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Contrast enhancement is a fundamental step in the display of digital images. The end 
result of display is the perceived brightness occurring in the human observer; design of 
effective contrast enhancement mappings therefore requires understanding of human 
brightness perception. Recent advances in this area have emphasized the importance of 
image structure in determining our perception of brightnesses, and consequently contrast 
enhancement methods which attempt to use structural information are being widely 
investigated. In this paper we present two promising methods we feel are strong competitors 
to presently-used techniques. We begin with a survey of contrast enhancement techniques 
for use with medical images. Classical adaptive algorithms use one or more statistics of the 
intensity distribution of local image areas to compute the displayed pixel values. More 
recently, techniques which attempt to take direct account of local structural information 
have been developed. The use of this structural information, in particular edge strengths, in 
defining contextual regions seems especially important. Two new methods based on this idea 
are presented and discussed, namely edge-affected unsharp masking followed by contrast­
limited adaptive histogram equalization (AHE), and diffusive histogram equalization, a 
variant of AHE in which weighted contextual regions are calculated by edge-affected 
diffusion. Results on typical medical images are given. 
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1. INTRODUCTION 

Display of a digital image is the process by which the array of recorded 
intensities is presented to the human observer as a light image. For medical 
images the overall goal of display is the detection, localization and qualitative 
characterization of anatomical objects represented by the intensity variations in 
the recorded data. A necessary step in this process is the rule by which the 
recorded intensities of the original image are mapped to the display-driving 
intensities of the display device (Figure 1). When performed explicitly, this step 
is called contrast enhancement. After this mapping is performed, the image 
undergoes further transformations, first within the display device and then in 
the human visual system. The effective design of contrast enhancement 
mappings requires a thorough understanding of these transformations. It would 
be ideal if the display device/observer combination could be made linear, so that 
equal differences in display-driving intensity would be perceived as equally 
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Figure 1. The steps of digital image display. 

different. A description of acheiving this linearity given an appropriate model of 
brightness perception is given in (Pizer, 1981a). The difficulty lies in our 
incomplete understanding of human brightness perception. We know, for 
instance, that brightness perception is a function not only of luminance, but also 
of the spatial context of the stimulus. In particular, edges seem to play an 
important role in contrast perception. This growing understanding of human 
visual perception is reflected in recent research in contrast enhancement. 

In this paper we first present a survey of contrast enhancement 
techniques, concentrating on recent developments in locally adaptive methods. 
Classical adaptive methods have centered on the calculation of various statistics 
of the local intensity distribution and the use of these to amplify local contrasts. 
More recently, methods have been developed which attempt to take explicit 
account of local image structure, especially edges. We have developed a pair of 
related techniques of this type. These methods are based on advances in our 
understanding of human visual perception. We will describe and show the results 
of some of these methods on typical medical images, and indicate directions for 
further research. 
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2. CONTRAST ENHANCEMENT APPROACHES IN THE LITERATURE 

2.1. Global (Stationary) Contrast Enhancement 

A global or stationary enhancement mapping is a grey-level transformation 
based solely on the intensity of each pixel: 

I'(x,y) = f(I(x,y)). 

The goal is to find a function which best utilizes the full range of display 
grey levels. Among these methods are intensity windowing, histogram 
equalization and histogram hyperbolization. 

If we identify a subrange of image grey levels corresponding to features of 
interest this subrange can be expanded linearly to fill the full range of intensities. 
This technique is called intesity windowing. Pixels whose values fall outside the 
selected range are mapped to the minimum or maximum level. This technique is 
commonly used in the presentation of CT images. For example, in chest CT images, 
a "lung window" and a "mediastinum window" are chosen and applied, producing 
two images. These two images are then viewed side-by-side by the radiologist. 
This method has the advantage of being easily computed and in the case of CRT 
displays can be made interactive by an implementation which directly 
manipulates the lookup table of the display device. One difficulty is that objects 
occupying widely separated areas of the intensity range cannot be well presented 
in a single image. A perhaps more serious difficulty is that the perception of 
object boundary locations can depend critically on window selection. 

Global histogram equalization is justified by the argument that for noise­
free images it maximally transmits information as to scene intensity values 
(Cormack, 1981). In this method, a pixel's grey level is mapped to its rank in 
thegrey-level histogram of the entire image, scaled so that the output image fills 
the full range of intensities. The enhancement mapping is thus proportional to 
the cumulative distribution function of the image intensities. The result is that 
intensity values having greater numbers of pixels will be allocated a greater 
number of display levels, and the resulting histogram will be as flat as possible. 
There is however the compression of intensities that occur less frequently in the 
global histogram, which results in a loss of contrast in some areas of the image 
(Figure 2). 

In histogram hyperbolization (Frei, 1977), a transformation of intensities is 
sought that results in a flat histogram of perceived intensities. Since the 
luminance response of the first stage of the human visual system is 
approximately logarithmic, it is argued that the shape of the histogram of 
displayed intensities should be approximately hyperbolic. Essentially, what is 
sought is histogram equalization after the effect of retinal processing. Thus a 
histogram-equalized image presented on a perceptually-linearized display should 
result in perceived brightnesses very close to those of a histogram-hyperbolized 
image displayed without linearization. This approach assumes a display device 
which is linear in its presentation of absolute luminances. Its main weakness is 
the strong dependence of our visual system on local context; brightness 
perception is not a simple function of absolute luminance. 
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Figure 2. Chest CT scan -- original (left) and processed using global histogram 
equalization (right). 

2.2. Adaptive Contrast Enhancement 

An adaptive contrast enhancement mapping is one in which the new 
intensity value for a pixel is calculated from its original value and some further 
information derived from local image properties: 

I'(x,y) = f(I(x,y),DN(x,y)), 

where N (x,y), the contextual region, is some spatial neighborhood of (x,y) in the 
image which includes the pixel of interest. For computational efficiency, it is most 
usual for N to be a square region centered on (x,y), but as we shall see, this need 
not be the case. Furthermore, the size and shape of the contextual region may 
itself vary throughout the image, based on either local statistics or local 
structural information. 

A large number of adaptive contrast enhancement methods can be viewed 
as some variation of high-pass filtering. The oldest and most widely-used of 
these is unsharp masking. Known in its photographic form for at least sixty years, 
unsharp masking has also been applied to digital images. It can be defined as: 

I'(x,y) = y(I(x,y) - I*N(x,y)) + I*N(x,y), 

= y(I(x,y)) + (y-1 )(I*N(x,y)), 

where I*N(x,y) is a weighted average of intensities over the contextual region 

and y is a constant gain factor. The term (l(x,y) - I*N(x,y)) is a high-frequency 

component sometimes referred to as the detail image. A y between 0 and 1 
results in a smoothing of the image, a y greater than 1 results in emphasis of the 
high-frequency detail image. Unsharp masking has been applied and tested with 
varying success on a wide range of medical images (Loo et al., 1985, Sorenson, 
1987). It has a noticeable sharpening effect on edges, but when the gain factor is 
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high enough to present very small details well, ringing artifacts are introduced 
across strong edges, and breakup of image objects can occur (Figure 3). 

Unsharp masking can be generalized in a number of ways. One way is to 
replace the constant gain with separate weights for the high and low-frequency 
terms: 

l'(x,y) = A(I(x,y) - I*N(x,y)) + B(I*N(x,y)). 

An example of a method using this formulation is the statistical difference 
filter (Wallis, 1976, Harris, 1977). In this method, A is chosen so that the 
variance within the contextual region is made as nearly constant as possible, 
subject to a preset maximum gain to avoid over-enhancement of areas of very 
small standard deviation. B is a constant which serves to restore part of the low­
frequency component. The method has been shown to produce objectionable 
artifacts and finding suitable values for the weighting factors, the maximum gain 
and the window size proves difficult. A related method (Gordon et al., 1984, 
Dhawan et al., 1986) is based on the definition of a measure of the contrast at a 
pixel: 

C = II(x,y) - I*(x,y)l I (I(x,y) + I*(x,y)), 

which yields a value in the range 0-1. Enhancement consists of computing a new 
contrast C' and modifying the intensity of the pixel according to this new contrast 
as follows: 

l'(x,y) = I*(x,y) (1 +C') I (1-C'), if l(x,y) > I*(x,y) 

= I*(x,y) (1-C') I (l+C'), if I(x,y) < l*(x,y). 

An advantage of this method is that arbitrary enhancement functions can 
be easily applied. Results depend critically on window size, however, and 

Figure 3. Unsharp masking applied to the same image as in Figure 2 with two 
different gain factors -- y = 2 (left) and y = 5 (right). 
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blurring of edges is a problem. Moreover, the need to rescale the range of I' to 
the original range defeats the attempt to actually acheive the contrasts C' that are 
desired. 

In adaptive histogram equalization (AHE) (Pizer, 198lb, Zimmerman, 1985), 
the histogram is calculated for the contextual region of a pixel, and the 
transformation is that which equalizes this local histogram. It development is 
logical both from the point of view of the information theory basis of global 
histogram equalization and from our knowledge of the human visual system. We 
are very sensitive to local relative contrasts, but insensitive to both absolute 
luminance and widely-separated relative luminances. ARE provides a single 
displayed image in which contrasts in widely-varying recorded intensities can be 
easily perceived. ARE has demonstrated its effectiveness in the display of images 
from a wide range of imaging modalities, including CT, MRI and Radiotherapy 
portal fims. 

While providing excellent enhancement of the signal component of the 
image, ARE also enhances noise. In addition, shadowing of strong edges can occur 
in certain types of images. This latter problem has been analyzed and a suggested 
remedy given in the context of high resolution digital chest radiographs in 
(Rehm et al., 1990). In contrast-limited adaptive histogram equalization (CLARE) 
(Pizer et al., 1987), the enhancement calculation is modified by imposing a user­
specified maximum on the the height of the local histogram, and thus on the 
slope of the cumulative histogram which defines the mapping. The enhancement 
is thereby reduced in very uniform areas of the image, which prevents over­
enhancement of noise and reduces the edge-shadowing effect of unlimited ARE 
(Figure 4). Several investigators have examined the possibility of using unsharp 
masking as a pre-processing step for CLARE (Blume, 1987, Rehm, 1990). More 
about this will be said later. 

2.3. Methods Incorporating Structure 

It has been recognized for some time that local image structure plays a 
crucial role in our perception of contrast, and enhancement techniques which 
incorporate local structural information are a logical result. There are two ways 
in which the above methods may be extended to include structural information. 

'Figure 4. Images processed with AHE (left) and CLAHE (right). 
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One is to change the enhancement calculation itself; the other is to change the 
contextual region over which the calculations are done. Examples of each of these 
approaches are presented below. 

An interesting extension of Gordon's technique (Beghdadi and Le Negrate, 
1989) uses a modified contrast definition based on the detection of edges within 
the contextual region. In essence, the edge-grey-value of a pixel is its intensity 
weighted by the local edge strength at that pixel as computed by the Sobel, 
Laplacian or other edge operator. These edge-weighted values are then used in 
the calculation of the contrast measure as before. This method has an edge­
enhancing effect when compared to the original formulation, but the exact effect 
depends strongly on the shape of the enhancement function and the choice of 
window size. 

Several ways have been proposed of adjusting the contextual region over 
which the contrast enhancement is calculated. The idea is to adaptively restrict 
the local context to that which is relevant to perception of the pixel under 
consideration. Exactly what constitutes relevance in this sense is not entirely 
clear and depends to a large extent on the visual model we employ, but it is 
certain that perceived object boundaries are important in defining relevant 
context. 

Gordon's method has also been extended by introducing -a limited set of 
different window sizes, and choosing the appropriate size on a pixel-by-pixel 
basis throughout the image. This is done by analysing how the contrast function 
changes across these different window sizes. As the window size increases, the 
contrast of a central object will increase until the inner window just covers the 
object. This window is then used to calculate the enhancement as before. Even by 
restricting the available windows to a few possible sizes, the computational 
burden is large. Moreover, the use of square windows limits the ability to adapt 
to actual image structure, and as is the case with all the variants of this method, 
the rescaling problem remains. 

Kim and Yaroslavskii ( 1986) use analysis of the local histogram to define 
subsets of the contextual region, and the enhancement mappings are applied over 
these subsets rather than the entire region. One method uses only a portion of 
the histogram centered on the pixel of interest, the includes only those pixels of 
the contextual region which fall within a certain intensity range surrounding the 
value of that pixel. To the extent that nearness in the histogram or nearness in 
absolute intensity corresponds to closeness within the image, this has the effect 
of restricting the calculations to within object boundaries. These measures are, 
however of doubtful validity -- either method may result in a contextual region 
of disconnected pixels. Moreover, while the contextual region does indeed change 
across the image, the overall window size remains fixed. To be entirely 
satisfactory, an adaptive neighborhood must both have some mechanism for 
responding to object boundaries and also not be limited by an imposed overall 
shape. Two methods which meet both these criteria are now examined. 

3. NEW METHODS INCORPORATING EDGE STRUCTURE 

While many of the techniques discussed thus far are quite useful, they 
have as their weakness that context is determined in a way that is at best 
indirectly related to the grouping schemes used by visual systems. Thus we seek 
some way of determining the relevant context, and we can use recent advances 
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in understanding human VISIOn to help us. We will apply this idea in extending 
two of the most attractive methods from those discussed earlier: unsharp 
masking followed by AHE, and CLARE. 

We know that an important early stage of human vision involves the 
calculation of an edge map. Best evidence seems to suggest that our perception of 
brightness is controlled by a sort of diffusion process in which the perceived 
contrast of these edges acts as an insulation strength that partially blocks the 
diffusion (Cohen and Grossberg, 1984). 

Originally developed in the context of edge detection and the theory of 
scale-space, anisotropic diffusion (Perona and Malik, 1988) offers a way of 
producing truly variable contextual regions in a manner very like the above 
description of the calculations of the human visual system. Stationary blurring, 
which corresponds to the pixel averaging discussed above performed over 
unvarying contextual regions, can be modeled as a solution to the heat­
conduction or diffusion equation: 

where c is a constant controlling the rate of diffusion. If we let c vary according 
to local image features, we obtain 

It = div(c(x,y,t)L\1) = c(x,y,t)VI + L\ci\1, 

the anisotropic diffusion equation. Here V is the gradient and L\ the Laplacian 
operator. If we knew for a given time t the location of object boundaries, we 
could set c to be 1 within those boundaries and 0 outside. In this way, we could 
entirely eliminate interaction across region boundaries. Since we do not know 
precisely the object boundaries, this is not possible; moreover this is not the 
result we want. We can chose c to be a monotonically decreasing function of the 
edge strength such that diffusion across edges is limited, but not eliminated. As 
an example, we use the function 

c(IVII) = exp(-IVII2 /2K2), 

where the parameter K can be viewed as selecting an edge strength up to which 
diffusion is allowed and beyond which the diffusion is strongly limited. Thus, 
diffusion using a large value of K blurs all but the very strongest edges, while 
selecting a very small K blocks diffusion except across very weak edges. 

3.1 Unsharp Masking Using Edge-Limited Blurring 

The context for unsharp masking is the blurring kerneL We have used an 
implementation of anisotropic diffusion (Gerig and de Moliner, 1989) in an 
variant of unsharp masking which can be viewed as the standard unsharp 
masking formula using a variable rather than fixed contextual region. The result 
is a relative increase in the blurring of low-contrast edges. This means, on 
amplification of the detail image, a relative increase in the enhancement of small 
details. A comparison of unsharp masking using isotropic Gaussian blurring and 
using edge-limited blurring is given in Figure 5. With edge-limited blurring, 
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there is considerably more enhancement of the finest details of the image, and 
yet a noticeable lack of the ringing artifacts across strong edges that can be seen 
in the isotropically-blurred version. We have used this edge-limited unsharp 
masking as a pre-processing step before applying CLAHE, and the result is an 
image with excellent grey-scale without the edge artifacts of CLAHE used alone 
(Figure 6). 

Figure S. CT image blurred with Gaussian blurring (upper left) and edge-affected blurring 
(upper right). The resulting unsharp-masked enhancements are pictured below. The gain 

factor in both cases is y = 4. 

Figure 6. Original CT image (left) and enhancement using edge-affected 
unsharp masking followed by CLARE (right). 
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3.2. Diffusive Histogram Equalization 

For AHE, the context is all the pixels contributing to the histogram from 
which we calculate the output grey level. These contributions can have variable 
weights, so the weight values are also part of the definition of the contextual 
region. Here, too, we have used edge-affected blurring to achieve a variable­
neighborhood adaptive histogram equalization algorithm we call diffusive 
histogram equalization (DHE). In this method, we calculate the effect of all pixels 
of a given grey-level on the histograms of all pixels in the image in a single step. 
This is done by applying edge-limited blurring to an image made by placing a 
positive starting value in each pixel of the current grey level and zeros 
eveywhere else. The edges used to limit the diffusion are the edges of the 
original image. After diffusing, the histogram value for each pixel is contained in 
this image. Thus the influence of one pixel on another is limited by intervening 
edges. The contextual region is truly variable, not only in overall shape 
(potentially the entire image could be the contextual region) but also in the 
variable weighting of each pixel within the region. Figure 7 shows the contextual 
region for one pixel in the chest CT image, and the result of applying DHE to that 
image. 

4. DISCUSSION 

We have applied the two methods discussed above to a number of images 
from different modalities with encouraging results. We expect to conduct formal 
analysis of these methods in the near future. It is important in designing tests for 
evaluation of contrast enhancement methods to keep in mind the particular task 
being performed. Enhancement methods are often compared on the basis of their 
ability to increase detectablity of either standard test patterns or very subtle 
artificially-produced lesions imposed on real medical images. This detection task 
is certainly important for many imaging modalities, but may not be the most 
important in every case. Boundary localization, shape characterization and 
comparison of absolute luminances are some other viewing tasks which may be 

Figure 7. Diffusive histogram equalization -- edge-affected contextual region 
for one pixel superimposed on original image (left) and final enhanced image (right). 
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of importance. Diffusive histogram equalization is a particularly aggressive 
enhancement method, yielding images exceptionally rich in structural detail. We 
expect it might not be particularly well-suited for lesion detection. By 
comparison, the images produced by edge-affected unsharp masking followed by 
CLAHE are perhaps more suited to making the qualitative judgements required 
by lesion detection or appreciation of gross shape features. The ultimate test of 
any contrast enhancement method designed for use with medical images is 
whether or not it provides increased diagnostic accuracy or efficiency in a clinical 
setting. In choosing among contrast enhancement methods, we must generally be 
content with some approximation to this test. Moreover, it may take a 
considerable amount of training for the clinician to effectively use images 
processed by means of these enhancements. 

Another task-related matter is how noise is treated. Noise is unwanted 
image detail, so its definition depends on what detail is wanted, as well as what is 
known about the properties of the image-formation process. With such a decision, 
the contrast enhancement must be chosen not simply to convey signal 
differences, but to convey them relative to noise. This problem is acute for DHE, 
which tends to bring out contrast at all image levels. This can be controlled to 
some extent by allowing the diffusion to continue relatively long, effectively 
increasing the size of the contextual region. It would certainly be possible to 
apply a contrast-limitation factor, as in CLARE, which would result in images with 
less apparent noise. 

We have discussed these techniques without paying particular attention to 
the cost of computing them. The anisotropic diffusion calculations are very 
expensive, both in processor time and memory requirements. Certainly, for a 
method to be usable in the real world, the implementation must be relatively 
fast, even real-time. Many of the methods discussed above, particularly the 
adaptive ones, are too computationally expensive to be clinically valuable. Many 
can be speeded up by using recently developed image processing computers or 
other specialized hardware. 

5. CONCLUSION 

Digital image processing is becoming more and more important in medical 
imaging as we move from film-based to computer-based imaging systems. An 
important part of this is the effective display of these digital images, and contrast 
enhancement is an essential step of the display process. We have tried to give an 
indication of the importance of an accurate visual model in the development of 
these techniques, and have outlined the development of two contrast 
enhancement methods, edge-affected unsharp masking followed by AHE and 
diffusive histogram equalization. Both of these methods are based on our 
knowledge of how the visual system determines context. As better models of 
human visual perception are formulated, we will be able to design contrast 
enhancement methods which more effectively complement our perceptual 
capabilities. 
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