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The stage of human vision in which objects are formed apparently precedes 

the final determination of many object properties: object identity, 

brightness, size, and location. Analogously in computer vision, this stage 

must precede isolated display and measurement of the object. This paper 

brings together several ideas about how this grouping of space into objects 

may be done by the human visual system, for example when it is viewing 

medical images. The result of this synthesis is a new model of form 

perception. 

An important train of thinking in the study of form perception has been 

that grouping is based on the local detection and tracking of edges. Hubel 

and Wiesel [1968] and others have found orientation-sensitive detectors in 

the visual cortex, detectors that are sensitive to object edges. Also, 

eye-tracking experiments [Gerrits, 1970] find that in saccadic eye 

movements, foveation on edges predominates. Pursuing this idea, Grossberg 

[1985] described a neural network model of vision in which local edges are 

connected into closed curves enclosing objects. 

There are some difficulties with this idea. First, local measures of edge 

strength are sensitive to error, producing failures of edge tracking. Yet 

the human is able to jump large edge gaps formed by occlusion, blurring, or 

noise, perceiving edges when they are not present -- so called subjective 

edges -- to create perceptually complete objects from incomplete 

information. Second, it is hard to see how any network of neurons with a 

dominance of local connections and limited connections per neuron could 

find such perceptually obvious relations as that between opposite points 

on two sides of an object (see figure 1 for examples) . 

Medjal Properties 

The above difficulties are ameliorated with an encoding scheme responding 

to the opposite object edges simultaneously, sensing the object region 



Figure 1: Visually related opposite points on an object 

rather than its separate edges. Beginning with Blum [1967], many in the 

field of computer vision have been attracted by a scheme of this type in 

which an object is represented in terms of a medial axis or skeleton 

running down the center of the object, together with a width value at each 

point on the medial axis. Early research provided some limited 

psychological evidence that human vision operates in these terms [Psotka, 

1978]. More recently Leyton [1984, 1987], a perceptual psychologist, 

argued that such central-axis-based operation characterizes vision. Leyton 

suggested further that the long known fact that corners and other object 

boundary locations of locally maximal curvature are perceptually important 

is related to the correspondence of these locations to endpoints of these 

central axes. It has also been noted [von der Heydt, 1984] that subjective 

edge perceptions derive especially strongly from extensions of edges from 

corners. 

Related entities are the end-stopped cells found neurophysiologically by 

Hubel & Wiesel [1968] and others. They reported that these neurons are 

sensitive to the end of a bar but not to a part of a bar that crosses 

through the receptive field of the neuron. We suggest that this behavior 

may be described more generally as sensitivity to regions corresponding to 

medial axis endpoints. 

The Blum medial axis is formally defined as the locus of centers of maximal 

disks in the object (see figure 2). As a result every axis point 

corresponds to two (or occasionally more) object boundary points where the 

maximal disk touches the boundary. These two boundary points appear to 

correspond to each other in a way consistent with the visual percept. The 



medial axis carries with it (in the radii of the disks) straightforward 

access to the angle of the object boundary at each of these two boundary 

points relative to the axis direction at the corresponding axis point. 

Moreover, the curvature of the axis and of the boundary pair relative to 

the axis is also straightforwardly accessible. 

Figure 2: The medial axis for an object 

Multiscale Geometry Detectors 

Many investigators have suggested that visual grouping must be based on 

sets of detectors that sense a regional rather than curvilinear (e.g., 

edge) property, with each detector (neuron) sensing the same property but 

at different spatial scales. Each neuron calculates a weighted sum of 

intensities about the point. The spatial weighting function is called the 

receptive field of the neuron (see figure 3) . When applied at all points in 

the visual field, the spatial weighting function can be thought of as a 

filter kernel. Different spatial scales correspond to different widths of 

the receptive field. 

Figure 3: Some neuron receptive fields found in the visual system 



Such a multiscale arrangement is suggested by the ability of the visual 

system to sense an object independent of its size in the visual field and 

to focus on various levels of detail. Neurophysiological research confirms 

this property [Young, 1987] . A spatial multiscale operation was first 

suggested by Campbell & Robson [1968], who proposed that detectors were 

selective to a limited range of spatial frequencies, spatial frequency 

corresponding to scale in this case. This idea was implemented 

quantitatively assuming receptive fields that were sinusoids in a Gaussian 

envelope (Gabor functions) [Daugman, 1980; Watson, 1987]. However, the 

most persuasive case for the form of receptive fields was derived recently 

by Koenderink [1990]. He argues mathematically that any visual system, 

like ours, that can ignore size change and see at various scales, with 

detail decreasing as the spatial scale of the neurons increases, must have 

multiscale receptive fields which are linear combinations of derivatives of 

a Gaussian. These receptive fields or combinations of them can be thought 

of as measuring geometrical properties such as "edgeness", "cornerness", 

and "t-junctionness", in many cases with an orientation. Many of these 

receptive field types have been found neurophysiologically [Young, 1987]. 

A particularly interesting set of these receptive fields is a polar set in 

which each receptive field (relative to its center) is the product of a 

radial function given approximately by a derivative of a Gaussian and an 

azimuthal function of the form sin(k8) or cos(k8) for some integer k (see 

figure 4). All of the receptive fields in figure 4 1 except those in the 

central column, come in a sin, cos pair measuring their geometric property 

at two orientations. This pair of outputs can be taken as the two 

coordinate values of a spatial vector whose magnitude gives the intensity 

of some local geometric property and whose direction gives orientational 

information with regard to that property. The family of receptive fields 

in this model captures information which the human visual system measures 

using receptive fields at multiple orientations rather than just two. 

The Multjsca]e MedjaJ Model 

Collectively the above ideas have led us to the development of a new model 

for visual grouping. This model appears reasonable at the neural level as a 

model of human visual processing, but it is at present untested 

psychophysically. It produces a group of medial axes by multiscale, 

regional, geometric measurements. It is based on a set of neurons each of 



Figure 4: Koenderink polar receptive fields shown by their sign (positive 

black) [Koenderink, 1990]. 

which is identified by a location, a scale, and a geometric property, that 

can be thought to capture edgeness or cornerness, for example. 

Specifically, each neuron has a particular receptive field from 

Koenderink 1 s polar set, at the scale in question. These neurons, dense in 

space and scale, compute their geometric property by applying their 

receptive field at their location. Pairs of these neurons produce a 

magnitude and a direction at their scale. For most of these neuron pairs, 

the magnitude is high when the receptive fields engage both edges of an 

object. This occurs when the neuron is equidistant from the two edges 

because the receptive fields have a circular shape. The direction given by 

the neuron pair is the axis direction. The neurons cooperate along their 

directions and compete across scale and position, so that a well-defined 

set of axis positions is defined. More specifically, neurons excite other 

neurons that are of similar scale and are along or near their direction in 

either sense. They inhibit neurons of different scales at the same position 

and those at the same scale and nearby positons but along different 

directions. End-stopped cell pairs produce a single-sense direction on the 

concave side of an object boundary and a magnitude proportional to 

curvature or cornerness. They excite along the axis in only the single 

direction sense and inhibit maximally in the opposite direction. 

start and end axes. 

Thus they 



The result of this operation is a set of traces in scale space (x,y, 

scale) which are ridges of neural response (see figure 5). The x,y 

positions of these ridges form a medial axis for an object, and their 

scales specify its width at each axis point. Just as with the Blum medial 

axis, width (scale) angles and curvatures (boundary orientation and 

curvature relative to the axis) are straightforwardly available. Also, the 

excitatory and inhibitory connections should produce subjective edges in 

the appropriate way. Note that this operation applies to grey scale 

objects with fuzzy edges as well as those with sharp edges. 

Figure 5: Scale space medial axis traces for an object. Dotted traces are 

less strong than solid traces. 

The above model also produces scale space ridges that correspond to smaller 

boundary detail (see figure 5). The scale of the main axis allows the 

identification of a boundary region; smaller scale responses in that region 

establish the detailed structure of that boundary. 

Besides bringing together two important theoretical approaches to 

understanding shape perception, this model has the advantage of naturally 



incorporating size constancy and orientation independence. It also suggests 

that shape will be preserved across small changes in local orientation 

produced by warping or bending, thus corresponding to the human percept. 

Detailed psychophysical testing of the basic properties of this model are 

currently underway. In addition, we anticipate extending this model to deal 

with objects within objects, objects defined by texture, line boundaries, 

or even texture boundaries rather then intensity change. We also anticipate 

modeling spatial interactions between groups such as the apparent 

stretching of space between nearby groups that we have observed 

psychophysically. 

Implications for Medical Imaging 

If this model is supported by experiment, it will have many uses in medical 

imaging: 

1) Its performance will predict human performance, so its success in a 

grouping-related task can serve as an image quality measure. This property 

will in time allow the development of image acquisition, processing, and 

display methods that optimize this image quality. 

2) The object-subobject relationships it defines can be computed for any 

image, to produce a quasi-hierarchy that can be used in interactive 

computer systems for the fast definition of objects in images [Pizer, 

1989] . These defined objects can in turn serve 3D display and object 

measurement. 

3) The groupings defined by this approach can be used to define object 

inclusion likelihoods that in turn can be used to produce automatic 

measurements of object volumes, e.g. tumor volumes, or other object 

properties such as integrated metabolic function. 

4) The position and scale co-ordinates along the medial ridges and the 

outputs of various receptive fields there can be used as a basis for 

matching of structures in tasks involving registration between objects in 

rather different images of the same anatomy, such as a simulation and a 

portal image in radiation oncology. 

Work in all of these directions is proceeding in our laboratory. 
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