
RISC Microprocessor Implementation
with Resource Allocation

Balanced for Instruction Mix

TR91-035

August, 1991

Manish Pandey

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Aflirmative Action Institution.

RISC Microprocessor Implementation with
Resource Allocation Balanced for

Instruction Mix

by

Manish Pandey

A thesis submitted to the faculty of the University of
North Carolina at Chapel Hill in partial fulfillment of the

requirements for the degree of Master of Science in the
Department of Computer Science.

Chapel Hill, 1991

Approved by:

Akhilesh Tyagi, advisor

Yuki Watanabe, reader

Gyula. Mag6, reader

@1991

Manish Pandey

ALL RIGHTS RESERVED

11

MANISH PANDEY . RISC Microprocessor Implementation with Resource Allocation

Balanced for Instruction Mix

(Under the direction of Akhilesh Tyagi.)

Abstract

This thesis explores the Reduced Instruction Set Computer (RISC) philosophy the

most fundamental principle of which is the efficient utilizaton of the scarce silicon real

estate. It is conjectured that in keeping with the RISC philosophy one can tailor the

datapath to allow each unit in it an area which is justified by the frequency of use of

the unit. This would allow one the ability to reallocate the area of different units in

a processor to obtain a balanced implementation for a gain in performance.

In an experiment to explore the feasibility of the preceding ideas the integer dat­

apath for the DLX architecture [HP90] is implemented for several design points. The

design points implemented include an implementation with a slow (ripple-carry) AL U

and a fast (barrel-shifter) shifter. This implementation supports single cycle execution

of instructions.

Another design point is implemented with a fast ALU (parallel-prefix) and a slow

. (linear shift-register) shifter. The extra area taken up by the faster adder is balanced

by the savings in area achieved by the slower shifter. In this implementation the cycle

time falls even though the CPI increases. The result is that the time per instruction

falls when the dynamic instruction mix has far fewer shift instructions than ALU

instructions. The implications are that if balancing even a small portion of the chip

leads us to a significant performance gain, surely balancing the entire chip gives us

even greater opportunities for improved performance.

Jll

Acknowledgments

I wish to thank Professor Akhilesh Tyagi for his support, guidance and encourage­

ment, and most of all for his enthusiasm, throughout the course of my research. He

left me his door open so that I could discuss problems with him at any time. When

things didn't work he offered me encouragement and advice, and this work could never

have been completed without his guidance. I also wish to thank Prof. Watanabe and

Prof. Mag6 for their valuable ideas and suggestions in this work.

I must also acknoydedge the help I got from Suresh Rajgopal here at UNC, Kris

Kozminski at MCNC and Prof Gershom Kedem at Duke University in understanding

OASIS, LDVSIM and other CAD tools used to build the processor datapath.

IV

CONTENTS

Chapter

I. Introduction

1.1 Effective Silicon Utilization

1.2 Contributions of this work .

1.3 Overview of this Thesis . .

1.3.1 Chapter 2: An Overview and Assessment of RISC

1.3.2 Chapter 3: The Design of a RISC Datapath

1.3.3 Chapter 4: Results and Applications ...

1.3.4 Chapter 5: Conclusion and Further Work

II. An Overview and Assessment of RISC

2.1 What is RISC?

2.1.1 The Underlying Philosophy

2.2 Common Features of RISC Designs .

2.3 Making Existing RISC Designs more RISCy .

2.3.1 The Scarce Silicon Real Estate

2.3.2 RISC is Balanced .

2.4 Problem Statement

2.4.1 A Balanced Datapath

2.4.2 Previous Work . . .

Ill. The Design of a RISC datapath

3.1 Design Decisions

1

2

3

3

3

3

4

4

5

5

6

6

7

7

8

9

9

9

10

10

3.1.1 Selecting an Architecture 11

3.1.2 Selection of Features for Balancing and Performance Gain 11

v

3.2

3.3

3.1.3 Selection of an Implementation Methodology

3.1.4 The Influence of MIPS-X on DLX

DLX Overview

3.2.1 The DLX Architecture .

3.2.2 Implementation Medium for DLX

3.2.3 The DLX Pipeline

3.2.4 Important DLX Subsystems .

Implementing DLX at Various Design Points

IV. Results and Applications

4.1 Area-Time Measurements

4.1.1 Simulation of DLX

4.1.2 Layout

4.2 Comparison of Various Implementations

4.3 Applications

4.3.1 X Terminals .

4.3.2 Embedded Controller

V. Conclusion and Further Work

5.1 Implementations Balanced for Instruction-Mix Skew

5.2 Extensions to this work

Appendix

5.2.1 Compiler

5.2.2 Further Work on RISC Core Datapath .

5.2.3 Caches .

5.2.4 Control

5.2.5 Multiply/Divide and Floating Point Hardware.

5.2.6 Balanced Design for Specialized Application Domain.

A The DLX architecture

A.l The DLX Instruction Set

VI

12

12

14

14

14

15

15

23

25

25

25

26

28

29

29

30

31

31

32

32

33

33

33

34

34

35

35

A.2 DLX Instruction Formats ...

A.3 Bit Assignment for Instructions

B The LOGIC III code for the variable Datapath elements

B.l Ripple Carry Adder: 32 bits .

B.2 Parallel Prefix Adder: 32 bits

B.3 Barrel Shifter: 32 bits

Bibliography

VII

3.5

35

48

49

52

56

59

LIST OF TABLES

4.1 Delay Figures for ALU and Shifter unit. 26

4.2 Area Figures for the Datapath with Barrel-Shifter (First Implementa-

tion). 27

4.3 Area Figures for the Datapath with a 32-bit Parallel Prefix Adder

(Second Implementation). 27

4.4 Area Figures for the Datapath with 4 8-bit Parallel Prefix Adders

(Third Implementation). 28

4.5 CPI, Time per Instruction and Area Comparison of Three Implemen-

tations . 29

Vlll

LIST OF FIGURES

3.1 The DLX processor: overall organization.

3.2 The DLX Pipeline

3.3 The 6-transistor 2-port memory cell used in the register file.

3.4 Ripple Carry Adder for n bits.

3.5 Parallel Prefix Adder for 8 bits.

3.6 32-bit Adder using 8-bit Parallel Prefix Adders.

3. 7 8-bit Barrel Shifter

13

16

17

18

19

20

21

3.8 Shift register circuit including a ring oscillator for generating shift signals. 22

4.1 The Datapath using a Ripple Carry Adder and a Barrel Shifter. . 27

A.l Complete List of instructions in DLX. [HP90] 36

A.2 Instruction layout for DLX. [HP90] 37

lX

Chapter 1

Introduction

Reduced Instruction Set Computer (RISC) approaches to computer design have come

of age and the strengths of the RISC approach are leading to a rapidly increasing

market share for RISC architectures at the expense of the so called Complex In­

struction Set Computer (CISC) architectures [Ros90j,[HP90],[GM87],[KF89], [Tab87].

The RISC approach started as a response to the ever increasing complexity of pro­

cessor instruction sets which was intended to close the semantic gap between the

operations provided in high-level languages (HLLs) and in the machine architectures

[Pat85],[Sta90]. However it was discovered that attempts to make instruction set

architectures close to HLLs was not the most effective strategy. Instead, compiling

programming languages to simple instructions which were most frequently used and

making the instruction cycle time as fast as technology would allow, was found to be

a better approach [Pat85].

Advances in semiconductor technology have made it possible to fabricate chips

containing hundreds of thousands of transistors operating at tens of megahertz fre­

quency [Hen84]. Single chip processors now have a performance comparable to

medium to large mainframes of the early eighties. The ever increasing packing density

of MOS circuits allows more and more parts of a system to be fitted in a single chip.

This helps avoid the speed and cost penalties of having multiple chips in the imple­

mentation of a system. Thus, MOS technology has made Very Large Scale Integration

(VLSI) an attractive implementation medium for architectures. This introduction of

VLSI has put forth a new problem - that of resource management of both area and

time. At any given time the maximum area of a VLSI chip is fixed. This makes the

chip area a valuable resource. This brings up the question - What is the best way of

allocating the chip area for obtaining maximum performance? The RISC approach

is an answer to this question but we feel that current VLSI RISC implementations

have still some way to go before the question above can be fully answered [PT91].

1.1 Effective Silicon Utilization

This thesis explores the Reduced Instruction Set Computer (RISC) philosophy,

[HP90], [GM87], [KF89], [Tab87] the most fundamental principle of which is the

efficient utilizaton of the scarce silicon real estate. RISC processors today empha­

size, among other things, the single cycle execution of instructions ([GM87], [PatS-5],

[Kat84], [HJP+83],[PGH+84],[Cho89]) in an effort to get a low value of Cycles Per

Instruction (CPI)[HP90]. However, there is nothing sacred about single cycle execu­

tion of all instructions and this may not necessarily lead to the best possible use of

silicon.

To test this hypothesis the datapath for the DLX architecture [described in Hen­

nessy, Patterson [HP90]] is implemented at various design points. The initial design

point contains a slow (ripple-carry) ALU and a fast (barrel-shifter) shifter. This im­

plementation supports single cycle execution of all instructions. Available benchmark

data for several application programs indicate that the dynamic instruction mix for

the DLX processor contains approximately 5% shift class instructions and 35% ALU

instructions. So another design point implemented is one where we use a fast AL U

(parallel-prefix) and a slow (linear shift-register) shifter. The extra area taken up

by the faster adder is balanced by the savings in area achieved by the slower shifter.

Even though each shift-class instruction now takes several cycles, the small frequency

of the shift class instructions together with the decreased cycle time actually results

in a substantial increase in performance.

This demonstrates the feasibility of obtaining performance enhancements when

the area allocation is balanced with the instruction mix and points to the need for

2

further investigation of such tradeoffs.

1.2 Contributions of this Work

The new ideas presented in this thesis are the following:

1. The concept of balanced implementation achieveable by design-space explo­

ration of datapath units in a RISC processor.

2. In RISC processor desig1:s, reducing CPI value as close to one as possible should

not be the only concern [pagel-4,[Ka88]]. Any idea of processor performance is

incomplete without the machine cycle time [page 36,[HP90]J. So, the emphasis

in RISC processor design should be shifted from reducing CPI to reducing the

value of the Average Time Per Instruction (ATPI), where

AT PI= (average CP !)(Machine Cycle Time). (1.1)

1.3 Overview of this Thesis

· The remainder of the thesis consists of the following four chapters:

1.3.1 Chapter 2 : An Overview and Assessment of RISC

"This chapter traces the origins of RISC and then goes on to explore some of the

features in contemporary RISC implementations. It ends with a discussion of the

manner in which current implementations utilize their chip area.

1.3.2 Chapter 3 : The Design of a RISC Datapath

This chapter describes the decisions made in the selection and implementation of

the DLX architecture [HP90] and then describes the more important datapath units

implemented.

3

1.3.3 Chapter 4 : Results and Applications

The area-time measures of the various datapath units in the DLX processor are

presented here. The significance of the various measures is explained and the possible

applications are mentioned.

1.3.4 Chapter 5 : Conclusion and Further Work

The basic question is how to effectively utilize silicon. Our work has answered only

a part of the question. Further work and its possible directions are given here. This

chapter also discusses a C compiler, which is a modification of the Gnu C Compiler

(GCC), targeted to our processor implementation. This compiler will possibly give

us better performance with the DLX processor than the standard GCC compiler.

4

Chapter 2

An Overview and Assessment of

RISC

The concept of RISC is not merely a set of rules dictating the use of few and simple

instructions which can be executed by a pipeline that can be implemented efficiently.

It goes beyond this. It is a design philosophy dependent on the technology available

and the application domain. In the sections that follow we describe the features of

current RISC machines. We go on to suggest that further performance gains can be

achieved in these designs by adopting a balanced design methodology.

2.1 What is RISC?

Though RISC architectures today emphasize

• instruction sets which are small and simple to decode

• highly optimized pipelines

• single cycle execution of instructions

there is no strict definition of what constitutes a RISC architecture. Rather it is the

design philosophy which defines RISC.

2.1.1 The Underlying Philosophy

According to several authors ([Kat84],{Pat85J,[GM87]) the design philosophy is basi­

cally the one where

1. Target applications are analyzed to determine operations which are most fre­

quent.

2. Those operations which are most frequent are implemented in hardware.

3. An additional instruction/resource is included only if its inclusion does not slow

more frequently used operations/resources.

The RISC philosophy espouses freedom to make tradeoffs across boundaries of

architecture and implementation, hardware and software, and compile-time and run­

time. These tradeoffs can be of different nature depending on the implementation

technology, but today with VLSI technology being the technology of choice, most

RISC processors have many features in common. We mention some of these features

in Section 2.2.

2.2 Common Features of RISC Designs

RISC designs typically have the following features in common (Tab87J,(GM87]:

1. Small register-register oriented instruction set with relatively few addressing

modes.

2. Fixed instruction formats to facilitate simple hardwired instruction decoding.

3. Instruction set designed for a specific application class.

4. Complex operations are decomposed into several simple instructions.

5. Highly pipelined datapath.

6. Large high speed register file.

7. Hierarchical memory organization with large caches for instruction and data.

6

8. Single cycle execution of instructions.

9. Heavy dependence on optimizing compilers for performance gains.

An implementation without one or more of the above features is not necessar­

ily non-RISC. What is RISC depends on the specific application domain and the

implementation technology used.

2.3 Making Existing RISC Designs More RISCy

As seen in the previous section, single cycle execution of all instructions seems to be a

goal of most RISC implementations today [GM87], [HP90], [Kat84], [Cho89], [Ka88],

[Pat85]. According to Kane [page 1-4,[Ka88]],

The goal of RISC designs is to achieve an execution rate of one machine

cycle per instruction.

This leads to a reduced value of CPI and a lower CPI is indicative of a better perfor­

mance. But CPI alone does not give one a complete picture of things for it does not

include the machine cycle time. This observation is also made in [page337,[HP90]]

where two VAX implementations, the 8650 and 8700 are compared. The 8650 has a

CPI advantage of 20% over the 8700, but the 8700 has its clock 20% faster than the

8650. The consequence of this is that they both have the same performance [page

36,[HP90Jl but it is important to note that 8700 does it with much less hardware. So

if a processor design results in increased CPI, it does not automatically follow that

its performance will go down. Performance will still improve if the increased CPI is

offset by a larger decrease in the machine cycle time.

2.3.1 The Scarce Silicon Real Estate

In [page8,[Kat84Jl Katevenis asks the question:

Soon, VLSI chips will have significantly more transistors than were used

by RISC I or RISC II. What will these additional transistors be used for?

7

Designers today use the extra silicon real estate available to add on-chip caches for

instructions and data, floating point multipliers and adders, graphics support units

etc. [KF89],[Cho89],[Ka88J. The possibilities are enormous but is there a systematic

way to utilize the extra area?

Chip area will never be sufficient. No matter what the technology, there will always

be yet another subsystem that can benefit from being put on-chip thus creating area

shortages. The limiting situation is where we can put an entire computing system on a

chip including all the processing units, memory etc. but we are still far from this today.

There is a good reason for putting subsystems on-chip - intra-chip communication is

much faster and much less bandwidth constrained than communication off-chip. So

the silicon resource is indeed a valuable resource and must be judiciously spent.

2.3.2 RISC is Balanced

Since we are interested in high performance, this means that those subsystems which

improve performance the most must be allowed to be on the chip. The current RISC

trend is a step in the right direction but leaves much to be desired in terms of the

tradeoffs between the subsystems which must be present on-chip. The RISC ap­

proach applies this analysis across the software-hardware boundary. Why not extend

this analysis to hardware design as well? In other words, of the functions to be imple­

mented in hardware, those which are more frequent must be allowed a greater share

of chip area. This may be possible, perhaps, at the expense of those functions which

are relatively less frequently used and in doing so we do not incur a performance loss

[PT91].

We investigate the resource tradeoffs in the design of a datapath of a processor.

According to the principle above we should be allocating the area to each datapath

unit according to its frequency of use. We term such an implementation a balanced

one. A balanced implementation is surely a RISC approach for it conforms to the

underlying RISC philosophy (Section 2.1.1).

8

2.4 Problem Statement

This work is an attempt to answer the question whether it is possible to use a balanced

implementation methodology to enhance performance without changing the total area.

2.4.1 A Balanced Datapath

In this work we investigate the possible tradeoffs between two datapath units in the

implementation of a RISC architecture (DLX) described in [HP90]. We try to take a

balanced approach to the implementation starting with a conventional implementa­

tion and then reallocating area for the two datapath units based on the frequency of

their use.

2.4.2 Previous Work

There is no known work in literature addressing the general question of balanced

implementation techniques. Kung [Kun86] considered a theoretical model for a com­

puter architecture to study the trade-off between processing rate and I/0 bandwidth.

Holman and Snyder [HS90b] demonstrate architectural trade-offs in parallel com­

puter design. Our analysis is budget-constrained in their terminology. Ho and Snyder

[HS90a] give a mathematical formulation of the following principle of balanced de­

sign: The cost of a given pari relative to the cost of the entire system must be equal

to the time on the critical path spent by that part, relative to the total running time.

Their model, however, fails to consider the balance achievable by exploring the design­

spaces of datapath units. In particular, their analysis is limited to the design-space

points derived by variation of the gauge of an implementation a datapath unit, i.e.,

ways of realizing 32-bit shift with 4-bit, 8-bit or 16-bit shifter implementations. This

research draws on a broader design-space for the datapath unit implementations e.g.,

for an adder/ ALU many schemes such as ripple-carry, carry-select, parallel-prefix, k­

bit look-ahead are considered. In addition, this work is more empirical than analytical

in nature.

9

Chapter 3

The Design of a RISC Datapath

This chapter discusses the design decisions made for the implementation of a RISC

core data path for the DLX architecture. It gives a brief overview of the DLX architec­

ture which we selected and the important subsystems in the hardware implementation

of the instruction sets.

3.1 Design Decisions

Before we could test the ideas presented in the previous section, we had to have a

testbed for exploring them. This meant first deciding on an architecture and then

implementing it.

The resources available for this experiment were very limited both in terms of

time and manpower. With one graduate student and the time available being less

than two semesters, there were severe constraints on the magnitude of the project.

The first option was to work with an already implemented RISC machine [Cho89].

It was rejected because the amount of effort required to first understand the implemen­

tation, simulate and measure it and then modify it would have been overwhelming.

So it was decided to first select a 32 bit RISC architecture and then implement it.

Again because of the resource constraints we decided to restrict the implementation

to only those features on the datapath which were absolutely essential. For the same

reason it was decided to rely on automating the design to the fullest extent wherever

possible.

3,1.1 Selecting an Architecture

We selected the DLX architecture described in (HP90] because of the following rea-

sons:

1. Public-domain availability of a compiler and a simulator,

2. DLX embodies the essential traits of most contemporary RISC machines.

3.1.2 Selection of Features for Balancing and Performance

Gain

Benchmark studies ((with CCC, SPICE, TFfK and US Steel COBOL)(HP90]] for the

DLX indicate that ALU instructions constit~te 35% of the dynamic instruction-mix

and shift instructions constitute 6% on an average. For any one program from this

list the shift frequency is below 5%. This disparity in the relative frequency of the

two classes of operations suggests an experiment where the DLX processor can be

designed along several design points where we can trade-off the resources required

by the ALU and the shifter unit. This can partly answer the question we posed in

Section 2.4.

Prior to the experiment there was no available information about the nature of

trade-offs between the two hardware units so two extreme design points were chosen

for the study. The first design point selected was an implementation containing a

slow ripple-carry ALU with a barrel shifter and the other extreme design-point was

one with a fast parallel-prefix ALU and a slow linear shifter.

In the second implementation the shifter would take more than one machine cycle

to complete the shift operation. There definitely would be a penalty because of the

multi-cycle shift operation but this may be minimized by some methods presented in

Section 5.2 and in Pandey and Tyagi (PT91].

11

3.1.3 Selection of an Implementation Methodology

Since this experiment involves building the processor datapath for different design

points, we decided to build the datapath elements which were the object of the trade­

off study by using OASIS, a standard cell based layout synthesis system [KB88]. To

save time, often, random logic in the processor circuit was also implemented with

OASIS.

Parts of the design which were regular and could not be automatically synthesized

were designed in the full custom methodology using Magic, a layout editing program

[SMH+86].

3.1.4 The Influence of MIPS-X on DLX

The similarity of the architectures of DLX and MIPS-X [Cho89] led us to borrow many

implementation ideas from the latter (Figure 3.1). This was done to minimize the

time redesigning parts for which good designs were already available and to shorten

the turn-around time.

The pipeline of the MIPS-X processor is borrowed for DLX in an essentially un­

changed form. The strategy for instruction decoding is the same in both except for

the hardware implementation. Since the instruction formats for both the processors

are different and only the DLX datapath is implemented, the actual decoding logic for

both the processors is quite different. Many of the cells used in the MIPS-X data path

were adopted for our design.

We have all along made decisions that allowed us to successfully complete the

experiment. Implementing every instruction in the instruction set was not feasible.

Also it would not provide us much better results than an implementation of a care­

fully chosen subset of instructions. The objective of our experiment was to balance

the ALU and shift instructions. Therefore, incorporating instructions like multiply,

divide and floating point operations would not have contributed much to this ob­

jective because these instructions were not a part of the trade-off study. The areas

required for implementing these operations would have remained the same across our

design points. For this reason, we have chosen not to implement several instructions

12

Instruction Cache :

'!' ' ' ' ' ' ' ' ' ' ' ' '

y

Instruction Register

MemBus t I
e Register Fi

..--------- -- -.+ ... ---------------- ...
I I I
I I Src) I
I I I

Bus I

Reg st r I I I
I I

FilE I I I
I I I

Arr ~ . MU I I hifte ALU: I I
I I SrC.2 I
I I I

I(& BJ Bus p<p I
I

I I I
I I I
I I I -------- -~-· ~----Execute Dlllf-- ~

To data pads

Units not implemented
shown in dotted boxes .. :

mediate
us

~

PC U

esult
us

PC
Bus·

it

. -
I,
I,
I,
I
I
I,
I,
I
I
I
I
I,

I'

I,
I,

I·.

I'
I'
I
I
I
I
I'

, I

Vstor!e:
. . ' I
! I

T . ·'

Addre~~ 'r.lus
I
I

, I
, I
, I

·I
·I
, I

'I
,I

Tag :
RAM'•

'I
. • 'I

·-- ---<~
Tags Unit

Figure 3.1: The D LX processor: overall organization.

13

(and their comcomitant hardware), the most notable of which are the multiply and

divide instructions. Consequently, we do not have the multiply/divide register in our

circuit. In Figure 3.1, the MD register, Tags Unit and the Instruction Cache were

not implemented.

Interrupts are not implemented because of the complexity of hardware needed to

deal with them and for the same reason we stall the pipeline whenever we encounter

a branch instead of having elaborate hardware to minimize the penalty. When the

shift operation takes more than one cycle to complete, we again stall the pipeline for

the desired number of cycles.

3.2 DLX Overview

3.2.1 The DLX Architecture

This section summarizes some of the more important features of the DLX architecture

[HP90]. A complete list of DLX instructions can be found in Appendix A.

o The architecture has thirty-two 32-bit general-purpose registers(CPRs).

• Memory is byte addressable in Big Endian mode with a 32-bit address. All

memory references are through loads or stores between the memory and the

CPRs.

• All instructions are 32 bits and must be aligned.

• Any CPR may be loaded or stored. The first CPR has 0 hardwired into it.

• There is a single addressing mode, base register plus a 16-bit signed offset.

• All ALU instructions are register-register instructions.

• Control is through a set of jumps and branches. The jumps use a 26-bit signed

offset which is added to the program counter.

14

3.2.2 Implementation Medium for DLX

The technology available to us for designing the datapath was scalable Ct,IOS (MOSIS

SCM OS version 7) with two metal layers and a single polysilicon layer. The minimum

channel length was 2.0flm.

3.2.3 The DLX Pipeline

The D LX pipeline1 (adopted from [Cho89]) is 5 stages long (Fig 3.1). The stages in

the execution of an instruction are

• Instruction Fetch (IF).

• Register Fetch (RF).

• ALU operation (ALU)

• Memory load/store (MEM).

o Writeback results (WB).

I F_ 1 shown before IF (Figure 3.2) occurs during WB of the previous Stage. The figure

gives the details of the operations occuring during each phase. The AL U operation

begins during ¢1 of the ALU stage continues after the end of ¢1 but is guaranteed to

be complete before the end of ¢2.

3.2.4 Important DLX Subsystems

In the datapath implementations some of the processor subunits have a nontrivial

complexity. In this section we discuss the important subunits in some detail. The

linear shifter design is discussed in greater detail because of its unusual design.

The implementation of the processor subunits was done in two ways. Highly regu­

lar structures or structures which could not be implemented by the suite of standard

cells available with OASIS were custom built using Magic, a layout editing program

[SMH+86]. This included many basic units on the datapath like latches, tristate

1The clocking used by DLX is a two phase non-overlapping scheme.

15

JF_, ¢1 No action
4>2 PC Bus{;; displacement adder, trap vector, incrementer, ALU or

value from PC Chain
Precha.rge tag comparators and valid bit store

IF </>1 Do tag com pare
Valid bit store access
!Cache address decoder <=: PC[bits 26 to 31]
Detect ICache hit
Precharge !Cache

¢2 Do !Cache access
Instruction Register <:= !Cache

RF ¢1 Do bypass register comparisons to see if bypassing required
¢2 Srcl Bus <=: Srcl register or bypass register

Src2 Bus <=: Src2 register, bypass register or offset field in
memory instruction

PC displacement adder latch '¢:: branch displacement from
Immediate Bus

Output memory data register <=: Src2 register or bypass source

ALU ¢1 Do ALU operation, shifter operation, PC displacement adder addition
Increment PC (calculate next sequential instruction address)
Precharge Result Bus

</>2 Result Bus ..;:: ALU
Result bypass register -<= Result Bus
Memory address pads -<= Result Bus

MEM </>1 No action
¢2 Input memory data register {::: Result register or Memory data

pads (load instruction)
Memory data pads ..;:: Output memory data register (store

instruction)

WB ¢1 Destination register {::: Input memory data register
</>2 No action

Figure 3.2: The DLX Pipeline

16

--~------------------------~~-+--wordline2

__ ,_-8~----------------------+--+--wordlinei

bit bit b

Figure 3.3: The 6-transistor 2-port memory cell used in the register file.

drivers, buffer drivers, memory cells and comparators for bypassing logic in the regis­

ter file. These units were simulated using CAzM [ERN +89] and were fine tuned to get

the best possible performance. Random logic or other combinational circuits which

were not very regular were generated using OASIS from their LOGIC-III descriptions.

Register File Unit

The Register File Unit consists of a 32 by 32 register array with decoders, sense

amplifiers and drivers, bypassing logic and memory data registers [Cho89].

The register array uses a 6-transistor RAM cell (Figure 3.3) described m

[SKP+84]. The cell layout was done using Magic and was tested with CaZM

[ERN+89]. Because of the small size of the array, sense amplifiers were not nec­

essary and just an inverter sufficed to detect the signal changes in the array bit and

bit_b (complement ofbit) lines [page52, [Cho89]].

17

an-1 bn-1 an-~n-2 a! bl ao bo
cin

Full Full Full Full

Adder Adder Adder Adder

Cn Sn-1 Sn-2 c2 sl cl so

a; b; C; S; = a; E!) b; E!) C;

Full c;+1 = (x; E!) Y;) II c; V (x; II Y;)
Adder

ci+l si

Figure 3.4: Ripple Carry Adder for n bits.

ALU

The ALU was implemented primarily using OASIS. LOGIC-III descriptions [KBSS] of

the various subunits, notably the adder-carry structure and the boolean function unit,

were compiled. The tristate drivers [page 46,47 [Cho89]] for driving the buses were

custom designed and tested. Then they were combined with the standard cell layouts

generated by OASIS in order to form the complete ALU unit. Another approach tried

was to include the tristate drivers as standard cells, in OASIS and then use them for

generating the complete ALU unit. Because of the problems with characterizing non­

combinational cells and the stringent layout requirements for OASIS standard cells,

the latter approach was abandoned.

The adder is the basic unit around which other arithmetic functions like subtrac­

tion etc. are built. We implemented two flavours of adders: ripple carry (Figure 3.4)

and parallel prefix (Figure 3.5) [HP90]. The parallel prefix adder is referred to as a

complete carry-lookahead tree adder in Hennessy and Patterson [page A-35 [HP90]].

The design points implemented contain a 32-bit ripple carry adder, a 32-bit parallel

prefix adder and four 8-bit parallel prefix adders joined end to end in ripple carry

18

s,

II' I'
A A

/jc,j c,

B -

Jlc,
B

I I c,

B

j s
'a, b,

c,

A

A A

c,j
B -

c,

s; = 8/f) b,® c,
P; = a;+ b;
g,"" a;b;

c.:

Go,J

A A

c0 c,

B I--

c,

B

Po. 3 c,

fj+,, k

G .• ,/(C-.,

Figure 3.5: Parallel Prefix Adder for 8 bits.

s s

r'l'l' fl'l'
A A

CJ c,

B 1--

c,

fashion(Figure 3.6). Appendix A.l contains the LOGIC-III description of a ripple

carry adder and A.2 contains the LOGIC-III description of a parallel prefix adder.

OASIS was used to generate the standard cell layouts from the LOGIC-III descriptions

for the modules mentioned above.

The boolean function unit implements the operations logical OR, logical AND

and logical XOR. OASIS was used to generate this unit.

Shifter

In this experiment we include two types of shifters in our designs, namely a barrel

shifter and a linear shift register. The barrel shifter (Figure 3. 7) is described in

LOGIC-III in Appendix B.3. A standard cell layout for this shifter was generated

using OASIS.

The barrel shifter completes the shift operation in one machine cycle time. The

linear shifter takes more than one machine cycle time because a shift by amount n

is done with n linear shifter shifts which takes n clock time periods. Simulations

19

8-bit
C~Parallel

Prefix

f<\dder

~-bit
4--IParallel

Prefix
Adder

816-23

8-bit
,._Parallel

Prefix

f<\dder

SB-15

bo-7 ao-7

S-hit
,._Parallel

!Prefix
Adder

Figure 3.6: 32-bit Adder using 8-bit Parallel Prefix Adders.

indicated that the linear shifter could function much faster than the global machine

clock. So it was decided that the linear shifter would be clocked at the maximum

possible speed at which it could run. This was done so that a shift would take the

minimum number of machine cycles. This minimizes the performance penalty due to

making the shift operation a multicycle operation.

Conceptually the simplest way to run the linear shifter at a rate faster than the

global machine clock would have been to have another faster clock externally input

to the processor. But this approach was rejected because of problems like clock

distribution, clock synchronization and extra pins required for this additional input.

Instead, it was decided to have an internal source of clock signals to drive the linear

shifter. This was achieved using self timed circuits to generate the necessary signals.

The linear shifter is a self timed circuit. It was· implemented in the full-custom

methodology. Figure 3.8 shows a part of the circuit. The lower part of the figure

shows a chain of inverters made up of transistors q1 through q10 • Since there are an

odd number of inverters in the chain, there exists a possibility of oscillation when the

output of the rightmost inverter can reach the input of the leftmost inverter. This is

possible when the signal go is high. A counter stores the value of the shift amount in

a shift instruction and decrements it with each shift. The signal go remains high as

20

Shift [0] Shift [1] Shift [2]

c nnections wrapped arou d ed around

connections wrappe around

inputl 1 Output
Select~

input2 2 Out

Multiplexer Cell

Figure 3. 7: 8-bit Barrel Shifter.

21

Single Stage of Linear Shifter

data[i

phi1 phi2

p i1 p i2

go

To
Other
Shift ____
register
Stages

out [i]

Figure 3.8: Shift register circuit including a ring oscillator for generating shift signals.

long as the counter value is non-zero.

The W /1 ratios of transistors q7 through q10 in Figure 3.8 have been chosen

carefully so as to provide the desired frequency of oscillation (which allows reliable

shifting). Transistors q3 through q6 have exceptionally large W /1 ratios2 to allow

them to drive phil and phi2 of all the 32 shift register stages [WE85].

2Width/Length ratios qs:40, q4:80, qs:25, qs:50.

22

Program Counter

The Program Counter (PC) closely follows the organization given in [Cho89]. There

is an incrementer for incrementing the value of the PC to the next sequential value.

Also there is a displacement adder for adding to the PC branch displacements etc ..

We have used two adders in the PC unit. These adders are similar to the one in

the ALU because the time required for generating a new address by the PC unit or

the time for computing a new result by the ALU must both satisfy similar timing

requirements.

Instruction Register and Decode Circuitry

The important parts of this unit are a register array and a decoder array [pagel51-

158, [Cho89]]. The register array is implemented as a shift register of two or three

stages for each bit in the instruction. This array serves as the input to the decoder

array which generates the control signals for various units. The decoder array is

implemented in standard cells with the help of OASIS.

3.3 Implementing DLX at Various Design Points

The first design point to be implemented was one where all instructions have uniform

cycle length. This implementation contained a ripple carry adder in the AL U and a

barrel shifter in the shifter unit. The PC adders were two ripple carry adders.

The second design point implemented was one with a parallel prefix adder in the

ALU and a linear shifter. The PC unit, as above, contained two parallel prefix adders.

The third implementation used 4 cascaded 8-bit parallel prefix adders (Figure 3.6)

in the ALU and PC units and retained the linear shifter.

Because of the use of a barrel shifter, each shift operation in the first implementa­

tion took only one cycle. This implementation followed the one instruction per cycle

paradigm followed by most RISC implementations today [GM87].

The second and third implementations took more than one cycle for shift amounts

greater than one. The reason for this is that a shift by amount n is done by n successive

23

shifts on the linear shifter (Figure 3.8). In these implementations, the pipeline was

stalled till the shift operation was completed.

24

Chapter 4

Results and Applications

In this chapter area-time measures of the various DLX implementations are given

and the significance of the various measures is explained. The possible applications

of this work are mentioned in the last section.

4.1 Area-Time Measurements

The results of the simulations carried out to determine the worst case processor cycle

time are given in Section 4.1.1 . The area of the layouts of the various units can be

found in Section 4.1.2 .

4.1.1 Simulation of DLX

Several simulation tools were used for testing the various units individually and then

the complete system.

The Register File (RF) unit was simulated completely using CAzM [ERN+89].

This was done because switch level simulation tools failed to accurately simulate the

6-transistor memory cell. However, the complete 32 by 32 RF was not simulated

using CAzM at the same time because of the very large amount of simulation time

required. Instead, one complete row together with one complete column in the 32

by 32 register file was selected and simulated. This was done because involving a

complete row would accurately model the total capacitances on the bit and biLb lines

unit delay (ns)

ALU with Ripple Carry Adder 93

ALU with Parallel Prefix Adder (PPA) 33

ALU with 4 8-bit PPA 66

Barrel Shifter 27

Linear Shifter (worst case time) 320

Table 4.1: Delay Figures for ALU and Shifter unit.

(Figure 3.3) [page 52, [Cho89Jl and including the column would accurately reflect the

total wordline delays [page 53, [Cho89]]. It was found that the worst case delays were

10 ns to either read or write from the register file unit alone.

However, all control signals are generated by the controller which has a worst case

delay of 4 ns and then the signals are distributed by large AND drivers [page 48,

[Cho89Jl which have a worst case delay of 6 ns. Also if some functional unit puts

some data on a bus there may be a maximum delay of up to 3 ns.

So the register file mentioned earlier actually has a read/write time of 10+4+6 ns

i.e. 20 ns when it is integrated into the complete system.

The ALU and Shifter units were tested with LDVSIM [Bri89] for functionality and

then switch level simulation was done using RNL [1.187] to determine their delays.

The results of their simulation are presented in Table 4.1. The delay figures in the

table include all the delays including the controller delay, buffer delay and time taken

for the result to be written on the bus. The program counter unit is faster than the

AL U by 3 ns and it is not on the critical path.

4.1.2 Layout

The first design point implementation with a barrel shifter and a ripple carry adder

in shown in Figure 4.1. The area figures for the various datapath units in this im­

plementation are given in Table 4.2. The datapath areas with a linear shifter and

various adders are in Tables 4.3 and 4.4.

26

- 400). 1300). --
-+l~nn\ - ~YPASS 51f.x

IR and Instructiq,~; t
6l ~). Decoder

- gnnl- --0111111 - ll

2 O.X MDR in/out t Shifter

REGISTE 1 l). 17/0
15r FILE RF Sense PC Unit

ALU
Amplifiers

- 1100).-

Figure 4.1: The Datapath using a Ripple Carry Adder and a Barrel Shifter.

unit area (P)

Register File 3 X 106

32-bit Ripple Carry ALU 3.2 X 106

Barrel Shifter 1.9 X 106

PC with 32-bit Ripple Carry Adder 4.2 X 106

Table 4.2: Area Figures for the Datapath with Barrel-Shifter (First Implementation).

unit area (.X2)

Register File 3 X 106

Shifter 0.2 X 106

ALU with 32-bit Parallel Prefix Adder 3.8 X 106

PC with 32-bit Parallel Prefix Adder 5.4 X 106

Table 4.3: Area Figures for the Datapath with a 32-bit Parallel Prefix Adder (Second

Implementation).

27

unit area (,\2)

Register File 3 X 106

Shifter 0.2 X 106

ALU with 4 8-bit Parallel Prefix Adder 3.3 X 106

PC with 4 8-bit Parallel Prefix Adder 4.4 X 106

Table 4.4: Area Figures for the Datapath with 4 8-bit Parallel Prefix Adders (Third

Implementation).

4.2 Comparison of Various Implementations

According to our simulations the ALU operation is in the critial path of the data path

operation. Therefore, the speed of AL U operation, including writing result on to the

bus, determines the cycle time for the datapath. From Table 4.1 it is clear that the

cycle times for the three implementations are 93ns, 33ns and 66ns respectively. In

the latter two implementations we have a linear shifter which takes 320ns to complete

its operation in the worst case. So it is clear that in the second implementation shift

takes 9 cycles (320ns/33ns - 1) more than an implementation which completes a

shift instruction in 1 cycle. In the third implementation the shift instruction takes 4

cycles more than an implementation which completes a shift instruction in 1 cycle.

The CPI figure for the DLX processor with single-cycle instructions only is 1.42

(page 277, [HP90Jl. With shifts taking 9 extra cycles the new value of CPI is 1.0 x

1.42 + .05 x 9 which equals 1.87. With shifts taking 4 extra cycles the CPI value

turns out to be 1.0 x 1.42 + .05 x 4 which is 1.62.

The CPI value for the three implementations in order are 1.42, 1.87 and 1.62.

However, because the cycle time for the second processor is smaller than the others,

it is the fastest design with a time per instruction value of 1.87 x 33ns which equals

61. 7ns. Table 4.5 summarizes our findings.

Table 4.5 clearly shows that even with a higher value of CPI we can obtain better

performance if the machine cycle time is small enough. Furthermore, the area taken

by the faster design can be the same as the area occupied by the slower design (First

28

design cycle time (ns) CPI time per instruction (ns) datapath area ().2)

original 93 1.42 132 9.3 X 106

second 33 1.87 61.7 9.4 X 106

third 66 1.62 106.9 7.9 X 106

Table 4.5: CPI, Time per Instruction and Area Comparison of Three Implementations

and Second designs) or even less (First and Third designs).

4.3 Applications

The instruction mix skew between the AL U and Shift class instructions enabled

us to redesign our datapath to obtain better performance within the same area.

This indicates the possibility of targeting application areas which exhibit significant

instruction-mix skew. Two such areas are the X terminal and the embedded con­

troller.

4.3.1 X Terminals

X Terminals are primarily used to run the X Windows software. The tasks involved

are providing a graphic window interface and network communications both of which

are likely to have a large instruction-mix skew.

The instruction mix of network communication programs 1 as reported in Smith

[Smi78] is highly skewed. Shifts account for less than 1% of the total instruction mix

whereas 37.85% of the instructions are branch instructions and Load/Store instruc­

tions constitute another 36.68% of the instruction mix.

This gives an idea of the nature of the instruction mix skew arising as a result

of the X terminal executing network communication software and suggests the kind

of trade-offs which may be necessary to tailor a RISC processor for such a task. It

1 For an IBM370 /155 running only network communication programs.

29

points to the possible tradeoffs between specialized branch prediction hardware, larger

register file and cache and a reduced shifter and arithmetic unit.

4.3.2 Embedded Controller

Many microprocessors are used as a part of a control system rather than the CPU of

a general purpose computer. They are used in diverse environments: from desktop

peripherals like printers [Wir91] and scanners to audio-visual equipment and factory

automation machinery to automobiles. Typically these microprocessors execute very

small number of programs in their life time. The dynamic instruction mix of these

applications can have potentially a large skew as compared to the instruction mix of

a set of typical application programs run on a UNIX workstation. Therefore there is

a large potential for an improved processor design based on these instruction mixes.

With the introduction of RISC processors for embedded control applications [Tho90J

this work becomes more important as balanced designs can offer an area~constrained

design (with faster time) or a time-constrained design (with reduced area) for the

same task.

RISC is expected to successfully penetrate the computer peripheral portion of the

embedded control market [Ros90] where performance has higher priority over price.

Already RISC microprocessors are being used for near-real-time applications [Wei91J

like laser printer control [Wir91], graphics and data staging. Since these tasks are

very specialized, the RISC processor balanced for the instruction skew can potentially

offer a better performance. This is an application of area-constrained balancing, where

improved performance is the point of interest.

30

Chapter 5

Conclusion and Further Work

This chapter summarizes the lessons learned from the experiment carried out and

points to its implications. It concludes with the work ·in progress and gives directions

for future work .

5.1 Implementations Balanced for Instruction-Mix

Skew

Our starting point was based on the premise : Silicon is an expensive resource and

hence it should be allocated to only those functions that can justify it by the frequency

of their use. Starting from this principle, we studied the instruction mix skew of

two instruction classes for some general purpose programs typically run on a UNIX

machine. We then designed a RISC processor datapath which 'violated' the RISC

principle by having a multicycle shift operation. This design was motivated by the

instruction mix skew mentioned earlier . But this datapath at the same time had

a better performance than the one with uniform-length instruction execution times.

It seems that RISC processor designers have fallen into the rut of uniform-length

instruction execution times. The experiments we have conducted demonstrate that

there is nothing sacrosanct about uniform-length instruction execution times. If our

instruction-mix skew information so indicates, then we should be free to do trade-offs

between the hardware units so that the resource allocated to each is justified by the

frequency of use of the unit. Such trade-offs lead to a balanced design with a potential

gain in performance over processors without such balancing and these trade-offs are

in keeping with the RISC spirit.

Our experiments have demonstrated the feasibility of performance gain when two

small datapath elements were redesigned and the design was area constrained. In

RISC microprocessors [Per89J there are many other components like on-chip caches,

floating point units, register files etc.. Redesigning these components so that the

resources they take (area) match their frequency of use will potentially free up areas

from some components which can be used by other components. In such an area con­

strained redesign there exists the possibility of obtaining performance gains beyond

that obtainable by balancing only the datapath.

5.2 Extensions to this Work

5.2.1 Compiler

We are currently working on the GCC compiler for DLX [Sta89]. We intend to modify

it for running it on the next version of the DLX processor under design. Currently, the

multicycle shift instruction involves stalling the pipeline for the duration of the shift

operation. During this phase no other instruction is fetched and the other functional

units remain idle. An alternative to this would be to give the shift operation a

fixed number of cycles to complete and while shifting is being done we can fetch

independent instructions and execute them, thus achieving a better utilization of

hardware resources.

Towards this end we are in the process of modifying the GCC compiler. The first

stage in the modification has been completed where a fixed number of NOP slots

have been appended after each operation of the shift class. This has been done by a

modification of the machine description files for the DLX machine.

The next stage is to analyze the code to find out independent machine instructions

which can fill up the empty slots after the shift instructions. This work is under

progress.

32

5.2.2 Further Work on RISC Core Datapath

Since in our experiment the register file was not on the critical path, it was not

included in the trade-off studies done. However, the size and organization of the

register file has a significant impact on the number of load/ store instructions executed

by a program.

The register file versus load/ store frequency follows the knee-curve be­

haviour[pages 450-451, [HP90JJ. When an instruction exhibits a high percentage of

load/ store instructions (leading to a higher CPI), a natural question to ask is whether

the register file size is below the knee of the curve and more area needs to be allocated

to it. Similarly, the register file may be overdesigned (size is considerably higher than

the knee). Under such circumstances a reallocation of register file area to other com­

ponents may lead to a better performance. Further experiments need to be devised

to study this aspect of the size of the register file vs other components based on the

instruction mix.

5.2.3 Caches

The dependence of miss rates on the cache size follows a knee curve [HP90]. We need

to quantize this relationship with respect to cache size vs cycle time/CPI trade-off.

How the choice of designs for sense-amplifiers, tag-comparators and line drivers (and

the areas required by the different designs) affects cache performance is not known

quantitatively. We need to be able to independently manipulate cache size and cache

circuit design to vary the CPI and the cycle time. Building such models will help us

better understand the answer to the underlying question of when to reallocate some

area from/to cache to reduce/increase CPI.

5.2.4 Control

As the processor is balanced, there are more and more instructions which can have

non-uniform cycle length. This may lead to a more complex control unit which then

takes up more area. At the turning point, the benefits of balancing the processor will

33

be outweighed by the increase in area and delay of the complex control unit. Where

this point occurs is important to know for a given set of instructions.

5.2.5 Multiply/Divide and Floating Point Hardware.

In many application domains, to do any useful job the processor must have the

hardware for multiply/divide and it must also perform floating point operations.

Extending the idea of balanced design here is needed to study the performance issues

depending on the amount of area resource given to each functional unit and the

instruction mix.

5.2.6 Balanced Design for Specialized Application Domain.

After the issues in Sections 5.2.1 to 5.2.5 are more clearly understood, a validation

of our ideas would require the complete design of a processor. This processor would

be designed for a specific application domain like the X terminal processor using

balanced design techniques (taking into account the instruction-mix skew). We would

then compare this balanced processor with a straightforward implementation of the

same processor (with each instruction taking uniform time to execute) similar to our

experiments described in Chapter 3.

34

Appendix A

The D LX architecture

A.l The DLX Instruction Set

The complete instruction set for DLX appears in the next page.

A.2 DLX Instruction Formats

The figure containing the D LX instruction formats appears after the next page.

All DLX instructiona are 32 bits with a 6-bit primary opcode.

A.3 Bit Assignment for Instructions

In the opcode tables below the first column contains the mnemonic opcode. The

second column indicates the instruction format. RFMT refers to the format of the

register-register instructions. (See Appendix A.2) JFMT refers to the format of the

jump instructions and IFMT is the format of the instructions with am immediate

operand. The third column contains the bit assignments for the instructions. Here

"rrrrr" or "RRRRR" refer to the 5-bit register address. "ooo ... ooo" is the 26-bit offset

in the jump instructions and "iiiiiiiiiiiiiiii" is the 16-bit immediate quantity. "x .. x"

refers to dont cares. These tables have been decoded from the software available with

[HP90].

Instruction type I opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or
special registers; only memory address mode is 16·bit displacement+ contents of

I aGPR

LB,LBU,SB Load byte. load byte unsigned, store byte

LH,LHU,SH Load half word. load half word unsigned, store halfword

LI1,SW Load word. store word (to/from integer registers)

LF,LD,SF,SD Load SP float, load DP float, store SP float. store DP float

' MOVI2S, MOVS2I Move from/to GPR to/from a special register I
MOVF, MOVD Copy one floating-point register or a DP pair to another register or pair i
MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers I
Arithmetic I Logical Operations on integer or logical data in GPRs; signed arithmetics trap on ' '

L.. -- -------- ---- overnow I

I ADD ADDT ADDU ADDUT . ' . Add add immediate (all immediaies are 16 bits}· signed and unsigned

SUB,SUBI,SUBU,SUBUI Subtract, subtract immediate; signed and unsigned I
MULT,MULTU,DIV,DIVU Multiply and divide. signed and unsigned; operands must be floating-point registers~

I all operations take and yield 32-bit values

AND,ANDI And, and immediate

OR,OR!,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate '
LHI Load high immediate-loads upper half of register wiL~ immediate

SLL, SRL, SRA, SLLI, SRLI, Shifts: both immediate (S I l and variable form (S _l ; shifts are shift left logical,
SRAI right logical, right arithmetic '
s 's I Set conditional:·· "may beLT, GT, LE, GE, EQ, NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J, JR Jumps: 26-bit offset from PC (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 to R3I. target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address; sec Chapter 5

RFE Return to user code from an exception; resfore user mode; see Chapter 5

Floating point Floating~point operations on DP and SP formats

ADDO,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating poim

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2I, CVTD2F, Convert instructions: CVTx2y converts from type x to type y, where x andy are one
CVTD2I, CVTI2F 1 CVTI2D of I (Integer}. D (Double precision), or F (Single precision). Both operands are in the

FP registers

__ D, __ F DP and SP compares: "_ .. may be L T, GT 1 LE, GE 1 EQ, NE; sets comparison bit in FP
status register

Figure A.l: Complete List of instructions in DLX. [HP90]

36

I - type instruction
6 5 5 16

rd Immediate

Encodes: Loads and stores of bytes, words, half-words
All immediates (rd .. rs1 op immediate)

Conditional branch instructions (rs1 is register, rd unused)
Jump register, Jump and link register

(rd"' 0, rs"' destination, immediate = 0)

R - type instruction

I
6 5 5 5 11

Opeode I rs1 I rs2 rd func

Register-register ALU operations: rd - rs 1 func rs2
Function encodes the data path operation: Add, Sub, .
Read/write special registers and moves

J - type instruction
6 26

Offset added to PC

Jump and jump and link
Trap and AFE

Figure A.2: Instruction layout for DLX. [HP90]

37

OPCODE FORMAT

SPECIAL RFMT

FPARITH RFMT

J JFMT

JAL JFMT

BEQZ IFMT

BNEZ IFMT

BFPT IFMT

BFPF IFMT

ADDI IFMT

ADDUI IFMT

SUBI IFMT

SUBUI IFMT

ANDI IFMT

DRI IFMT

OPCODE TABLES FOR DLX

DPCODE LIST 1: Primary Opcodes

BIT ASSIGNMENT FOR MACHINE INSTRUCTION

0000 OOrr rrrR RRRR rrrr rxxx xxvv vvvv

-- see OPCODE LIST 2

0000 01rr rrrR RRRR rrrr rxxx xxvv vvvv

-- see OPCODE LIST 3

0000 10oo 0000 0000 0000 0000 0000 0000

0000 11oo 0000 0000 0000 0000 0000 0000

0001 OOrr rrrR RRRR iiii iiii iiii iiii

0001 Oirr rrrR RRRR iiii iiii iiii iiii

0001 10rr rrrR RRRR llll iiii iiii iiii

0001 11rr rrrR RRRR iiii iiii iiii iiii

0010 OOrr rrrR RRRR iiii iiii iiii iiii

0010 01rr rrrR RRRR iiii iiii iiii iiii

0010 10rr rrrR RRRR iiii iiii iiii iiii

0010 11rr rrrR RRRR iiii iiii iiii iiii

0011 OOrr rrrR RRRR iiii iiii iiii iiii

0011 01rr rrrR RRRR 2111 iiii iiii iiii

38

6f::

>>>> >>>> >>>> >>>> HHHH HIII IIOl OOOl

>>>T T>T> >>>> 111> HHHB HIII IIlO OOOl

11ee eeee eeee eTTe HHHH HIII IIQO OOOl

eeeT eeee e>ee 1eee HHHH HIII IIll lllO

TTTT e1ee ,,,, eeeT HHBH HIII IIO> lllO

eeee eeee eeee ,,,, HHHH HIII IIlO lllO

ee1e ee1e eeee 1eee HHHH HIII IIQO >>>O

eeee eeee eTee eeee HHHH HIII IIll OllO

,,,, ,,,, ,,,, ,,,, HHHH HIII IIO> O>>O

eeee eeee eeee eeee HHHH HIII IIlO Ol>O

TTTT eee1 e>Te eee1 HHHH HIII IIQQ OllO

,,,, ,,,, ,,,, ,,,, HHHH HIII II>> >O>O

eeee eeee eeee eeee HHHH HIII IIOl lO>O

eeee eeee eeee eeee HHHH HIII IIlO lOlO

,,,, ,,,, ,,,, ,,,, HHHH HIII IIQO >O>O

eeee eeee eeee eeee HHHH HIII II>l OOlO

eeee eeee eeee eeee HHHH HIII IIQl OOlO

TTeT ''ee eeee eeee HHHH HIII IIlO OOlO

TeTT Teee eeee eeee HHHH HIII IIQO OOlO

,,,, ,,,, ,,,, ,,,, HHHH HIII II>> >>OO

TTeT eeTT eeTT TTee HHHH HIII IIOl llOO

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

lWdi

S3H

H1

H1

S3H

S3H

I3DS

I31S

Il!lS

Il1S

I3NS

Ib3S

s:;m

S3H

S3H

S3H

H1\ff

Hf

d\fHl

3dH

IH1

IHDX

LW

LBU

LHU

LF

LD

IFMT

IFMT

IFMT

IFMT

IFMT

SB IFMT

SH IFMT

RES IFMT

SW IFMT

RES

RES

SF

SD

SEQUI

SNEUI

SLTUI

SGTUI

SLEUI

SGEUI

RES

RES

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

1000 11rr rrrR RRRR iiii iiii iiii iiii

1001 OOrr rrrR RRRR iiii iiii iiii 1111

1001 01rr rrrR RRRR iiii iiii iiii 1111

1001 10rr rrrR RRRR iiii iiii iiii iiii

1001 11rr rrrR RRRR iiii iiii iiii iiii

1010 OOrr rrrR RRRR iiii iiii iiii iiii

1010 01rr rrrR RRRR iiii iiii iiii iiii

1010 10rr rrrR RRRR iiii lJ.J.J. iiii iiii

1010 11rr rrrR RRRR iiii iiii iiii iiii

1011 OOrr rrrR RRRR iiii iiii iiii 1111

1011 01rr rrrR RRRR iiii iiii iiii 1111

1011 10rr rrrR RRRR iiii iiii iiii iiii

1011 11rr rrrR RRRR iiii iiii iiii iiii

1100 OOrr rrrR RRRR iiii iiii iiii iiii

1100 01rr rrrR RRRR iiii iiii iiii iiii

1100 10rr rrrR RRRR iiii iiii iiii 1111

1100 11rr rrrR RRRR iiii iiii iiii iiii

1101 OOrr rrrR RRRR iiii iiii iiii 1111

1101 01rr rrrR RRRR iiii iiii iiii iiii

1101 10rr rrrR RRRR iiii iiii iiii iiii

1101 11rr rrrR RRRR iiii iiii iiii iiii

40

RES

RES

RES

RES

RES

RES

RES

RES

SLLI

RES

SRLI

SRAI

SLL

RES

SRL

SRA

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

IFMT

1110 OOrr rrrR RRRR iiii ~~~~ ~~~~ ~~~~

1110 01rr rrrR RRRR iiii iiii iiii iiii

1110 10rr rrrR RRRR ~~~~ iiii iiii iiii

1110 11rr rrrR RRRR iiii iiii iiii ~~~~

1111 OOrr rrrR RRRR iiii iiii iiii iiii

1111 01rr rrrR RRRR ~~~~ ~~~~ iiii iiii

1111 10rr rrrR RRRR iiii iiii ~~~~ ~~~~

1111 11rr rrrR RRRR iiii iiii ~~~~ ~~~~

OPCODE LIST 2

INTEGER OPERATIONS AND OTHER OPCODES

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0000

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0001

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0010

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0011

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0100

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0101

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0110

0000 OOrr rrrR RRRR rrrr rxxx xxOO 0111

41

RES

RES

RES

RES

TRAP

RES

RES

RES

SEQU

SNEU

SLTU

SGTU

SLEU

SGEU

RES

RES

MULT

MULTU

DIV

DIVU

RES

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1000

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1001

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1010

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1011

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1100

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1101

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1110

0000 OOrr rrrR RRRR rrrr rxxx xxOO 1111

0000 OOrr rrrR RRRR rrrr rxxx xx01 0000

0000 OOrr rrrR RRRR rrrr rxxx xx01 0001

0000 OOrr rrrR RRRR rrrr rxxx xx01 0010

0000 OOrr rrrR RRRR rrrr rxxx xx01 0011

0000 OOrr rrrR RRRR rrrr rxxx xx01 0100

0000 OOrr rrrR RRRR rrrr rxxx xx01 0101

0000 OOrr rrrR RRRR rrrr rxxx xx01 0110

0000 OOrr rrrR RRRR rrrr rxxx xx01 0111

0000 OOrr rrrR RRRR rrrr rxxx xx01 1000

0000 OOrr rrrR RRRR rrrr rxxx xxOi 1001

0000 OOrr rrrR RRRR rrrr rxxx xx01 1010

0000 OOrr rrrR RRRR rrrr rxxx xx01 1011

0000 OOrr rrrR RRRR rrrr rxxx xx01 1100

42

RES RFMT

RES RFMT

RES RFMT

ADD RFMT

ADDU RFMT

SUB RFMT

SUBU RFMT

AND RFMT

OR RFMT

XOR RFMT

RES RFMT

SEQ RFMT

SNE RFMT

SLT RFMT

SGT RFMT

SLE RFMT

SGE RFMT

RES RFMT

RES RFMT

MOVI2S RFMT

MOVS2I RFMT

0000 OOrr rrrR RRRR rrrr rxxx xx01 1101

0000 OOrr rrrR RRRR rrrr rxxx xx01 1110

0000 OOrr rrrR RRRR rrrr rxxx xx01 1111

0000 OOrr rrrR RRRR rrrr rxxx xx10 0000

0000 OOrr rrrR RRRR rrrr rxxx xx10 0001

0000 OOrr rrrR RRRR rrrr rxxx xx10 0010

0000 OOrr rrrR RRRR rrrr rxxx xx10 0011

0000 OOrr rrrR RRRR rrrr rxxx xx10 0100

0000 OOrr rrrR RRRR rrrr rxxx xx10 0101

0000 OOrr rrrR RRRR rrrr rxxx xx10 0110

0000 OOrr rrrR RRRR rrrr rxxx xx10 0111

0000 OOrr rrrR RRRR rrrr rxxx xx10 1000

0000 OOrr rrrR RRRR rrrr rxxx xx10 1001

0000 OOrr rrrR RRRR rrrr rxxx xx10 1010

0000 OOrr rrrR RRRR rrrr rxxx xx10 1011

0000 OOrr rrrR RRRR rrrr rxxx xx10 1100

0000 OOrr rrrR RRRR rrrr rxxx xx10 1101

0000 OOrr rrrR RRRR rrrr rxxx xx10 1t10

0000 OOrr rrrR RRRR rrrr rxxx xx10 1111

0000 OOrr rrrR RRRR rrrr rxxx xx11 0000

0000 OOrr rrrR RRRR rrrr rxxx xx11 0001

43

MOVF

MOVD

RFMT

RFMT

MOVFP2I RFMT

MOVI2FP RFMT

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

ADDF RFMT

SUBF RFMT

MULTF RFMT

DIVF RFMT

ADDD RFMT

0000 OOrr rrrR RRRR rrrr rxxx xx11 0010

0000 OOrr rrrR RRRR rrrr rxxx xx11 0011

0000 OOrr rrrR RRRR rrrr rxxx xx11 0100

0000 OOrr rrrR RRRR rrrr rxxx xxii 0101

0000 OOrr rrrR RRRR rrrr rxxx xx11 0110

0000 OOrr rrrR RRRR rrrr rxxx xx11 0111

0000 OOrr rrrR RRRR rrrr rxxx xx11 1000

0000 OOrr rrrR RRRR rrrr rxxx xx11 1001

0000 OOrr rrrR RRRR rrrr rxxx xx11 1010

0000 OOrr rrrR RRRR rrrr rxxx xx11 1011

0000 OOrr rrrR RRRR rrrr rxxx xx11 1100

0000 OOrr rrrR RRRR rrrr rxxx xx11 1101

0000 OOrr rrrR RRRR rrrr rxxx xx11 1110

0000 OOrr rrrR RRRR rrrr rxxx xx11 1111

OPCODE LIST 3

FLOATING POINT OPERATIONS

0000 01rr rrrR RRRR rrrr rxxx xxOO 0000

0000 01rr rrrR RRRR rrrr rxxx xxOO 0001

0000 01rr rrrR RRRR rrrr rxxx xxOO 0010

0000 Oirr rrrR RRRR rrrr rxxx xxOO 0011

0000 01rr rrrR RRRR rrrr rxxx xxOO 0100

44

SUED RFMT

MULTD RFMT

DIVD RFMT

CVTF2D RFMT

CVTF2I RFMT

CVTD2F RFMT

CVTD2I RFMT

CVTI2F RFMT

CVTI2D RFMT

RES RFMT

RES RFMT

EQF

NEF

LTF

GTF

LEF

GEF

RES

RES

EQD

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

0000 01rr rrrR RRRR rrrr rxxx xxOO 0101

0000 01rr rrrR RRRR rrrr rxxx xxOO 0110

0000 01rr rrrR RRRR rrrr rxxx xxOO 0111

0000 01rr rrrR RRRR rrrr rxxx xxOO 1000

0000 01rr rrrR RRRR rrrr rxxx xxOO 1001

0000 01rr rrrR RRRR rrrr rxxx xxOO 1010

0000 01rr rrrR RRRR rrrr rxxx xxOO 1011

0000 01rr rrrR RRRR rrrr rxxx xxOO 1100

0000 01rr rrrR RRRR rrrr rxxx xxOO 1101

0000 01rr rrrR RRRR rrrr rxxx xxOO 1110

0000 01rr rrrR RRRR rrrr rxxx xxOO 1111

0000 01rr rrrR RRRR rrrr rxxx xx01 0000

0000 01rr rrrR RRRR rrrr rxxx xx01 0001

0000 01rr rrrR RRRR rrrr rxxx xx01 0010

0000 01rr rrrR RRRR rrrr rxxx xx01 0011

0000 01rr rrrR RRRR rrrr rxxx xx01 0100

0000 01rr rrrR RRRR rrrr rxxx xx01 0101

0000 01rr rrrR RRRR rrrr rxxx xx01 0110

0000 01rr rrrR RRRR rrrr rxxx xx01 0111

0000 01rr rrrR RRRR rrrr rxxx xx01 1000

45

NED

LTD

GTD

LED

GED

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

0000 01rr rrrR RRRR rrrr rxxx xx01 1001

0000 01rr rrrR RRRR rrrr rxxx xx01 1010

0000 01rr rrrR RRRR rrrr rxxx xx01 1011

0000 01rr rrrR RRRR rrrr rxxx xx01 1100

0000 01rr rrrR RRRR rrrr rxxx xx01 1101

· 0000 01rr rrrR RRRR rrrr rxxx xx01 1110

0000 01rr rrrR RRRR rrrr rxxx xx01 1111

0000 01rr rrrR RRRR rrrr rxxx xx10 0000

0000 01rr rrrR RRRR rrrr rxxx xx10 0001

0000 01rr rrrR RRRR rrrr rxxx xx10 0010

0000 Oirr rrrR RRRR rrrr rxxx xx10 0011

0000 01rr rrrR RRRR rrrr rxxx xx10 0100

0000 01rr rrrR RRRR rrrr rxxx xx10 0101

0000 01rr rrrR RRRR rrrr rxxx xx10 0110

0000 Olrr rrrR RRRR rrrr rxxx xx10 0111

0000 01rr rrrR RRRR rrrr rxxx xx10 1000

0000 01rr rrrR RRRR rrrr rxxx xx10 1001

0000 01rr rrrR RRRR rrrr rxxx xx10 1010

0000 01rr rrrR RRRR rrrr rxxx xx10 1011

0000 01rr rrrR RRRR rrrr rxxx xx10 1100

0000 01rr rrrR RRRR rrrr rxxx xx10 1101

0000 01rr rrrR RRRR rrrr rxxx xx10 1110

0000 01rr rrrR RRRR rrrr rxxx xx10 1111

46

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

RFMT

0000 01rr rrrR RRRR rrrr rxxx xx11 0000

0000 01rr rrrR RRRR rrrr rxxx xx11 0001

0000 01rr rrrR RRRR rrrr rxxx xx11 0010

0000 01rr rrrR RRRR rrrr rxxx xx11 0011

0000 01rr rrrR RRRR rrrr rxxx xx11 0100

0000 01rr rrrR RRRR rrrr rxxx xx11 0101

0000 01rr rrrR RRRR rrrr rxxx xx11 0110

0000 01rr rrrR RRRR rrrr rxxx xx11 0111

0000 01rr rrrR RRRR rrrr rxxx xx11 1000

0000 01rr rrrR RRRR rrrr rxxx xx11 1001

0000 01rr rrrR RRRR rrrr rxxx xx11 1010

0000 01rr rrrR RRRR rrrr rxxx xx11 1011

0000 01rr rrrR RRRR rrrr rxxx xx11 1100

0000 01rr rrrR RRRR rrrr rxxx xx11 1101

0000 01rr rrrR RRRR rrrr rxxx xx11 1110

0000 01rr rrrR RRRR rrrr rxxx xx11 1111

47

Appendix B

The LOGIC III Code for the

Variable Datapath Elements

The next three sections describe a 32-bit ripple carry adder, a 32-bit parallel prefix

adder and finally a 32-bit barrel shifter in LOGIC III. These descriptions are generic

and can be tailored to any size of the adder or shifter. However, the description of

the last two functional units requires that the operand size be an exponent of 2.

B.l Ripple Carry Adder: 32 bits

(**)

(**)

(* *)

(* The LOGIC-III code below defines a generic ripple *)

(*carry adder of any size N .

(*Circuit adder32 is a 32 bit instantiation of the *)

(*ripple

(*adder

carry adder defined by the net module

(* A and B are 32bit wide primary

(* inputs. cin is the carry in to the

(* adder. s is the result of the

(* addition and cout is the

(* carry out result

(*

(**)

(**)

GLOBAL

(* Include the OASIS standard cell definition libraries *)

includedef("/usr/oasis/lib/scmos2.0/standard.def");

END.

(* LOGIC MODULE FA defines a Full Adder unit

which is used to build the ripplecarry

adder ~n the NET MODULE adder *)

LOGIC_MODULE FA(Cin,a,b:INPUT;sum,Cout:OUTPUT;);

BEGIN if(-Cin)then

begin

sum:=a XOR b;

49

Cout:=a AND b;

end

else

begin

end;

sum:=a XNOR b;

Gout:= a ORb;

END.{LOGIC_MODULE FA}

NET_MODULE adder(N:INTEGER; A,B:array[O .. N-1]of INPUT;

Gin: INPUT; Cout:OUTPUT; S:array[O .. N-1]of OUTPUT;);

VAR i:INTEGER;

C:array[O .. N] of NODE;

BEGIN

connect(C[O],Cin);

for i:=O to N-1 do

FA(C[i],A[i],B[i],S[i] ,C[i+1]);

connect(Cout,C[N]);

END.{NET_MODULE adder}

(* Circuit adder32 is a 32 bit instantiation of the

NET MODULE adder declared above *)

CIRCUIT adder32;

VAR

A,B:array[O .. 31]of input;

cin:input;

50

cout:output;

S:array[O .. 31]of output;

(* A and B are 32bit wide primary

inputs. cin is the carry in to the

adder. S is the result of the

addition and cout is the

carry out result *)

BEGIN

adder(32,A,B,cin,cout,S);

END.{CIRCUIT adder32}

51

B.2 Parallel Prefix Adder: 32 bits

(**)

(**)

(* The LOGIC-III code belaY defines a gener1c parallel*)

(*prefix adder of a size Yhich is an exponent of 2. *)

(*Circuit adder32 is a 32 bit instantiation of the *)

(*parallel prefix adder defined by the net module *)

(*adder *)

(*

(*

(*

(*

(*

(*

A and B are 32bit Yide primary

inputs. cin is the carry in to

adder. s lS the result of the

addition and cout is the

carry out result

the

*)

*)

*)

*)

*)

*)

(**)

(**)

GLOBAL

includedef("/usr/oasis/lib/scmos2.0/standard.def");

END.

LOGIC_MODULE A_cell(a,b,c:input;g,p,s:output;);

BEGIN

g:= a AND b;

s:= a XDR b XDR c;

p:= a OR b;

END.{LDGIC_MODULE A_cell}

52

LDGIC_MODULE B_cell(gj1k,pj1k,gij,pij:input;

gik, pik: output;

ci:input;cj1:output;);

{ ct last op par }

BEGIN

pik:=pij AND pj1k;

gik:=gj1k DR (pj1k AND gij);

cj1:=(pij AND ci)DR gij;

{ct:=ci;}

END. {LOGIC_MDDULE B_cell}

LOGIC_MODULE carrygen(g,p,c:input;cout:output;);

BEGIN

cout:=g OR (p AND c);

END.{LOGIC_MODULE carrygen}

NET_MODULE adder(N:integer;A,B:array[O .. N-1]of input;

S:array[O .. N-1]of output;cin:input;

cout:output;);

VAR

g,p,C:array[O .. N-1] of node;

G,P:array[O .. N-1,0 .. N-1]of node;

tmpr:node;

j,i,k,l:integer;

BEGIN

53

connect(cin,C[O]);

for i:=O to N-1 do

A_cell(A[i],B[i],C[i] ,g[i],p[i] ,S[i]);

j :=N/2;

for i:=O to j-1 do

B_cell(g[i*2+1],p[i•2+1],g[i*2] ,p[i•2],

G[i*2+1,i*2] ,P[i*2+1,i*2] ,C[i*2] ,C[i*2+1]);

j:=j/2;

k:=4;

Yhile(j>1) do

BEGIN

for i:=O to j-1 do

BEGIN

B_cell(G[k-1+i*k,k/2+i*k] , P[k-1+i*k,k/2+i•k],

G[k/2-1+i*k,i*k] ,P[k/2-1+i*k,i*k],

G[k-1+i*k,i*k] ,P[k-1+i*k,i*k],

C[i*k], C[i*k+k/2]);

END;{for i:=O to j-1 do}

k:=2•k;

j :=j/2;

END;{ while(j>1) do}

B_cell(G[N-1,N/2] ,P[N-1,N/2] ,G[N/2-1,0],

P[N/2-1,0] ,G[N-1,0] ,P[N-1,0] ,C[O] ,C[N/2]);

{ the first 2 C[Os] are 0 really }

carrygen(G[N-1,0],P[N-1,0],cin,cout);

54

END.{NET_MODULE adder}.

(*Circuit adder32 is a 32 bit instantiation of the

parallel prefix adder defined by the net module

adder *)

CIRCUIT adder32;

VAR

(* A and B are 32bit wide primary

inputs. cin is the carry in to the

adder. S is the result of the

addition and cout is the

carry aut result *)

A,B:array[0 .. 31]of input;

S:array[0 .. 31]of output;

cin:input;

cout:output;

BEGIN

adder(32,A,B,S,cin,cout);

END.

55

B.3 Barrel Shifter: 32 bits

(**)

(**)

(* *)

(* The LOGIC-III code below defines a generic ripple *)

(*barrel shifter of a size N which is a exponent of 2.*)

(*{shifter 32 is a 32-bit instantiation of the *)

(*net module shifter which describes a barrel shifter.*)

(*The input to the shifter is "in" which is 32-bits *)

(*wide and the output of the shifter is "out" which is*)

(*again 32-bits wide. "sh" contains the shift amount *)

(*to be done for the 32 bit input.} *)

(* *)

(**)

(**)

GLOBAL

includedef("/usr/oasis/lib/scmos2.0/standard.def")

END.

LOGIC_MODULE selector(a,b,s:INPUT;c:OUTPUT;);

BEGIN if(s)then

c:=b

else

c:=a;

END.{LOGIC_MODULE selector}

NET_MDDULE shifter(N,K:INTEGER; in:array[O .. N-1]of INPUT;

out:array[O .. N-1]of OUTPUT;

sh:array[O .. K-1]of INPUT;);

VAR i,j,exp,jmod:INTEGER;

56

p:array[O .. K,O .. N-1] of NODE;

BEGIN

exp :=1;

for i:=O to K-1 do

BEGIN

for j:=O to N-1 do

BEGIN

jmod:=(j+exp)-((j+exp)/N)*N;

selector(p[i+1,jl,p[i+1,jmod] ,sh[i] ,p[i,j]);

END;{for j:=O to N-1 do}

exp:=exp*2;

END;{for i:=O to K-1 do}

for j:=O to N-1 do

BEGIN

connect(in[j],p[K,j]);

connect(out[j] ,p[O,j]);

END;{ for j:=O to N-1 do}

END.{NET_MODULE shifter}

CIRCUIT shifter32;

{shifter 32 is a 32-bit instantiation of the

net module shifter which describes a barrel shifter.

The input to the shifter is "in" which is 32-bits

wide and the output of the shifter is "out" which is

again 32-bits wide. "sh" contains the shift amount

to be done for the 32 bit input.}

VAR

57

BEGIN

in:array[0 .. 31]of input;

sh:array[O .. 4]of input;

out:array[O .. 31]of output;

shifter(32,5,in,out,sh);

END.{CIRCUIT shifter32;}

58

[Bri89]

[Cho89]

[CH89J

BIBLIOGRAPHY

J. V. Briner, Jr. LDVSIM: A Mixed LEvel System Simulator. Techni­

cal Report 89-29, Duke University, Department of Computer Science,

Durham, North Carolina, 1989.

Paul Chow ed. The i'viiPS-X RISC Microprocessor. Kluwer Academic

Publishers, Norwell, Massachusetts, 1989.

Paul Chow and Mark Horowitz. The Design and Testing of MIPS-X .

Advanced Research in VLSI, Proceedings of the Fifth MIT Conference,

March 1988. The MIT Press, Cambridge, Massachusetts, 1988.

[ERN+89] D. J. Erdman, D. J.Rose, G. B. Nifong, R. Subrahmanyam and S. Kenkel.

CAzM Circuit AnalyZer with Macromodelling, Version Release 4.0 . Mi­

croelectronics Center of North Carolina and Duke University, July 1989.

[GM87] C. E. Gimarc and V. M. Milutinovic. A Survey of RISC Processors and

Computers of the Mid-1980's. IEEE Computer, pages 59-69, September

1987.

[HJP+83] J. L. Hennessy, N. P. Jouppi, S. A. Przybylski, C. Rowen and T. R.

[Hen84]

[HP90]

Gross. Design of a High Performance VLSI Processor. Proceedings of

Third Caltech Conference on VLSI. Computer Science Press, 1983.

J. L. Hennessy. VLSI Processor Architecture. IEEE Transactions on

Computers, Vol. C-33, Pages 1221-1246, December 1984.

J. L. Hennessy and D. Patterson. Computer Architecture: A Quantitative

Approach. Morgan-Kaufmann, 1990.

[HS90a]

[HS90b]

S. Ho and L. Snyder. Balance in Architectural Design. In Proc. of the

17th International Symposium on Computer Architect11re. ACM, 1990.

T. J. Holman and L. Snyder. Architectural Tradeoffs in Parallel Com­

puter Design. In Proc. of the 1989 Decennial Caltech Conference: Ad­

vanced Research in VLSI, pages 317-334. Caltech, MIT Press, 1990.

[HFY +83] R. J. Horning, M. Forsyth, J. Yetter, L. J. Thayer. How IC's impact

[Kat84]

[KB88]

[Ka88]

[KF89J

[Kun86]

[1.187]

[Mok86]

workstations. In IEEE Spectrum , April1991.

Manolis G. H. Katevenis. Reduced Instruction Set Computer Achitecturps

for VLSI. ACM Doctoral Dissertation Award 1984, MIT Press, 1984.

G. Kedem and F. Brglez. OASIS: Open Architecture Silicon Implementa­

tion System. Technical Report MCNC TR 88-06, Microelectronics Center

of North Carolina, February 1988. also appears in Proc IEEE Interna­

tional Symposium on Circuits and Systems, 1990 as OASIS: A Silicon

Compiler for Semicustom Design by Ked em, Brglez and Kozminski.

G. Kane. MIPS RISC Architecture: MIPS R2000/ MIPS R3000. Prentice

Hall, 1988.

L. Kohn and S. Fu. A 1,000,000 Transistor Microprocessor . In 1989

IEEE International Solid-State Circuits Conference Digest of technical

Papers.

H.T. Kung. Memory Requirements for Balanced Computer Architec­

tures. In Proceedings of the 13th Annual Symposium on Computer Ar­

chitecture. IEEE, 1986.

L.I.S. VLSI Design Tools Reference Manual. Technical Report 87-02-01,

Northwest Laboratory for Integrated Systems, University of Washington,

Seattle, Washington, February 1987.

Nicolas Mokhoff. New RISC machines appear as hybrids with both RISC

and CISC features. Computer Design. April 1, 1986.

60

[PT91]

[Pat85]

[Per89]

M. Pandey and A. Tyagi. RISC Microprocessor Implementations with

Resource Allocation Balanced for Instruction Mix. Submitted for publi­

cation to ICCD, 1991.

D. Patterson. Reduced Instruction Set Computers. Communications of

ACM, 28:8-21, January 1985.

T. S. Perry. Intel's Secret is Out. IEEE Spectrum, pages 22-28, April

1989.

[PGH+84] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jouppi, and

C. Rowen. Organization and VLSI Implementation of MIPS. Journal

of VLSI and Comp1tter Systems, 1(2):170-208, 1984.

[Ros90] R. Ross. Roger Ross on RISC. In Computer Design, September 1, 1990.

[SMH+86] W. S. Scott, R. N. Mayo, G. Hamachi and J. K. Ousterhout, eds. 1986

VLSI Tools: Still More Works by the Original Artists. Report No.

UCB/CSD 86/272, Computer Science Division (EECS), University of

California, Berkeley, California, December 1985.

[SKP+84] R. W. Sherburne Jr., Manolis G. H. Katevenis, D. A. PAtterson, C. H. Se­

quin. A 32b NMOS Microprocessor with a Large Register File. IEEE

Journal of Solid-State Circuits, SC-19(5):682-689, October 1984.

[Smi78] F. D. Smith. Models of Multiprocessing for Transaction-Oriented Com­

puter Systems. PhD thesis, Dept. of Computer Science, University of

North Carolina, Chapel Hill, October 1978.

[Sta90]

[Sta89]

[Tab87]

W. Stallings. Computer Organization and Architecture. Macmillan Pub­

lishing Company, 1990.

R. M. Stallman. Using and Porting GNU CC. Free Software Foundation,

Inc., February 1989.

Daniel Tabak. RISC Architecture. Research Studies Press, 1987.

61

[Ter83]

[Tho90]

[WE85]

[Wir91]

[Wei91]

C. J. Terman. Simulation Tools for Digital LSI Design. PhD thesis,

Department of Electrical Engineeing, M.I.T., Cambridge, MA, 1983.

J. Thompson. The embedded RISC war zone. Electronic Engineering

TIMES, Issue 618, November 26, 1990.

N. Weste and K. Eshraghian. Principles of CMOS VLSI Design.

Addision-Wesley 1985.

L. Wirbel. HP takes RISC to end users. Electronic Engineering TIMES,

page84, Issue 634, March 25, 1991.

R. Weiss. MIPS RISC headed for embedded control. Electronic Engi­

neering TIMES, Issue 614, Jan 25, 1991.

62

