operation is in the critial path of the data path 

operation. Therefore, the speed of AL U operation, including writing result on to the 

bus, determines the cycle time for the datapath. From Table 4.1 it is clear that the 

cycle times for the three implementations are 93ns, 33ns and 66ns respectively. In 

the latter two implementations we have a linear shifter which takes 320ns to complete 

its operation in the worst case. So it is clear that in the second implementation shift 

takes 9 cycles ( 320ns/33ns - 1 ) more than an implementation which completes a 

shift instruction in 1 cycle. In the third implementation the shift instruction takes 4 

cycles more than an implementation which completes a shift instruction in 1 cycle. 

The CPI figure for the DLX processor with single-cycle instructions only is 1.42 

(page 277, [HP90Jl. With shifts taking 9 extra cycles the new value of CPI is 1.0 x 

1.42 + .05 x 9 which equals 1.87. With shifts taking 4 extra cycles the CPI value 

turns out to be 1.0 x 1.42 + .05 x 4 which is 1.62. 

The CPI value for the three implementations in order are 1.42, 1.87 and 1.62. 

However, because the cycle time for the second processor is smaller than the others, 

it is the fastest design with a time per instruction value of 1.87 x 33ns which equals 

61. 7ns. Table 4.5 summarizes our findings. 

Table 4.5 clearly shows that even with a higher value of CPI we can obtain better 

performance if the machine cycle time is small enough. Furthermore, the area taken 

by the faster design can be the same as the area occupied by the slower design (First 
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design cycle time ( ns) CPI time per instruction ( ns) datapath area ( ).2) 

original 93 1.42 132 9.3 X 106 

second 33 1.87 61.7 9.4 X 106 

third 66 1.62 106.9 7.9 X 106 

Table 4.5: CPI, Time per Instruction and Area Comparison of Three Implementations 

and Second designs) or even less (First and Third designs). 

4.3 Applications 

The instruction mix skew between the AL U and Shift class instructions enabled 

us to redesign our datapath to obtain better performance within the same area. 

This indicates the possibility of targeting application areas which exhibit significant 

instruction-mix skew. Two such areas are the X terminal and the embedded con­

troller. 

4.3.1 X Terminals 

X Terminals are primarily used to run the X Windows software. The tasks involved 

are providing a graphic window interface and network communications both of which 

are likely to have a large instruction-mix skew. 

The instruction mix of network communication programs 1 as reported in Smith 

[Smi78] is highly skewed. Shifts account for less than 1% of the total instruction mix 

whereas 37.85% of the instructions are branch instructions and Load/Store instruc­

tions constitute another 36.68% of the instruction mix. 

This gives an idea of the nature of the instruction mix skew arising as a result 

of the X terminal executing network communication software and suggests the kind 

of trade-offs which may be necessary to tailor a RISC processor for such a task. It 

1 For an IBM370 /155 running only network communication programs. 
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points to the possible tradeoffs between specialized branch prediction hardware, larger 

register file and cache and a reduced shifter and arithmetic unit. 

4.3.2 Embedded Controller 

Many microprocessors are used as a part of a control system rather than the CPU of 

a general purpose computer. They are used in diverse environments: from desktop 

peripherals like printers [Wir91] and scanners to audio-visual equipment and factory 

automation machinery to automobiles. Typically these microprocessors execute very 

small number of programs in their life time. The dynamic instruction mix of these 

applications can have potentially a large skew as compared to the instruction mix of 

a set of typical application programs run on a UNIX workstation. Therefore there is 

a large potential for an improved processor design based on these instruction mixes. 

With the introduction of RISC processors for embedded control applications [Tho90J 

this work becomes more important as balanced designs can offer an area~constrained 

design (with faster time) or a time-constrained design (with reduced area) for the 

same task. 

RISC is expected to successfully penetrate the computer peripheral portion of the 

embedded control market [Ros90] where performance has higher priority over price. 

Already RISC microprocessors are being used for near-real-time applications [Wei91J 

like laser printer control [Wir91], graphics and data staging. Since these tasks are 

very specialized, the RISC processor balanced for the instruction skew can potentially 

offer a better performance. This is an application of area-constrained balancing, where 

improved performance is the point of interest. 
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Chapter 5 

Conclusion and Further Work 

This chapter summarizes the lessons learned from the experiment carried out and 

points to its implications. It concludes with the work ·in progress and gives directions 

for future work . 

5.1 Implementations Balanced for Instruction-Mix 

Skew 

Our starting point was based on the premise : Silicon is an expensive resource and 

hence it should be allocated to only those functions that can justify it by the frequency 

of their use. Starting from this principle, we studied the instruction mix skew of 

two instruction classes for some general purpose programs typically run on a UNIX 

machine. We then designed a RISC processor datapath which 'violated' the RISC 

principle by having a multicycle shift operation. This design was motivated by the 

instruction mix skew mentioned earlier . But this datapath at the same time had 

a better performance than the one with uniform-length instruction execution times. 

It seems that RISC processor designers have fallen into the rut of uniform-length 

instruction execution times. The experiments we have conducted demonstrate that 

there is nothing sacrosanct about uniform-length instruction execution times. If our 

instruction-mix skew information so indicates, then we should be free to do trade-offs 

between the hardware units so that the resource allocated to each is justified by the 



frequency of use of the unit. Such trade-offs lead to a balanced design with a potential 

gain in performance over processors without such balancing and these trade-offs are 

in keeping with the RISC spirit. 

Our experiments have demonstrated the feasibility of performance gain when two 

small datapath elements were redesigned and the design was area constrained. In 

RISC microprocessors [Per89J there are many other components like on-chip caches, 

floating point units, register files etc.. Redesigning these components so that the 

resources they take (area) match their frequency of use will potentially free up areas 

from some components which can be used by other components. In such an area con­

strained redesign there exists the possibility of obtaining performance gains beyond 

that obtainable by balancing only the datapath. 

5.2 Extensions to this Work 

5.2.1 Compiler 

We are currently working on the GCC compiler for DLX [Sta89]. We intend to modify 

it for running it on the next version of the DLX processor under design. Currently, the 

multicycle shift instruction involves stalling the pipeline for the duration of the shift 

operation. During this phase no other instruction is fetched and the other functional 

units remain idle. An alternative to this would be to give the shift operation a 

fixed number of cycles to complete and while shifting is being done we can fetch 

independent instructions and execute them, thus achieving a better utilization of 

hardware resources. 

Towards this end we are in the process of modifying the GCC compiler. The first 

stage in the modification has been completed where a fixed number of NOP slots 

have been appended after each operation of the shift class. This has been done by a 

modification of the machine description files for the DLX machine. 

The next stage is to analyze the code to find out independent machine instructions 

which can fill up the empty slots after the shift instructions. This work is under 

progress. 
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5.2.2 Further Work on RISC Core Datapath 

Since in our experiment the register file was not on the critical path, it was not 

included in the trade-off studies done. However, the size and organization of the 

register file has a significant impact on the number of load/ store instructions executed 

by a program. 

The register file versus load/ store frequency follows the knee-curve be­

haviour[pages 450-451, [HP90JJ. When an instruction exhibits a high percentage of 

load/ store instructions (leading to a higher CPI), a natural question to ask is whether 

the register file size is below the knee of the curve and more area needs to be allocated 

to it. Similarly, the register file may be overdesigned (size is considerably higher than 

the knee). Under such circumstances a reallocation of register file area to other com­

ponents may lead to a better performance. Further experiments need to be devised 

to study this aspect of the size of the register file vs other components based on the 

instruction mix. 

5.2.3 Caches 

The dependence of miss rates on the cache size follows a knee curve [HP90]. We need 

to quantize this relationship with respect to cache size vs cycle time/CPI trade-off. 

How the choice of designs for sense-amplifiers, tag-comparators and line drivers (and 

the areas required by the different designs) affects cache performance is not known 

quantitatively. We need to be able to independently manipulate cache size and cache 

circuit design to vary the CPI and the cycle time. Building such models will help us 

better understand the answer to the underlying question of when to reallocate some 

area from/to cache to reduce/increase CPI. 

5.2.4 Control 

As the processor is balanced, there are more and more instructions which can have 

non-uniform cycle length. This may lead to a more complex control unit which then 

takes up more area. At the turning point, the benefits of balancing the processor will 
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be outweighed by the increase in area and delay of the complex control unit. Where 

this point occurs is important to know for a given set of instructions. 

5.2.5 Multiply/Divide and Floating Point Hardware. 

In many application domains, to do any useful job the processor must have the 

hardware for multiply/divide and it must also perform floating point operations. 

Extending the idea of balanced design here is needed to study the performance issues 

depending on the amount of area resource given to each functional unit and the 

instruction mix. 

5.2.6 Balanced Design for Specialized Application Domain. 

After the issues in Sections 5.2.1 to 5.2.5 are more clearly understood, a validation 

of our ideas would require the complete design of a processor. This processor would 

be designed for a specific application domain like the X terminal processor using 

balanced design techniques (taking into account the instruction-mix skew). We would 

then compare this balanced processor with a straightforward implementation of the 

same processor (with each instruction taking uniform time to execute) similar to our 

experiments described in Chapter 3. 
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Appendix A 

The D LX architecture 

A.l The DLX Instruction Set 

The complete instruction set for DLX appears in the next page. 

A.2 DLX Instruction Formats 

The figure containing the D LX instruction formats appears after the next page. 

All DLX instructiona are 32 bits with a 6-bit primary opcode. 

A.3 Bit Assignment for Instructions 

In the opcode tables below the first column contains the mnemonic opcode. The 

second column indicates the instruction format. RFMT refers to the format of the 

register-register instructions. (See Appendix A.2) JFMT refers to the format of the 

jump instructions and IFMT is the format of the instructions with am immediate 

operand. The third column contains the bit assignments for the instructions. Here 

"rrrrr" or "RRRRR" refer to the 5-bit register address. "ooo ... ooo" is the 26-bit offset 

in the jump instructions and "iiiiiiiiiiiiiiii" is the 16-bit immediate quantity. "x .. x" 

refers to dont cares. These tables have been decoded from the software available with 

[HP90]. 



Instruction type I opcode Instruction meaning 

Data transfers Move data between registers and memory, or between the integer and FP or 
special registers; only memory address mode is 16·bit displacement+ contents of 

I aGPR 

LB,LBU,SB Load byte. load byte unsigned, store byte 

LH,LHU,SH Load half word. load half word unsigned, store halfword 

LI1,SW Load word. store word (to/from integer registers) 

LF,LD,SF,SD Load SP float, load DP float, store SP float. store DP float 

' MOVI2S, MOVS2I Move from/to GPR to/from a special register I 
MOVF, MOVD Copy one floating-point register or a DP pair to another register or pair i 
MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers I 
Arithmetic I Logical Operations on integer or logical data in GPRs; signed arithmetics trap on ' ' 

L.. -- -------- ---- overnow I 

I ADD ADDT ADDU ADDUT . ' . Add add immediate (all immediaies are 16 bits}· signed and unsigned 

SUB,SUBI,SUBU,SUBUI Subtract, subtract immediate; signed and unsigned I 
MULT,MULTU,DIV,DIVU Multiply and divide. signed and unsigned; operands must be floating-point registers~ 

I all operations take and yield 32-bit values 

AND,ANDI And, and immediate 

OR,OR!,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate ' 
LHI Load high immediate-loads upper half of register wiL~ immediate 

SLL, SRL, SRA, SLLI, SRLI, Shifts: both immediate (S I l and variable form (S _l ; shifts are shift left logical, 
SRAI right logical, right arithmetic ' 
s 's I Set conditional:·· "may beLT, GT, LE, GE, EQ, NE 

Control Conditional branches and jumps; PC-relative or through register 

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4 

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4 

J, JR Jumps: 26-bit offset from PC (J) or target in register (JR) 

JAL, JALR Jump and link: save PC+4 to R3I. target is PC-relative (JAL) or a register (JALR) 

TRAP Transfer to operating system at a vectored address; sec Chapter 5 

RFE Return to user code from an exception; resfore user mode; see Chapter 5 

Floating point Floating~point operations on DP and SP formats 

ADDO,ADDF Add DP, SP numbers 

SUBD,SUBF Subtract DP, SP numbers 

MULTD,MULTF Multiply DP, SP floating poim 

DIVD,DIVF Divide DP, SP floating point 

CVTF2D, CVTF2I, CVTD2F, Convert instructions: CVTx2y converts from type x to type y, where x andy are one 
CVTD2I, CVTI2F 1 CVTI2D of I (Integer}. D (Double precision), or F (Single precision). Both operands are in the 

FP registers 

__ D, __ F DP and SP compares: "_ .. may be L T, GT 1 LE, GE 1 EQ, NE; sets comparison bit in FP 
status register 

Figure A.l: Complete List of instructions in DLX. [HP90] 
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I - type instruction 
6 5 5 16 

rd Immediate 

Encodes: Loads and stores of bytes, words, half-words 
All immediates (rd .. rs1 op immediate) 

Conditional branch instructions (rs1 is register, rd unused) 
Jump register, Jump and link register 

(rd"' 0, rs"' destination, immediate = 0) 

R - type instruction 

I 
6 5 5 5 11 

Opeode I rs1 I rs2 rd func 

Register-register ALU operations: rd - rs 1 func rs2 
Function encodes the data path operation: Add, Sub, . 
Read/write special registers and moves 

J - type instruction 
6 26 

Offset added to PC 

Jump and jump and link 
Trap and AFE 

Figure A.2: Instruction layout for DLX. [HP90] 

37 



OPCODE FORMAT 

SPECIAL RFMT 

FPARITH RFMT 

J JFMT 

JAL JFMT 

BEQZ IFMT 

BNEZ IFMT 

BFPT IFMT 

BFPF IFMT 

ADDI IFMT 

ADDUI IFMT 

SUBI IFMT 

SUBUI IFMT 

ANDI IFMT 

DRI IFMT 

OPCODE TABLES FOR DLX 

DPCODE LIST 1: Primary Opcodes 

BIT ASSIGNMENT FOR MACHINE INSTRUCTION 

0000 OOrr rrrR RRRR rrrr rxxx xxvv vvvv 

-- see OPCODE LIST 2 

0000 01rr rrrR RRRR rrrr rxxx xxvv vvvv 

-- see OPCODE LIST 3 

0000 10oo 0000 0000 0000 0000 0000 0000 

0000 11oo 0000 0000 0000 0000 0000 0000 

0001 OOrr rrrR RRRR iiii iiii iiii iiii 

0001 Oirr rrrR RRRR iiii iiii iiii iiii 

0001 10rr rrrR RRRR llll iiii iiii iiii 

0001 11rr rrrR RRRR iiii iiii iiii iiii 

0010 OOrr rrrR RRRR iiii iiii iiii iiii 

0010 01rr rrrR RRRR iiii iiii iiii iiii 

0010 10rr rrrR RRRR iiii iiii iiii iiii 

0010 11rr rrrR RRRR iiii iiii iiii iiii 

0011 OOrr rrrR RRRR iiii iiii iiii iiii 

0011 01rr rrrR RRRR 2111 iiii iiii iiii 
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6f:: 

>>>> >>>> >>>> >>>> HHHH HIII IIOl OOOl 

>>>T T>T> >>>> 111> HHHB HIII IIlO OOOl 

11ee eeee eeee eTTe HHHH HIII IIQO OOOl 

eeeT eeee e>ee 1eee HHHH HIII IIll lllO 

TTTT e1ee ,,,, eeeT HHBH HIII IIO> lllO 

eeee eeee eeee ,,,, HHHH HIII IIlO lllO 

ee1e ee1e eeee 1eee HHHH HIII IIQO >>>O 

eeee eeee eTee eeee HHHH HIII IIll OllO 

,,,, ,,,, ,,,, ,,,, HHHH HIII IIO> O>>O 

eeee eeee eeee eeee HHHH HIII IIlO Ol>O 

TTTT eee1 e>Te eee1 HHHH HIII IIQQ OllO 

,,,, ,,,, ,,,, ,,,, HHHH HIII II>> >O>O 

eeee eeee eeee eeee HHHH HIII IIOl lO>O 

eeee eeee eeee eeee HHHH HIII IIlO lOlO 

,,,, ,,,, ,,,, ,,,, HHHH HIII IIQO >O>O 

eeee eeee eeee eeee HHHH HIII II>l OOlO 

eeee eeee eeee eeee HHHH HIII IIQl OOlO 

TTeT ''ee eeee eeee HHHH HIII IIlO OOlO 

TeTT Teee eeee eeee HHHH HIII IIQO OOlO 

,,,, ,,,, ,,,, ,,,, HHHH HIII II>> >>OO 

TTeT eeTT eeTT TTee HHHH HIII IIOl llOO 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

lWdi 

S3H 

H1 

H1 

S3H 

S3H 

I3DS 

I31S 

Il!lS 

Il1S 

I3NS 

Ib3S 

s:;m 

S3H 

S3H 

S3H 

H1\ff 

Hf 

d\fHl 

3dH 

IH1 

IHDX 



LW 

LBU 

LHU 

LF 

LD 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

SB IFMT 

SH IFMT 

RES IFMT 

SW IFMT 

RES 

RES 

SF 

SD 

SEQUI 

SNEUI 

SLTUI 

SGTUI 

SLEUI 

SGEUI 

RES 

RES 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

1000 11rr rrrR RRRR iiii iiii iiii iiii 

1001 OOrr rrrR RRRR iiii iiii iiii 1111 

1001 01rr rrrR RRRR iiii iiii iiii 1111 

1001 10rr rrrR RRRR iiii iiii iiii iiii 

1001 11rr rrrR RRRR iiii iiii iiii iiii 

1010 OOrr rrrR RRRR iiii iiii iiii iiii 

1010 01rr rrrR RRRR iiii iiii iiii iiii 

1010 10rr rrrR RRRR iiii lJ.J.J. iiii iiii 

1010 11rr rrrR RRRR iiii iiii iiii iiii 

1011 OOrr rrrR RRRR iiii iiii iiii 1111 

1011 01rr rrrR RRRR iiii iiii iiii 1111 

1011 10rr rrrR RRRR iiii iiii iiii iiii 

1011 11rr rrrR RRRR iiii iiii iiii iiii 

1100 OOrr rrrR RRRR iiii iiii iiii iiii 

1100 01rr rrrR RRRR iiii iiii iiii iiii 

1100 10rr rrrR RRRR iiii iiii iiii 1111 

1100 11rr rrrR RRRR iiii iiii iiii iiii 

1101 OOrr rrrR RRRR iiii iiii iiii 1111 

1101 01rr rrrR RRRR iiii iiii iiii iiii 

1101 10rr rrrR RRRR iiii iiii iiii iiii 

1101 11rr rrrR RRRR iiii iiii iiii iiii 

40 



RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

SLLI 

RES 

SRLI 

SRAI 

SLL 

RES 

SRL 

SRA 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

IFMT 

1110 OOrr rrrR RRRR iiii ~~~~ ~~~~ ~~~~ 

1110 01rr rrrR RRRR iiii iiii iiii iiii 

1110 10rr rrrR RRRR ~~~~ iiii iiii iiii 

1110 11rr rrrR RRRR iiii iiii iiii ~~~~ 

1111 OOrr rrrR RRRR iiii iiii iiii iiii 

1111 01rr rrrR RRRR ~~~~ ~~~~ iiii iiii 

1111 10rr rrrR RRRR iiii iiii ~~~~ ~~~~ 

1111 11rr rrrR RRRR iiii iiii ~~~~ ~~~~ 

OPCODE LIST 2 

INTEGER OPERATIONS AND OTHER OPCODES 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0000 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0001 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0010 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0011 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0100 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0101 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0110 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0111 
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RES 

RES 

RES 

RES 

TRAP 

RES 

RES 

RES 

SEQU 

SNEU 

SLTU 

SGTU 

SLEU 

SGEU 

RES 

RES 

MULT 

MULTU 

DIV 

DIVU 

RES 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1000 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1001 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1010 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1011 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1100 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1101 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1110 

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1111 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0000 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0001 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0010 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0011 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0100 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0101 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0110 

0000 OOrr rrrR RRRR rrrr rxxx xx01 0111 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1000 

0000 OOrr rrrR RRRR rrrr rxxx xxOi 1001 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1010 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1011 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1100 
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RES RFMT 

RES RFMT 

RES RFMT 

ADD RFMT 

ADDU RFMT 

SUB RFMT 

SUBU RFMT 

AND RFMT 

OR RFMT 

XOR RFMT 

RES RFMT 

SEQ RFMT 

SNE RFMT 

SLT RFMT 

SGT RFMT 

SLE RFMT 

SGE RFMT 

RES RFMT 

RES RFMT 

MOVI2S RFMT 

MOVS2I RFMT 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1101 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1110 

0000 OOrr rrrR RRRR rrrr rxxx xx01 1111 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0000 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0001 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0010 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0011 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0100 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0101 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0110 

0000 OOrr rrrR RRRR rrrr rxxx xx10 0111 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1000 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1001 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1010 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1011 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1100 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1101 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1t10 

0000 OOrr rrrR RRRR rrrr rxxx xx10 1111 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0000 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0001 
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MOVF 

MOVD 

RFMT 

RFMT 

MOVFP2I RFMT 

MOVI2FP RFMT 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

ADDF RFMT 

SUBF RFMT 

MULTF RFMT 

DIVF RFMT 

ADDD RFMT 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0010 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0011 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0100 

0000 OOrr rrrR RRRR rrrr rxxx xxii 0101 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0110 

0000 OOrr rrrR RRRR rrrr rxxx xx11 0111 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1000 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1001 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1010 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1011 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1100 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1101 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1110 

0000 OOrr rrrR RRRR rrrr rxxx xx11 1111 

OPCODE LIST 3 

FLOATING POINT OPERATIONS 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0000 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0001 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0010 

0000 Oirr rrrR RRRR rrrr rxxx xxOO 0011 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0100 
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SUED RFMT 

MULTD RFMT 

DIVD RFMT 

CVTF2D RFMT 

CVTF2I RFMT 

CVTD2F RFMT 

CVTD2I RFMT 

CVTI2F RFMT 

CVTI2D RFMT 

RES RFMT 

RES RFMT 

EQF 

NEF 

LTF 

GTF 

LEF 

GEF 

RES 

RES 

EQD 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0101 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0110 

0000 01rr rrrR RRRR rrrr rxxx xxOO 0111 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1000 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1001 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1010 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1011 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1100 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1101 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1110 

0000 01rr rrrR RRRR rrrr rxxx xxOO 1111 

0000 01rr rrrR RRRR rrrr rxxx xx01 0000 

0000 01rr rrrR RRRR rrrr rxxx xx01 0001 

0000 01rr rrrR RRRR rrrr rxxx xx01 0010 

0000 01rr rrrR RRRR rrrr rxxx xx01 0011 

0000 01rr rrrR RRRR rrrr rxxx xx01 0100 

0000 01rr rrrR RRRR rrrr rxxx xx01 0101 

0000 01rr rrrR RRRR rrrr rxxx xx01 0110 

0000 01rr rrrR RRRR rrrr rxxx xx01 0111 

0000 01rr rrrR RRRR rrrr rxxx xx01 1000 
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NED 

LTD 

GTD 

LED 

GED 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

0000 01rr rrrR RRRR rrrr rxxx xx01 1001 

0000 01rr rrrR RRRR rrrr rxxx xx01 1010 

0000 01rr rrrR RRRR rrrr rxxx xx01 1011 

0000 01rr rrrR RRRR rrrr rxxx xx01 1100 

0000 01rr rrrR RRRR rrrr rxxx xx01 1101 

· 0000 01rr rrrR RRRR rrrr rxxx xx01 1110 

0000 01rr rrrR RRRR rrrr rxxx xx01 1111 

0000 01rr rrrR RRRR rrrr rxxx xx10 0000 

0000 01rr rrrR RRRR rrrr rxxx xx10 0001 

0000 01rr rrrR RRRR rrrr rxxx xx10 0010 

0000 Oirr rrrR RRRR rrrr rxxx xx10 0011 

0000 01rr rrrR RRRR rrrr rxxx xx10 0100 

0000 01rr rrrR RRRR rrrr rxxx xx10 0101 

0000 01rr rrrR RRRR rrrr rxxx xx10 0110 

0000 Olrr rrrR RRRR rrrr rxxx xx10 0111 

0000 01rr rrrR RRRR rrrr rxxx xx10 1000 

0000 01rr rrrR RRRR rrrr rxxx xx10 1001 

0000 01rr rrrR RRRR rrrr rxxx xx10 1010 

0000 01rr rrrR RRRR rrrr rxxx xx10 1011 

0000 01rr rrrR RRRR rrrr rxxx xx10 1100 

0000 01rr rrrR RRRR rrrr rxxx xx10 1101 

0000 01rr rrrR RRRR rrrr rxxx xx10 1110 

0000 01rr rrrR RRRR rrrr rxxx xx10 1111 
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RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RES 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

RFMT 

0000 01rr rrrR RRRR rrrr rxxx xx11 0000 

0000 01rr rrrR RRRR rrrr rxxx xx11 0001 

0000 01rr rrrR RRRR rrrr rxxx xx11 0010 

0000 01rr rrrR RRRR rrrr rxxx xx11 0011 

0000 01rr rrrR RRRR rrrr rxxx xx11 0100 

0000 01rr rrrR RRRR rrrr rxxx xx11 0101 

0000 01rr rrrR RRRR rrrr rxxx xx11 0110 

0000 01rr rrrR RRRR rrrr rxxx xx11 0111 

0000 01rr rrrR RRRR rrrr rxxx xx11 1000 

0000 01rr rrrR RRRR rrrr rxxx xx11 1001 

0000 01rr rrrR RRRR rrrr rxxx xx11 1010 

0000 01rr rrrR RRRR rrrr rxxx xx11 1011 

0000 01rr rrrR RRRR rrrr rxxx xx11 1100 

0000 01rr rrrR RRRR rrrr rxxx xx11 1101 

0000 01rr rrrR RRRR rrrr rxxx xx11 1110 

0000 01rr rrrR RRRR rrrr rxxx xx11 1111 
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Appendix B 

The LOGIC III Code for the 

Variable Datapath Elements 

The next three sections describe a 32-bit ripple carry adder, a 32-bit parallel prefix 

adder and finally a 32-bit barrel shifter in LOGIC III. These descriptions are generic 

and can be tailored to any size of the adder or shifter. However, the description of 

the last two functional units requires that the operand size be an exponent of 2. 



B.l Ripple Carry Adder: 32 bits 

(******************************************************) 

(******************************************************) 

(* *) 

(* The LOGIC-III code below defines a generic ripple *) 

(*carry adder of any size N . 

(*Circuit adder32 is a 32 bit instantiation of the *) 

(*ripple 

(*adder 

carry adder defined by the net module 

(* A and B are 32bit wide primary 

(* inputs. cin is the carry in to the 

(* adder. s is the result of the 

(* addition and cout is the 

(* carry out result 

(* 

(******************************************************) 

(******************************************************) 

GLOBAL 

(* Include the OASIS standard cell definition libraries *) 

includedef( "/usr/oasis/lib/scmos2.0/standard.def"); 

END. 

(* LOGIC MODULE FA defines a Full Adder unit 

which is used to build the ripplecarry 

adder ~n the NET MODULE adder *) 

LOGIC_MODULE FA(Cin,a,b:INPUT;sum,Cout:OUTPUT;); 

BEGIN if(-Cin)then 

begin 

sum:=a XOR b; 
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Cout:=a AND b; 

end 

else 

begin 

end; 

sum:=a XNOR b; 

Gout:= a ORb; 

END.{LOGIC_MODULE FA} 

NET_MODULE adder(N:INTEGER; A,B:array[O .. N-1]of INPUT; 

Gin: INPUT; Cout:OUTPUT; S:array[O .. N-1]of OUTPUT;); 

VAR i:INTEGER; 

C:array[O .. N] of NODE; 

BEGIN 

connect(C[O],Cin); 

for i:=O to N-1 do 

FA(C[i],A[i],B[i],S[i] ,C[i+1]); 

connect(Cout,C[N]); 

END.{NET_MODULE adder} 

(* Circuit adder32 is a 32 bit instantiation of the 

NET MODULE adder declared above *) 

CIRCUIT adder32; 

VAR 

A,B:array[O .. 31]of input; 

cin:input; 

50 



cout:output; 

S:array[O .. 31]of output; 

(* A and B are 32bit wide primary 

inputs. cin is the carry in to the 

adder. S is the result of the 

addition and cout is the 

carry out result *) 

BEGIN 

adder(32,A,B,cin,cout,S); 

END.{CIRCUIT adder32} 
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B.2 Parallel Prefix Adder: 32 bits 

(******************************************************) 

(******************************************************) 

(* The LOGIC-III code belaY defines a gener1c parallel*) 

(*prefix adder of a size Yhich is an exponent of 2. *) 

(*Circuit adder32 is a 32 bit instantiation of the *) 

(*parallel prefix adder defined by the net module *) 

(*adder *) 

(* 

(* 

(* 

(* 

(* 

(* 

A and B are 32bit Yide primary 

inputs. cin is the carry in to 

adder. s lS the result of the 

addition and cout is the 

carry out result 

the 

*) 

*) 

*) 

*) 

*) 

*) 

(******************************************************) 

(******************************************************) 

GLOBAL 

includedef("/usr/oasis/lib/scmos2.0/standard.def"); 

END. 

LOGIC_MODULE A_cell(a,b,c:input;g,p,s:output;); 

BEGIN 

g:= a AND b; 

s:= a XDR b XDR c; 

p:= a OR b; 

END.{LDGIC_MODULE A_cell} 
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LDGIC_MODULE B_cell(gj1k,pj1k,gij,pij:input; 

gik, pik: output; 

ci:input;cj1:output;); 

{ ct last op par } 

BEGIN 

pik:=pij AND pj1k; 

gik:=gj1k DR (pj1k AND gij); 

cj1:=(pij AND ci)DR gij; 

{ct:=ci;} 

END. {LOGIC_MDDULE B_cell} 

LOGIC_MODULE carrygen(g,p,c:input;cout:output;); 

BEGIN 

cout:=g OR ( p AND c); 

END.{LOGIC_MODULE carrygen} 

NET_MODULE adder(N:integer;A,B:array[O .. N-1]of input; 

S:array[O .. N-1]of output;cin:input; 

cout:output;); 

VAR 

g,p,C:array[O .. N-1] of node; 

G,P:array[O .. N-1,0 .. N-1]of node; 

tmpr:node; 

j,i,k,l:integer; 

BEGIN 
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connect(cin,C[O]); 

for i:=O to N-1 do 

A_cell(A[i],B[i],C[i] ,g[i],p[i] ,S[i]); 

j :=N/2; 

for i:=O to j-1 do 

B_cell(g[i*2+1],p[i•2+1],g[i*2] ,p[i•2], 

G[i*2+1,i*2] ,P[i*2+1,i*2] ,C[i*2] ,C[i*2+1]); 

j:=j/2; 

k:=4; 

Yhile(j>1) do 

BEGIN 

for i:=O to j-1 do 

BEGIN 

B_cell( G[k-1+i*k,k/2+i*k] , P[k-1+i*k,k/2+i•k], 

G[k/2-1+i*k,i*k] ,P[k/2-1+i*k,i*k], 

G[k-1+i*k,i*k] ,P[k-1+i*k,i*k], 

C[i*k], C[i*k+k/2]); 

END;{for i:=O to j-1 do} 

k:=2•k; 

j :=j/2; 

END;{ while(j>1) do} 

B_cell(G[N-1,N/2] ,P[N-1,N/2] ,G[N/2-1,0], 

P[N/2-1,0] ,G[N-1,0] ,P[N-1,0] ,C[O] ,C[N/2]); 

{ the first 2 C[Os] are 0 really } 

carrygen(G[N-1,0],P[N-1,0],cin,cout); 
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END.{NET_MODULE adder}. 

(*Circuit adder32 is a 32 bit instantiation of the 

parallel prefix adder defined by the net module 

adder *) 

CIRCUIT adder32; 

VAR 

(* A and B are 32bit wide primary 

inputs. cin is the carry in to the 

adder. S is the result of the 

addition and cout is the 

carry aut result *) 

A,B:array[0 .. 31]of input; 

S:array[0 .. 31]of output; 

cin:input; 

cout:output; 

BEGIN 

adder(32,A,B,S,cin,cout); 

END. 
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B.3 Barrel Shifter: 32 bits 

(******************************************************) 

(******************************************************) 

(* *) 

(* The LOGIC-III code below defines a generic ripple *) 

(*barrel shifter of a size N which is a exponent of 2.*) 

(*{shifter 32 is a 32-bit instantiation of the *) 

(*net module shifter which describes a barrel shifter.*) 

(*The input to the shifter is "in" which is 32-bits *) 

(*wide and the output of the shifter is "out" which is*) 

(*again 32-bits wide. "sh" contains the shift amount *) 

(*to be done for the 32 bit input.} *) 

(* *) 

(******************************************************) 

(******************************************************) 

GLOBAL 

includedef( "/usr/oasis/lib/scmos2.0/standard.def") 

END. 

LOGIC_MODULE selector(a,b,s:INPUT;c:OUTPUT;); 

BEGIN if(s)then 

c:=b 

else 

c:=a; 

END.{LOGIC_MODULE selector} 

NET_MDDULE shifter(N,K:INTEGER; in:array[O .. N-1]of INPUT; 

out:array[O .. N-1]of OUTPUT; 

sh:array[O .. K-1]of INPUT;); 

VAR i,j,exp,jmod:INTEGER; 
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p:array[O .. K,O .. N-1] of NODE; 

BEGIN 

exp :=1; 

for i:=O to K-1 do 

BEGIN 

for j:=O to N-1 do 

BEGIN 

jmod:=(j+exp)-((j+exp)/N)*N; 

selector(p[i+1,jl,p[i+1,jmod] ,sh[i] ,p[i,j]); 

END;{for j:=O to N-1 do} 

exp:=exp*2; 

END;{for i:=O to K-1 do} 

for j:=O to N-1 do 

BEGIN 

connect(in[j],p[K,j]); 

connect(out[j] ,p[O,j]); 

END;{ for j:=O to N-1 do} 

END.{NET_MODULE shifter} 

CIRCUIT shifter32; 

{shifter 32 is a 32-bit instantiation of the 

net module shifter which describes a barrel shifter. 

The input to the shifter is "in" which is 32-bits 

wide and the output of the shifter is "out" which is 

again 32-bits wide. "sh" contains the shift amount 

to be done for the 32 bit input.} 

VAR 
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BEGIN 

in:array[0 .. 31]of input; 

sh:array[O .. 4]of input; 

out:array[O .. 31]of output; 

shifter(32,5,in,out,sh); 

END.{CIRCUIT shifter32;} 
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