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A:\liTABH VA RSH:\ EY. Parallel Ra<liositr Teclmiques for :\lesb-Connected Sf:\-fD 

Computers (Under the direction of Professor Frederick P. Brooks, Jr.) 

Abst ract 

This thesis investigates parallel radiosity techniques for highly-parallel, mesh

connected Sl:\1 0 computers. The approaches studies differ along the two orthogonal 

dimensions: the method of sampling· by ray-casting or by environment-projection · 

and the method of mapping of objects to processors · by object-space-basl'd meth

ods or by a balanced-load method. fhe environment-projection approach has been 

observed to perform better than the ray-casting approaches. For the dataset studied. 

the balanced-load method appeaN promising. Spatially subdividing the dataset with· 

out taking the potential light interactions into account has been observed to ''iolale 

th•, locality property of radiosity. This suggests that object-space-based methods for 

radiosity must Ll~ke visibility into account during subdivision to ach ieve any spt•edup~ 

based on exploiting the locality property of radiosity. 

This t hesis also investigates the reuse patterns of form-factors in perfectly diffuse 

environments during radiosity iterauons. Results indicate that reuse is sparse even 

when significant convergence is achJe,·ed. 

Implementations of these approaches have been done on a 4K processor Mas Par 

:\1P-1. 
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Chapter 1 

Overview and Results 

This thesis research has been motivated by the current lengthy radiosity computation 

times in the UNC Wallnhrough project and by a personal desire to better understand 

the process of mapping computationally intensive problems on to the newly emergmg 

class of highly parallel machines. To place this thesis in its proper perspective, it 

would serve well to start with an overview o( the Walkthrough project and the role 

of ra.diosity in it. 

1.1 The W alkthrough Project 

The UNC Walkthrough Project a.ims at development of a system for creating vinual 

building environments. This is imended to help architects and their clients to ex

plore a proposed building design prior to its construction, correcting problems on the 

computer instead of in concrete [Brooks88J, [Airey90bJ. 

Walkthrough is in a class of virtual-worlds systems in which users can actuaUy 

(though maybe only later) make comparisons with the real world, and thus directly 

verify the veracity of the simulation. With the reality serving as a touchstone. one of 

the primary goals of this project is to strive for realism. This realism is sought along 

four different dimensions - realistic images. real-time update rates, real models and 

an intuitive interface. Efforts along any of these dimensions, oppose those along the 

other dimensions, making this project a challenging one. 



Realistic Images: The natural world is everywhere dense with complexity. 

The real man-ma.de world however is less so. Tb.is realization has fostered the efforts 

to first tackle the problem of realistic rendering of the man-ma.de objects. t:stng a 

global diffuse illumination model of radiosity, a respectable level of realism in virtual 

building models can be achieved. The radiosity method realistically simulates the 

interaction of light between diffuse surfaces. Walkthrough uses this to enhance visual 

realism. Another technique employed to increase realism is the use of procedural 

textures. Having textures for bricks, wood, ceiling tiles etc. adds a whole new lt>vel of 

detail to the images. A daylight model is U:Jed for displaying the effects or a diffused 

sunlight. 

Real-Time Update Rates: Interactive update rates arc crucial for the illusion 

of virtual building to work [Aircy90b]. This however is at odds w1th the a1m of rcailstic 

images outlined above. t:sing high-end graphie:J machines, such as Pixel Planes, for 

rendering partially solves this problem. Pre-computation of potentially \'isible sets 

to restrict the number of polygons thM have to be transformed and rendered for any 

viewpoint [Aircy90aJ further helps here. 

Real Models: To study first-hand the problems .u~d challenges of simulating 

real buildings, Walkthrough uses models built from the architectural drawings of ac

tual buildings. This affords an opportunity to work on sufficiently complicated and 

detailed models and offers a benchmark (the actual butlding once it is built) with 

which to compare qualitatively the places where the virtual-building simulation suc

ceeds and the places where it falls short. A commercial software package, AutoCAD, 

is used as the modeling tool. Being designed for architectural description, AutoCAD 

has some specialized facilities for model maintaining and model refining. Further, 

since many architects use it, its use offers opportunities for the exchange of building 

datasets. 

Intuitive Interface: In any virtual-worlds system. the degree to which a user 

can interact naturally with the virtual world plays ao important role in determining its 

effectiveness. Ideally, this man-machine interface should afford as easy and intuit ive 

an interaction as with the real object. For interacting 1otith Walkthrough, different 
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users have differing preferences. For a client who does noL have sufficient experience 

in visualization of the dimensions of the building £rom its blueprints, actual pacing 

about tbe vi rtual· building would be more appropriate. For an architect, wl10 already 

has a good feel for the physical size of the building. an interface that would enable 

him to quickly fly-through the model would be better. Keeping these in mind, the 

\~'alhhrough interface has provisions for using bead-mounted dasplays, a treadmill, 

joysticks, and a bicycle. 

1.2 T h e Need for P a ra llel R adiosity 

Radiosity is a global-illumination model for modeling the interaction of light bt•t.ween 

diffuse surfaces. Pionet-red at Cornell L' mversity (CoralS·I), this method has gained 

wadesprcad acceptance in the last few years for providing a diffuse lightang model for 

architectural datasets. The reason11 behind this are twofold. Farstly, it reabtically 

simulates such diffuse lighting effects as soft shadows and the diffuse inter-reflections 

typically observed inside buildings and secondly, since the illumination solution thus 

computed is view-independent, it allows interactive viewing of the dataset once the 

process has finished. The property that the solution computed is view-independent 

gives this model an advantage over other global-illumination models. Designs of 

proposed buildings can thus be generated from the architectural drawings, rad iosity 

solutions for these computed, and the building designs evaluated for usability, traffic, 

and aesthetic appeal, by navigating through t.hese virtual buildings. Any shortcom

ings can then be corrected and new ideas tested out in the design phase itself. This 

design cycle can be iterated till a satisfactory result has been obtained. The design 

cycle outlined here appears in the Fig 1.1. Details about the radiosity algorithm can 

be found in Chapl.er 2. 
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Model Construction Model Refinement 

Display Processing 

I Radiosity Solution I 

I Visibility Partitioning I 

I Texture Mapping I 

~ 
Real- time Rendering 

l 
User Interaction with the Model 

Figure 1.1 The Walkthrough Design Cycle 

The radiosity method however is a computationally intensive process and generally 

requires hours of CPU time on standard workstations for moderately large datasets 

(on the order of len thousand polygons). This then becomes the major bottleneck 
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in the design cycle of an archltectural model as outlined above. As radiosity-based 

shading depends on the model geometry. any change to the model necessitates re

computation of the radiosity solution - a very time-consuming task at present. This 

discourages free experimentation with the model and makes the model-modification 

process a con~rvative one. Right now, model modification is done by accumulating 

changes to the model over a period of days. if not weeks, and then the radiosity 

solution for it. is computed over another one or two days. This is not to criticize 

tbe existmg implementatton. but just to give a f~"el for the amount of computation 

involved. In fact, the ex1stmg sequential Implementation that we have is qui I.<' fast 

as compared to some other existmg sequential implementation9 that we have come 

across. 1'h1s speedup is gained partly by using ingenious data structures which ex

plOit the property that most polygons in an architectural model are axin.lly oriented, 

pa.rtly by using adaptive environment sampling techniques (Airey89], and partly from 

trading off ligbtmg·model accuracy for speed. 

Reduction of lime in the radiosity computation stage would help bring down 

the design cycle t1mes and allow for greater flexibility in exper1m.,ntat10n with such 

models. The ability to freely experiment and learn in the process has been the 

motivating force in paying auention to the generation of such virtual environments 

in the first place. 

With the availability of highly-parallel computers at modest prices and their ex

pected widespread acceptance in the near future, it appears desirable and even nec

essary to try and devise methods to map such intensive applications oo them. There 

have been documented efforts in the literature that den.! with the parallelization of ra

diosity on shared-memory MIMD multiprocessors in which the number of processors 

is in the order of tens. However, this problem bas not been studied for the emerging 

class of commercially available, highly-parallel SIMD machines in which the number 

of processors is in the thousands. Fine-grained parallelization of the radiosity method 

appears promising as an attempt to reduce radiosit.y solution times and thus has the 

potential to make the whole design process a more meaningful one. 
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The sections 1.3 and 1 A are meant to serve as an extended abstract of this thesis, 

outlining the approaches and the results in brief. Readers wishing to get a detailed 

treatment could just skim through these sections and come back to them after study

ing Chapters 2 tb.rougb 5. 

1.3 Overview of Approaches Considered 

In the design of parallel software, the first concern should be the identification and 

exploito.t.ion of parallelism. The type of parallelism bcmg used depends on the target 

parallel architecture. We are considering radiosity algorithms for a mesh-connected 

SJMD o.rchitccture. For executiOn of the radiosity algorithm on this to be efficient. it 

should give due consideration to these features of the architecture. 

Our implementations for the radiosity approaches were on the •II< processor Mn.s

Par MP-1 which has a mesh-connected SI~ID arclutecture. The distributed-memory 

architecture of the MasPar MP-1 data parallel unit (OPU), with 16Kbytes of memory 

per processing element rules out a per-node duplication of anything but small datasets 

of around 100 polygons. Distributed memory also dictates that dynamic changes in 

the mapping of polygons to the processors be minimized. For unlike in a shared

memory system, where this change need only be reflected in a processor-polygon 

mapping table, in a distributed-memory system this would result in an increased in· 

terprocessor communication either due to actual movement of polygons or because of 

remote accessing of polygons across processor bou.ndaries. 

The fact that the target architecture is SL\10 implies that for efficient utilization 

of parallel processors, the special cases to be handled be minimized. For every special 

case being executed, all those processors that do n.ot qualify to execute that st~p are 

idle and thus lower the effective amount of processing being done. This realization 

goes a long way in helping design more efficient algoritb.ms for SD.1D machines. 
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1.3.1 Conceptual Overview 

The basic radiosi~y method is an iterati,·e one in which each iteration consists of 

two phases: form factor calculation and energy distribution. Looking at it from the 

,;cwpoint of an iterative solution of a linear system of equations .-\% = b, one can find 

corresponding stages in the Gauss-Seidel method. The form factor calculation stage 

corresponds to the compu~ation of one row, say k, of coefficients in the matrix A. The 

energy distribution stage (Orresponds to solving for %4 , using tbr previous values of 

other %,. r ::f k. Of these two ph alOes, previous studtes ba,·e indicated that as much as 

90% of the time is taken up by the first phase comprising calculation of the form-factor 

coefficient matrix [Cohen86]. Thus, special attention needs to be p;ud to calculatron 

of form-factors. The form ·factor calculation techniques that we have studied can be 

divided into two maio categories: ray·castrng methods and envrronment-proJecliotl 

methods. 

R<\y-Casting Methods fire off rays to sample the environment and thus deter

mine the visibility of polygons. This has been a popular technique for sequential 

implementations a.s it gives the freedom of selecting good directions and amount of 

energy ~o be shot per ray. 

Environment-Projection Methods involve projecting the polygons of the en

vironment onto the shooting polygon and then. z-buffering to find the visible polygons. 

These hav(' the advantage of being able to use the z-buffer hardware which is available 

on some of the newer special-purpose graphics machines (Baum90]. 

Orthogonal to form-factor calculation by ray-casting or environment-projection is 

the issue of mapping polygons to processors. Here again we have considered methods 

that fall in two categories: Object-Space meth()ds and Balanced-Load methods . 

Object-Space Methods are methods in which the processor-polygon mappings 

are done on the basis of the geometrical distribution of the polygons. The ent ire 

dataset space is subdi,·ided into mutually exclusive and collectively exhaustive vol

umes of space. Tbese volume elements are assigned to the processors in some fixed 

order. The greatest problem here is ensuring load balancing. If explicit load bal· 

ancing is not done, the polygonal dataset is often unbalanced across the proces~ors, 
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leading to waste of resources in terms of idle time of the processors that received 

lighter polygon allocations. If load balancing is attempted by modifying the bound

aries of the volume elements then the shapes of the volume elements rapidly become 

complicated, making it more costly to detect their boundaries [Dippe84]. However, 

the advantage of these methods is that for a ray-casting approach any given ray only 

has to be intersected with a restricted set of polygons. 

Balanced-Load Methods treat load balancing across processors as their first 

priority. Thus. ~obese methods assign the polygons to the processors to ensure opttmal 

load balancing. The a<ivantagc clearly is the mi~imization of the processor idle time. 

However, in absence of any structuring of data, these can be expected to perform 

poorly for applications where exploitation of geomNncal proxtmtty of mput polygons 

is crucial to acceleration of the algorithm. 

Conceptually then, the space of approaches considered for the problem appears 

M shown in Fig 1.2. 

Ray-Casnng Environmcm-Projection 

Balanced-Load Approach A Approach B 

Object-Space ApproachC Approach D 

Figure 1.2 The Conceptual Approaches 

1.3.2 Implementation Overview 

Of the four conceptual approaches outlined above, approaches A and C were partially 

implemented. On the basis of the preliminary results £rom these. approach B was fully 

implemented, and approach D was not tmplemeoted. 
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Approach A 

In this approach. polygons are spread out evenly over all the processors on the mesh. 

The progressive refinement radiosity approach bas been implemented. Thus, in each 

iteration a shooting polygon is determined which has the maximum unshot energy 

among all the polygons. Rays are then cast one at a time from this shooting polygon 

to sample the envtronment and transfer energy to the intersecting polygon. The 

orientation of these rays is chosen such that each of these carries an equal amount of 

<"ncrgy. Details on computation of these orientations are given in [Airey'39]. The r11.y 

thM is to be firt'd is made available to all processors. Each processor then intcrs<'<'ts 

this ray wtth the list of polygons which it has. The minimum distance of intersection 

for this ray is computed locally by each processor over all the polygons it has. After 

this, a global minimum over all these local mi01mum distances is computed. L'his 

gives the intersection distance for the ray. The polygon which had intersected this 

ray is then found. Once the intersected polygon is found, the energy being cnrried 

by the ray is transferred to thts polygon. This process is repeated for all the rays 

Crom the shooting polygon. After this, the iteration repeats for the next shooting 

polygon. These iterations continue. till the unshot energy with the most recently 

selected shooting polygon is below a prespecified threshold value. 

Approach B 

Here again polygons are spread out equally over the DPIJ. The shooting polygon is 

calculated as in A pproacb A. Th.is is tben copied to the limited shared memory on 

the controller (ACt:). All the polygons access this and compute their projection in 

parallel onto the projection plane of this shooting polygon. The projection plane for 

our implementation is a single plane that is able to catch 90% of the light energy 

emanating from the energy shooting polygon. This is described in greater details in 

[Recker90J and in Chapter 2 of this thesis. The projecttons are then z-buffered and 

scan-converted on th.e projection plane which is implemented to span the entire DPU 

array. Scan conversion iuelf can be done either globally (under the di rect control of 

the PE which contains the polygon being scan con,·erted). or locally (by neighbor 
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PEs). Both of ~hese strategies have been compared in implementation. In contrast 

to approach A, where the sampling was being done from the shooting patch, this 

approach samples from the environment to the shooting patch. Tlus guarao~ees that 

within an error tolerance of the resolution of the projection plane, no polygons will 

be missed in form-factor calculahons. 

Approach C 

In lbc implement~ttion of the object space based processor-polygon mapping, the 

spatial subdi,·ision was done to a global grid ~hat was orthogonally adjusted to provide 

as good a load balance as possible. A hybrid approach of processor-polygon mapping 

was tried in which the model was divided up aoto uniform global cuboidal cells. Each 

cell was mapp<'d onto a whole row of the DPlJ a.rray. Within each row of PEs, 

balanced load mapping was done, while across PE rows object space mappmg was 

done. Thus, while each row of the DPU array wa, balanced, the columns were not . 

A ray-casting method was studied for this approach and results obtained for this 

indicaLed a very high level of mterprocess communication requirements. These are 

summarized in Section 1 ·l below. 

Approach D 

The ini~sal load balancing results that were obtained from Approach C were quite 

discouraging. They demonstrated that there was a high degree of load imbalance and 

a high percentage of radiosity interactions were actually directed outside of the local 

cells (refer section 1.4). This suggested that attempts to subdivide the dataset in 

the manner done for Approach C to localize radiosity imeractions would prove futile. 

Consequently no further efforts io investigating th.is approach were invested. 

For further details on all of these approaches, the reader is referred to Chapter 4. 
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1.4 Results 

The approaches A and B were tested out on a 3959 patch model of the dataset 

Sitterson 965 office (modeled by John Alspaugh). 

ln this section by the phrase z% convergence I mean the state of the environment 

when the brightest shooting pa>ch in it has a delta.-radios•ty that is x% of the shooting 

radiosity for the first iteration. 

Implementing approach :\ on the :O.fasPar :0.1 P-1. the a,·erage time for one inter· 

section cycle (intt>rsection of one ray with all the polygons) for the 3959 patch datase1 

is -1..5 ms. Thus, the effective time for a single ray-polygon inters<!ction is 1. 13 psec:s. 

The total time for tbe patch radiosities to converge ro their respecttve final values 

across th(: radiosity iterations is dominated l:>y this time. 

In approach B, a single plane of side-to-height ratio of 3 has been chosen as it 

permits 90% of the shooting patch's radiosity to be shot. Compnrisons were made 

across different resolutions of the single plane . The following times were observed for 

the Sitlerson 965 offia model. For a single pla.ne with 6-1 x 1).1 resolution. the average 

time per iteration is 0.24 sees. For a single-plane with 128 X 128 resolution, the 

average time per iteration is OA5 sees. For a stngle-plaoe wtth 256 x 256 resolution, 

the average time per iteration is 2.15 sees. These results are for a local scan-conversion 

technique for generating the item-bulTers. 

lf the number of rays to be fired per shooting polygon for approach A are n, then 

one iteration of approach B corresponds to n intersection cycles of approach A. Since 

the time for a 128 x 128 single-plane for approach 8 is 0.-1~ sees, it allows approach 

A to fire up to 100 rays (time per ray intersection cycle is -!.5 ms), before approach 

A starts losing out. Thus approach A is an order of magnitude slower. 

A global positioning method for scan-conversion was also attempted with approach 

B, but here again the geometry dependency made load balancing a concern. For a 

4K resolution single-plane with a side-to-height ratio of I, the total number of tuples 

generated is 27K with a maximum of l.4K tuples at a processor and a minimum of 0. 

All these t.uples need to be z-bulTered on the processor where they fall, making this a 
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highly-imbalanced operation. 

While studying approach B. tests were also done to determine what fraction of the 

form-factors are reused. Thls was done with a \"lew to storing the calculated form· 

factors to avoid their recomputation. l.:nfortunately. most of the reuse in form-factors 

starts occurring quite late in the convergence. Thus, for the 3959 patch Sitterson 

365 office model. only 6 form-factors are reused in the first I i'i iterations in which 

convergence to 97.2% takes place. It is only later that a high fraction of form-factors 

begins to get rl'used. but by then the convergence •s almost complete 

Approach C was tested on a 8 x 8 x 1 subdivided model of the Sitterson 3ti5 office. 

Geometry based distribution of th~ with onhogonal gnd balanCing into 64 cells 

yielded a poor load balance. with a minimum of 6 and a maximum of 208 polygons 

Purther refinement using subdivision and redistribution within the same OPt: ray, 

broughL down this imbalance to a minimum of 6 a.nd maximum of 154. Using this datfi 

in the approach as outlined in Section 1.3.2 and firing one ray per polygon (along tbc 

polygon normal). it was observed that only 1983 rays intersect the polygons within 

the same cell, while 1353 do not and thus have to be passed onto other DPU rows. 

Thc~c 40% of the rays will contribute to a high inter-row communication and would 

also need to recompute the intersections with the polygons on the row where they 

reach. The problems of load imbalance and the expected high amount of interprocess 

communication suggested that we invest our effort elsewhere. 

Whereas approach A requires fewer iterations. approach B bas a smaller Lime per 

iteration. Overall, approach B is a winner in terms of total time required to achieve 

a given convergence. 

Three levels of possible parallelism in radiosity have also been identified in this 

thesis. Thus, depending on the number of processors which are available one could 

choose to parallelize at different levels. 
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1.5 Guide to t he Chapters 

This chap~er provided a brief overview of the problem investigated, the approaches 

taken. and the results that have been obtained. This chapter is mean' to serve as an 

extended abstract, preseming the key aspects of the thesis in a nutshell. 

Chapter 2 describes the radiosity method in general This is followed by a discus· 

sion of issues relevant to its parallelization. 

Chapter 3 reviews the parallel radiosity work that has been done in literature so 

far. Since computation of form-factors is often done usmg a ray-casting approarh. par

allel ray· tracing tl'<hniques can be used for this purpo~. Therefore, a brief ovrrview 

of p:uallel ray-tracing methods hM also been done hl're. 

Chapter 4 is devoted to the descnption of the radiosity algorithms and their 

implementations on the :'<!asPar :\IP-1. This chapter discusses the various approaches 

that have been c011sidered and the resu lts ~hat they yielded. A brief overview of the 

MasPar .\-!P-1 is also provided here. 

Chapter 5 discusses the possible extensions to this work. 

Appendix A contains the source code listing of the implementation. 
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Chapter 2 

The Radiosity Method 

The radiosit~· method models the interaction of light betwt'Cn diffusely-reflecting sur· 

fncr.s. One of the strongest properties of this global-illumination model is the vit·w

independenl solution that this provides. This permits viewing of a geometric dataset 

at interactive rates from any \-iewpoint aod direction, once the solution has bt•C"n 

computed. Introduced [rom thermal engineering to computer graphics by Coral et 

al.[Coral84], this method realistically simulates diffuse lighting effects such as soft 

shadows and the diffuse inter-reflections. Such lighting effects are commonly found 

in building interiors, where most of the surfaces are diffuse reflectors and emitters. 

In this chapter, we will present AD overview of the radiosity method. the bottlenerks 

involved. and an outline of stages in it that can be parallelized. 

2.1 Overview 

Radiosity 8
1 

for a surface j is defined as the total rate at which radiant energy leaves 

that surface in terms of energy per unit time and per unit area [Coral84]. 

This flux 8 1 being emined from the surface j is composed of two components: 

(i) The rate of direct energy emission Ei from the surface j per unit time and per 

unit area. 

(ii ) The rate of reflected energy from the surface j per unit time and per unit area. 

If the reflectivity of the surface is P; and the radiant energy incidem at the swfact> 1 



per uni~ time and per unit area is H
1

, then this rate of reflected energy is p1Hr 

The radiosity equation for surface j is therefore: 

(2.1) 

If it is assumed that the environment under constderation · 

(i) is composed of only diffuse surfaces (say n in number) and 

(ii) is closed in the sense that whatever flux is emilled from one surface is incident 

on one or more other surfaces within tbe envtronment , 

then lbe total incident flux at a surface J can be computed as follows: 

(2.2) 

F11 is the form-factor for surface i wnh respect to surface J. This denotes the 

fraction of radiant energy leaving surface • and incident on surface J [l is usually 

defined a:. the solid angle that the vistblc part of surface : subtends from the centroid 

of surface j divided by 2Jr. 

Equation 2.1 can now be wriUcn as: 

n 

8} = E, ~ fJ, E B,F,J 

This is summarized in fig 2.1. 

"'B· F ·· L I lj 

••1 
fqr ]=l,n 

Figure 2.1 Interactions at Surface j 

(2.3) 

This yields a system of n linear simultaneous equations in n unknowns Br The 

F,; are determined from the geometry of the environment and £, the emittances of 
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the light sources in ~he environment, are assumed given. This system is shown in fig 

2.2. 

1- ~Fll - PI Fl2 ........ - .q Fin Bl El 

- p2F21 1 -Pz F 
22 

- .q F2n B2 E2 

- P. F 
n nl 

Figure 2.2 The R adiosity System of Equations 

An exact. solution of t.his system, by methods such as GaussiiU1 elimination, re

quires O{n2 ) space and is of O(n3) complex.ity, making it cumbersome to usc for even 

small datasets (n of the order of hundreds)- ln most real applications n is of the or

der of thousands. The coefficient matrix being strictly diagonally dominant 1 (if the 

participallng surfaces are assumed t.o be planar F,. = 0 for aU i ), iterative techniques 

such as the Gauss-Seidel method fare much better for this system. In the progress1ve 

refinement approach !Cohen88), this solution is accelera~ed by choosing the variables 

B
1 

to be solved in the order of their contribution to the environment. This is the same 

as the notion of pivoting to move the bigger values to the upper left corner of the 

matrix to be solved for at. each iteration. Thus, brightest surfaces are used earliest in 

the solution. so that the convergence to the exact solution is rapid in the initial stages. 

The time for convergence to an acceptable solution bas been shown to be linear in the 

number of surfaces by using this approach !Cohen88). The O(n1 ) space requirements 

for storing the coefficient. matrix of this syslem are done away with by computing 

the form-factors on the fly [Cohen88J. Viewing tllis approach from the \'iewpoint of 

energy distribution, at ~he beginning of each iteration the polygon with maximum 

1The diagonal element IS greater than the sum of other elements that lie either along iLs row or 

along iLs column 
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energy, say i is chosen as the shooting polygon. The amount of energy with this 

polygon is referred to as the unshot energy for the shooting polygon. This energy is 

added to the uoshot energies of all other polygons J, based on the form-factor values 

F,r 

Calculation of form-factors 1s done either by using analytical methods or, more 

commonly, by using sampling methods. The latter approach offers the Aexibility 

of va.ry1ng the speed of computation by choosing the accuracy des1red. The overall 

convergence to a result within some prespeci.fied tolerance can be accelerated by 

suitably trading ofT accuracy for speed as the computation proceeds 

The form-facto r F,1 is equal to the fraction of the base of a unit- radius h<'misphcre 

centered on surfacl' J that is covered by the projection oi surface • on that hemisphere 

1Coheu85J. The fig 2.3 adapted from that paper explains this. 

:tre:~ o f projection of i on base 

area of base 

Figure 2.3 The Form-Factor Analog 

However, projection of the environment on a quadratic surface, such as a hemi

sphere. is costly, unless there are special quadratic primitives provided in the machine 

hardware (Pixel-Planes 5, for instance, has an ability to render on quadratic surfaces). 

Thus, the notion of a hemi-cube was introduced [Cohen85J. A hemi-cube is a five

sided half cube that fits atop the energy distributing hemisphere to approximate its 
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energy distribution effects and at Lhe same time provide planar projection surfaces. 

Each surface of the hem.i-cube is divided into square pixels. The delta form-factor 

6-f;q for one of ~hese pixels q is defined as Lhe form-factor between that pixel and 

the surface i. The total form-factor F., for surface i with respect to Lhe surface J is 

the sum of aU the delLa form-factors of the pixels comprising the hemi-cube for the 

surface J which cover the projecl!on of surface 1 on surface j. This can be specified 

as: 

F,
1 

= '£ :::.j,q V hemi- cub< pixels q on j 3 :::.j,, = I (2.·1) 
ocQ 

II ere Q is the set of hcmi-cube pixels covered by projection of surface i onto hemi-cubc. 

Hemi-Cube 

Figur e 2.4 H emi-Cube and Single Pla ne for For m-Factor Calculations 

A step further in acceleration of form-factor calculation was taken by using the 

not.ion of a single-plane [Recker90]. The idea here is to approximate the effects of 

a five-plane unit. hemi-cube by a sufficiently large single plane. Depending on how 

large tbis plane is and bow much above the shooting polygon it is placed. the ratio of 

its side to its height {as shown in fig 2.4). henceforth referred to as the side-to-height 

rat.io, can be computed. By increasing the side-to-height ratio of this single-plane to 

around 3. almost 90% of the energy can be shot [Recker90J. Thus. instead of five 

planes on which to projea the environment, a single plane of projection can be used 

with 90% accuracy. This suffices for most practical applications. For better accuracy 
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(and lesser aliasing), the pixels on the single-plane that are near the center should be 

of a smaller size. because most of the energy would be expected to be radiated from 

here. This follows from the cosine distribution of the energy being radiated from a 

diffuse surface. To understand this better. one should refer fig 2.3. The fraction of the 

base of the energy-distributing hemisphere that is covered by the projection of a unit 

area on the top of the hemisphere would be more than the corresponding fraction for 

a unit area located on the side of the hemisphere. This technique of having pixels of 

two different resolutions on the single-plane 1s the modrfied srngle-plane algorithm. 

Using the ideas in [Aircy89], this idea can be extended so that we have the sizes of 

pixels on the single-plane of height h such that the areas whtch they subtend on the 

hemisphere of radius II are all equal. 

Calculation of form-factor sampling rs done io two ways. The fir,t method is by 

casting rays from the centers of each of these pixels (on hcmi-cube surfaces or on 

the single-plane) along the direction vector from the center of the shooting polygon 

(which could be jittered). The second method is by projecting lhe environment on 

the projection-surface (planes of the bemi-cube or the single-plane) for the shooting 

polygon. The former method, henceforth referred to as the rcy-castrng method, is the 

method of choace for most software implementations. The latter method, henceforth 

referred to as the envrronment-projectron method, is preferred for graphics-hardware· 

oriented implementations. The reason is tha~ ~he process of finding the delta form · 

factors using this method is quite similar to the process of rasterization of 3-0 geom

etry with hidden surface removal [Baurn90]. Thus, the graphics pipeline well-tuned 

for this purpose can be used to advantage in calculating the form-factors. 

For the purposes of tills thesis we will refer to the plane on which the environment 

is projected, be it a side of the hemi-cube or the single-plane, as the projection-plane 

To enhance realism. one needs tO be able tO faithfully reproduce the light gradient 

across a surface. However , if this gradient is large a t some places, then to realistically 

simulate light across such a surface, one needs tO approximate it by smaller polygons. 

Thus, tbe original polygons are subdivided to get more realistic light gradients. \Ve 
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will refer these smaller subdh•ided polygoru; by the name patches. 

2.2 The Bottleneck 

The radiosity process can be subdivided into two main phases: the form-factor· cal

culation phase and the energy-distribulron phase. The former corresponds to the 

calculation of the coefficient matrix elements F,, in the linear s1multaneous system of 

equations, and the latter corresponds to its solution. These two phases are conccp· 

tually distmct: for ease of understanding it is preferable to treal them as such. 

These phases arc easy to identify in environment-projection 1mplementat1ons 

where they remain distinct. However, in ray-casting implementations, these phases 

are often tightly interleaved, blurring this di~tinction. To clarify this further, let us 

consider the implementation of the ray-casting approach. Here, the most common 

technique is lo treat the ray fired from a polygon as laden with a certain amount 

of energy that is transferred to the polygon with which the ray intersects. Thus, in 

this case the two phases of form-fact.or computation and energy distribution proceed 

hand-in-hand right down to the level of della form-factor computation. Treating the 

identi fication of the polygon with which the ray intersects as being in the form-factor 

computation phase and the energy transfer to the polygon as being in the energy

distribution phase, it is easy to imagine that it is the form-factor computation stage 

which takes up most of the time. 

Once the form-factors have been computed, the energy distribution step becomes 

trivial. This is supported by statistics (rom past studies [Cohen85], [Cohen86) which 

show t hat form-factor computation takes up around 90% of the time. The form

factor computation being the main bottleneck in the radiosity process. faster ways 

of calculating this must be found. As will be discussed in the next section, this 

stage turns out to be parallelizable, offering a good opportunity to reduce the overall 

radiosity solution times. 
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2.3 Parallelism 

Solution of a system of linear simultaneous equations by a method of successive 

displacements is inherently sequential. H ,;ewed in this light, the solution of the 

radiosity system of equations using the Gauss-Seidel method is a sequential one. at 

least at a macro level. However, there are sub-stages within this overall process that 

can be parallelized. 

The radiosity process can be parallelize<! at the level of form·factor calculations. 

As hns been mentioned before in Section 2.1, the form-factor F,, is the sum of delta 

form-factors ~/., such that ~/,, = 1. Each of these delta form-factors can be com

puted in parallel. 

If the delta form-factors are computed by using the ray-casting approach. then 

the intersection of each ray w1th the polygons 1n the environment can be computed 

in parallel. The distance from the ray-origin to the intersection point on the polygon 

can be computed in parallel for all polygons and then the polygon with the minimum 

distance from the ray-origin can be selected as the polygon intersected by the ray. 

Apart from these places, parallelism can also be exploited at a macro level, if 

one is prepared to move away from the Gauss-Seidel method. !.;sing a simultaneous 

displacement method for solving the radiosity system of equations, such as the Jacobi 

method, one could carry out the solution for every variable in parallel. If a hybrid 

approach between the Gauss-Seidel and Jacob1 methods IS chosen, then that too holds 

promise of parallelism. In this approach. a set of k out of a total of n variables are 

chosen as the variables to be solved for in the current iteradon. Each of these k 

variables is solved for in parallel using the values of the previous iteration for all vari

ables. Then in the next iteration. these new values of k variables are simultaneously 

used. This idea, though not explicitly stated in th.is fashion. is used by Chen in his 

dis~ributed radiosity approach (Chen89j (ref subsection 3.1.1). 

Sclec.ion of the variable in the radiosily system of equa~ions that needs to be 

solved next, the shooting polygon, itself can be done in O(log n} time in parallel over 

O(n) processors, instead of O(n) time in a sequemial method. 
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Once the form-factors ha,·e been computed. the distribution of energy across all 

the polygons can be done in parallel. 

To summarize, if we look at the process of radtosity solution a.s solving of a system 

of n linear simultaneous equations Ax = b, !.hen parallelism can be exploited in form

factor calculations M several levels as shown tn Fig. 2.5. 

Htgh Parallelism 

These levels are: 

The Radioslty Sys<an 
J\x = b 

t:.F lcJ .- •• 
I 

These can be solved for 
in parallell!l groups of k. 
l.sk.sn 

These cnn be compu ted 
in p:uallel. 

The delta form-factors can 
be computed tn paraUel. 

Figure 2.5 Parallelism in Radiosity 

(i) Finding the new ,·aJues of some k variables in parallel in each iteration. k = l for 

Gauss-Seidel, k = n for Jacobi, and l :S k :S n for the hybrid method outlined above. 

(ii) Computing the rows of the coeffictent matrix A in parallel. 

(iii) Computing the value of each element in a row of the coefficient matrix A by 

parallel methods. 
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These three levels of parallelism are nested. One can go down these levels with an 

increasing availability of processors to exploit increasing parallelism. Since computa· 

tion of the form-factors takes up almos~ 90% of the time [Coben85], [Cohen86], more 

effort should be invested more in exploiting parallelism at the levels (ii ) and (iii ) as 

outlined above. 
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Chapter 3 

Previous Work 

Since the introduction of radiosity as a global illumination method in L98·l [GoralSlj. 

various attempts h;we bl-en made to improve and accelerate 1t ~lost of them, [Co

hcn85j, [Cohen86]. [CohenSS], [Aircy89j, [Chen90j to name a few, have been presented 

w1th unaprocessor environments in mind. Only recently has attention been focussed 

on solving this problem in multiprocessor environments. This chapter prov1des a brief 

overview of the previous work done in parallel radiosity. 

form-factor calculation being computationally the most significant phase of the 

radiosily method, and ray-casting being a popular approach in this phase, one can 

only expect that most of the available parallel ray-tracing techniques will be of use in 

the endeavors to parallelize racliosity. Taking this in to account, this chapter also pro

vides an overview of some parallel ray-tracing techniques tb.at have been investigated 

in the pa.~t. 

3.1 Parallel Radiosity 

Parallel radiosity is a relatively new field, no more than three years old. Most of 

the attempts at racliosity parallelization, that have been documented in the literature 

so far, have focussed either on loosely-coupled multiprocessing or on coarse-grained 

parallelization. This section presents a synops1s of the work that has been done in 

the past in this area. 



3.1.1 Radiosity on Loosely-Coup led Syst ems 

Beginnings in parallelization of radiosi~y were first made in 1989 when Chen [Chen89] 

exploited coarse-grain puallelism over a ne~worx of Hewlett-Packard 835 worksta

tions via etherncl using Unix sockets. The process model used was the client-server 

paradigm. 

One of the works~ations is designated as the server and the res~ as clients. Each 

client has a complete copy of the geometry information The sen·er has ~he energy 

information for each clement of the dataset. U there are n clients . then at tbl' 

beginning of each iteration the server selec~s n shooting patches and distributes them 

among the clients. In the progressive refinement approach, these would be the n 

brightest patches. This is equivalent to exploiting the first-le,·cl puallelism described 

i o Sect ion 2.3. 

Utilizing the dataset geometry informMion available locally, each client then com

putes the form-factors for the shooting patch assigned to it. These form-factors arc 

sent back to the server by the clients. Using this information, the server distributes 

the energy. Thus, the form-factor calculatiOn proceeds in parallel and ~he energy 

distribution is sequential. 

Performance results from this approach show that for a 180 x 180 bemi-cube 

resolution for a 5196 patch dataset, average time per iteration is around one second 

for five or more client processors. 

This was an important first step in parallelization of ra<llosity and it proved suc

cessful in reducing the radiosity calculation Limes. However, as is Lrue for most 

pioneering efforts, this did not have Lhe benefit of deriving insights from previous 

work. Its biggesl. drawback is the possibility of the server becoming the bottleneck 

with increasing number of clients. Thus, the method is not scalable. It also involves 

duplication of the entire dataset al each cliem processor. Besides the memory cosl.s, 

duplication raises the problems of consistency in an interactively changing environ

ment. However, these problems are becoming apparem only now, when we have 

reached Lhe threshold of interactive radiosity. 
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3.1.2 Radiosity on Tightly-Coupled Systems 

Parallel radiosity algorithms have been developed and implemented for tighdy cou

pled multiprocessors too: [Baum90], [Drettakis90]. These attempts have focussed 

primarily on coarse-grain parallelization v.;th the number of processors used being in 

the order of tens. Further. the target architectures for these were primarily shared

memory ~11:\10 systems. 

Daum and Winget [Baum90] implemented their algorithm on the Silicon Graphics 

lin<' of graphics workstations. The radiosity process is viewed by them as "' producer

consumer problem. 

The consumer first selects the shooting patch. The producer then is responsible 

for generating the delta form-factors. The consumer collates these to find the actual 

form-factors and distributes the energy ustng these. 

The delta form-factor computation is done by hemi-cube item-buffer genemtion. 

This involves projecting the environment on tb.e faces of the hemi-cube and z-buffering 

for each pixel of the hemt·cube. This process is the same as b.idden-surface removal 

and scan-conversion for 3· D objects. Graphics hardware, finely tuned for th is purpose, 

that is available on these workstations CAD be used for tb.is purpose. Thus, the 

producer task is implemented on the grapb.ics hardware. 

The consumer task is parallelized over the multiple host processors that are avail

able on these workstations. The item-buffers generated by the producer are parti

tioned into blocks that are distributed over the host processors using dynamic schedul

ing ~o maintain a good load balance. Each host processor computes local form-factors 

from these item-buffers. These local form-facLor values are then summed over Lhe host 

processors ~o find the actual form-factor values. Energy distribution is then done in 

parallel over the host processors. 

Using an eight processor system and a herni-cube resolution of 150 x 150 and a 

model size of 824 7 patches, this approach computed each radiosity itera~ion in one 

second. 

Thjs has been integrated with a walkthrough program so that the user cao inter

actively walk through a dataset while the solution refines. 
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The idea. of using the graphics hardware to solve for the delta form-factors is a 

novel and useful one. This also. howe,·er. limits the target architectures to multi

processor machines with specialized 3-D graphics capability. Baum and Winget's 

integration of the ra.diosity solution ,.;th the walkthrough program is an important 

step ~owards developing user-modifiable. ra.diosity-lighted systems. 

Drettakis et al. [Drettakis90] present a parallel method for calculating generalized 

global illumination. They have designed their algorithm for common-bus shared 

memory iv!l~!D archttectures having about 10- 30 processors. Their method involves 

recursively subdividing a given dataset tnto cells in an octree fashion till the number 

of objects within each cell becomes sufficienlly small. Energy is then distributed in 

parallel with one direction of energy beams devotf'd to each processor. 

3.2 Parallel Ray-Tracing 

Ray-tracing is an inherently parallel technique. Rays are cast corresponding to eacb 

pixel of the screen. These rays are traced through the dataset, reflecting and refracting 

a.ccording to the properties of the surfaces tha.t these intersect. Parallelism in this 

method can be exploited in two ways. First, the rays can be cast in parallel. Thus, 

at a given time several rays could be traversing the dataset. Second. the intersection 

calculations for each ray to determine the surfaces that intersect it (and thetr relative 

order), can be done in parallel. An overview is given here of two parallel ray-tracing 

papers, one designed for MIMD computers and the other for a SD-10 computer. 

3.2.1 Ray-tracing on MIMD systems 

A spatial-subdivision based algorithm for ~v!L'v!D systems bas been proposed by Dippe 

and Swensen [Dippe84). The three-dimensional space of the dataset is subdivided 

into several volume elements or voxels. Each voxel is assigned to a processor. This 

subdivision is ada.ptively changed at run time to maintain uniformity of load. Rays 

originate from the voxel that contains the screen upon which the scene bas to be ray

traced. These rays pass through all the voxels, and hence the processors corresponding 
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to them, that are along their direcdon of ua,·el till they find suitable intersections. 

Al each processor. intersection calculations are done for all the objects that lie in the 

voxel corresponding to this processor, with the incoming rays. A ray that does not lind 

any intersection is passed along to the appropriate processor corresponding to next 

voxel along the ray's path. Each ray is uaced in this fashion up to its intersection. 

Thus, each voxel is processed independently and in parallel. 

To alleviate load-balancing problems. the voxel shapes are changed dynamically to 

maintain a good load balance of objects and rays. :Seighboring processors share load 

in formation and processors that are more heavily loaded transfer their load to lightly 

loaded processors. The voxel shapes that have been proposed here arc orthogonal 

pamllelopipeds, general cubes and tetrahedra· all of which are volumes bounded by 

planar surfaces. These have been preferred over other surface:; for the ease of their 

boundary detection and hence the voxel identification. Two-dimensional analogs of 

these shapes, adapted £rom [Dippe84j, are shown in fig 3.1. 

Orthogonal Parallelopipeds General Cubes Tetrahedra 

Figure 3.1 2-D Analogs of 3-D Spatial Sub division Schemes 

Planar surfaces however cause splitting of objects across the voxel boundaries. 

T he authors have proposed trading-off the amount of splitting necessary with the 

degree to which the load is balanced. 
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3 .2.2 R ay-tracing on SIMD systems 

Ray-tracing on highly-parallel hypercube connected processors has been studied by 

Delany [Delany88]. This paper presents a very interesting and elegant way of mapping 

ray-tracing on hypercube connected SIMD proccssors. The implementation was done 

on a 16K processor Connection Machine CM-1. :\t a conceptual level. this techmque 

also uses incremental voxcl traversal a.s described in Section 3.2.1. 

The three-dimensional space of the dataset IS subdivided in an octree fashion. The 

objects and the rays are assigned xyz-triples. called key word$. based on tht>ir spalial 

location. Ray origins are used for assigning the initial key words to the rays. 

Voxels are considered over edge lengths varying in powers of 2 from a scale of 

unit-length to the largest side of the dataset (this corresponds to the voxel that 

encompasses the whole dataset). 

As before, rays are traced incrementally, one voxel at a time. The scale of the voxel 

traversed however varies. If there is a large open space With no objects immediately 

ahead of the current ray point in the direction of the ray, then the voxel traversed 

by that ray would be the largest one (with the constraint that its edge length be a 

power of 2), that would fit inside that space. ThiS is tbe basic idea which causes tbe 

ray-t racing time for a particular ray to be logarithmic in its free path length (length 

of the ray-path that bas no obJects to be tested for intersection). 

For each voxel traversal, the whole set of the object and ray point key words are 

sorted across the entire hypercube. Objects at a given scale and location are spread 

out over the consecutive processors along with the rays. A worthwhile point to note 

here is that since objects are sorted within each voxel, we have available here an 

induced octree ordering on the key words. Each ray-point can look at the key words 

of the preceding and succeeding objects which would be on nearby {if not the same) 

processors, and from them determine the smallest volume of space such that there are 

no objects within it. If this volume is $mall then ray-object mterseclion calculations 

need to be performed. If this is large , then the ray-point is simply moved to the far 

edge of this volume. This completes one voxel traversal. 

Voxel traversal is done either till the ray intersects or it IS found to be outside or 
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the entire dataset. space (in which case it did not intersect any objects). 

Using a. CM-1 with 161< processors, time to fire 307200 rays i.n a scene containing 

8000 objec~.S, wit.h 3 orders of reflection was 3-li.2 CPl: seconds with this approach. 
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Chapter 4 

Parallel Radiosity Techniques 

4.1 MasPar MP-1 Overview 

8vrn though tht> algorithms described in thls chapter are applicable to all mrsh

connected SIMD computers, their implementatton bas been done only on the ~!asPar 

MP-L It would be therefore in order to give a brief overview of the MasPar ~IP·l 

before describing the approaches. A more detailed description of the Mas Par M P· l 

can be found in !Ma.spar90J. 

4.1.1 Processor Architecture 

The MasPar MP·l has a front-end which is currently a VAX 3520. The parallel 

processing is done on the data parallel unit (DPu), which comprises a processor 

element array (PE array) and a controller for this array. ACl: (Array Control Unit). 

Each processor element (PE) is a 1.8 ~f!PS 32-bit comrol processor with 16!\bytes 

of RAM and 1500 bits of register space. The PEs are organized in a 2D mesh with 

direct connections to S nearest neighbors. This is true even for the bo~tndary PEs, so 

the PE array layout is really toroidal. The ~iasPar ~IP-1 configllfation on which the 

implementations for this thesis are done has 4K PEs arranged in a toroidal square 

mesh of 64 x 64 processors. 

The ACU has a 14 MIPS control processor with l28Kbytes of data memory and a 



total of L\ibyte of program memory. The ACU is responsible for sending instructions 

and data to the PE array. 

4.1.2 Communication Architecture 

There are two major kinds of communications possible on the OPt.; in the MasPar 

MP-1. 

The first deals with AClJ-PE array communications. These take place over a 

special ACU-PE bus. This is a two-way communicatiOn path where the \CU can 

send data and instructions to the PE array and get back data results from the PEs. 

The second type of communication is among the PEs within the PE array. This 

ca.n b<· one of the following two major types: 

a) X-1\et: These are dm•ctional communications that can take place bNween PEs 

which are located along one of the eight nearest-neighbor directions from one a.notlwr. 

These have low latency and high bandwidth. 

b) Global Router: These are general communications that are possible between 

any PE and any group of PEs. Although Wleful and convenient, general communica· 

lion bas higher latency and lower bandwidth than nea.rest neighbor communication. 

4.2 Algorithms 

A comparative study of three radiosity algorithms bas been done on the MasPar 

MP-1. Although the interconnection network of the ~fasPar ~[p.J permlls direct· 

connection to eight nearest neighbors, only four (east, west, north, and south) of 

these are used in the implementations described below. Thus, these methods are 

applicable to all those mesh-connected SfMD computers in which the interior nodes 

have interconnection degrees of four or more. 

The approaches studied differ in the processor-polygon mappings used and 10 the 

method of delta form-factor computation. 
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4.2.1 A Balanced-Load Ray-Casting Approach 

In this approach. the patches are uniformly distributed over the processor array, and 

the form-factors are computed by a ray-casting approach. 

4~ J!IW$!s:.r;m,ergy 
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. 
. 

Figure 4.1 The Balanced-Load Ray-Cast ing Approach 

Outline 

Here, Lhe patches derived from the polygons are spread out over the entire mesh of 

processors in a. uni form fashion. This ensures tbat lbe processors have an even load. 
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The aim here is to exploit the parallelism as much as possible, at the cost of ignoring 

the locality property of potential interactions in the radiosity method. 

Following the progressive-refinement approach, at the beginning of each radiosity 

iteration. the patch with the highest WJshot energy is selected as the shootmg patch 

The origin and orientation of t.he rays to be fired from this patch are then determined. 

Intersection testing is done one ray at a t.ime by all processors. Each processor tests 

for an intersection of the ray "·itb the patches that it has and computes the mmimum 

distance of intersection. By finding the gloqal minimum over these local minimum 

distances on all the processors. the patch that IS mtenected by the ray IS det.ermined. 

The energy carried by the ray, determined by the orientation of the ray with 

respect to the shooting patch's normal and the radiosity of the shooting patch, is 

transferred to the pMch intersected. This process is repeated for all the rays from the 

current shooting pat.ch. After that, the next shooting patch is selected a.s described 

beforl' and the iterat.ion repeats. These iteratie>ns continue till the energy of the 

shooting pMch selected is below a certain minimum threshold. 

Implementation Notes 

The polygons that have been output from the AutoCAD are converted to a . poly 

IUe format from a .dxt format as in the usual V.'alkthrough pipeline. These are 

then subdivided into patches based on a global grid by the program patch1fy. c. 

The resolution of ~be grid along esther of the dimensions can be specified by means of 

command-line arguments. The output of the patcb.i!y pre>gram is a . patch file "·bich 

is in ASCII. This is converted to a .mp file format by the program pa"tchtomp. The 

.mp file is in VAX binary format to enable faster le>ading times. The type-structure 

of the patches here is the same as used on the MasPar. The description of this patch 

formal and this sequence of stages is shown in the figure 4.2. The output of the 

radiosity runs is in the . 0. patch format file that is consistent with the rest of the 

Walkthrough pipeline. 
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Figure 4.2 The Modified Walkthrough Pipeline 

The . mp file is read on to the :\fP-1 DP U array by the p_ read 0 function 

call. Selection of the brightest patch on the OPt: is done by performing a global 

reduceMax() operation over the shooting energies of all patches. This returns the 

shooting energy of the brightest patch. From this the brightest patch is found and is 

designated as the shooting patch for the current iterataon. 



The rays to be shot from the shooting patch arc determined next. In the current 

implementation, the origin of the rays is .fixed at the center of the shooting patch, 

but it can be jittered using techniques described in (Aircy90a.]. The direction of each 

ray is along the vect.or from the center of the shooting patch to the center of one of 

the subdivisions of the uni t hemisphere on the shooting patch. These subdivisions 

are the non-uniform subdivisions along radius and t heta dimensions of the shooting 

hemisphere as described in [Airey89]. This approach ensures that the areas projected 

by such subdivisions onto the base of the hemisphere are equal and hence that the 

energy carried by each ray is the same. 

The code for finding the ray-polygon intersection bas been taken from the book 

Graphics Gems [Glassner90). The ray is tested against all the p atches at every pro

cessor in parallel. The MasPar library function reduceMinO is then used to find the 

minimum distance of intersection. After the patch that intersects the current ray is 

located, the energy carried by the ray is transferred to it . 

All the variables that are ray-independent in the ray-polygon intersection code 

are precomputed and stored with the patch in the data-structure poly_ tag . Some 

other useful data such as t he patch cent.er and the major axes along which the patch 

is oriented are also precomputed and stored in pol y_ tag. 

Results 

The results of this give one a good idea of t he amount of computation involved in the 

radiosity process if coherence is not exploited in one form or the other. The average 

time for one intersection cycte (intersection of one ray with all the polygons available), 

in this implementation and for the Sitterson 365 model dataset with 3959 patches is 

4.5ms. This gives the effective time for a single ray-polygon intersection as 1.13 psec. 

The current implementation does not make use of ray-tracing acceleration techniques 

such as bounding volume hierarchies, object bounding volumes, generalized rays etc. 

It should be possible to accelerate these times fur ther using these techniques. This 

will be discussed in Chapter 5. 

The rate of energy distribution in sampling with differen t numbers of rays for the 
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Sitterson 965 office model with 3959 patches is shO"-ll in figure 4.3. Shooting a larger 

number of rays drops the unshot energy of the brightest patch more rapidly than does 

shooting with a fewer number of rays. The reason is that sampling the environment 

coarsely causes small polygons to be missed, and the energy that is transferred to the 

polygons that are hit is more than their due share. Thus, the brightest patch in the 

en,·ironmcnt is likely to be brighter than what it really should be. 
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Figure 4.3 T he Convergence for different number of rays in the 

Balanced-Load Ray-Casting Approach 

r\ criticism of this approach could be that whereas the intersections are computed 

m parallel, finding the patch that intersected the ray and updating that patch's 
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radiosity energy is done once per every ray. Thus, over ~he whole sequence of iterations 

these steps proceed sequentially. If multiple rays are fired simultaneously (one per 

processor) and made to circulate around the processors to determine the patch with 

which they intersect, then this would be a totally parallel approach. There would 

be no stages where any processor would be idle. A similar strategy could be used 

for energy distribution too. These ideas have been implemented for the approach 

described in subsection 4.2.3, but they have not been implemented for this approach. 

The reason was that most of the time with the current ~lasPar configuration 1S not 

taken up iu these stages. but in the ray-polygon inter~<·ctioo routine. That routine 

is totally para.llelized already and 1mplementmg the ideas suggested as above would 

not have changed the results much. 

4.2.2 A Balanced-Load E nvironment-Projection Approach 

Ln this approach, the palches are uniformly distributed over the processor array. The 

form-factors are computed by projecting the environment on to the shooting p~nch 

and then z-buffering the projected patches. 

Outline 

,\Iter the patches are distrjbuted evenly over the processor mesh. the shooting patch 

is found as described in Section 4.2.1. This information about the shooting patch 

selection is then made available to all the other processors. Every patch in the 

environment is projected on the single-plane corresponding to the current shooting 

patch. This operation is totally parallel, being limited by the number of processors 

available. After this, z-buffering of the resulting projections needs to be done to 

determine which patch is actually visible from a given pixel on the single-plane. 

To parallelize the z-buJfer operation, the single-plane is mapped on the processor 

mesh in a hierarchical fashion. Thus, neighboring pixels on the single· plane fall onto 

either the same processor (if the resolution of the smgle-plane is greater than the 

number of processors available) or onto the immeWately neighboring processor. This 
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mapping bas been chosen to exploit the coherency expected among the nearby pixels 

on the si ogle-plane. 

The projected patches now have to be scan-converted and z-buffered on this map

ping of the single-plane over the processor mesh. For this. each projected patch is 

sent to the processor corresponding to the lower-left corner (minimum x, minimum y) 

of its projection's bounding-box on the single-plane. After this, each patch is spread 

out in both the dimensions using the neighbor-to-neighbor inter-processor communi· 

calion primitives. This is shown in fig -lA During this phase, appropnale buffering 

is required to store multiple patches that might be reaching a particular pixel on 

the single-plane. After the spread-out operation as complete. ;;-buffering is done to 

determine the patch seera by a given pixel. For speed, and to reduce thr number of 

patches that need to be buffered for a given pixel, we can make the z-buffcr operation 

proceed concurrently with the spreading-out of the patch .Uoog the second dimension. 

This is detailed in the /mp/ementalaon Soles below. 

An alternative strategy for scan-conversion could ha,•e been to do global placement 

of the item-buffers instead of performing positioning by spreading out the polygons 

locally. In this strategy, the processor having the polygon to be projected com

putes the item-buffer elements corresponding to the projection of the polygon on tbe 

projection-plane. This processor then routes the item-buffers directly to those proces· 

sors that map on to the locations correspondillg to these item-buffers. This is shown 

in fig 4.5. Although this obviates ~he need for scan-conversaon in the fashion de

scribed before, it has two drawbacks. The first is the cost of the communication. The 

router would provide slower communication for this case than the local neighbor-to

neighbor commmunication. Secondly, resuiLS reproduced in Results below indicated 

that the imbalance in thls approach is high. The processors whose polygons cover 

a large fraction of the projection plane become heavily loaded while there are some 

processors that do not ha,·e any load. Thus, this strategy wa.s not used in the final 

implementation. 

39 



tocompule 
form·f&C:ton. 

Figure 4.4 The Balanced-Load Environment-Projection Approach 

Once the z-buffering is done, the delta form-factOr corresponding to the pixel ts 

routed back to the processor containing the patch that is seen by this pixel. The 

sum of all such delta form-factor values corresponding to a given patch gives the 

contribution of energy that will be received by it. 

The energy-distribution phase is quite simple. Each patch receives energy propor· 

tiona! to its form-factor value and the radiosity of the shooting patch. 
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Scan Conven;ion by Local Placement 

Scan Convei'Slon by Global Pla.cemeru 

Figure 4.5 Scan-Convers ion on the Pro jection-Plane 

A study was also done within this approach to investigate the fraction of the 

form-factors that are reused as the radiosity solution proceeds. These are summarized 

graphically in fig 4.7 which appears in the subsection 4.2.2. 

Implementat ion :--lot es 

After patchification and conversion to the . mp file format, as described in the subsec

tion 4.2.1, the patches are allocated to the DPU in a uniform fashion . 

During the initialization phase, the matrix that would transform from the world

coordinate system to the patch's local-coordinate system is computed and stored 
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with every patch. This transformation matrix of a patch is used while projecting the 

environment on that patch. 

Given that the mapping of single-plane to the processors is static, the delta form· 

factor of each of the pixels is fixed throughout the radiosity solution. Thus, these too 

are precomputed a.nd stored during the initialization phase. 

The shooting patch is determined as in subsection 4.2.1 by a global 

reduceMax 0 operation over the shooting energies of all the patches. This is fol

lowed by transformation of every patch using the · ra.nsformat10n matrix of the shoot· 

iog pa.t.ch. 

ln our implementation, the mappmg of the smgle-pla.ne to the processor mesh is 

done to maintain an orthogonal a.nd monotonic correspondence between the r and 

11 in the single-pla.ne space a.nd the system-defined consta.nts 1xproc and 1yproc that 

define the location of a processor in the processor space. Thus, if 'R i~ the single-plane 

space a.nd P is the processor space then this mapping :;: : 'R - P, is such that 

'r/.r~ox2c'R 3 x1 $ x2,:F(xd $ F(z2 ), (:F(ztl,:F(x2 )f'P) 

Given the m&nner of numbering of rxproc and ryproc, this means that what cor

responds to the lower-left corner on the single-plane space now corresponds to the 

upper-left corner on this processor space. After the patches arc routed to the upper

left corner (by the router command), they are spread-out first along the 3t1Uth (in

creasing y} by a sequence of xnet comma.nds to give single-proce:ssor thick strips. 

Each of these strips (corresponding to one patch), are then spread-out along east (in

creasing :r) again by xnet commands. The pixels that fall within the bounding-box 

but outside of the actual projection are not considered for z-buffering. 

To conserve space a.nd speed, storing of the item-buffers is done only during the 

south-spread. During the spread in the east direction, z-buffering is done on the fiy 

as the item-buffer tuples travel across the processor mesh. 

Delta form-[actors are added together using the combining send provided by the 

sendwJ. thAdd library function . 
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R esults 

The results for tills approach on the 365 Sitttrson offict model "'ith 3959 pa~ches 

are summarized graphically in figure 4.6. These are summarized m lerms of number 

of iterations and up to a 95% convergence of the solution. The single-plane used had 

a side-to-height ratio of 3. allowing 91.i% of the shooting-patch's energy to be shot 

out per iteration. 
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F igure 4.6 T he Convergence for different Single-P lane resolu t ions for 

Balanced-Load Environment -Projection App roach 

The rates of energy distribution in sampling with different resolutions of the single· 

plane follow the same pattern. in general. as ~hose for energy distribution rates with 

different number of rays cast. Using a finer projection-plane resolution causes the 

unshot energy of the brighlesl patch to decrease faster lhan 1l does with a coarser 

43 



resolution. The reason however is the opposite as that for the previous approach. 

In this approach. since polygons are being z-buffered. the small polygons that are 

in front of other polygons would not be missed. However. if the resolution is coarse 

enough. they would now be covering the whole pixels on the projection-plane whereas 

they should have been covering only fractions of these. Thus, these polygons get a 

higher share of energy than is due to them. This energy imbalance is corrected as the 

resolution becomes fi ncr. 

F'or this approach, the times for each iteration varied depending upon the reso

lution of the single-plane bemg used. The follo-.· ing times arl' for the 965 Srtterson 

office model with 3959 patches. For a single-plane with 64 x 6-1 resolution. the aver

age time per iteration is 0.24 seu. For a single-plane with 128 x 128 resolution, the 

average time per iteration is 0.45 sees. For a single-plane with 256 x 256 re-solution. 

the average time per iteration is 2.15 sees. 

The global posit1oning method for scan-conversion on a 4K resolution single-plane 

with a side-to-height ratio of one, yielded a total of 27K item-buffer elements. The 

maximum number of item-buffel'3 on a single processor was 1.4 K and the minimum 

was zero. 

Figure 4.7 shows the results of the study done to ascertain the number of form

factors being reused. This was done on the Srtterson 365 offiu model With 3959 

patches. As can be seen from the table, most form-factors are not reused till a very 

late stage in the iteration proce3s. By then the convergence is almost complete and 

advantage if any to be gained from storing ~he form-facto!'$ are minimal. A small 

cache for storing the form-factors might be useful. However. since for most patches. 

the chance to reshoot energy comes only after several other patches have shot their 

energy in between, the size of the cache will have to be much larger than the number of 

form-factors reused. For instance, from the table it is clear that to reuse 6 form-factor 

rows, one would need to store 17i such entries. 
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Iteration No of form-factors reused % 

13 2 53.03 
32 3 76.57 
59 3 88.76 
101 3 94.40 
177 6 97.20 
392 39 98.61 
1105 216 99.30 

Figure 4.i Form-Factor Reuse 

4.2.3 An Object-Space Ray-Casting Approach 

This approach has been studied in a class projecl for the Highly Parallel Computing 

course in Fall 1990 by Varshney and Good [Varshney90j. 

Outline 

Here a hierarchical spatia.! subdiviston approach bas been considered. The dataset is 

subdivided into some number of vartual cells. At the boundaries of each virtual cell, 

there are virtual walls. The a.im here is to take advantage of the spatial coherence of 

the ra.diosity method: each surface in teracts mostly with the nearby surfaces. These 

clusters of nearby sur[aces should then be mapped to processors that are near each 

other on the processor mesh to minimize the commllnication costs. Each virtual wall 

must keep a record of information on light emanating from its VIrtual cell, and pass 

it to the appropriate neighboring cell. 

To generate virtual cells 1.hat are approximately load-balanced, the orthogonal

load-balancing strategy is used (Dippe84j. 0 ther strategies, such as general-cube 

subdivision and tetrahedron subdivision. fail to guarantee that the polygons would 

not need to be subdivided further during the cell-formation stage. The orthogonal· 

load-balancing scheme, however, does not resuh io a very good load balance because 

there is no local control of subdivision. Thus. if there is a dense cluster of polygons 
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then the scheme would force all the cells that lie along the same orthogonal coordinates 

along the three axes to be narrow. This could cause some of such cells to receive fewer 

than the average number of polygons. This is observed in the load balancing results 

for this approach. An alternative could have been to use the one-dimensional version 

of this approach and divide up the dataset into slabs of varying thickness. That 

would have given a good load balance but could ha,·e potentially resulted in a higher 

amount of interactions that are directed outside of such a cell. 

F'unher refinement of t.he balance for these load distributions is done by subdivid· 

ing the polygons in the cells which are lightly loaded. This was admiuedly a debatable 

decision. ln retrospect, it seems more appropriate to subdivtde tlw polygon on the 

basis of the light gradient across the parent polygon than on the basis of any lond 

balancing scheme being used. 

The virtual cells can be assigned as one cell per PE or per group of PEs. F'or highly 

parallel architectures such as the .\lasPar ~IP·l. if the one-cell-per·PE approach is 

taken then it would result in a large number of cells with reladvely few polygons per 

cell. This would cause most of the interactions of a polygon to take place outside of 

the cell containing it, Th1s undermines the advantages to be gained from localizabon 

of the interactions in a spatial-subdivision approach. Thus, each cell is assigned over 

a. group of PEs. This also alleviates the load balancing problem to a certain eX1.ent, as 

within the group of PEs to which a cell is assigned, optimal load balancing is trivial. 

Once ~be assignment of the patches to the processors is done, the radiosity iter

ations for each cell proceed in parallel. For the purposes of capturing the inter-cell 

interactions, each cell is bounded by virtual walls. These walls are called virtual as 

they do not form a pan of the dataset but are used by the algori~hm to just store 

and propagate a.oy energies that are incident on them. The rays that do not intersect 

the polygons in the current cell are intersected with 1.he virtual walls and their ener

gies are stored at the virtual wall with which they intersect. After local convergence 

within the cells, the energy-laden virtual walls are exchanged between neighboring 

cells to facilitate inter-cell interactions Each cell then distributes the energy thus 

obtained amongst its patches. After this, the local intra-cell iterations again start. 
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Thus, Lhe whole process can be thought. of as alternating local and global iterMions 

o[ the radiosity process. 

Implementation Notes 

After patchification and conversion to the .mp file format, the patches arc allocated 

to the DPU in a uniform fashion. The subdh;sion of polygons is done to a global grid 

that is finer than the number of cells desired along that axis. In the sample dataset 

for instance, the spatial subdivision was 8 x 8 x I along x. y. and z axes respectively. 

The global grid used then was such that it partitioned the model into 16 x 16 x 2 

sub-cells. The sum of polygons in each of the 16 strips along the x axis is computed 

[irst. Then these 16 strips are coalesced a.s evenly, in number of polygons. as pos~ible 

into 8 groups. The boundaries of t.hese groups correspond to the virtual walls along 

the x axis. The y and z axes are divided similarly. Each vinual cell is then sent to a 

row of the data-parallel unit of the ~tasPa.r as shown in the figure 4..8 The 8 x b x I 

subdivision yields one v~rtual cell per row of the ~lasPa.r. The patches within each 

cell are distributed evenly across all the processors of the corresponding row. 

Each processor maintains a partial Corm-factor matrix for the virtual cell on its 

row. Each row of the matrix corresponds to how much each patch can see of the 

other patches. Thus, the partial matrix has roughly one by sixty four of the rows and 

all the columns of the virtual cell's form-factor matrix. 

Each processor shoots ra~·s from each of its patches and sends them to the neigh

boring processor in the same row. Each ray i.s Intersected with all the local patches 

and then passed to Lhe next processor. After cycling through all the 6-t processors 

in the row, the ray has been intersection-tested against every patch in the cell. The 

identification of the patch intersected by the ray is recorded in the ray's structure and 

the appropriate form-fa.ctor matrix entry on the ray's originated processor is updated. 

H the ray did not intersect any patch, then it is tested against the six vinual walls of 

the cell and is added to the buffer for the appropriate wall. 
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Figure 4.8 Mapping of Virtual Cells to Processors 

Once the form-fa.dors a.re calculated, the energy is distributed. Each processor 

selects its brightest patch (that with the most unsbot energy) and creates an energy 

packet. That packet is then cycled through all t.he processors of that row. As each 

processor receives a. packet, it uses its partial form-factor matrix to update the energies 

of all its local patches. Once t.he cycle is completed, new shooting patches are chosen 

and the cycle is repeated. \\Then the unshot energy of the brightest patch is below 

a threshold value. tbe process ends. This is the patch-to-patch energy distribution 

stage. 

After the patch energies have stabilized. the energy for each ray stored at each 
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virtual wall (from the form-factor calculation s~age). is updated based on the energy 

of the ray's originating patch. Tbis is the palch-to·u:a/1 energy distribution stage. 

Once the ray energies at the walls have been updated. the neighboring cells need 

to be updated with these energies. Each virtual wall's ray buffer is sent to the row 

corresponding to the virtual cell on the other side of the wall. This the wal/-to-tua/1 

energy exchange stage. 

The w;.UI-rays are propagated through all the polygons on the row much ns in 

the form-factor calculation step, except that patch energies are updated now (instead 

of tt•st.ing for ray-p111.ch intersection). This is the wall-to-patch PUergy dis~ribut i on 

stagP. 

After the wall-ray en~:rgies have been redjstributed to the patches, the energy 

distributiOn process repeats with patch-to-patch distributiOn. 

This implementation has been done up to the stage of form-factor computation. 

a has not been carried out further since the results of this stage indicated that th1s 

approach is not well -swtcd to the problem. 

Results 

The sample dataset for this approach was the 365 Sitterson office model. This was 

divided by a global grid to 8 x 8 x 1 subdivisions along the x. y. and z axes, yielding 

a. total of 64 cells. During the form-factor calculation stage, one ray per patch was 

ftred (for test purposes}. or a total of 3336 rays thus fired. 1983 of these intersect the 

patches within the cell from wbjch they originated. The remaining 1353 rays bad to 

be stored at the virtual wall buffers. Tbis inrucated that our assumption that most 

of the interactions could be expected to be Jocaljzed within each cell was wrong and 

that as much as 40% of all interactions were actually directed outside of these virtual 

cells. Trus suggests that spatial subruvision to a global grid is not a good strategy 

for raruosity. Using P\'S cells instead [Airey90aJ for spatial subdivision mjght be a 

better approach. This is again ruscussed in Chapter 5. 
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4 .3 Discussion of Results 

Let us first compare the two balanced-load approaches: ray-casting and en~;ronment· 

projection. The ray-casting approaches take up fewer iterations for a given conver· 

gence than do the environment projection techniques. However, the time per iteration 

is substantially more for the ray-casting approaches. For instance, for the dataset of 

365 Sitterson office studied, the time per intersection cycle IS 4.5 ms whereas the 

iteration time for a 128 x 128 resolution single-plane is 450 ms. This allows the ray· 

casting approach only I 00 rays per iteration before it starts becorrung slower than Ll1e 

cnviroument-projection approach, clearly an order of magnitude coarser sampling. 

As is evident from the results given previously, balanced-load environment 

projection approach described above appears promising. As suggested in [Airey89J, 

it would make more sense to switch to a co&.rse ray-casting approach from the high· 

resolution environment-projection approach in the later 1terat1ons. In later Iterations, 

t.he unshot. energies left with the shooting patches a.re small enough that t.he high res· 

olution of the single-plane is of much consequence. Alternatively, the resolution of the 

single-plane could be adaptivcly varied depending upon the energy of the shooting 

patch. 

The basic difficulty in using the object-space based polygon-processor mappings 

bas been the load imbalance of the resulting distribution and the fewer local radiosity 

interact.ions than expected. 

At this point it would be interesting to assess the object-space environment

projection approach that has not been implemented. One way to implement this 

could be by using a spatial subdjvision technique such as the one used for the object· 

space ray-casting approach described above. Inst-ead of storing rays at the virtual 

walls, however, one could store the entire projection-planes. lntra-celllocal radiosjty 

iterations could then be followed by inter-cell global radiosity iterations. During the 

global iterations, these projection-planes could be exchanged across the neighboring 

cells. Two main issues would need to be addressed in follo .... ;ng such an approach. 

The first one is the problem of correcting the load-imbalance that bas been described 

50 



in subsection 4.2.3. The second one is the problem of large amounts of interprocessor 

communication involved. Assuming a 128 x 128 resolution single-plane, one would 

have to store one such plane for each of the six ,;nual walls (to preserve the direc· 

tion information of incident energy). Assuming that form·factors are being stored 

as 4·byte fioMing-poim numbers. this would require 384Kbytes of memory per cell. 

On the MasPar Implementation. if a cell is stored across a row of the DPl: array, 

this would require 6I<bytes of memory per P E. This much information would need 

to be exchanged with other PEs at the end of each global iteration. As obs<'rved 

from the results of subsection 4.2.3, we should therefore be expecting a !ugh share 

of all iterations to be global. The overall process would then be .9/ow. Some' other 

alternatives to this approach are discussed in Chapter 5 

In brief then, of the three approaches implemented. the balanced-load 

eovnonment-proJection approach appears most promis10g. 
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Chapter 5 

Contributions and Future Work 

This thesis has surveyed three parallel ratliosity techniques for mesh-connected SIMD 

computers. The contribution~ of this thesis include 

• Formulation of a balanced-load enviroomcot-projeclion radiosity approach for 

mesh-connected SlMD computers. 

• A relalivc comparison of three parallel radiosity techniques on mesh-connected 

SlMD computers. 

• A classification of possible parallelism levels in radiosity. 

• Spatial subdjvision without considering visibility bas been observed to violate 

the locality property of ratliosity. 

• Form-factor reuse study shows a low reuse of form-factors while a high conver

gence is achieved. 

This area is so rich that there is ample scope for future work both within and 

outside of t hese approaches. A brief overview of these possibilities is provided next. 

5.1 Future Work 

5.1.1 Potentially Visible Cells 

Following the ideas of Airey [Airey90aj, one could consider potentially visible cells as 

the basis for spatial subdivision rather than subdi,·isioo to a global grid. To describe 



the concept of potentially visible cells by an example: rooms in a building are prime 

candidates for potentially visible cells for its model. Considering potentially \i~ible 

cells prorruses minimal light interaction across cells, thus removing the main problem 

of excessive inter-cell communication that was observed for the object-space ray

casting approach in Section 4.2.3. Besides. this also ties in very nicely with the ideas 

of incremental radiosity calculations and interactive walkthroughs of <he architectural 

datasets. The incremental radiosity techniques study the changes in the radiosity 

shading with changes to the dataset. Most of these changes arc local. such as moving 

a chaar and observing its shadow change. Therefore, it makes senst' to exploit thas 

locality property by considering only the polygons that fall within the current cell 

As far as interactive walkthroughs are concerned, the idea of potentaally vi sable celb 

is already being used to determine the polygons to bf' displayed. Thas idea can bl' 

extended to consider this set of polygons for radiosity calculation purposes. 

An approach similar to that used in Section 4.2.3 could then be used. Local 

iterations would proceed for the cell in which the user is currently in and once the 

solution in the current cell refines to suitable levels. a global iteration could be done. 

Energy across cells could now be stored on the open portals for the cell instead of 

storing them on the six vinual walls a.s done in Section 4.2.3. When a user e..xits a 

cell and enters a new cell. the polygons on the processor grid corresponding to the 

current cell could be swapped out, those corresponding to the new cell be swapped 

in. The polygons corresponding to the portals between the two cells would remain 

on the processor mesh. 

Any one of the approaches studied in tbis thesis would be a viable alternative for 

computing the radiosity solution within each such potentially visible cell. 

5.1.2 Accelerated Ray-Tracing 

Extensions to the ray-casting approaches in this thesis could be made by incorporat

ing one or more of the several well known ray-tracing techniques. Thus, one could use 

bounding volume hierarchies, object bounding volumes, generalized rays etc. A im

plementation similar to [Delaoy88J could also be stud1ed for mesh-connected SIMD 
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computers. Rough calculations are however not very promising. From the results 

given in that paper, a rate of roughly 0.3 ms per ray intersection cycle is feasible 

using that approach on a !6K C~l-1. For a 128 x 128 projection-plane, that. would 

give roughly 5 seconds per iteration. which is by itself an order of magnitude costlier 

than the balanced-load environment-projection approach considered in t.his thesis. 

Howe,·er, these are just hypothetical figures. and these should be checked out against 

an actual implementation, now that fast virtual sorting and routing functions are 

available on the l\lasPar ~IP-1 ;Prins90]. 

5.1.3 Coherency in Scan-Conversion 

Then• exists scope for exploiting more coherency in the scan-conversion of the poly

gons in the environment-projection approach studied in Sect. ion 1.2.2. Right now. 

while the polygon is being sprea-d out along the second dimension, no usc is made of 

inforrnMion about the other polygons that have been spread out before. Consider for 

instance, a polygon, say A, that is smallest in -z (and therefore will be finally chosen) 

already spread out and another polygon, say B, that is within the extents of A, and 

has yet to be spread out. Then after comparing the z-extents of the two polygons it 

should be possible for one to discard 8 before spreading it out and save this extra 

work. This is an extreme example, but still there are several cases in which using the 

information of already spread out polygons. one could speed up the scan-conversion 

of the current polygon. However, trying to take all these special cases into account 

would also reduce the homogeneity· the very basis of all efficient SI.\{D algorithms -

in this approach, and it remains to be seen how these expected gains balance off the 

losses arising from the new irregularities introduced. 
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Appendix A 

Source Code 

patchify.c 

!***********************************************************************! 

Amitabh Varshney Howard Good 

!***********************************************************************! 
This program patchifies the input dataset into desired size patches 
The patches can be specified on a global grid with possibly all the 
three dimensions specified. This grid is aligned about the three 
principal axes. 

!************************************************************************! 

#include <stdio.h> 
#include <math.h> 
#include <signal.h> 
#include "host.h" 
#include "error.h" 

#define MAXVERT 20 I* redefine MAXVERT *I 

double PatchSide[3]; I* Stores the three sides of the global grid*/ 

!******************************************************************** 
Option Handler 

Handles all the options for the program specified in command line 
The options are '?' learn the usage 

'S' : have all the grid sides as equal 



'C' : have all the grid sides specified 

*********************************************************************I 
int option_handler(ac, av) 
int ac; 
char *av[]; 
{ register int i, ok = 1; 

register char •c; 

I* Take the default patchside as the CELLLENGTH consts from host.h *I 
PatchSide[X] = XCELLLENGTH; 
PatchSide[Y] = YCELLLENGTH; 
PatchSide[Z] = ZCELLLENGTH; 

for (i = 1; i < ac && av[i] [0] == '-'; i++) 
for (c = &(av[i][1]); *c; c++) switch (•c) { 

case '?' : 
fprintf(stderr, 11 S D {Equal Sized Patchsize }\n"); 
fprintf(stderr, "CD D D {Cuboidal Patchsize }\n"); 
fprintf(stderr, "fname 

{ < fname.poly > fname.patch }\n"); 
break; 

} 

case 'S' : 
PatchSide[X] = PatchSide[Y] = PatchSide[Z] = atof(av[++i] ); 
break; 

case 'C': 

} 

PatchSide[X] = atof(av[++i]) ; 
PatchSide[Y] = atof(av[++i]); 
PatchSide[Z] = atof(av[++i]); 
break; 

defau.lt: 
fprintf(stderr, "Y.s: unknown option -Y.c\n", av[O], *c); 
ok = 0; 
break; 

fprintf(stderr,"Patchsides being used X Y.f Y Y.f Z Y.f \n", 
PatchSide[X]. PatchSide[Y],PatchSide[Z]); 
return (ok? i : 0); 

I******************************************************************** 
wri te_patch 

Writes out a patch to the patch file fp being constructed 
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... 

The header specifies things like patch colors, number of verts 
etc. and vertices is an array containing all the vertices. 

*********************************************************************! 
write_patch(fp,header,vertices) 
FILE* fp; 
int header[10]; 
float vertices[MAXVERT] [3]; 
{ int k,n; 

} 

n = header[6]; 
fprintf(fp,"%d %d %d %d %d %d %d %d %d %d\n", 

header[O] ,header[!] ,header[2],header[3],header[4], 
header[S] ,header[6],header[7],header[8],header[9]); 

for (k = 0; k < n; k++) 
fprintf(fp,"%f %f %f\n",vertices[k][X] ,vertices[k] [Y] ,vertices[k] [Z]); 

fflush(fp); 

!******************************************************************** 
patchification 

Writes out a patch to the patch file fp being constructed 
The header specifies things like patch colors, number of verts 
etc. and vertices is an array containing all the vertices. 
All the output patches are either triangles or quads . 

********************************************************************! 
void patchification(poly_fp,patch_fp) 
FILE* poly_fp; 
FILE* patch_fp; 
{ 

Poly p; I* Polygon being processed *I 
int i,j,jj,k,m,n; I* Miscellaneous counters *I 
char line[512]; I* Line from a poly file *I 
int h[10]; I* Polygon header *I 
int polysread = 0; I* Number of polygons read so far*/ 
int pwritten = 0; I* Number of patches written so far*/ 
int xO, x1, x2, xli, x2i, xldim, x2dim; 
float wb[MAXVERT][3]; I* Buffers to store the vertices *I 
float new_verts[4] [3]; 
float ex[3*2]; I* Min and max extents in 3D *I 
float clipbox[3*2]; I* Current clipping box for polygon*/ 
float normal[3]; I* Plane normal *I 
int orientation; I* Orientation of the polygon *I 
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while (fgets(line, 511, poly_fp)) I* Read in the header line •I 
{ if(++polysread Y. 1000 == 0) fprintf(stderr,"Read poly #Y.d\n",polysread); 

if (sscanf(line,"Y.d Y.d Y.d Y.d Y.d Y.d Y.d Y.d Y.d Y.d\n", 
&:h[O] ,&:h[1] ,&:h[2] ,&:h[3] ,&:h[4] ,&:h[S] ,&:h[6] ,&:h[7] ,&h[8] ,&h[9]) != 10) 
die ("patchification", "bad header read" ,1); 

I* Determine the extents of the current polygon *I 
ex[MINEX(X)] = ex[MINEX(Y)] = ex[MINEX(Z)] = HUGE; 
ex[MAXEX(X)] = ex[MAXEX(Y)] = ex[MAXEX(Z)] = -HUGE; 

for (i=O; i<h[6]; i++) I* h[6] is the number of vertices •I 
{if (fscanf(poly_fp,"Y.f Y.f Y.f\n",&:p.verts[i][X],&:p.verts[i] [Y], 

&p.verts[i][Z])!=3) 

} 

die("read_poly_format","bad vert read",1); 
else 
{ ex[MINEX(X)] = MIN(ex[MINEX(X)],p.verts[i] [X]); 

ex[MINEX(Y)] = MIN(ex[MINEX(Y)],p.verts[i] [Y]); 
ex[MINEX(Z)] = MIN(ex[MINEX(Z)],p.verts[i] [Z]); 
ex[MAXEX(X)] = MAX(ex[MAXEX(X)],p.verts[i] [X]); 
ex[MAXEX(Y)] = MAX(ex[MAXEX(Y)],p.verts[i] [Y]); 
ex[MAXEX(Z)] = MAX(ex[MAXEX(Z)],p.verts[i] [Z]); 

} 

p.numverts • h[6]; 
planeEq(&:p,p.verts,p.numverts); 

if (h[7] > 0) I• this is an emitter polygon so do not split •I 
{ 

write_patch(patch_fp,h,p.verts); 
pwritten++; 
continue; 

} 

normal[X] = fabs(p.eq[A]); 
normal [Y] = fabs (p. eq[B]); 
normal[Z] = fabs(p.eq[C]); 

I* Determine the orientation of the polygon - ie the pair of 
orthogonal axes along which its projection would be maximum •I 

if (normal[X] > normal[Y]) 
{ if . (normal [X] > normal [Z]) orientation = SKEWX; 

else orientation = SKEWZ; 
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} 

else 
{ if (normal[Y] > normal[Z]) orientation = SKEWY; 
else orientation = SKEWZ; 

} 

if ((normal[Y] == O)&&(normal[Z] == 0)) orientation= X; 
if ((normal[X] =• O)&&(normal[Z] •= 0)) orientation = Y; 
if ((normal[Y] -- O)&&(normal[X] == 0)) orientation = Z; 

switch (orientation) 
{ case X: case SKEWX: x1 = Y; x2 = Z; xO = X; break; 

case Y: case SKEWY: x1 = Z; x2 = X· 
' 

xO = Y· 
' 

break; 
case Z: case SKEWZ: x1 • X; x2 ,. Y; xO = Z; break; 

} 

I* snap to global grid *I 

xli = floor(ex[MINEX(x1)]1PatchSide[x1]); 
x2i = floor(ex[MINEX(x2)]1PatchSide[x2]); 
xldim = ceil(ex[MAXEX(x1)]1PatchSide[x1]) - xli; 
x2dim = ceil(ex[MAXEX(x2)]1PatchSide[x2]) - x2i; 

clipbox[MINEX(xO)] = ex[MINEX(xO)]; 
clipbox[MAXEX(xO)] • ex[MAXEX(xO)]; 

clipbox[MINEX(xl)]• x1i*PatchSide[x1]; 
clipbox[MAXEX(x1)]= clipbox[MINEX(x1)] + PatchSide[x1]; 

I* Clip the current polygon into desired sized patches *I 
for (i = 0; i < xldim; i++) 
{ clipbox[MINEX(x2)] • x2i*PatchSide[x2]; 

clipbox[MAXEX(x2)] • clipbox[MINEX(x2)] + PatchSide[x2]; 
for (j • 0; j < x2dim; j++) 
{if ((n • clip_face_to_box(clipbox[MINX],clipbox[MAXX], 

clipbox[MINY] ,clipbox[MAXY], 
clipbox[MINZ],clipbox[MAXZ], 
&p,wb,orientation,ex)) > 2) 

{ if (n <= 4) 
{ h[6] = n; 

write_patch(patch_fp,h,wb); 
pwritten++; 

} 

else 
{ h[6] = 4; 
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} 

} 

} 

} 

write_patch(patch_fp,h,wb); 
pwritten++; 
if (nY.2 == 1) k = n - 1; 
else k = n; 
for (jj = 1 ; JJ <= (k-4)/2; jj++) 
{ for(m=O;m<3;m++) 

{ new_verts[O][m] = wb[O] [m]; 
new_verts[l][m] = wb[(jj*2)+1] [m]; 
new_verts[2][m] = wb[(jj*2)+2] [m]; 
new_verts[3][m] = wb[(jj*2)+3] [m]; 

} 

h[6] = 4; 
write_patch(patch_fp,h,new_verts); 
pwritten++; 

} 

if (nY.2 == 1) 
{ for(m=O;m<3;m++) 

{ new_verts[O][m] = wb[O] [m]; 
new_verts[l][m] = wb[(jj*2)+1] [m]; 
new_verts[2][m] • wb[(jj*2)+2] [m]; 

} 

h[6] - 3; 
write_patch(patch_fp,h,new_verts); 
pwritten++; 

} 

} 

} 

clipbox[MINEX(x2)] • clipbox[MAXEX(x2)]; 
clipbox[MAXEX(x2)] += PatchSide[x2]; 

clipbox[MINEX(x1)] = clipbox[MAXEX(x1)]; 
clipbox[MAXEX(x1)] += PatchSide[x1]; 

printf("Input polygons= Y.d\n",polysread); 
printf("Output patches= Y.d\n",pwritten); 

'******************************************************************** 
Main 

*********************************************************************! 
main(ac, av) 
int ac; 
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char *av[]; 
{ int options; 

} 

FILE* poly_fp; I* Input poly file *I 
FILE* patch_fp; I• Output patch file •I 
char filename[128]; 

if (!(options= option_handler(ac,av))) die("main","bad options",!); 

if (!(poly_fp = fopen(sprintf(filename,"Y.s.poly",av[options]),"r"))) 
die("main","can't open input poly file",1); 

if (! (patch_fp = fopen(sprintf(filename,"Y.s.patch",av[options]) ,"w"))) 

die("main","can't open output patch file",1); 

patchification(poly_fp,patch_fp); I• Carry out patchification •I 

fclose(poly_fp); 
fclose(patch_fp); 
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patchtomp.c 

!********************************************************************** 
Amitabh Varshney Howard Good 

*********************************************************************** 

Patchtomp 

This program takes in a patchified dataset and converts it to 
a binary format file suitable for fast reading in by the MasPar MP-1 
This speeds up the set-up time on the MasPar. It also calculates some 
other parameters like the polygon equations and their areas before 
writing these out to the MasPar binary file. 

**********************************************************************! 

#include <stdio.h> 
#include <math.h> 
#include 11 host.h 11 

#include 11 error.h11 

!******************************************************************** 
bufwrite 

Using block I/O this routine writes out data in the binary format 
into the file fp. 

*********************************************************************! 
void bufwrite(fp,ptr,size) 
FILE* fp; I• Output file •I 
char* ptr; I* Data pointer •I 
int size; I• Data size •I 
{ if (!fwrite(ptr,size,l,fp)) 

die( 11bufwrite 11 , 11bad write 11 ,1); 
} 

!******************************************************************** 
cross_prod 

Returns the cross product of two vectors v1 and v2 into r 
*********************************************************************! 
void cross_prod(r,v1,v2) 
float r[4], v1[3], v2[3]; 
{ r[X] = v1[Y]•v2[Z]- v1[Z]•v2[Y]; 

r[Y] = -v1[X]•v2[Z] + v1[Z]•v2[X]; 
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r[Z] = v1[X]*v2[Y] - v1[Y]*v2[X]; 
} 

I******************************************************************** 
planeEq 

Given a set of vertices and in a plane, this routine finds 
out the equation of the plane. 

*********************************************************************I 
planeEq(cur_poly,verts,numv) 
Poly* cur_poly; I* Polygon pointer •I 
int numv; I* Number of vertices *I 
float verts[MAXVERT][3]; I• Vertex array •I 
{float eq[4], v1[3], v2[3]; 

int i,j,k; 
float mag; 

i = 0; 
do 
{ j = (i+l) Y. 3; 

k = (j+l) Y. 3; 
I* determine the two vectors in the plane *I 
vl [X] • verts [j] [X] - verts [i] [X]; 
vl [Y] = verts [j] [Y] - verts [i] [Y]; 
vl [Z] = verts [j] [Z] - verts [i] [Z]; 

v2[X] = verts[k][X] - verts[j][X]; 
v2[Y] • verts[k][Y]- verts[j][Y]; 
v2[Z] = verts[k][Z]- verts[j][Z]; 

I* take thei r cross product •I 
cross_prod(eq,v1,v2); 

} 

while((++i<numv)kk((fabs(eq[X])+fabs(eq[Y])+fabs(eq[Z])<Ll_NORM_MIN))); 

if (i==numv) 
{ fprintf(stderr, "planeEq(): bad face:\n") ; 

for (i = 0; i < numv; i++) 
fprintf (stderr. "Y.g Y.g Y.g\n". verts [i] [X] • verts [i] [Y] • verts [i] [Z]) ; 

fflush(stderr); · 
eq[X] = eq[Y] = eq[Z] = eq[W] = 0 . 0; 

} 

else I* normal has been found •I 
{mag= sqrt(eq[X]*eq[X] + eq[Y]•eq[Y] + eq[Z]*eq[Z]) ; 

eq[X] I= mag; 
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.. . 

} 

} 

eq[Y] I= mag; 
eq[Z] I= mag; 
eq[W] • -(eq[X]•verts[O][X]+eq[Y]•verts[O] [Y]+eq[Z]•verts[O] [Z]); 

I* Return back the equation as elements of the polygon passed in •I 
cur_poly->eq[X] = eq[X]; 
cur_poly->eq[Y] = eq[Y]; 
cur_poly->eq[Z] = eq[Z]; 
cur_poly->eq[W] = eq[W]; 

!********************************************************************* 
area 

Given a polygon, this routine returns the area of the polygon 
This is done by considering the polygon to be made up of a number 
of triangles and finding the area of each triangle by halving the 
magnitude of the cross product of two of its sides . 

*********************************************************************I 
area(cur_poly) 
Poly* cur_poly; 
{ int i ,j ,k; 

float area= 0.0; 
float v1[3], v2[3], v3[4]; 

for(i=O; i < cur_poly->numverts - 2; i++) 
{ j = i+1; 

} 

k = i+2; 

I• Determine the two vectors as the two sides of the sub-triangle •I 
v1[X] • cur_poly->verts[j][X]- cur_poly->verts[i] [X]; 
vl[Y] = cur_poly->verts[j][Y]- cur_poly->verts[i] [Y]; 
v1[Z] = cur_poly->verts[j][Z]- cur_poly->verts[i] [Z]; 

v2[X] • cur_poly->verts[k][X]- cur_poly->verts[i] [X]; 
v2[Y] = cur_poly->verts[k][Y]- cur_poly->verts[i] [Y]; 
v2[Z] = cur_poly->verts[k][Z]- cur_poly->verts[i] [Z]; 

I* Take their cross product •I 
cross_prod(v3, v1, v2); 

area+= O.S*sqrt(v3[X]•v3[X] + v3[Y]*v3[Y] + v3[Z]•v3[Z]); 
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cur_poly->area = area; 
} 

!•••··············*··················································· 
io_polys 

Glven an ascii file of polygons, this routine reads in 
polygons, finds their plane equations and areas and writes them out 
in the binary format suitable to fast reading in on the MasPar 
It returns the number of polygons read . 

********•·························•*•••······························/ 
int io_polys(patch_fp,mp_fp) 
riLE* patch_fp; I* patch file •/ 
FILE• mp _fp; / • mp file •I 
{ Poly •cur_poly; I• current polygon •I 

Vec3 temp_vert; /•buffer to store vertices •/ 
int polysread = 0; I* polygons read so far •I 
int i,j; I• mise counters •/ 
char line[512); /• Input file line •/ 
int front[3] ,n; 1~ front face r,g,b's and num verts•/ 
int back(3]; I• back face r,g,b's *I 
int emitter_id; I• Id of the emi tter polygon•/ 
int txtr_id ; I• Texture stuff •/ 
1.nt txtr_index; 
int average_col[3); 

ALLOCN(cur_poly, Poly, 1, "io_polys"); 

I• read in the polygons in the Walkthrough format•/ 
while ((j = fscanf(patch_fp, "Xd Xd 'l.d Xd 'l.d Xd 'l.d Xd Xd 'l.d", 

&:front (~ED) , &:front [GREEN) ,kfr·ont (BLUE) , &:back [RED) , &:back (GREEN) , 
&:back(BLUE), ln,&:emitter_id,&:txtr_id,&:txtr_index)) 1= EOF) 

{ if (j ! = 10) 

{ fprintf(stderr, "Failure for polygon# 'l.d\n" ,polysread); 
fprintf(stderr,"Polygon Header is: 'l.d 'l.d 'l.d 'l.d Xd 'l.d 'l.d Xd 'l.d 'l.d\n", 

front[REO] ,front(GREEN] ,front[BLUE] ,back[RED) ,back[GREEN], 
back[BLUE] , n,emitter_id,txtr_id,txtr_index); 

die("read_poly_format", "bad header read" ,1); 
} 

I• Initialize all entries to zeroes • / 
for (J=O;j<MAXVERT;j++) 
{ cur_poly->verts[j] [X) = cur_poly->verts[j) [Y) = cur_poly->verts[J] [Z] 

= 0.0; 
cur_poly->colors[j] [RED] = cur_poly->colors[j)[GREEN) = 
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cur_poly->colors[j)[BLUE] = cur_poly->colors[j)(ALPHA) =(unsigned char) 
} 

average_col[RED) c average_col[GREEN) = average_col[BLUE) = 0; 
I• Assign vertices and colors to polygon to be vritten out *I 
for(i = 0; i < n; i++) 
{ J.! (fsca.nf(patch_fp,"'/.f 'l.f '/.f\n",&temp_vert[X),&temp_vert [Y), 

&temp_vert[Z])!•3) 
{ fprintf(stderr,"Failure for polygon# '/.d\n",polysread); 

fprintf(stderr,"Polygon Header is: '/.d '/.d '/.d '/.d '/.d '/.d '/.d '/.d '/.d '/.d\!1" 
front[RED] ,front[GREEN],front[BLUE],back[RED] ,back(GREEN], 
back[BLUE] , n,emitter_id,txtr_id,txtr_index); 

fflush(stderr); 

} 

die("read_poly_format", "bad vert read" ,1); 
} 

cur_poly->verts(i][X) = temp_vert(X]; 
cur_poly->verts(i](Y] = temp_vert(Y]; 
cur_poly->verts(i)(Z] = temp_vert(Z); 
average_col[RED) +• cur_poly->colors[i][RED) • front[RED]; 
average_col[GREEN) +• cur_poly- >colors[i)(GREEN] c front[GREEN]; 
average_col(BLUE) +• cur_poly->colors(i)(BLUE) • front[BLUE); 

cur_poly->numverts = n; 

I• find the plane equation of the polygon •I 
planeEq(cur_poly,cur_poly->verts, n); 

I• find the area of the polygon •I 
area(cur_poly); 

I• initialize the total radiosity values of polygons to zeroes •I 
cur_poly->gather[RED] • 
cur_poly->gather[GREEN] = 
cur_poly->gather(BLUE] c 0.0; 

I• initialize the reflectance rho of polys to normalized average of 
vertex colors 

• I 
n *• 255; 
cur_poly->rho[RED] = l.O•average_col[RED] I n; 
cur_poly->rho(GREEN] s l.O•average_col[GREEN] In; 
cur_poly->rho[BLUE] = l.O*average_col [BLUE] I n; 

I• It the polygon i s an emitter, initialize i ts unshot radiosity to 
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I 

some desired values else init them to zeroes. 

if (emltter_id > 0) 
cur_poly->unshot[RED) = 

cur_poly- >unshot(GREEN) = 
cur_poly->unshot[BLUE) = INIT_EMIT; 

else 
cur_poly->unshot[RED) = 

cur _poly->unshot [GREEN) e 

cur_poly- >unshot [BLUE) z 0.0; 

} 

} 

I* Write out the polygon •/ 
buf~rite(mp_fp , (char •> cur_poly, sizeof(Poly)); 

if(!(++polysread 'l. 500)) 
{ f printf (stderr, "Read polygon# 'l,d ... \n", polysread); 

fflush(stderr); 
} 

return polysread; 

!••································································*** 
MAI N 

····················································•****************! 
EDain(a.c, av) 
1nt ac; 
char* av (); 
{ 

FILE* patch_fp; I• Input Asci i file of dataset*/ 
FILE* EDp_fp; I• Output Binary file • / 
char filename[128); 
int NumPolys s 0; I• Number of polygons in the dataset•/ 

I• Open up the I/0 fil es •/ 
if (ac =• 1) 
{ printf("Usage: 'l.s fname { < fname.patch > fna.me.EDp }\n",av[O)); 

exit(l); 
} 

if (! (patch_fp = fopen(sprintf (filename, "'l.s . patch", av [1]), "r "))) 
die ("patchtomp", "can •t open i nput" ,1); 
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} 

if ( ! (mp_fp = fop en( sprint f (f ilena.me, "'los. mp", av [ 1]) , " .:") ) ) 
die("patchtomp", "can't open output", 1); 

bufuritE(mp_fp ,(char *)&NumPolys, sizeof (int)) ; 

NumPolys = io_polys(patch_fp, mp_fp); 

I• Write t he number of polygons in the beginning •/ 
fseek{mp_fp,OL,O); 
buturitE(mp_fp , (char *)&NumPolys , sizeof(int)); 

fclose(patch_fp) ; 
fclos e(mp_fp); 
printf("Num polys written • 'l.d\n", NumPolys); 
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host.h 

!*********************************************************************** 
Copyright 1991: Ami tabh Varshney UNC CS Dept. All Rights Reserved 

HOST.H 

Approach: Balanced-Load Ray-Casting 

This f i le is the main include file and contains the constants, macros 
typedefs used. 

!******************************•***********~************************** 
CONSTANTS 

*********************************************************************! 

ltdefine A 0 I• Generally used vith plane equation•/ 
#define B 1 
ltdef i ne C 2 
ltdefine 0 3 

#define X 0 I • Generally used vith vertices •/ 
#define Y 1 
#define Z 2 
#def~ne II 3 

#define SKEIIX 4 
#define SKEllY 5 
#define SKE\IZ 6 

ltdefine RED 0 /• 
#define GREEII 1 
#define BLUE 2 
#define ALPHA 3 

future? 

/• . Used f or t he orientation of the polygon•/ 

Colors associated vi t h the polygon•/ 

I• Transparency option vith radiosi ty in 
right nov for data alignment•/ 

#define Ll_NDRM_MIN le-4 I• Tolerance limit for computat i on errors •I 
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#define HUGEF 1e+10 I• Some huge floa~ing pt number • I 

#define EAST 0 I• Generally used for virtual walls • I 
#define WEST 1 
#define NORTH 2 
#define SOUTH 3 
#define FLOOR 4 
#define CEILING 5 

#define U 0 
#define V 1 

#define NXPROC 64 I• Same as nxproc but facilitates array decls•l 
#define INPROC 64 I• Same as nyproc bu~ facil1tates array decls•l 

#define NUMRAYS 4050 I • Number of rays per polygon • I 
#define NUMRADIUS 45 I* Number of radius divisions in ray f1ring •I 
#define NUMTHETA 90 I• Number of theta divisions in ray firing • I 

I• }MmfETA = 2•NUMRADIUS and 
NUMTHETA•NUMRADIUS • NUMRAYS 

•I 
#define MAXPOLYS 40960 I• Maximum no of polygons in all •I 
#define MAXPEPOLYS 3 I• Maxi mum no of polygons per PE •I 
#define MAXROWPOLYS 185 I• Maximum no of polygons per DPU row •I 
#define MAXRAYS MAXPEPOLYS• NUMRAYS I• Total maximum no of rays •/ 
#def ine MAXVERT 4 I• Maximum no of vertices in a polygon • I 

#define MAXPOLYS_PER_CELL 4096 I• Maximum no of polys in a cell •/ 
I• X dimension of FF matrix per PE •I 
#define FFX MAXPOLYS_PER_CELL/NXPROC 
I• Y dimension of FF matrix per PE •I 
#define FFY MAXPOLYS_PER_CELLINYPROC 

#define XROOM_DIM 
#define YROOM_DIM 
#def i ne ZROOM_DIM 
#define XCELLS 

8 I• Number of Virtual Rooms along 3-axes • I 
8 
1 
16 

I• No of finer patch subdivisions along axes•/ 
#define YCELLS 16 
#define ZCELLS 2 
#define XCELLLENGTH 180.0 
I• Cell lengths used for patchification • / 
#define YCELLLENGTH 120 .0 
#define ZCELLLENGTH 500.0 
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#define INIT_EMIT 
1000.0 I • Initial radiosity value for an emitter • I 
#define TOL 10.0 
I• Terminal radiosity value for local iters•/ 

/•••••••••••••••••••••••••·••••••••••••••••••••••••••••**••••••••••••* 

#define 
#define 

{ a[O] 
a(l ) 
a[2] 
} 

MACROS 

DOT(a,b) (a[O] •b[O] + a(l]•b[l] + a[2]•b[2]) /• Dot product ~1 
CROSS(a, b, c) \ 

• b(l] • c(2) - c(1)•b[2); \ 
• c[O)•b[2) - b[O]•c[2); \ 
• b[O]•c[l] - c(O]•b[1); \ 

#define PLURAL_NORMALIZE(a, b) \ 
{ plural float magnitude ; \ 

magnitude; fp _sqrt(b[O] •b[O] + b(1)•b(1) + b(2) •b(2));\ 
a[O) • b[O]/magnitude; \ 
a[1) e b[l)/magnitude; \ 
a(2] • b[2]/magnitude; \ 

#define 
#define 

{a(O) 
#define 

{a[O] 
#define 

{a[O] 
#define 

{a(O] 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

} 

VEC_SUM(a) (a[O] + a [ l ] + a(2]) 
VEC_ASSIGN(a, b) \ 

= b(O]; a[ l ) ; b[l]; a [2) • b[2) ;} 
VEC4_ASSIGN(a, b) \ 

; b[O); a[1] = b(1]; a[2] = b[2); a (3) = b(3] ;} 
VEC_ASSIGN_ZERO(a) \ 

• 0; a[l] • 0; a[2) = 0;} 
VEC_ADD(a, b, c) \ 

= b(O] + c(O]; a(l] ; b[l] + c(l]; a (2] = b(2] + c[2];} 

MIN(x,y) 
MAX(x,y) 
MINX 
MAXX 
MINY 
MAXY 
MINZ 
MAXZ 
MINEX(C) 
MAXEX(C) 

(((x)<(y))?(x) : (y)) /• Minimum of two nos+/ 
(((x)>(y))?(x):(y)) / • Maximum of t wo nos• / 
((X) <<l) I• Indexing in extent's array•/ 
(((X)«1)+1) 
((Y)«l) 
(((Y)«1)+1) 
((Z) « 1 ) 
(((Z) «l )+l) 
((C)«l ) 
(((C)«1)+1) 
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I• All ocate N items of type TYPE at poi nter l ocat ion PTR on ACU or Front End•/ 
#define ALLOCN(PTR,TYPE,N,RTN) \ 

} 

if ( ! (PTR = (TYPE •) malloc((unsigned) (N) •sizeof(TYPE) ))) { \ 
printf("malloc failed\n"); \ 
exit ( -1); \ 

I• Allocate N items of type TYPE at po i nter location PTR on the PEs •/ 
#define P_ALLOCN(PTR,TYPE,N,RTN) \ 

} 

if (!(PTR = (plural TYPE •) p_malloc((unsigned) (N)•sizeof(TYPE)))) { 
p_printf ( "p_malloc failed\n"); \ 
exit ( - 1); \ 

#define START gettimeofday(ttm,&tz);\ 
et • (tm.tv_sec)+ (0.000001~ (tm.tv_usec)); 

#define STOP gettimeofday(ttm,&tz);\ 
et = (tm .tv_sec)+(0 .000001*(t m.tv_usec)) - et; 

I • for((v)•(f)->verts[(i) =O);(i)<(f)- >n;(v)•(f) - >verts[++(i))) •I 

!•••··········~······················· .. ···············•**••······•*•* 
TYPEDEFS 

············································••***********************! 
typedef float Vec3[3] ; 
typedef float Vec4[4]; 

typedef uns i gned char byte; 
I• Used to def ine colors and form-factors•/ 

I• - POLYGON- •I 
typedef struct polygon 
{ int numverts; I• Number of vertices •I 

float verts[MAXVERT)[3);/• Points of the polygon (quad/triangle) • / 
Vec4 eq; I• Eq of the polygon (quad/triangle) •I 
byt e colors[MAXVERT][4];1•Colors at the vertices • I 
float unshot[3); I• Unshot rad value for front & back face •I 
float gather(3); I• Accumulat ed energy for front & back face • I 
float rho[3]; I• Reflect~ce for front and back face •I 
float area; I• Area of the polygon •I 
int id; I • Polygon i d •I 
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} Poly; 

I* - POLYGON GEOMETRY-•/ 
typedef struct poly_geom 
{ int numverts; /+ Number of vertices • I 

float verts[MAXVERT)[3];/• Points of the polygon (quad/tri~~gle) • / 
Vec4 eq; I• Eq of the polygon (quad/triangle) •I 

} PolyGeom; 

I • -RAY- •I 
typedef struct ray 
{ f loat origin(3] ; 

! loat directlon[3); 
int i d; I* Id of 
f loat energy[3); 
float distance; 

} Ray; 

/ • Origin of the ray *I 
I• Direction of the ray •I 

t he polygon it hits •I 
I• Energy ~ith this ray •I 

I• Paramete r ' t' in its parametric form •I 

I • -Miscellaneous data used per poly during ff calc- • I 
typedef struct poly_tag 
{ float poly_center[3); I• Center of the polygon •/ 

int x, y; I • Axes along vhich the polygon lies • I 
float uv[2)[3); I• Some variables to avoid repeated calc•/ 
float beta_denom[2); 
float poly_mat[3)[4); I• Used in orienting r ays to be fired • I 

} PolyTag; 

I* -ENERGY PACKETS- •I 
typedef s truct energy 
{ int id; /• Id of the patch vhich shot this packet • / 

float unshot[3); /• Unshot radiosity for the shooting patch • I 
float area; I• Area of the shooting patch • I 

} Packet; 

extern char• malloc(); 
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#include <stdio.h> 
#include <math.h> 
#include <sys/time.h> 
#include "host.h" 
#include "error.h" 

extern void polys_~o_pe(); 

h<>st.c 

Poly *poly_l i st; I• list of polygons • I 

I• Low level C file i/o routine to read in large amounts of data •/ 
bufread (fd,ptr,size,num_items) 
int fd; 
char* ptr; 
int size; 
int num_items; 
{ if (read(fd, ptr, size•num_items) < 0) 

dle("bufread","bad read",1); 
} 

I • This reads in the polygons from the special binary format file •I 
int read_polys(mp_fp) 
int mp_fp; I• binary file •I 

{ Poly • cur_poly; I• current polygon in the poly_list • I 
int i; 

} 

int numPolys; I• number of polygons read •I 

I• determine the number of polygons to be read •I 
bufread(mp_fp ,(char *) knumPolys, sizeof(int), 1); 

I• allocate space accordingly •I 
ALLOCN(poly_list , Poly, MAXPOLYS, "read_polys"); 

I• read in the polygons *I 
bufread(mp_fp, (char • ) poly_list, sizeof(Poly), numPolys ); 

return(num?olys); 
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I• Th1s func•ion prints out the polygon cur_poly - usef ul in debugging • I 
print_poly(cur_poly) 
Poly •cur_poly; 
{ int j; 

printf("'l.d \n",cur_poly->nWI!verts); 
fo r (j =O;j <t1AXVERT ;j++) 
{ printf("'l.f 'l.f 'l.f \n",cur_poly->verts[j] [X] ,cur_poly- >verts(j] [Y], 

cur_poly->verts [j] (Z]); 
} 

} 

int opti on_handler(ac , av) 
int ac; 
char •av(J; 
{ 

} 

register in't i ' ok = 1• 
' 

r egister char •c; 

f or (i = 1; i < ac && av[ i ] [0] =• '-'; i++) 

} 

for (c = k(av[i] [l]); • c; c++) svitch (• c) { 
case '?' : 

printf ( "No options are available\n"); 
break; 

default: 
fpr intf (stderr , "'l.s: unknovn option -'l.c\n", av[O], •c); 
ok = 0; 
break; 

return (ok? i : 0); 

!***•************************~* Main *********•*************************/ 
main(ac, av) 
int ac; 
char •av [); 
{ int opt1ons ; 

int mp_fp; I* Input binary fi l e •I 
char filename[ 128]; I* Input file name • I 
int total_polys = 0; 

struct timeval tm; I• Timing stuff • I 
struct timezone tz ; 
double et; 
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} 

if (!(options" option_handler(ac,av))) die("io","bad options", 1); 

if (!(mp_fp = open(sprin'tf(filenaJIIe,"'l.s.mp",av(options)),O_RDONLY)))) 
die("1o","can't open input mp fil e",l); 

I* Read in the polygons*/ 
total_polys = read_polys(mp_fp); 
close (mp_fp); 

I* Transfer the polygons to the DPU •I 
fprintf(stdout,"Xferring 'l.d polys to PEs\n",total_polys); 
fflush(stdout); 

START 

callRequest(polys_to_pe, 8, poly_list, total_polys); 

STOP 

I• Print out the timing stats *I 
fprintf(stdout,"Xfer to PEs over. Time in DPU = 'l.10.2f secs\n", et); 
fflush(stdout); 
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I 

;~ Include file for error handling •; 
extern FILE* ErrFile; 

error.h 

extern void die(); extern void warning(); 
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error.c 

I • File for handling errors •I 

#include <stdio.h> 
#1nclude "error . h" 

FILE• Errfile = stderr; 

I• Print out an error message and exit with an error code • I 
void di e(rtn,msg,code) 
char• rtn; 
char• msg; 
int code; 
{ fprintf(ErrFile,"Y.s: Y.s\n",rtn,msg); exit(code); } 

I* Print out a warning message •I 
void warning(rtn,msg,code) 
char• rtn; 
char• msg; 
int code; 
{ fprintf(ErrFile,"Y.s: Y.s code- Y.d\n",rtn,msg,code); } 
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dist.m for Balanced- Load Ray-Casting Approach 

Copyright 1991: Amitabh Varshney, UNC CS Dept. All Rights Reserved 

DIST.M 

Approach: Balanced-Load Ray- Casting 

This part of the code is responsible for distribut1ng the energ1es. 

***********************************************************************/ 
#include <mpl.h> 
#1nclude <stdio.h> 
#include <math.h> 
#include <sys/time .h> 
#include "host .h" 

extern struct timeval 
extern struct timezone 

tm; /+ timing variables +/ 
tz; 

extern int maxPEpoly; / + max no of polys per PE •/ 
extern plural Poly* old_poly_list; I• Polys t o be used •I 
extern plural int oldPoly; /•No of polys in old_poly_list•/ 
I • Fo:r111 factor array •I 
extern plural float form_factors; 

float MinRad • 150.0; 

, ................................................... *******"************** 
dist_energy 

Carry out the distribution of energies from patch to patch with1n 
the current cell. This assumes that the form-factors have been 
calculated and the polygons are arranged in a load-balanced fashion 

* * * ** ** ** *** **** * *** ** *** *** ***:** *** *** ******** *** *** *"* ******** *** + • I 
dlst_energy() 
{ float max_unshot; I• Maximum unshot energy •I 

float total_unshot z HUGEF; /• Total unshot energy •/ 
float shooting_rad[3]; I• Radiosity of the shooting patch •I 
inti, j, iteration= 0; 
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float shooter_area; I• Area of the shooting patch •I 
int shooter_id; I• Polygon id of shooting patch •/ 
int total_rays = N~~DIUS*NUMTHETA; 
plural float fraction; 
plural float poly_unshot; 
plural float temp; 
plural Poly• distPoly; I• Polygons used in distribution*/ 

double et; 
double cumulative_time • 0; 

distPoly = old_poly_list; 
if (distPoly->area < 1.) distPoly->area = 1 .0; I• clamp areas from belo~•l 

I• Initialize the radiosit ies •I 
VEC_ASSIGN(distPoly->gather, distPoly->unshot); 

START 
do 
{ poly_unshot = VEC_SUM(dist?oly->unshot); 

max_unshot = reduceMaxf(poly_unshot); 
printf(" Y.d ", iteration); 
ffl ush(stdout); 
if (total_unshot >= 2•max_unshot) I• Print out in a logarithm1c fashion •I 
{ total_unshot • max_unshot; 

} 

STOP 
cumulative_time += et; 
printf("\n Iteration Y.d total unshot rad = Y.f max unshot rad • '/.f time %5 
fflush(stdout); 
START 

I • In determining the shooting patch ensure that only one PE is active 
and then find the id of the polygon on that ?E. 

•I 
if (poly_unshot •= max_unshot) 
{ i • selectOne(}; 

} 

shooter_id = proc[i] .dist?oly->id; 
shooter_area • proc[i].dist?oly->area; 
VEC_ASSIG!I(shoo"ting_rad, proc[i] .dist?oly->unshot); 
VEC_ASSIGN_ZERO(proc[i) .distPoly- >unshot) ; 

I• Calculate form factors for this shooting patch • / 
calculate_form_factors(i, shooter_id); 
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} 

I• Calculate fraction of the energy received by each patch and the~ 
update the radiosity values of t hat patch. 

•I 
fraction • (form_factorsltotal_rays)•(shooter_arealdist?oly->area); 
!or (j = 0; j < 3; j++) 
{ temp = d1stPoly->rho[j ] • fraction•shoot ing_rad[j]; 

distPoly->unshot[j] += temp; 
distPoly->gather[j] += temp; 

} 
iteration++; 

} while (VEC_SUM(shoot ing_rad) > MinRad); 

STOP 
cumulative_time += et ; 
poly_unshot = VEC_SUM(distPoly- >unshot); 
max_unshot • reduceMaxf(poly_unshot); 
total_unshot = reduceAddf(poly_unshot); 
printf("\n Iteration 'l.d total unshot rad = 'l.f max unshot rad = Y. f time Y,5.2i 
fflush(stdout); 
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I 

ff.m for Balanced-Load R ay-Casting Approach 

!••·······················•••**************************************•**** 
Copyright 199 1: Amitabh Varshney, UNC CS Dept. All Rights Reserved 

FF .M 

Approach: Balanced-Load Ray- Casting 

This version of ff.m calculations s preads out polygons in a balanced 
manner . One ray is broadcast to all the PEs. Each PE computes the 
intersection with its polygon and r eturns the distance of the 
1ntersected point from the ray 's origin. A global reducemin is done 
to obtai n the PE on which the polygon that i ntersected the ray l ies 
and the f f array is t hen updated by a proc cogmand. The ray-polygon 
1ntersection code is quite tight f or this version. 

***********************************************************************' 

#include <mpl .h> 
#include <math .h> 
#incl ude "hast.h" 

#include <sys/time.h> 

extern struct timeval tm ; 
extern struct timezone tz ; 
extern double et ; 

ext ern plural int oldPol y; / • Polygon buffer •/ 
extern plural Poly • old_poly_list; I• List of patches to be used• / 
extern int maxPEpoly; I • Max no of p olygons perPE •/ 
plural float fo rm_factors; I• Form-factor array •I 
float canonical_dirs[NUMRADIUS][NUMTHETA][3]; 
plural PolyTag tag; I• To store precomputed polygon 

data used in form-factor 
calculations 

*I 

!••••····························································**** initialize_fo rm_factors 
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This function intializes the data structures for use in ff 
calculat ion . 

***•******************************•············•**********••••••**•••! 
init ialize_f orm_factors() 
{ 

plural Poly• t empPoly; I• Polygon pointer • I 
float xyz [3] (3) ; 
register int i; I• Mise counters • I 

START 
I• Initialize the three axes vectors •I 
for (i : 0; i < 3; i++) 
{ VEC_ASSIGN_ZERO(xyz[i]); 

xyz(i] [i) = 1.0 ; 
} 

I • Assign the id's to polygons on PEs that have >= 1 polygon • / 
I• Assumes MAXPOLYS_PER_CELL <= 4k •/ 
old_poly_list- >id • (oldl'oly)? iproc : -1; 

t empPoly = old_poly_list; 

I • Compute the tag data for PEs having valid polys•/ 
if (tempPoly->id >• 0) 
{ register plural int numverts, m; 

plural float norma1[3); 
register plural int 10, 11 , 12; 

numverts " tempPoly- >nwnverts; 

if (numverts != 4 k numverts !" 3) 
{ p_printf ("ff bad nwnverts .. %d\n",numverts); 

exit(- 1); 
} 

I• Find the center of the polygon •I 
VEC_ASSIGN_ZERO(tag.poly_center); 
for (m = 0; m < numverts; m++) 

VEC_AOD(tag.poly_center, t ag.poly_center, t empPol y->verts[m)); 

tag.poly_center[X) / = numverts; 
tag.poly_center[Y] /= numverts; 
tag.poly_center[Z] /= numverts; 
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I• Find the orientation of the polygon •I 
VEC_ASSIGN(normal, tempPoly->eq); 
normal[X) ~ (normal[X] < 0)? -normal[X) 
normal[Y) ~ (normal [Y] < 0)? -normal (Y] 
normal[Z) ~ (normal(Z] < 0)? -normal[Z) 

normal[X); 
normal[Y); 
normal[Z]; 

I• Find the axis that is most nearly perpendicular to the normal • I 
if ((normal [X) <= normal[Y]) t (normal[X) <= normal[Z])) 

10 ~ X; 

if ((normal [Y) <= normal[X]) t (normal[Y] <z normal [Z] )) 
10 = Y; 

if ((normal[Z] <= normal(X]) t (normal[Z) <= normal[Y])) 
10 = Z; 

I• Find the 2 axes that are most nearly perpendicular to the normal *I 
if ((normal[X] >= normal[Y]) t (normal(X) >= normal[Z])) 
{ 11 = Y; 

12 = Z; 
} 

if ((normal[Y) >= normal(X)) t (normal(Y] >~ normal[Z))) 
{ 11 = X; 

12 = Z; 
} 

if ((normal[Z) >= normal(X]) t (normal[Z) >= normal[Y])) 
{ 11 = X; 

12 = y; 
} 

I• Compute the polygon matrix •! 
CROSS(tag.poly_mat[O), xyz[lO), t empPoly->eq); 
PLURAL_NORMALIZE(tag.poly_mat[O), tag.poly_mat[O]); 

CROSS(tag.poly_mat[1), tempPoly->eq, tag.poly_mat[O]); 
VEC_ASSIGN(tag.poly_mat [2), tempPoly->eq); 

I• Compute the polygon dependent constants as a precomputation 
step to speed up ray-polygon intersection code. 

•I 
tag.uv[U] [0) • tempPoly->verts[l] [11] - tempPoly->verts[O] [11]; 
tag. uv [V] [0] = t empPol y->verts [1] [12] - tempPoly- >verts [0] [12); 
tag.uv(U) [1) • tempPoly->verts(2] [11) - tempPo1y->verts [O][l1]; 
tag.uv[V) [1] c tempPo1y->verts[2] [12) - tempPoly- >verts(O] [12]; 
tag.uv(U][2] = tempPoly->verts[3][11] - tempPoly- >verts[O)[l1]; 
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} 

~ag.uv(V)[2) • ~empPoly->verts(3)[12) - tempPoly->verts(O)[l2); 
tag .beta_denom (O] • tag.uv(V] [l) •tag .uv[U) [0] - tag. uv [U] [l]•tag.uv[V][O) ; 
tag.beta_denom[l] = tag.uv[V][2] *tag.uv(U)[1] - tag.uv[0][2]•tag.uv[V][:]; 
tag.x = 11; 
tag. y = 12; 

I • Compute and store the directions of ray firings •I 
{ regist er float numr_2 = 2•NUMRADIUS; 

} 

reglster =loat m_pi_2_by_numr = 2*M_PIINUMTHETA; 
register int r, t; 
for (r • 0; r < NUMRADIUS; r++) 
{register float radius • sqrt ((2*r + l . )l(numr_2)); 

for (t = 0; t < NUMTHETA; t++) 

} 

{ register f loat theta = (t + 0 .5) •m_pi_2_by_numr; 
canonical_dirs [r)[t)[X] = radius•cos(theta); 
canonical_dirs[r) [t)[Y] • radius•sin(theta ); 
canonical_dirs(r)[t)[Z] = sqrt(l.O- radius• radius); 

} 

STOP 
printf("Time for initialization Y,5.2f\n",et); 

} 

I **********************************************************•********•* 
calculate_form_factors 

This f unction calculates the form-factor matrices for the 
polygon with id shooter_id, stored at proc i and stores these 
at each processor . This assumes that the cell is stored over the 
whole 4k grid (one poly per PE) 

*****************************••~································•·••/ 
calculate_form_factors(i, shooter_ id) 
int i , shooter_id ; 
{ 

plural Poly• tempPoly; I* Polygon pointer •I 
Ray defaultRay ; I• Ray buffer •I 
plural Ray testRay; 
register int j, k; I• Counters •/ 
register int intersected_poly ; 
register float distance; 
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register int r, t ; 
reg1ster float radius, theta; 

tempPoly = old_poly_list; 

I• initialize form_factors to zero •I 
form_factors = 0.0; 

I• set ray direction •I 
VEC_ASSIGN(defaultRay. direction , proc (i ] .tempPoly->eq); 

I• set ray origi n to patch center • I 
VEC_ASSIGN(defaultRay .origin, proc(i] . tag.poly_center); 

defaultRay.distance = HUGEF; 
I• ray has initial id of the shooti ng poly •I 
defaultRay .id = shooter_id; 

I • Broadcast the ray to all PEs • I 
I• Compute t he direction to shoot the ray in, to ensure equal energy rays 

using John Airey and King Young's method of hemisphere subdivision. 
[Airey89). 

for (r = 0; r < NUMRADIUS; r++) 
{for (t = 0; t < NUMTHETA; t++) 

{ 
testRay.direction[X) • DOT(tag. poly_mat[O), canonical_dirs[r) [t]); 
testRay .direct ion[Y) s DOT(tag.poly_mat[l] , canonical_dirs[r ] [t ] ); 
testRay .direction[Z] • DOT(tag.poly_mat[2], canonical_dirs[r] [t]); 

VEC_ASSIGN(testRay.origin , defaultRay.origin); 

testRay.distance = defaultRay.distance; 
testRay.id = defaultRay.id; 

I • Each PE computes the intersection of this ray vith poly(s) it has and 
computes t he distance and id of t he poly intersected on the PE. 

•I 
all if (testRay . id >= 0) intersect_ray(ktestRay); 
I• Compute the shortest distance for intersection over all PEs • I 
distance = reduceMinf (testRay .distance); 

I • ldent1fy the polygon intersected • I 
intersected_pol y = - 1 ; 
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} 

} 

I * 

} 

if ((distance < HUGEF) ~ (testRay.distance ;; di stance)) 
{ k = selectDne() ; 

intersected_poly = proc [k) .testRay.id; 
} 

I• Update the form-factor array •I 
proc[intersected_poly].form_factors++; 

pr intf("polys hit Y.d not hit Y.d\n" ,hit, unhit); 
• I 

!•******•****••••••••••••••••••••••••*••••••••••••••••**********••**** 
intersect_ray 

Th1s function ~ould intersect the given ray ~ith all the 
polygons present on the PE to which it belongs and returns the ld 
of the polygon it finds has the closest intersection point in the 
id field of the ray . This code for this routine is based on the 
ray-polygon intersection routine in [Glassner90] . It has been 
adapted for SIMD execution and all ray independent terms are 
precomputed and stored in the poly_tag data structure . 

*******************************•••***********************************' 
i ntersect_ray( testRay) 
plural Ray •testRay; I* Input r a y •I 
{ 

plural Poly• 
plural f loat p[3]; 
plural i nt j; 

tempPoly; 
I• Intersection point •I 

regi ster plural float t; 
r egister plural float ndotd ; /•Dot prod of normal and ray •I 
regis t er plural byte inter; 
regi st er plural float alpha, beta; 
r egi ster plural float uv(2]; 
r egister plural int n, m, m_l; 
register plural int numverts_l; 

for (j = 0; j < ol dPoly; j ++) 
{ tempPoly s old_poly_list; 

numverts_l = tempPoly->numverts - 1; 
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} 
} 

1 

I• Compute the dot product of the ray direction with the poly normal *I 

ndotd = DOT(tempPoly->eq, testRay->direction); 

if (ndotd 5: 0.0) continue; 

t • - (tempPol y- >eq[D] + DOT(tempPoly->eq, testRay- >origin))/ndotd; 

I• Avoi d intersecting with originating polygon•/ 
I• Polygon is beyond closest intersection found so far*/ 
if ((t <= 0.002) I (t >• testRay->distance)) continue; 

I• Calculate the point of i ntersection •/ 
p(X] = testRay->origin (X) + testRay- >direction(X]•t; 
p(Y) = testRay- >origin(Y) + testRay->direction [Y) •t; 
p(Z) = testRay- >origin[Z) + testRay- >direction(Z]•t; 

I* Verify if the point of intersection is vithln the polygon • / 
uv(U) ~ p (tag.x) - tempPoly->verts(O)(tag.x]; 
uv[V] = p[tag .y] - tempPoly->verts[O] [tag.y]; 

inter = 0; 
m = 1; 

do 
{ m_l = m - 1; 

lf (n • (tag.uv[U)[m_l) == 0)) 
beta • uv [U]/tag.uv(U)[m]; 

else 
beta •(uv[V) •tag.uv(U)(m_l) - uv[U)*tag.uv[V)[m_l])/tag.beta_denom[m_l) 

if (beta >= 0.0 t beta <• 1.0) 
{alpha = (uv(n) - beta•tag.uv(n](m))/tag.uv (n)[m_l]; 

inter= (alpha>= 0.0 t alpha+beta <= 1.0); 
} 

} while (!inter t ++m < numverts_1); 

if (inter) 
{ testRay->distance = t; 

testRay->id = tempPoly->id;/• i ntersection was vith a model polygon *I 
} 
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io.m for Balanced-Load Env-Proj and Ray-Casting Approaches 

!*********************************************************************** 
Copyright 1991: Amitabh Varshney and Howard Good, UNC CS Dept. 

All Righ~s Reserved 

IO.M 
Approach: Balanced-Load Ray-Casting and 

Balanced-Load Env-Projection 

This program runs on the back-end of MasPar and carries out most 
of the tasks including s~apping in of the polygons from the from-end 

·······························••***********************••·············! 
#include <mpl. h> 
#include <stdio.h> 
#include <mpl/ppeio .h> 
#include <maspar/vmeaccess . h> 
#include <math.h> 
#include <sys/t1me.h> 
#include "host.h" 

'***************•·········································••********•* 
GLOBAL DECLS 

***************••·················································•••! 
extern die(); 

struct timeval tm; I• Timing stuff •/ 
struct timezone tz; 
double et; 

float MinX, MinY, MinZ; /• Extents of the input dataset•/ 
float MaxX, MaxY, MaxZ; 
plural Poly •old_poly_list; /• Lists of polygons •I 
plural Poly •new_poly_list; 
plural int oldPoly; /• Number of polygons in old_poly_list•/ 
plural in~ newPolyCount; /• Number of polygons in new_poly_list•/ 
int maxPEpoly; I• Maximum no of polygons/PE *I 

float 
float 
float 

xroomBound(XROOM_DIM]; 
yroomBound(YROOM_DIM]; 
zroomBound [ZROOM_DIM] ; 

I• Upper bounds of each virtual room *I 
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I 

I• Lov level C file i/o routine to read in large amounts of data •/ 
bufread(fd,ptr ,size,num_items) 
int fd; 
char• otr· • • 
int size; 
~nt num_items; 
{ if (read (fd, ptr, size•num_items) < 0) 

die("bufread", "bad read", 1 ); 
} 

!•******************************************************************** 
polys_to_pe 

This reads in the polygons from the .mp file and distributes them 
on PEs . 

int polys_to_pe(mp_fp) 
in~ mp_fp; 
{ int numpoly,maxpoly,minpoly; 

int n; 
int initPEpoly; /* initial no of polygons per 
int total_polys; /• number of polygons to be read •/ 
plural int check; 

plural Poly• tempPoly; 

int cmd; 

cmd • MP_S8; 

p_fcntl (mp_fp,F_SETPIO, cmd) ; 

I • determine the number of polygons to be read •I 
bufread(mp_fp,(char • ) ttotal_polys, sizeof(int), 1); 

i nltPEpoly ~ (int) (total_polys/nproc); 
maxPEpoly = initPEpoly•6; 

PE *I 

fprintf(stdout,"polys Y.d nproc Y,d polys/pe i:d poly_size Y.d\n", total_polys, 
nproc,initPEpoly, sizeof(Poly)); 
fflush(stdout); 
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) 

I * Allocate PE memory •I 
P_ALLOCN(old_poly_list, Poly, 1nitPEpoly + l, "polys_to_pe"); 
I• P_ALLOCN(ne~<_poly_list, Poly, maxPEpoly, "polys_to_pe") ; •I 

I• Read in polygons to PEs from the file • I 
check a p_read (mp_fp, (plural char • ) old_poly_list, sizeof(Poly)•initPEpol) 
tempPoly = old_poly_list + initPEpoly; 
check +• p_read(mp_fp, (plura~ char • ) t empPoly, s izeof(Poly)); 
if (check-~ - 1) die ("polys_to_pe","error reading file",l); 

I • Determine oldPoly for each PE • I 
oldPoly = checklsizeof(Poly) ; 

numpoly • reduceAdd32 (oldPoly); 
maxpoly = r educeMax32(oldPoly); 
m1npoly = reduceMin32(oldPoly); 
printf ("old polys= 'l.d ; max= 'l.d , min • 'l.d\n",numpoly,maxpoly,mi npoly); 

return (total_polys) ; 

Start the radiosity iterations 
Carry out the patch - patch energy exchange 

dist_pp(); 

Carry out the exchange of energy laden virtual walls 
xchg_walls(); 

• I 
} 

I•••••••••****************************••••••••••••••****************** 
pe_to_polys 

This ~<rites out the polygons from the PEs to a .O.patch f ile. 

*********************************************************************' 
I • for now it writes only the polys that have received any energy •I 
pe_to_polys(fp) 
FILE* fp; 
{inti, j, numverts; 

plural Poly• tempPoly; 
float gather[3]; 
float gather_sum; 

tempPoly = old_poly_list ; 
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I 

for (i = 0; i < nproc ; i ++) 
{if (proc[i).tempPoly->id >= 0) 

{ numverts = proc (i] . tempPoly->numverts; 
gather_sum a 0; 
tor (j = 0; j < 3; j++) 

gather_sum += gather(j] ~ proc[i].tempPoly- >gather[j]; 
if (gather_sum > 0) 
{ fprintf( fp , "'l.g 'l.g 'l.g 'l.d 'l.d 'l.d 'l.d 0 0 0 0 0\n" ,gather[RED] ,gather(GREEN) 

gather[BLUE], (in~)proc[i] .tempPoly->colors[O)[RED], 
(lnt)proc[i] .tempPoly->colors[O] [GREEN], 
(lnt)proc[i) .tempPoly- >colors[O][BLUE), numverts); 

for(j = 0; j < numverts; j ++) 
fpr i nt:f(fp,"'l.g 'l.g 'l.g\n",pr oc [i) .tempPoly->verts[j)[X), 
proc[i) .tempPoly->verts[j](Y), proc[i] .tempPoly->verts (j) [Z)); 

} 
} 

} 

} 

/•***************************************************************•**** 
determine_extents 

This routine determines the extents of the polygon dataset . 
It t akes into account t he coarse, cell l engths to determine the 
extents which will be represented on the DPU array once the 
balancing i s done. 

**********••·······················*·············•*******************! 
determine_ extents() 
{ plural 

pl ural 
plural 
plural 
plural 

inti, j; I• Miscellaneous counters •I 
float x, y , z ; I• Vertex values •I 
Poly• plural tempPoly ; I • Current polygon * I 
float minx, miny, minz; I• Local extents on each PE • I 
float maxx, maxy, maxz; 

I• Determine the local extents •I 
minx = miny = minz • HUGEF; 

maxx = maxy = maxz = -HUGEF ; 

for (i = 0; i<oldPoly; i++) 
{ tempPoly = old_poly_list + i; 



} 

if (tempPoly->numverts < 3 I I tempPoly->numverts > MAXVERT) { 
p_printf( "ERROR: proc Y,d numverts • Y.d\n",iproc,tempPoly->numverts); 
exit(!); 

} 

for (j = 0; j<tempPoly- >numverts; j++) 
{ x = tempPoly->verts[j)(X) ; 

y = tempPoly->verts(j) (Y); 
z = tempPoly- >verts[j)[Z]; 
minx= MIN (minx,x); 
miny • MIN(miny,y); 
minz = MIN(minz,z); 
maJCx = MAX (m=x,x); 
maxy = MAX(maxy,y); 
maxz = MAX(maxz,z); 

} 
} 

I• Determine the global extents •I 

MinX= reduceMinf(minx); 
HinY = reduceMinf(miny); 
MinZ = reduceMinf(minz); 
MaxX = reduceMaxf(maxx) ; 
MaxY • reduceMaxf(maxy); 
MaxZ = reduceMaxf(maxz) ; 

printf("Minx Y.6 .2f MaxX Y.6 .2f MinY Y.6 .2f MaxY Y,6 .2f MinZ Y.6. 2f MaxZ Y,6.2f\n" 
MinX,MaxX,MinY,MaxY,MinZ,MaxZ); 

I• Take into account the global patcbification grid aligned along the axes•/ 

MinX = f_floor(MinX/XCELLLENGTH) • XCELL~~GTH; 
MinY = f_floor(MinYIYCELLLENGTH) * YCELLLENGTH; 
MinZ = f_floor(MinZIZCELLLENGTH) * ZCELLLENGTH; 
MaxX = f_ceil(MaxXIXCEU.LENGTH) * XCELLLBlGTH; 
MaxY = f_ceil(MaxY/YCELLLENGTH) * YCELLLENGTH; 
MaxZ = f_ceil(MaxZIZCEllLENGTH) • ZCELLLENGTH; 

printf("Minx Y,6.2f MaxX Y,6.2f MinY Y,6.2f MaxY Y.S.2f MinZ Y.6.2f MaxZ Y.6.2f\n", 
MinX ,MaxX,MinY ,HaxY ,MinZ,MaxZ); 
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'*********************•**•*****••••·····•******************•********** 
area 

This routine determines the area of a plural polygon defined by 
the vertex array 'vert• and having 'numverts ' number of vertices 
For this the routine considers the polygon to be composed of 
triangles and then computes the area of each triangle by ~aking 
half of the magnitude of the cross product of t~o of its sides. 

-···················~··•**************************•******************! 
plural float ar ea(verts, numverts) 
plural float verts[MAXVERT] (3]; / • Vertex array •/ 
plural int numverts; I• Number of vertices •I 
{plural int i,j,k; 

} 

plural float area; 0.0; 
plural float v1[3), v2[3), v3[3]; 

for(i•O ; i < numverts - 2; i ++) 
{ j "i+l; 

k .. i+2; 

v1 [X) • verts[j)[X) - verts [i) [X); 
vl [Y] • verts [j ] [Y) - verts (i] [Y); 
v1 [Z) = verts (j] (Z) - verts [i] [2); 

v2 [X] • verts [k) (X) - verts (i] (X] ; 
v2[Y] = verts (k] [Y) - verts [i) [Y] ; 
v2 (Z] = verts (k] (Z) - verts (i] [2) ; 

v3(X] = vt [Y] •v2 [Z) v 1 [Z) •v2 [Y) ; 
v3(Y] = -v 1 [X] •v2 [Z] + v1[Z] •v2 [X) ; 
v3(Z] = v1 [X) •v2 [Y) - v1 [Y] •v2 [X) ; 

area+= 0.5• fp_sqrt(v3[X]•v3[X] + v3[Y]•v3(Y] + v3[Z]•v3(Z]); 
} 

return area; 

int option_handler(ac, av) 
1nt ac; 
char • av [] ; 
{ register 1nt 

register char 
i, ok = 1; 
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} 

for (i = 1; i <act av[i] [0] == ' - '; i++) 

} 

for (c = &(av[i] [1]); *c; c++) switch (•c) { 
case '?': 

printf(" < fnamel.mp > fna.me2.0.patcb \n"); 
break; 

default: 
fprin-cf(stderr, "'l.s: unknollll option -'l.c\n", av[O], •c); 
ok = 0; 
break; 

return (ok? i : 0); 

!••••••******•*********•••••··································*•******* 
Main 

***********************"*************************************•********••/ 

main (ac, av) 
int ac; 
char •av (] ; 
{ int options; 

int mp_fp; I• Input binary file • I 
char filename[128); I• Input file name •I 
i nt total_polys = 0; 
FILE* fp; 

if (!(options= option_handler(ac, av))) die("io","bad options",!); 

I• open the input file in read_only mode •/ 
if ((mp_fp • open(av[1],0)) <a -1) 

die("io", "can't open input mp file", 1); 

I• open the output file in write mode *I 
if ( (fp = fopen(av(2], "11")) =~ NULL) 

die("io","can't open output .O .patch file",l); 

I• Read in the polygons•/ 
START 
total_polys = polys_to_pe(mp_fp); 
STOP 
close (mp_fp); 

I• Print out the timing stats•/ 
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} 

fprintf(stdout,"Xferred Y.d polys to PEs in Y.5.2f secs\n",total_polys,et); 
fflush(stdout); 

I* Determine the extents of the dataset - used in balancing 
determ1ne_extents(); 
• I 

I• Perform the one- time initialization for the form-factor determinations • I 
initialize_form_factors(); 

I• Distribute the energy in the environment •I 
START 
dist_energy(); 
STOP 
fprintf(stdout,"Time for energy distribution Y.5.2f secs\n",et); 
fflush(stdout); 

I• ~rite out the patches •I 
START 
pe_to_polys(fp); 
STOP 
fclose(fp); 

I* Print out the timing stats*/ 
fprint:f(stdout,"Wrote out patches in Y.5.2f secs\n",et); 
fflush(stdout); 
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host.b for Balanced-Load Env-Proj Approach 

I*********************************•••••*******************•************ 
This file i s the main include file and contains the constants, macros 
typedefs used. 

!**************************************************************.**** 
CONSTANTS 

#define A 0 I• Generally used vi th plane equation•/ 
#define B 1 
#define c 2 
#define D 3 

#define X 0 I • Gener ally used vitb vertices •I 
#define y 1 
#define z 2 

#define II 3 

#define SKEWX 4 
#define SKEllY 5 
#define SKEWZ 6 

#define RED 0 I• 
#define GREEN 1 
#define BLUE 2 
#define ALPHA 3 

f uture? 

I • Used for the orientation of the polygon• / 

Colors associated vith the polygon•/ 

I• Transparency option with radios i ty in 
right nov for data alignment*/ 

#define L1_NORM_MIN 1e-4 I • Tolerance limit for computation errors •I 

#define HUGEF 1e+10 I • Some huge floating pt number •I 

#define EAST 0 I• Generally used for virtual valls • / 
#define \lEST 1 
#define NORTH 2 
#define SOUTH 3 
#dehne FLOOR 4 
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#define CEILING 5 

#define U 0 
#define V 1 

#define PIXELS 1 I* Hemi-plane pixel s per PE •I 
I • These are ordered as : 0 1 

2 3 
•I 

#define PIX_ROW 1 I * No of pixels per PE per rov~ sqrt(PIXELS) •I 

#define NPROC 4096 I• Same as nproc but facilitates array dec l s• l 
#define NX?ROC 64 I • Same as nxproc but fac1litates array decls• / 
#define NYPROC 64 I • Same as nyproc but facilitates arr ay decls•l 
#define NXPROC_t 63 
#de! ine NYPROC_l 63 

#define MAX _POLY_PIXELS 1100 I• Max no of item-buffer pixels that a single 
polygon can cover. 

• I 
#define MAX_OVERLAP 64 
I • Maximum no of polygons that get projected on same 

leftmost bounding edge in x on shooter polygon *I 
#define MAXPOLYS 40960 I• Maximum no of polygons in all • / 
#define MAXVERT 4 I • Maximum no of vertices in a polygon •I 

#define MAX POLYS_PER_CELL 4096 I• Maximum no of polys in a cell •I 

#define INIT_EMIT 
1000 .0 I• Initial radiosity value for an em1tter •I 
#define TOL 10.0 
I• Terminal radiosity value for local iters•l 

!••••······························································· 
MACROS 

·······················································*··········••! 
#define OOT(a,b) (a[O] •b [O] + a(t]•b[l] + a(2] •b[2]) / • Dot product 
#define CROSS(a, b, c) \ 

{ a(O] ~ b (1] *c (2] - c(1]•b[2]; \ 
a(l] ~ c (0] • b(2] - b(O] *c (2]; \ 
a(2] = b(O] •c (1] - c[O] •b (t]; \ 
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} 

#define PLURAL_NORMALIZE(a, b) \ 
{ plural float magnitude; \ 

magnitude= f p_sqrt(b [O) •b(O] + b[l)•b[l] + b[2)*b(2]);\ 
a[O] = b[O]/magnitude; \ 
a[1] = b[1)/magnitude; \ 
a[2] = b(2]/magnitude; \ 

} 

#define VEC _SUM(a) (a(O] + a[1] + a[2]) 
#define VEC _ASSIGll(a, b) \ 

{a[O) = b[O]; a[1] • b[1]; a(2) 5 b[2] ;} 
#define VEC4_ASSIGN(a, b) \ 

{a [O) = b[O]; a[1] • b[1); a[2] = b(2] ; a[3] = b[3);} 
#define VEC_ASSIGN_ZERO(a) \ 

{a(O] = 0; a[l] = 0; a [2] = 0;} 
#define VEC _ADD(a, b, c) \ 

{a(O] = b[O] + c[O]; a[l] • b[l) + c [1); a[2] • b[2) 
#define VEC_MUL(a, b, c) \ 

{a[O] = b(O] * c(O]; a[l] • b[l] * c ( 1] ; a[2] = b(2] 

#define FROM_MP_TO_IEEE_INT(a) \ 
(((a << 24) k OxffOOOOOO) I ((a << 8) k OxOOffOOOO) \ 
l((a >> 8) k OxOOOOffOO) I ((a>> 24) a OxOOOOOOff)) 

#define FROM_MP_TO_IEEE_FLOAT(a) \ 
(((a << 8 a OxOOOOffOO) I (a>> 8 a OxOOOOOOff) \ 
l(a << 8 a OxtfOOOOOO) I (a>> 8 l OxOOttOOOO)) - 1) 

+ c[2] ;} 

• c[2];} 

#define 
#define 
#define 
#define 

HIN(x,y) 
MAX(x,y) 
MINX 
MAXX 

(((x)<(y))?(x):(y)) / • Hin1mum of tvo nos•/ 
(((x) >(y))?(x):(y)) I * Maximum of tvo nos•/ 
((X)<<l) /• Indexing in extent's array•/ 
(((X)«l)+l) 

#define 
#define 
#define 
#define 
#def ine 
#define 

M1NY 
MAXY 
MINZ 
MAXZ 
MINEX(C) 
MAXEX(C) 

((Y} «1) 
( ( (Y) «1)+1) 
((Z)«1) 
(((Z)«l)+l) 
((C)«l) 
(((C)«1)+1) 

I• Allocate N items of type TYPE at pointer location PTR on ACU or front ~nd•/ 

#define ALLOCN(PTR,TYPE,N,RTN) \ 

} 

if ( 1 (PTR = (TYPE • ) malloc( (unsigned) (N)•sizeof(TYPE)))) { \ 
pnntf("malloc failed\n"); \ 
exit (-1); \ 
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I• Allocate N items of type TYPE at 
#define P _ALLOC!I (PTR, TYPE, N, RTN) 

} 

if (!(PTR • (plural TYPE*) 
p_printf("p_malloc failed\n"); \ 
exit(-1); \ 

pointer location PTR on the PEs +/ 
\ 
p_malloc((uns igned) (N)+slzeof(TYPE)))) { 

#define START gettimeofday(&tm,&tz);\ 
et ~ (tm.tv_sec)+ (0.000001* (tm.tv_usec)); 

#define STOP gettimeofday(ktm,&tz) ;\ 
et c (tm .tv_sec)+(0.000001• (tm.tv_usec)) - et; 

I• for((v)a(f)->verts[(i) =O] ;(i) <(f)->n;(v)=(f)->verts[++(i )]) +/ 

typedef float Vec3[3]; 
typedef float Vec4[4]; 

#ifndef byte_defined 
typadef unsigned char byte; 

TYPEDEFS 

I• Used to define colors and form-factors•/ 
#define byte_defined 1 
#end if 

I• -POLYGON- •I 
typedef struct polygon 
{ 1nt numverts; /• Number of vertices •I 

float verts[MAXVERT](3] ;/* Points of the polygon (quad/triangle) •/ 
Vec4 eq; I• Eq of the polygon (quad/triangle) •/ 
byte colors(MAXVERT)(4] ;/+Colors at the vertices •I 
float unshot[3]; I• Unshot rad value for front & back face •/ 
float gather[3]; I• Accumulated energy for front k back face •I 
float rho(3]; / • Reflectance for front and back face+/ 
float area; / • Area of the polygon •/ 
int 1d; /• Polygon id •/ 

} Poly; 

I• -Miscellaneous data used per poly dur1ng ff calc- •I 
typedef struct poly_tag 
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{float poly_center[3]; I• Center of the polygon •I 
int x, y; I* Axes along which the polygon lies •/ 
float uv [2] (3); I* Soma variables to avoid repeated calc*/ 
float beta_denom[2); 
float poly_mat(3)(4); I• Used 1n orienting rays to be fi=ed •I 

} PolyTag; 

I* - Tuples used during filling up of item buffers - •I 
typedef struct ib_tuple 
{ uns1gned short src_pe; 

unsigned short dest_pe; 
byte dest_sub_pixel; 
byte south; 
byte eas t; 
float data; 

} IB_Tuple; 

typedef union {float f; int i; } float_bits; 

extern char* malloc(); 
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dist.m for Balanced-Load Env-Proj Approach 

!······································································· 
Copyright 1991 : Ami tabb Varshney , UNC CS Dept. All Rights Reserved 

DIST.M 

Appr oach: Balanced-Load Environment-Projection 

This part of the code i s r esponsible for distributing the energies 

#1nclude <mpl.h> 
#lnclude <stdlo.h> 
#include <matb . h> 
#1nclude <sysltime.h> 
#include "host.h" 

extern struct timeval tm; I • timing variables • I 
exter~ struct timezone tz; 

extern int maxPEpoly; I • max no of polys per PE +I 
extern plural Poly• old_poly_li st; I• Polys to be used •I 
extern plural i nt oldPoly; /•No of polys i n old_poly_list•l 
I • Form f actor array • I 
extern plural float form_factors; 
extern f l oat MinRad; 

'***•**************•••••···············••••************************4•· 
dist;_energy 

Carr y out the distribution of energies from patch to patch within 
the current cell. This assumes that the form- factors have been 
c alculated and the polygons are properly arranged wi th 1 polygon 
per PE . 

······•***************************************************••···~··••*! 
dist;_energy O 
{ float max_unshot; I • Maximum unshot energy •I 

float last_unshot = HUGEF; 
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float shooting_rad[3]; I• Shooting patch radiosity •/ 
float shoo•ing_area; /• Area of the shooting-patch •/ 
floa• current_unshot; 
float leakage[3]; 
float leakage_factor; /• Fraction of energy leaking from 

beneath the single plane • I 
int i, j, iteration • 0; 
plural float fraction; 
plural float poly_unshot; 
plural float temp; 
plural Poly* distPoly; I• Poly used in distribution•/ 

double et; 
double cumulative_time = 0; 

distPoly c old_poly_list; 
if (distPoly->area < 1.) distPoly->area = 1.0; I• Clamp all areas from belo•• 

I• In1t1alize the radiosities •/ 
VEC_ASSIGN(distPoly->gather, distPoly->unshot); 

VEC_ASSIGN_ZERO(leakage); 

START 
do 
{ poly_unshot • VEC_SUM(distPoly->unshot); 

max_unshot • reduceMaxf (poly_unshot); 
current_unshot = reduceAddf(poly_unshot); 
if (last_unshot >= 2•max_unshot) 
{ last_unshot = max_unshot; 

} 

STOP 
cumulative_time +• et; 
f printf(stderr,"Iteration Y.d total unshot Y.f max unshot Y.f time Y.5.2! sec 
START 

I• In determining the shooting patch ensure that only one PE is ac~ive 
and then find the 1d of the polygon on that PE. 

•I 
if (poly_unshot == max_unshot) 
{ i • selectOne(); 

} 

shooting_area = proc[i] .distPoly->area; 
VEC_ASSIGN(shooting_rad, proc[i] .distPoly->unshot); 
VEC_ASSIGII_ZERO(proc (i] .distPoly->unshot); 
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} 

} 

I • Calculate form factors for this shoo~ing patch • / 
calcula~e_form_factors(i); 

I• Calculate fraction of the energy received by each patch and then 
update t he radiosity values of that patch . 

•I 
if (distPoly->id >= 0) 
{ fraction ~ form_factors•shooting_arealdistPoly- >area; 

} 

for (j = 0; j < 3; j++) 
{ temp= distPoly->rho[j] •fraction*shooting_rad[j]; 

dis~Poly->unshot[j] +• temp; 
dlstPoly->gather[j] +• temp; 

} 

iteration++ ; 
leakage[RED] += shooting_rad[RED) •shoot i ng_area; 
leakage[GRE.E.tl] += shooting_rad [GREEN}•shoo~ing_area; 
l eakage [BLUE] += sbooting_rad [BLUE]•shooting_area; 

f* while (VEC_SUM(shooting_rad) > MinRad); •/ 

I • Find the energy los~ from beneath the single-plane •/ 
leakage_factor ~ 1.0- reduceAddf(form_factors); 
leakage [RED] h leakage_factor; 
leakage[GREEN] •= leakage_factor; 
leakage[BLUE] •= leakage_factor; 

poly_unshot = VEC_SUM(distPoly->unsbot); 
max_unshot = reduceMaxf(poly_unshot); 
current_unshot • reduceAddf(poly_unshot); 
STOP 
cumulative_time += et; 
fprintf(stderr,"Iteration Y.d total unshot Y.t max unshot Y.f time Y.5.2f sees ern 
fflush(stderr); 

I • Add the ambient component to t he final solution computed • I 
add_ambient(distPoly, l eakage); 

'*****~*******••••**********************************************•·•*•* 
add_ ambient 
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This routine adds an ambient component to the radiosity solution. 
In addition to the unshot energy ~ith the individual polygons, this 
includes in the energy leaking out from under the single plane also 
1n calculating the ambient term. 

add_ambient(dist?oly, leakage) 
plural Poly* dist?oly; 
float leakage[3]; 
{ float total_area; 

} 

plural float global_formfactor; 
float global_av_rho[3]; 
float ambient[3]; 

total_area = reduceAddf(dist?oly->area}; 
global_formfactor = dist?oly->area/total_area; 

I• find the global average reflectivity •/ 
global_av_rho[RED] • reduceAddf(dist?oly->rho[RED]•dist?oly- >area) 

/total_ area; 
global_av_rho[GREEN] • reduceAddf(dist?oly->rho[GREEN]•distPoly->area) 

/total_area; 
global_av_rho[BLUE] • reduceAddf(dist?oly->rho(BLUE]•distPoly->area) 

/total_area; 

ambient[RED) = (leakage[RED]/total_area + 
reduceAddf (distPoly->unshot[REDJ•global_formfactor}) 

/(1.0- global_av_rho[RED]}; 
ambient[GREEN] • {leakage[GREEN]/total_area + 

reduceAddf(distPoly->unshot[GREEN] •global_formfactor)} 
/{1.0- global_av_rho(GREUV]}; 

ambient[BLUE] • {leakage[BLUE)/total_area + 
reduceAddf(distPoly->unshot[BLUE]•global_formfactor)) 

/(1.0- global_av_rho[BLUE)}; 

fprintf(stderr,"ambient component is '/.f '/.f '/.f\n",ambient[RED], 
ambient[GREEN], ambient[BLUE]); 

dist?oly->gather [RED] += distPoly->rho(RED]•ambient[RED]; 
distPoly->gather[GREEN] += distPoly->rho[GREEN]•ambient[GREDV]; 
distPoly->gather[BLUE) += dlstPoly->rho[BLUE]•ambient[BLUE]; 
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ff.m for Balanced-Load Env-Proj Approach 

, .................••••...............................•.................• 
Copyright 1991: Amitabh Varshney, UNC CS Dept. All Rights Reserved 

FF .M 

Approach: Bal anced-Load Environment-Projection 

This version of ff.m calculations spreads out polygons in a balanced 
fashion over the whole grid without any regards t o the geometry of 
the input dataset . Then a s~ngle-plane of a prespecified s ide and 
height and resolution i s used to perform environment-projection . 

#include <mpl.h> 
#include <stdio.h> 
#include <math.h> 
#include "host.h" 

::include <sysltime.h> 

#define CET_RIGHT_NEIGHBOR(from, to) \ 
to • xnetE[l] .from; \ 
if (ixproc ~~ nxproc- 1) to= xnetS[l] .to ; 

extern struct timeval tm; 
extern struct timezone tz; 
extern double et; 

extern plural int oldPoly ; I• Polygon buffer •I 
extern plural Poly •old_poly_list; I• List of patches to be used• / 
extern int maxPEpoly; I • Max no of polygons perPE • I 
I• Form-factor array •I 
plural float f orm_factors; 
plural PolyTag tag; 
plural IB_Tuple final_item[PIXELS]; I• Buffer containing the final 

item-buffers (after 
z-buffering) •I 

plural unsigned short num_items [PIXELS]; I• Number of items 
plural IB_Tuple temp_item[MAX_OVERLAP][PIXELS]; I• Buffers used in the 

intermed1ate stages of scan-conversion on 
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projection-plane •I 
plural IB_Tuple item; 
float Plane_Side ~ 3.0; / • For details refer [Recker90] •1 
float Plane_Height = 1.0; 
float x_pixel_extent; I• Extent ot a single-plane 
float y_pixel_extent; pixel •I 
plural float canonical_ff[PIXELS] ; I• Delta form-factor for each 

puel •I 

!********************************************************************* 
initialize_form_factors 

Th1s function intializes the data structures for use in f f 
calculati on. 

************•••··········································••••********' 
initialize_form_factors() 
{ 

plura l Poly• tempPoly; I• Polygon pointer •/ 
float xyz (3] [3] ; 

register inti, j ; I• Mise counters • I 
plural float center[PIXELS] [3]; 
plural float projected_area [PIXELS] ; 
float sigma_ff = 0; 

START 

x_pixel_extent • PIX_ROW•(NXPROC- 1)1(2•Plane_Si de); 
y_pixel_extent = PIX_ROW•(NYPROC- l)I(2• Plane_Side); 

I• Initialize the three axes vectors •I 
fo r(i = 0; i < 3; i++) 
{ VEC_ASSIGN_ZERO(xyz[i)); 

xyz[i)[i] • 1.0; 
} 

I• Initialize the fo rm factor matrices at each processor •I 
form_factors = 0.0; 

I• Init ialize the canonical form f actor fract ions •I 

for (i ~ 0; i < PIXELS; i ++) 
{ center [i] [X) = Plane_Side*(2• (ixproc + (1 + (i Y. PIX_ROW))I(PIXELS~1. 0) )/nx 

center[i] [Y) = Plane_Side*(2•(iyproc + (1 + (i I PIX_ROW)) /(PIXELS*1.0))1ny 
center(i] [Z] = Plane_Heigbt ; 
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I• Area of each hemicube pixel • total area/ total no of pixels 
= (2*Plane_Side)-2 I (PIXELS•nproc) ; as each side of 
hemiplane is from -Plane_Side to Plane_Side 

•I 
projected_area[i] = DOT(center(i], center[i)); 
projected_area[i) = 4•Plane_Sida• Plane_Sidel 

(PIXELS•nproc •M_PI • proj ected_area(i)•pro jected_area[i]); 
} 

for(j = 0; j < PIXELS; j++) 
canonical_ff[j] • projected_area[j] ; 

I* Assign the id's to polygons on PEs that have >= 1 polygon •/ 
I• Assumes MAXPOLYS_PER_CELL <= 4k *I 
old_poly_list-> id • (oldPoly)? iproc: -1 ; 

tempPoly a old_poly_list; 

I• Compute the tag data for PEs having valid polys•/ 
if (tempPoly->id >• 0) 
{ register plural int oumverts, m; 

plural float normal[3]; 
register plural int 10; 

numverts = tempPoly->numverts; 

if (numverts ! = 4 & numverts 1 • 3) 
{ p_printf("ff bad numverts = %d\n",numverts); 

exit ( -1); 
} 

I* Find the center of the polygon •I 
VEC_ASSIGN_ZERO(tag.poly_center); 
for (m = 0; m < numverts; m++) 

VEC_ADD(tag.poly_center, tag.poly_center, tempPoly->verts[m] ); 

tag.poly_center[X] I= numverts; 
tag.poly_center[Y) I= numverts; 
tag.poly_center(Z] I= numverts; 

I • Find the or1entation of the polygon • I 
VEC_ASSIGN(normal, tempPoly->eq); 
normal[X) = (normal [X] < 0)? -normal[X] 
normal[Y) = (normal[Y] < 0)? -normal[Y) 
normal[Z] = (normal [Z] < 0)? - normal [Z] 
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} 

I* Find the axis that is most nearly perpendicular to the normal • I 
if ((normal[X) <= normal[Y)) & (normal[X) <= normal[Z))) 

10 = X; 

if ((normal[Y) <• normal(X)) t (normal[Y) <= normal(Z))) 
10 ~ Y; 

if ((normal[Z) <• normal[X)) ~ (normal[Z) <= normal[Y))) 
10 = Z; 

I* Rotate the axis most nearly perpendicular to normal to x-axis •I 
CROSS(tag.poly_mat[O], xyz(lO), tempPoly->eq); 
PLURAL_NORMALIZE(tag.poly_mat[O), tag.poly_mat(O) ); 

I• Rotate the cross product of normal and poly_mat[O) to y-axis * I 
CROSS(tag.poly_mat[l), tempPoly->eq, tag.poly_mat [O)) ; 
I• Rotate the normal to the z - axis •I 
VEC_ASSIGN(tag.poly_mat[2), tempPoly- >eq); 

else tempPoly- >numverts • 0; 

STOP 
fprintf(stderr,"Time for initialization %5 . 2f\n",et); 

} 

'*********************•··········································***•• 
calculate_form_factors 

This f unct ion calculates the form-factor row for the 
shooting patch i. The four vertices of the polygon are projected 
on to the single-plane. Their extents are taken and this area of 
projection is filled-up first along one and then along the other 
dimension. 

****************••··············································••*••! 
calculate_form_factors( i) 
register int i ; 
{ 

plural Poly• tempPoly; I* Polygon pointer •I 
PolyTag shooter_tag; 
register plural float direction(3); 
register plural float unitvec[3); 
register plural float canonical_dir[3); 
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register plural float exten~[4); 
register plural int pix(4]; 
register plural float dist; 
register plural floa~ magnitude; 
register plural int m, n, invalid , count; 
regis~er plural shor~ j, new_ j, q, new_q; 
register ~nt p, equinum; 
register plural byte init_num_items[PIXELS); 

tempPoly = old_poly_list; 
form_fact ors • 0.0; 

VEC_ASSIGN(shooter_tag.poly_center, proc[i ] .tag.poly_center); 
VEC_ASSIGN(shooter_~ag.poly_mat[O), proc[i).tag.poly_mat(O)); 
VEC _ASSIG!l(shooter_tag.poly_mat[l ), proc[i) .tag.poly_mat[l]); 
VEC_ASSIGN(shooter_tag.poly_mat[2), proc [i] .tag.poly_mat (2)); 

extent[MINX) = extent[MINY] a Plane_Side; 
exte.nt [MAXX] = extent [MAXY) = -Plane_Side; 
dist = 0.0; 
invalid = 0; 

for( j = 0; j < tempPoly->numverts; j++) 
{ 

VEC_ADD(direction, tempPoly->verts(j], -shooter_tag.poly_center); 

magnitude= DOT(direction, direction); 

if (magnitude > Ll_NORM_MIN) 
{ dist += magn1tude = fp_sqrt(magnitude); 

I• Find the unit direction to each vertex •I 
unitvec[O] • direction[O]Imagnitude; 
unitvec[l] = direction[l]/magnitude; 
unitvec[2) = directlon[2]lmagnitude; 

I• Transform this unit vector to the normal space of shooter polygon • / 
canonical_dir[X) ~ OOT(shooter_tag.poly_mat[O], unitvec); 
canonical_dir[Y) = DOT(shooter_tag.poly_mat[l), unitvec); 
canonical_dir(Z) = DOT(shooter_tag.poly_mat(2), unitvec); 

I• Find the extents of poly on the hemi- plane at z = Plane_Height •/ 
if (canonical_dir[Z) > Ll_NDRM_MIN) /• Consider only +ve direction•/ 
{ canonical_dir[X) • canonical_dir(X)•Plane_Height/canonical_dir(Z]; 

canonlcal_dir(Y) • canonical_dir(Y)•Plane_Height/canonical_dir[Z]; 
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extent[MINX] = MIN(extent[MINX], canonical_dir[X] ); 

} 
} 

} 

extent [MINY] • MIN(extent [MINY], canonical_dir (Y]); 
extent[MAXX) = MAX(extent(MAXX) , canonlcal_dlr(X]); 
extent[MAXY] = MAX(extent[MAXY], canonical_dlr[Y]); 

else invalid = 1; 

1f (tempPoly->numverts > 0) 
dist I= tempPoly->numverts; 

if ((extent [MINX] < -Pl ane_ Side) I (extent (MAXX] > Plane_Side) I (extent [~::NY 
(extent[MAXY] > Plane_Side) I (extent[Mil/X] > extent(MAXX)) I (exten:;[HIN 

invalid = 1; 

I• Find the bounding item buffer pixels to which data "ill need to be sent • / 
plx(MINX] =(plural int)((ertent[MlNX] + Plane_Side) • x_pixel_extent); 
pix[MINY] = (plural int)((extent(MINY] + Plane_Si de) * y_pixel_extent ); 
pix[MAXX] • (plural int)((extent(MAXX] + Plane_Side) * x_pixel_extent ); 
plx(MAXY] • (plural int)((extent(MAXY] + Plane_Side) * y_pixel_extent); 

I* Set up the transmission t uple •I 
ltem.dest_pe = pix[MINX)/PIX_ROW + pix(MINY)•nxprociPIX. ROW; 
ltem. src_pe = iproc; 
item.south " pix[MAXY] - pix[MINY]; 
item.east = pix[MAXX] - pix [MINX]; 
item .data " d1st; 
item .dest_sub_pixel = pix[MDIX] Y, PIX_ROW + (pix(MINY) Y. PIX_ROW)*PIX_ROW; 

all for (i = 0; i < PIXELS; i++) 
{ temp_item(O] [i] .data= final_item(i] .data= HUGEF; 

temp_item(O][i] .east= temp_item(O][i] .south = 0; 
} 

m = 0; 
if (!invalid) 
{ sp_rsend(item.dest_pe ,(plural char• )kitem, 

} 

(plural char• plural)k(temp_item[O][item.dest_sub_pixel]), 
sizeof(IB_Tuple)); 

router[item .dest_pe] .m += 1; 

I• Find the number of balanced tuples on each PE •I 
equinum = reduceMax32(m); 
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if (equinum > 1) fprintf(s"tderr,"max rou"t m 'l.d ",equinum); 

I• Initial1ze num_items •I 
for(i = 0; i <PIXELS; i ++) init_num_i tems( i ] = num_items(i] = (temp_iten[O)[ 

I• Distribute the item- buffers south • I 
all for(i = 0; i < PIXELS; i++) I• Do for each virtual pixel •I 
{ q = new_q = i ; 

j = nev_j = init_num_ltems(i) - 1; I• (m > 0) ? 0 : -1; •I 

count a (j < O)? j : temp_item[j) [q) .sou"th; 
I• Start coving this ib_tuple south if "this is val1d •/ 

all while (count > 0) 

{ count--; 
if (nev_j > MAX _OVERLAP) 

p_printf("iproc 'l.d, overlap 'l.d\n",lproc,nev_j); 
q = new_q; 
if (temp_item(j)(q) .data< final _item(q) .data)/* Do z-buffering • / 
{ final_l"tem(q) .data s temp_item[j) [q] .da"ta; 

final_item[q) .sr c_pe = temp_item[j] [q] .src_pe; 
} 

new_q • (q + PIX_ROW) Y. PIXELS; 
I• Locate the v1r tual south neighbor •I 

if (new_q > q) /• We don ' t need to xsend to south PE yet •I 
{ new_j = num_items(new_q]++; 

temp_i tem[new_j) [new_q] .src_pe 
temp_i"tem(new_j](new_q] .east 
temp_item(new_j](nev_q].data 
j = nev_j; 

} 

else I • xsend to the south PE • / 

= temp_item[j] [q] .src_pe; 
= temp_it em(j] [q] .east; 
= temp_i"tem(j](q] .da"ta; 

{ if (iyproc < NYPROC_1) I• avoid wraparound •/ 
{ xnetS [1] .count =count; 

xnetS(l] .new_q = new_q; 
new_j = xnetS[1] .num_items(new_q]; 
xnetS (1] .num_items[new_q] • new_j + 1; 
new_q = xnetS[1] .new_q; I• regenerate new_q for next step only •/ 

pp_xsend(-1, 0, (plural char• plural)ktemp_i"tem[j] [q), 
(plural char* plural)ttemp_item[new_j] [new_q], sizeof(IB_Tuple)); 
xnetS(1] . new_q = new_q; /• restore new_q now•/ 
xnetS[1] .j = new_j; 

} 

else I• disable this ib_tuple •I 
count : 0; 

} 
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} 
} 

I* Disoribu~e the item-buffers eas~ • I 
all 
for(i = 0; i < PIXELS; i ++) I* Do for each virtual pixel *I 
{ q = i; 

for(j = 0; j < num_items(i); j++) I* Do for each ib_tuple *I 
{ count = temp_it em[j) [i) .east; 

item .data = temp_item(j)[i] .data; 
item.src_pe = temp_item[j)[i).src_pe; 
all while (count > 0) 

{ count--; 
if (item.data < final _item[q) .data)/* Do z-buffering *I 
{ f inal_i~em(q) .data = item.data; 

final_item(q) .src_pe = ltem.src_pe; 
} 
nev_q • (q + 1) Y. PIX_ROW; 

i~ (nev_q > q) I• We do not need to xsend to east ?E •I 
q = nev_q; 

else I* We need to xsend to east PE • I 
{ ss_xsend(O, 1, (plural char• )&i tem , (plural char•)&item , sizeof(IB_Tuple)); 

xnetE[l] .count = count; 

} 

xnetE(l) .q = nev_q; 
} 

} 
} 

} 

I• Update the form factors for the f inally selected PEs •I 
form_fact ors • 0; 
for(i • 0; i < PIXELS; i ++) 
{ if (final_item(i).data <HUGE) 

dist = canonical_ff[i); 
else 
{ dist = 0; 

final_item(i] .src_pe • iproc; 
} 
forrn_factors += sendvithAddf(dist, final_item[i] .src_pe); 

} 
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dist.m for Object-Space Ray-Casting Approach 

!************************************••***************************•***** 
Am i tabh Varshney Hovard Good 

DIST. M 

Approach: Object-Space Ray- Casting 

This part of the code is responsible for distributing the energies 
from local and global iterations. 

*********************************************************************••/ 
#include <mpl.h> 
#include <stdio.h> 
#include <math .h> 
#include "host.h" 

extern int maxPEpoly; I* max no of polys per PE •/ 
extern plural Poly* old_poly_list; I• Polys to be used •I 
extern plural int oldPoly; / •No of polys in old_poly_list•/ 
I• Form factor array •I 
extern plural byte form_factors [KAXPEPOLYS][MJ.XROWPOLYS]; 
I• Rays stored in valls •/ 
extern plural Ray vall_rays [NUMWALLS] [MAXRAYS]; 
I* No of rays in each vall •I 
extern plural int wall_count(NUMWALLS]; 

/•••••••••••••*****************************************•*********•*•** 
dist_pp 

Carry out the distribution of energies from patch to patch ~ithin 
each virtual room. 

············································••********************•••/ 
dist_pp() 
{ plural Poly* plural tempPoly; 

plural Ray tempRay; 
plural int l,j; 
int n,r ; 
plural float 
plural float 
plural float 

procRadSum • 0.0; 
shootingEnergy; 
tempEnergy; 
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plural Packet shootingPatch; 
plural int shoot ingPatchValid = 0; 
plural int shooter; 
plural float deltaRad,tempRad; 
float totalUnshotRad; 

I* Initialize procRadSum •I 
for(i = 0; i < oldPoly; 1++) 
{ tempPoly s old_poly_list + i; 

for (n = 0; n <3; n++) 
procRadSum += tempPoly->unshotRad[n); 

} 
totalUnshotRad = reduceAddf(procRadSum); 
printf("Total unshotRad r adiosity • 'l.f\n",totalUnshotRad); 
fflush(stdout); 

I• Start energy xter •I 
while (totalUnshotRad > TOL) 
{ 

shooter= -1; 
shootingEnergy • 0; 
shootingPatchValid = 0; 

I• Choose the shooting patch on each PE as the brightest patch •/ 
for (i = 0; i < oldPoly; i++) 
{ tempPoly = old_poly_list + i; 

tempEnergy • tempPoly->unshotRad[RED)+ 
tempPoly->unshotRad[GREEN]+ 
tempPoly- >unshotRad[BLUE]; 

if (tempEnergy > sbootingEnergy) 
{ shootingEnergy = tempEnergy; 

shooter = i; 
} 

} 

I• If a shooting patch exists, compose an energy packet •I 
1f (shooter >= 0) 
{ tempPoly = old_poly_list + shooter; 

shootingPatch.unshot[RED] = tempPoly->unshotRad[RED] ; 
shootingPatch .unshot[GREEN) = tempPoly->unshotRad[GREEN); 
shootingPatch .unsbot[BLUE) = tempPoly->unshotRad[BLUE] ; 
shootingPatch.area • tempPoly->area; 
shootingPatch.id = tempPoly- >id; 
shootingPatchValid = 1; 

} 
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if (shootingEnergy > 0) 
p_printf ("Shooter :t.d on [:l.d, :t.d], energy • :t.f\n", shootingPatch. id , 

ixproc, iyproc, shootingEnergy); 

I• Transmit the energy packet £ormed above from processor to processo= 
distributing its energy to a ll polygons on those processors as 
determined by the form-factors. 

•I 
for (r = 0; r<nxproc; r++ ) 
{ if(sbootingPatchValid =• 1) 

{ shootingPatchValid = 0; 
for(i=O; i <oldPoly; i++) 
{ tempPoly • old_poly_list + i; 

tempRad • (pl ural f loat) form_factors[i)[shootlngPatch.id]• 
shootingPatch.areai(255.0•25S.O•tempPoly->area); 

for(n=O; n<3; n++) 
{ deltaRad = tempRad•(plural float)(tempPoly->colors[O)(n)) • 

shootingPatch.unshot[n] ; 
tempPoly->unshotRad (n) +• deltaRad; 
tempPoly->totalRad(n) += deltaRad; 

} 
} 

} 
} 

ss_xsend(O,l,&shootingPatch, &shootingPatch, sizeof(Packet)); 
xnetE[l) . shootingPatchValid • 1; 

I* Set t he unshot radiosity of the shooting patch to zero •I 
if (shooter >= 0) 
{ tempPoly • old_poly_list + shooter; 

tempPoly->unshotRad[RED)• 
tempPoly- >unshotRad[GREEN] = 
tempPoly->unshotRad [BLUE)•O .O ; 

} 

I• Compute the total remaining energy in t he system •I 
procRadSum = 0.0; 
for(i • 0; i < oldPoly; i++) 
{ tempPoly = old_poly_lis t + i ; 

for (n = 0; n <3; n++) 
procRadSum += tempPoly->unshotRad(n); 

} 

totalUnshotRad = reduceAddf(procRadSum); 
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} 
} 

pri ntf ( "Total unshotRad radios i ty = 'l.t\n", totalUnshotRad); 
fflush(stdout); 

!********************•••••*****************•********************• •••** 
dist_p., 

Carry out the distribution of energies from patch to Yalls ~ithin 
each virtual room. This is done by checking out for each polygon 
all t he rays i n the Yall arrays Yhich have originated from thls 
polygon and then incrementing their energy values by the energy 
values of the polygon . This has not been t ested . 

•••*•***•··················································•*•·······! 
dlst_pw{) 
{ plural int i,j; 

int. n; 
plural Poly* plural t empPoly; 

for(i = 0; i < oldPoly ; i++) 
{ tempPoly = old_poly_list + i; 

if (tempPoly->unshotRad [RED] + 
tempPoly->unshotRad [GREEN] + 
tempPoly->unshotRad[RED] > 0 .0) 

{ f or (n c 0; n < NUMWALLS; n++) 
{ for(j • 0; j < vall_count[n); j++) 

{ if (tempPoly->id = va ll_rays. [n] [j] . id) 
{ gall_rays[n] [ j] . energy[RED] += 

tempPoly- >unshotRad[RED] • tempPoly- >area/NUMRAYS; 
wall_rays[n][j] .energy[GREEN) += 

tempPoly->unshotRad[GREEN) • tempPoly->area/NUMRAYS; 
wall_rays(n] [j ] . energy[BLUE] +c 

tempPoly- >uns hotRad[BLUE] • tempPoly->area/NUMRAYS; 
} 

} 
} 

} 
} 

} 

'**************************************•****************************** 
xchg_walls 

This r outine exchanges the energy filled valls from one room to the 
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other room. This has not been tested. 

************•*****************************************************~**! 
xchg_walls () 
{ plural Ray* plural tempRay; 

} 

I• Xchg N vall ie move the wall North • I 
if (iyproc > XROOM_DIM) 
{ ss_xsend(XROOM_D!M, 0, kwall_rays(NORTH)(O) ,&wall_rays(NORTH) [0], 

MAXRAYS•sizeof(Poly)); 
xnetri[XROOM_DIM).wall_couot[liORTH) = wall_count [NORTH); 

} 

I • Xchg S Yall •I 
if (iyproc < nyproc - XRODM_DIM) 

I• Send it XROOM_DIM rows down •I 
{ ss_xsend(- XROOM_DIM, 0 , kwall_rays[SOUTH) [0), &wall_rays[SOUTH] [0], 

MAXRAYS•sizeof(Poly)); 
xnetS[XROOM_DIM). wall_count[SOIJTH) = wall_count[SOUTH] ; 

} 

I• Xchg E wall •I 
if ((iyproc+l) Y.XROOM_DIM > 0) 

I• Send it 1 dovn •I 
{ ss_xsend(l, O,kwall_rays[EAST][O),kgall_rays[EAST)[O],MAXRAYS•sizeof (Poly)) 

Xnet S[l) .wall_count[EAST) c wall_count[EAST); 
} 

I• Xchg w wall •I 
if (iyproc Y. XROOM_DIM > 0) 
I• Send it 1 up •I . 
{ ss_xsend(-1,0, kwal l _rays[WEST] (0) ,kwall_rays (WEST) [0] ,MAXRAYS•s~zeof(?oly)) 

xnetN[l] .wall_count[WEST) • wall_count[WEST); 
} 

120 



ff.m for Object-Space Ray-Casting Approach 

Amitabh Varshney Ho,ard Good 

FF.M 

Approach : Object-Space Ray-Casting 

This part of the code is responsible for doing much of one time 
processing required to get the r ad1osity iterations going. This 
~nvolves setting up of the virtual walls and calculating the form 
factors. 

***********************************************************************! 

#1nclude <mpl.h> 
#incl ude <math.h> 
#include "host.h" 

extern float MinX, MinY, MinZ; I• Dataset extents •/ 
extern float MaxX, MaxY, MaxZ; 
extern plural int oldPoly; I• Polygon buffer • / 
extern plural Poly •ol d_poly_list; f* List of pat ches to be used*/ 
extern int maxPEpoly; I* Max no of polygons perPE •/ 
extern float xroomBound [XROOM_DI M]; I• Room bounds in X, Y and Z •I 
extern float yroomBound[YROOM_DI M]; 
extern float zroomBound[ZROOM_DIM); 

I • Form factor array at each processor•/ 
plural byte form_factors [MAXP EPOLYS] [MAXRDWPOLYS); 
/ • Rays hitting valls at each processor•/ 
plural Ray wall_rays[NUMWALLS] [MAXPEPDLYS•NUMRAYS); 
I• No of rays stored for each vall •I 
plural int wall_count[NUMWALLS]; 

!•••*·••••***********************************************************• 
calculate_form_factors 

This function calculates the form-factor matrices of the 
polygons and stores these at each processor. It also computes the 
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rays which hit the virtual room walls and stores these in ray 
arrays which are then later used for energy distribution i n 
radiosity iterations 

*******************************************************************•*/ 
calculate_form_factors() 
{ 

int n; I• Mise counter •I 
plural Poly• plural tempPoly; I• Polygon pointer •I 
plural Ray testRay; I• Ray buffer •I 
plural float normal[3); I• Normal to the polygon • I 
plural int patch_id; I• Id of the patch •I 
plural byte wall_id; I• Id of the wall - N,S,E,W,F,C •I 
plural int i,j,k,r; I• Mise counters •I 
plural float ff; 
plural i nt is,it ; 
plural float s,t; 
plural int ff_count; 

I* Initialize the form factor matrices at each processor •I 
for (i~O; i < MAXPEPOLYS; i++) 
{ for(j•O; j<MAXROWPOLYS; J ++) 

form_factors[i)[j] a (plural byte) 0 .0; 
} 

I• Set up the walls •I 
init_walls(); 

I• Intialize the wall - ray arrays •I 
ff_count = 0; 
for (i = 0; i < NUMWALLS; i++) 

wall_count[i] • 0; 

I• Assign the patch id's •I 
patch_id = 0; 
for (n e 0; n < nxproc; n++) 
{ if (ixproc == n) 

{ for (i • 0; i < oldPoly; i++) 

} 

{ tempPoly = old_poly_list + i; 
tempPoly->id = patch_id++; 

} 
xnetE[l] .patch_id = patch_id; 
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} 

for (i = 0; i < oldPoly; i ++) 
{ tempPoly = old_poly_list + i; 

normal[X] = tempPoly- >eq[A]; 
normal[Y] = tempPoly- >eq[B]; 
normal[Z] = tempPoly->eq[C]; 

all testRay.id = -1; I• to indicate invalid rays •/ 

for (r • 0; r < NUMRAYS; r ++) 
{ testRay.origin [X] = testRay.origin[Y] = testRay.origin[Z] = 0.0; 

testRay.distance • HUGEF; 
testRay.id • tempPoly->id; 

I• set ray origin to patch center • / 
for (j = 0; j < tempPoly->numverts; j++) 
{ testRay.origin[X] +• tempPoly->verts[j][X) ; 

testRay.origin[Y] +• tempPoly->verts[j] [Y); 
testRay.origin(Z] +• tempPoly->verts(j)[Z); 

} 
testRay.origin(X) /= tempPoly->numverts; 
testRay.or1gin[Y) / = tempPoly->numverts; 
testRay.origin [Z] /= tempPoly->numverts; 

I• set ray direction •I 
testRay.direction[X] • normal[X]; 
testRay.direction(Y) • normal(Y); 
testRay .direction[Z) • normal[Z); 

for (k = 0; k < nxproc; k++) 
{ 

I • intersect ray with all polygons and virtual walls •I 
all if (testRay.id >= 0) intersect_ray (ktestRay); 

ss_xsend(O,l,ktestRay,ttestRay,sizeof(Ray)); 
} 

if (testRay.id >= nxproc•maxPEpoly + Nt/MiiALLS) 
p_printf("bad id = Xd\n",testRay. id); 

else if (testRay.id >• nxproc*maxPEpoly) / • Intersection is with a ~all•/ 
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{ wal l _id ~ testRay.id - nxproc•maxPEpoly; 
I• Store the ray into the buffer fo r appropriate ~all •/ 
if (wall_id < NUMWALLS) 

{ j = wall_count[wall_id]; 
wall_rays[wall_id][j) . id = tempPoly->id ; 
wall_rays[wall_id] [j) .distance a testRay.distance; 
for (k = 0; k<3; k++) 
{ wall_rays[wall_id][j) .origin[k) = testRay.origin[k]; 

wall_rays[wall_id][j].energy[k] = 0.0 ; 
wall_rays[wall_id][j] .direction(k] • testRay.direction[k]; 

} 
} 

wall _count[wall_id]++ ; 

p_printf("shooter 'l.d hit wall :t.d\n",tempPoly-> id,wall_i d); 
} 

else I* Intersection is with a model poly•/ 
if (testRay.id >= 0 kk t estRay.di stance < HUGEF) 

{ ff_count++; 
fo rm_f actors[i] [testRay.id] ++ ; 

p_printf("shooter 'l,d hit poly :t,d\n",tempPoly->id,testRay. id); 
} 

if (testRay.distance >• HUGEF) 

{ p_printf("x,y = :t.d,'l.d; origin= :t.g,:t.g,:t.g; direction~ :t.g,'l.g,:t.g\n", 
ixproc,iyproc,testRay.ori gin[X], testRay.origin(Y], testRay.orlgin [Z), 
testRay.direction [X] , testRay.direction[Y] , testRay .direct ion[Z]) ; 

} 
} 

} 

1f (oldPoly•NUMRAYS > 255) 
{ p_printf("proc 'l.d 'l.d: too maJly rays\n" ,ixproc,iyproc,oldPoly*NUMRAYS); 

exit(-1); 
} 

I* scale form factors •I 
1f (oldPoly > 0) 
{ for (i s 0; i < oldPoly; i ++) 

{ for (j~O; J <MAXROWPOLYS; j++) 
{ ff =(plural float) form_factors [i](j]; 

ff I~ NUMRAYS; 
ff h 255.0; 
form _factors(i] [j] = (plural byte) ff; 
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} 

} 
} 

} 

I• Verify t hat the rays are conserved •I 
for (i = 0; i < NUMWALLS; i++) 

ff_count += wall_count [i] ; 

i f (ff_count !: oldPoly•NUMRAYS) 
p_printf("proc Y.d Y.d : bad ray count = Y,d oldPoly = Y.d;\n",ixproc,iyproc , 
ff_count,oldPoly); 

'*************··········**•••••····················*·················· 
intersect_ray 

chis function would intersect the given ray ~ith all the 
polygons present on the ro~ t o which it belongs and returns the id 
o= the polygon 1t finds has the closes• intersection point in the 
id fi eld of the ray 

··············~······················································! 
1n•ersect_ray(testRay) 
plural Ray • t es tRay ; I* Input ray •I 
{ 

plural Poly* plural tempPoly; I• Polygon buffer •I 
plural int i,j,k,l; 1~ Mise counters • I 
plural float normal[3] ; I• Normal •I 
plural float ndotd; /•Dot prod of normal and ray direction•/ 
plural float p(3]; /•Temporaries •I 
plural float d,t; 
plural byte 10,11 , 12; 
plural byte inter ; 
plural float alpha,beta ; 
plural float uO,ul ,u2; 
plural float vO,vl,v2; 

for (j = 0; j < oldPoly+NUMWALLS; j++) 
{ tempPoly = old_poly_l i st + j; 

if (tempPoly->numverts != 4 kk t empPoly->numverts != 3) 
{ p_printf("ff bad nUIIlverts = Y.d\n",tempPoly->nUIIlverts); 

exit (-1); 
} 
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normal[X] • temp?oly->eq[A); 
normal[Y) ~ tempPoly->eq[B); 
normal[Z) = temp?oly->eq[C]; 
d = temp?oly->eq(D]; 

I• Compute the dot product of the ray direction with the poly nor~al •/ 
ndotd • normal[X) •testRay->direction(X] + 
normal[Y)•testRay->direction[Y) + 

normal[Z) atestRay->direction(Z); 

if (ndotd •• 0.0 ) continue; 

t = -(d + normal(XJ•testRay->origin[X) + normal[Y) • testRay->origin[Y) + 
normal[Z)•tes~Ray->origin[Z))/ndotd; 

if (t <= 0.002) continue; 
I• Avoid 1ntersecting qith originating polygon•/ 
I• Polygon is beyond closest intersect ion found so far*/ 

if (t >= tes~Ray->distance) continue; 

I• Calculate the point of intersection */ 
p[X) • testRay->origin(X) + tes tRay->direction[X)•t; 
p(Y) • testRay->origin(Y) + testRay- >direction[Y]•t; 
p[Z) • testRay->origin[Z] + testRay->di rection[Z]•t; 

I • Find the orientation of the polygon •/ 
normal(X] • fp_fabs(normal[X] ); 
normal (Y] = fp _f abs (normal (Y] ) ; 
normal[Z) = fp_fabs(normal(Z]); 

if (normal(X) >a normalCY] &II: normal(X] >a normal[Z)) 
{ 11 = Y; 

12 c Z; 
} 

if (normal(Y) >= normal(X) 11:11: normal(Y) >= normal(Z)) 
{ l1 " X; 

12 • Z; 
} 

if (normal(Z] >= normal[X) 11:11: normal[Z] >= normal[Y)) 
{ 11 • X; 

12 • Y; 
} 

I• Verify 1f the point of intersection is qitbin the polygon •I 
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uO • p(ll] - tempPoly->verts(O] [11); 
vO = p(l2) - tempPoly->verts[O] [12); 

inter = 0; 
1 = 2; 

do { 
u l a tempPoly->verts(l-1) [11] - tempPoly->verts (O] [11) ; 
v1 • tempPoly->verts[l-1) [12] - tempPoly- >verts(O] [12]; 
u2 = tempPoly->verts[l ] [11] - t empPoly- >verts [O] [11]; 
v2 = tempPoly->verts[l ) [12] - tempPoly- >verts [O] [12]; 

if {ul .,. O) 
{ beta = u0/u2; 

} 

if {beta>= 0.0 &k beta<= 1.0) 
{ alpha = {vO - beta•v2) /v1 ; 

inter = (alpha >• 0.0 kk alpha+beta <= 1.0); 
} 

else 
{beta • (vO•ul- uO•vl)/{v2*u1- u2• v1); 

if (beta>= 0.0 ll beta<= 1.0) 
{ alpha = (uO - beta•u2) /u1 ; 

inter • (alpha>= 0 .0 kl alpha+ba ta <= 1.0); 
} 

} 
} vhile (!inter lk ++1 < tempPoly->numverts) 

if (inter) 
{ testRay->distance • t; 

i f (j < oldPoly) 
testRay->id = tempPoly->id;/• intersection vas vith a model polygon •/ 

else I* intersection vas wi th a virtual vall •/ 
testRay->id = nxproc•maxPEpoly + ( j -oldPoly); 

} 

} 
} 

!•••••••••••••••••••••••••••••••••••••••••*******•***•******•••••••••• 
init_valls 

Sets up the virtual vall polygons at all the processors 
***********************************•*********************************' 
init_valls() 
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{ 
plural Poly* plural tempPoly; 
plural byte xroom,yroom; 

xroom • iyprociYROOM_DIM; 
yroorn = iyproc'l,YROOM_DIM; 

I• North qall •I 
ternpPoly = old_poly_list + oldPoly + NORTH; 
tempPoly->verts [O)[X) = M1nX + (xroom > 0? xroornBound[xroom-1] 0); 
tempPoly->verts [ l)[X) =MinX+ xroomBound [xroom]; 
tempPoly->verts[2)[X) =MinX+ xroomBound[xroom]; 
tempPoly->verts(3][X) =Mi nX+ (xroom > 0 ? xroomBound[xroom-1] 0) ; 
tempPoly->verts[O][Y) = MinY + yroomBound[yroom]; 
tempPoly- >verts [1][Y) ~ MinY + yroomBound[yroom]; 
tempPoly->verts(2][Y) = MinY + yroomBound[yroom); 
tempPoly->verts(3] [Y) = MinY + yroomBound[yroom]; 
tempPoly->verts(O][Z) • M1nZ; 
tempPoly->verts[l][Z) = MinZ; 
tempPoly->verts(2][Z) = MaxZ; 
tempPoly->verts[3)[Z) = MaxZ; 
tempPoly->eq[A] = 0.0; 
tempPoly- >eq[B) • - 1.0; 
tempPoly->eq[C) • 0.0; 
tempPoly->eq[D] = MinY + yroomBound[yroom); 
tempPoly->numverts • 4; 
tempPoly->area • 0.0; 

I • South qall •I 
tempPoly = old_poly_li st + oldPoly + SOUTH; 
tempPoly- >verts(O)[X] • MinX+ xroomBound[xroom]; 
tempPoly->verts(1] [X] =MinX + (xroom > 0? xroomBound[xroom-1] 0); 
tempPoly->verts(2](X) =MinX+ (xroom > 0? xroomBound(xroom- 1) 0); 
tempPoly->verts(3][X) • MinX+ xroomBound[xroom]; 
tempPoly- >verts(O][Y) = MinY + (yroom > 0? yroomBound(yroom- 1] 0); 
tempPoly- >verts[l)[Y) = MinY + (yroom > 0? yroomBound[yroom-1) 0); 
tempPoly- >verts[2)(Y) = MinY + (yroom > 0? yroomBound[yroom-1] 0); 
tempPoly->verts [3)[Y] = MinY + (yroom > 0? yroomBound[yroom-1] 0); 
tempPoly- >verts[O)(Z) = MinZ; 
tempPoly->verts(l)[Z) = MinZ; 
tempPoly->verts(2](Z] = MaxZ; 
tempPoly- >verts[3][Z] = MaxZ; 
tempPoly- >eq(A] = 0.0; 
tempPoly->eq[B) • 1.0; 
tempPoly->eq[C] = 0.0; 
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tempPoly->eq[D) = -(MinY + (yroom > 0? yroomBound[yroom-1] O)); 
tempPoly->numverts = 4; 
tempPoly->area a 0 .0; 

I* West wall *I 
tempPoly = old_poly_list + oldPoly + WEST; 
t empPoly->verts [O][X] ~MinX+ (xroom > 0? xroomBound[xroom-1] 0); 
tempPoly->verts[l] [X] =MinX+ (xroom > 0? xroomBound[xroom- 1] 0); 
tempPoly->verts[2][X) = MinX+ (xroom > 0? xroomBound[xroom-1] 0); 
tempPoly->verts[3][X] =MinX+ (xroom > 0? xroomBound[xroom- 1] 0); 
tempPoly->verts[O][Y] • MinY + (yroom > 0? yroomBound[yroom- 1] 0); 
tempPoly->verts(1] [Y] = MinY + yroomBound[yr oom]; 
tempPoly->verts(2][Y] • MinY + yroomBound[yroom]; 
tempPoly->verts[3][Y) • HinY + (yroom > 0? yroomBound[yroom-1] 0); 
tempPoly->verts[O] [Z] a MinZ; 
tempPoly->verts(l] [Z] • MinZ; 
tempPoly->verts[2] [Z] • MaxZ; 
tempPoly->verts(3](Z] • MaxZ; 
tempPoly->eq[A) • 1.0; 
t empPoly->eq[B) = 0.0; 
tempPoly->eq[C] = 0.0; 
tempPoly->eq[D] • -(MinX + (xroom > 0 ? xroomBound[xroom-1] O)); 
tempPoly->numverts = 4; 
tempPoly->area • 0.0; 

/• East vall • / 
tempPoly a old_poly_list + oldPoly + EAST; 
tempPoly->verts(O] [X] • MinX+ xroomBound[xroom]; 
tempPoly->verts[1](X] • MinX+ xroomBound[xroom]; 
tempPoly->verts[2] [X] • MinX+ xroomBound[xroom); 
tempPoly->verts[3] [X] a MinX + xroomBound[xroom]; 
tempPoly->verts [O] [Y] • MinY + yroomBound (yroom]; 
tempPoly->verts[l][Y) = MinY + (yroom > 0? yroomBound[yroom-1) 0); 
tempPoly->verts[2][Y) • MinY + (yroom > 0? yroomBound[yroom-1) O); 
tempPoly->verts(3] [Y) • MinY + yroomBound[yroom]; 
tempPoly->verts(O][Z) • MinZ; 
t empPoly->verts[l][Z) • MinZ; 
tempPoly->verts[2] [Z] • MaxZ; 
tempPoly->verts(3] [Z] • MaxZ; 
tempPoly->eq[A) = - 1.0; 
tempPoly->eq [B] = 0.0; 
tempPoly->eq[C) = 0.0; 
tempPoly->eq[D) = MinX+ xroomBound[xroom); 
t empPoly->numverts = 4; 
tempPoly->area • 0.0; 
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} 

I* Floor • I 
tempPoly = old_poly_list + oldPoly + FLOOR; 
tempPoly->verts [O)[X] =MinX+ (xroom > 0? xroomBound[xroom-1] 0}; 
tempPoly->verts[l)(X] = H1nX + xroomBound[xroom]; 
tempPoly- >verts[2](X] =MinX+ xroomBound [xroom]; 
tempPoly- >verts[3](X] = MinX+ (xroom > 0? xroomBound[xroom-1] 0); 
tempPoly- >verts(O](Y] = MinY + (yroom > 0? yroomBound[yroom-1] 0) ; 
tempPoly->verts(l) [Y) = MinY + (yroom > 0? yroomBound[yroom- 1] 0}; 
tempPoly->verts[2] [Y] = MinY + yroomBound [yroom]; 
tempPoly->verts[3][Y) = MinY + yroomBound[yroom); 
tempPoly->verts[O) [Z) = MinZ; 
t empPoly->verts[1] [Z] = MinZ; 
tempPoly->verts(2][Z] = MinZ; 
t empPoly- >vert s[3](Z) = MinZ; 
tempPoly->eq[A) = 0.0; 
tempPoly->eq[B] = 0.0; 
tempPoly->eq[C] = 1.0; 
tempPoly- >eq[D] = -MinZ; 
tempPoly- >numverts • 4; 
t empPoly->area = 0.0; 

I • Ceiling •I 
tempPoly • old_poly_list + oldPoly + CEILING; 
tempPoly->verts[O][X) =MinX+ xroomBound(xroom]; 
t empPoly- >verts (1] [X] a MinX+ (xroom > 0? xroomBound [xroom-1] 0); 
tempPoly->verts [2][X) =MinX+ (xroom > 0? xroomBound[xroom-1) 0); 
tempPoly->verts(3)[X) =MinX+ xroomBound(xroom); 
tempPoly- >verts [O] [Y] = MinY + (yroom > 0? yroomBound [yroom-1] 0); 
tempPoly->verts[l] [Y] = MinY + (yroom > 0? yroomBound[yroom- 1] 0); 
tempPoly->verts[2)(Y] = MinY + yroomBound[yroom]; 
tempPoly- >verts[3][Y] = MinY + yroomBound[yroom]; 
tempPoly- >verts [O](Z) • MaxZ; 
tempPoly->verts[l)(Z) = MaxZ; 
tempPoly->verts[2](Z) = MaxZ; 
tempPoly->verts(3](Z] = HaxZ; 
tempPoly- >eq(A] = 0.0; 
tempPoly->eq[B] = 0.0; 
tempPoly->eq[C) = -1.0; 
tempPoly- >eq[D] = MaxZ; 
tempPoly->numverts • 4; 
tempPoly- >area = 0.0; 
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io.m for Object-Space R ay-Casting Approach 

Amitabh Varshney HoQard Good 

IO.M 

Approach: Obj ect-Space Ray-Casting 

This program r uns on the back-end of MasPar and carries out most 
of the tasks including svapping in of the polygons from the f r om-end 

***********•*****•*****************************************************/ 

#1nclude <mpl.h> 
#include <stdio.h> 
#include <math.h> 
#1nclude "host.h" 

visible extern die(); 

! •••***********************************•**************************** 
GLOBAL DECLS 

······························································••*••••/ 
float MinX, MinY , MinZ; I• Extents of the input dataset•/ 
float MaxX, MaxY, MaxZ; 
plural Poly • old_pol y_list; I• Lists of polygons •/ 
plural Poly • nev_poly_list; 
plural int oldPoly; I• Number of polygons in old_poly_list•/ 
plural int nevPolyCount; I• Number of polygons in nev_poly_list+/ 
1nt maxPEpoly; / +Maxi mum no of polygons/PE •/ 

float xroomBound[XROOM_DIM]; / • Upper bounds of each virtual room • I 
float yroomBound[YROOM_DIM]; 
float zroomBound[ZROOM_DIM]; 

/• ********************************•*********************************** 
polys_to_pe 

This 1s equivalent of the main program on the back end. It blocks 
in the polygon dataset and·distributes it on the PE•s. Then it 
calls the appropriate routines to balance the polygons and start 
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radiosity iterations. 

v1sible polys_to_pe(poly_llst, total_polys) 
Poly *poly_list ; I• List of polygons on the front- end•/ 
int total_polys; /• Total no of polys to be SYapped-in•/ 
{ int numpoly,maxpoly,minpoly; 

int n; 
i nt initPEpoly; I* initial no of polygons per PE • / 

initPEpoly • ( int)(total_polyslnproc + 1); 
m~~PEpoly = i nitPEpoly+6 

fprintf(stdout,"polys Y.d nproc Y.d polyslpe Y.d poly_size Y.d\n", total_polys, 
nproc,initPEpoly, sizeof (Poly)); 
fflush(stdout); 

oldPoly = 0; 

I• All ocate PE memory •I 
P_ALLOCN(old_poly_list, Poly, maxPEpoly + NUMWALLS, "polys_to_pe"); 
P_ALLDCN(nev_poly_list, Poly, maxPEpoly + NUMWALLS, "polys_to_pe") ; 

I • Read in polygons t o PEs from the front end side +I 
n = blockin (pol y _llst., old_poly _list , 

0, 0, nxproc, nyproc, (initPEpoly-l )*sizeof (Poly)); 
n += blockln(poly_list+(initPEpol y- l)• nproc, old_poly_list+initPEpoly-1, 

0, 0, nxproc, nyproc, sizeof (Poly)); 
printf("Num bytes Xferred = Y.d ; num polys • Y.d\n",n,n/sizeof(Poly)}; 

I• Determine oldPoly for each PE •I 
oldPoly = 

(iproc < total_polys-(initPEpoly- 1)•nproc ? initPEpoly 

numpoly = reduceAdd32(oldPoly); 
maxpoly = reduceMax32(oldPoly); 
minpoly = reduceMin32(oldPoly); 

initPEpoly-1 ); 

pnntf("old polys .. Y.d ; max= Y.d, min • Y.d\n",numpoly,ma.xpoly,minpoly) ; 

I• determine the extents of the dataset - used in balancing • / 
determine_extents(); 

I• Coarsely balance the dataset •I 
balance(); 
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} 

I• Refine the balance on the DPU by further subdividing if necessary~/ 
refine_balance(); 

I* Perform the one-time calculat ions for the form- factor determinations• / 
calculate_form_factors() ; 

I* Start the radiosity iterations •I 
I* Carry out the patch - patch energy exchange*/ 
dist_pp(); 

I• Carry out the exchange of energy laden virtual Yalls •/ 
xchg_.,alls O ; 

!•**********•*•***************~********* .. •••*••••************•••••••• 
determine_ extents 

This routine determines the extents of the polygon dataset. 
It takes into account the coarse cell l engths to determine the 
extents 11hicb will be represented on the DPU array once the 
balancing is done. 

determine_ extents() 
{ inti, j; I • Miscellaneous counters • / 

float x, y, z; I* Vertex values •/ 
plural 
plural 
plural 
plural 
plural 

on each PE •/ 
Poly• plural tempPoly; /• Current polygon • I 
float minx, miny, minz; I* Local extents 
float maxx, maxy , maxz; 

/+ Oeterm1ne the local extents •/ 
minx : miny : minz • HUGEF; 
maxx = maxy = ma.xz • -HUGEF; 
for (i = 0; i<oldPoly; i ++) 
{ tempPoly = old_poly_list + i; 

if (tempPoly->numverts < 3 I I tempPoly->numverts > MAXVERT) { 
p_printf("ERROR: proc 'l.d numverts = 'l.d\n",iproc,tempPoly->numverts); 
exit(l); 

} 

for (j = 0; j<tempPol y->numverts ; j++) 
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} 

} 

{ x = tempPoly->verts(j] (X]; 
y = tempPoly->verts[j][Y); 
z = tempPoly->verts[j][Z); 
minx= MIN(minx,x); 
miny = MIN(mlny,y); 
minz = MIN(minz,z); 
maxx = MAX(maxx,x); 
maxy = MAX(maxy,y); 
maxz = MAX(maxz,z); 

} 

I* Determine the global extents • / 

MinX • reduceMinf(minx); 
MinY • reduceMlnf(miny); 
MinZ • reduceMinf(minz); 
MaxX • reduceMaxf(maxx); 
MaxY = reduceMaxf(maxy); 
MaxZ = reduceMaxf (maxz); 

printf("Minx 'l.6 . 2f MaxX 'l.6.2f MinY 'l.6 .2f MaxY 'l.6.2f MinZ 'l.6.2f MaxZ 'l.6.2f\n", 
MinX ,MaxX ,MinY ,MaxY ,MinZ ,MaxZ); 

I* Take into account the global patchification grid aligned along the axes•/ 

MinX • f_floor(MinX/XCELLLENGTH) * XCELLLENGTH; 
MinY = f_floor(MinY/YCELLLENGTH) * YCELLLENGTH; 
MinZ = f_floor(MinZ/ZCELLLENGTH) * ZCELLLENGTH; 
Max X = f_ceil(MaxX/XCELLLENGTH) * XCELLLENGTH; 
Ma.xY = f_ceil(MaxY/YCELLLENGTH) * YCELLLENGTH; 
MaxZ = f_ceil(MaxZ/ZCELLLENGTH) * ZCELLLENGTH; 

printf("Minx 'l.6.2f MaxX 'l.6.2f MinY 'l.6.2f MaxY 'l.6.2f MinZ 'l.6.2f MaxZ 'l,6.2f\n" , 
MinX,MaxX,MinY,MaxY,MinZ,MaxZ); 

!********************************************************************* 
area 

This routine determines the area of a plural polygon defined by 
the vertex array 'vert' and having 'numverts• number of vert1ces 
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For •his the routine considers the polygon to be composed of 
t r iangles and then computes the area of each triangle by taking 
half of the magnitude of the cross product of t qo of its sides. 

**********************************~**********~***********************' 
pl ural float area(verts, numverts) 
plural float verts[MAXVERT) [3]; I• Vertex array •I 
plural i nt numverts; /• Number of vertices • I 
{plural int i ,j,k; 

} 

plural f loat area • 0 .0; 
plural float v1[3], v2(3], v3(3]; 

for(i=O; 1 < numverts - 2; i++) 
{ j • i +l; 

} 

k • i+2; 

v 1 (X] = verts [j] (X] - verts (i] [X) ; 
vl (Y] = verts [j] (Y) - verts (i) [Y]; 
vl [Z) = verts [j ] [Z] - verts[i] [Z] ; 

v2 [X] • vert s [k) (X] - verts [i] [X) ; 
v2 (Y] a verts [k] (Y] - verts (i] [Y] ; 
v2 [Z] • verts [k] [Z] - verts [ i ] [Z) ; 

v3[X] • vl(Y]*v2 (Z] - vl[Z) •v2[Y); 
v3 [Y] • -v1[X] *V2 [Z] + vi [Z] •v::! De]; 
v3[Z] • vl(X] • v2(Y] - vl(Y]*v2[X); 

area += O.S•fp_sqrt(v3 [X) • v3(X] + v3(Y]•v3[Y) + v3[Z)•v3(Z]); 

return are a; 

!**********************************•********************************** 
balance 

This routine evaluates the ort hogonal subdivisions vbich would 
permit an approximate load balancing and then routes the polgyons 
their destination processors based on above subdivisions of model 
into rooms and mapping of these rooms on the DPU array . 

*****************************************************************•*•/ 
balance() 
{plural inti, j, k, m; /• Mise counters •I 

plural Poly* plural tempPoly; /• Polygon pointers •I 
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plural Poly* plural newPoly; 
plural int• plural oldPol yBuf; 
plural 1nt* plural newPolyBuf; 
plural int newPolyTotal; I• Opt imal no of polys per PE *I 
plur al int newPEpoly; I • Near optimal no of polys/PE•/ 
plural 1nt roomCount(XROOM_DIM)[YROOH_DIM](ZROOM_DIM); 
plural Vec3 patchCenter; I• Center of a polygon • / 
plural byte xpatch..~oom(XCELLS); I• Describe location of cell• / 
plural byte ypatchRoom(YCELLS); I• in the grid of virtual•/ 
plural byte zpatchRoom[ZCELLS); I• rooms . •I 
plur al int xpatchCount [XCELLS); I• No of polys in each cell •I 
plural int ypatchCount[YCELLS); 
plural int zpatchCount[ZCELLS); 
plural byte curr_xproc; /• Temporaries •/ 
plural byte curr_yproc; 
plural byte xpatch,ypatch,zpatch; 
plural byte xroom, yroom, z room; I• 
plural by•e room_roY; 

I• Physical cell coords •I 
Virtual room grid coords•/ 

int roomsum[XROOH_DIM)[YROOH_DIH) [ZROOH_DIM); 
int room_sum; /• No of patches i n room •I 
byte curr_room; I • Current room •I 
int polycount; I• Actual no of polygons •I 
int polyquota; I • Polys to be assigned to PE•/ 
int xpatchSum(XCELLS) ,ypatchSum[YCELLS),zpatchSum[ZCELLS]; 
int 
int 
int 
int 

numpoly,maxpoly,minpoly; 
n,r,q; I• Mise s1ngular 
minRoomCount; 
max.RoomCount; 

counters • I 
/•Min polygons 
/•Max polygons 

I• Initialize the variables •I 

for(n • 0; n < XROOM_DIM; n++) 
for(r • 0; r < YROOH_DIM; r++) 

for(q : 0; q < ZROOH_DIM; q++) 
roomCount[n)[r)[q) = 0; 

for(n • 0; n < XCELLS; n++) 
xpatchCount(n) = xpatchSu.m[n) = 0; 

for(n • 0; n < YCELLS; n++) 
ypatchCount[n] = ypatchSum[n) = 0; 

for(n • 0; n < ZCELLS; n++) 
zpatchCount[n) : zpatchSum(n) = 0; 

I• Find the number of polygons per cell •I 
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for(i =O; i <oldPoly; i++) 
{ tempPoly = old_poly_lis t + i; 

} 

patchCenter[X] = patchCenter[Y] a patchCenter[Z] = 0.0; 
for(J = 0; j<tempPoly- >numverts; j ++) 
{ patchCenter[X] +• tempPoly- >verts[j] [X]; 

patchCenter[Y] += t empPoly->verts [j] [Y]; 
patchCenter[Z] += tempPoly->verts[j][Z]; 

} 

patchCenter[X] /= tempPoly->numverts ; 
patchCenter[Y] / = tempPoly->numverts; 
patchCenter [Z] /= tempPol y->numverts; 
xpatch = (plural byte) ((patchCenter[X] - MinX)/XCELLLfu~GTH); 

ypatcb = (plural byte) ((patcbCenter [Y) - MinY)/YCELLLENGTH); 
zpatch • (plural byte) ((patchCenter[Z] - Mi nZ)/ZCELLLENGTH); 

lf (xpatch >= XCELLS I I 
p_printf ("bad patch : 
exit(-1); 

} 

xpatcbCount[xpatch)++; 
ypatchCount[ypatch)++ ; 
zpatcbCount (zpatch]++; 

ypatch >• YCELLS I I zpatch >= ZCELLS) { 
%d ,%d,%d\n",xpatch,ypatch,zpatch); 

I• Verify that total number of polygons distributed along the x, y ~~d z 
cells is equal • / 

numpoly • 0; 
for(n • 0; n < XCELLS; n++) 
{ xpatcbSum[n) = reduceAdd32(xpatchCount [n]); 

numpoly += xpatchSum[n]; 
} 

printf("numpoly = %d\n",numpoly); 

numpoly = 0; 
for(n = 0; n < YCELLS; n++) . 
{ ypatcbSum[n] • reduceAdd32(ypatchCount [n] ); 

numpoly += ypatchSum[n); 
} 

printf ("numpoly = %d\n",numpoly); 

numpoly = 0; 
for(n = 0; n < ZCELLS; n++) 
{ zpatcbSum(n) = reduceAdd32(zpatchCount[n] ); 
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numpoly +c zpatcbSum[n]; 
} 

printf("numpoly c :t.d\n",nwnpoly); 

I• Distribute the polygons so that ~hey are approximately equal along the 
X - axis divisions. 

•I 
room_sum = 0; 
curr_room c 0; 
polycount c numpoly; 
for(n = 0; n < XCELLS; n++) 
{ polyquota = polycounti(XROOM_DlM-curr_room); 

if (_ABS(room_swn-polyquota) > _ABS(room_sum+xpatchSwn[n)-polyquota)) { 
xpatchRoom [n] = curr _room; 

} 

else { 
xroomBound[curr _room] = n•XCELLLENGTH; 
printf("x curr_room • :t.d; bound : :t.g\n",cu=_room,xroomBound[curr_roocj ) ; 

if (curr_room < XROOM _DIM-1) 
curr_room++; 

} 

xpatchRoom[n] ~ curr_room; 
polycount -= room_sum; 
room_sum = O: 

room_sum +• xpatcbSum[n]; 

1f (curr_room >= XROOM_DIM) { 
printf("bad curr_room. = :t.d\n",cu=_room); 
exit(- 1); 

} 
} 

xroomBound[curr_room] • n*XCELLLENGTH; 
printf("x curr _room c :t.d; bound a :t.g\n", cu=_room,xroomBound[curr_room]); 

I• Distribute the polygons so that they are approximately equal along the 
Y- axis divisions. 

•I 
room_sum = 0; 
curr_room = 0; 
polycount = numpoly; 
for(n = 0; n < YCELLS; n++) 
{ polyquota = polycount/ (YROOH_DIM-curr_room); 
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if (_ABS ( room_sum-polyquota) > _ABS (room_sum+ypatchSum[n) - polyquota)) { 
ypatchRoom [n] = curr_room; 

} 

else { 
yroomBound [curr_room] = n*YCELLLENGTH; 
printf("y curr _room = Y.d; bound= 'l.g\n",curr_room,yroomBound[curr_roo:n]); 

1f (curr_room < YROOM_DIM- 1) 
curr_room++; 

} 

} 

ypatchRoom [n) = curr_room; 
polycount -= room_sum; 
room_sum. = 0; 

room_sum += ypatchSum[n); 

1f (curr_room >= YROOM_DIM) { 

} 

printf("bad ycurr_room " 'l.d\n",cur r _room); 
exit ( -1) ; 

yroomBound[curr_room) • n•YCELLLENGTH; 
pri ntf("y curr_room • 'l.d; bound a 'l.g\n",curr_room,yroomBound[curr_room] ); 

I• Distri bute the polygons so that they are approximately equal along t he 
Z - axis divisions. 

•I 
room_sum • 0; 
curr_room = 0; 
polycount = numpoly; 
f or(n = 0 ; n < ZCELLS; n++) 
{ polyquota = polycount i(ZROOM_DIM-curr_room); 

if (_ABS(room_sum-polyquota) > _ABS(room_sum+zpat chSum[n}-polyquota)) { 
zpatchRoom[n] = curr_room; 

} 
else { 

zroomBound[curr_room] • n•ZCELLLENGTH; 
printf ("z curr_room = 'l.d; bound = 'l.g\n",curr_room,zroomBound[curr_r oom)) ; 

if (curr_room < ZROOM_DIM-1) 
curr_room++; 

zpatchRoom[n] = curr_room ; 
polycount -= room_sum; 
room_sum z- 0; 
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} 

} 
room_sum += zpatchSum(n); 

if ( curr_room >= ZROOM_DIM) { 

} 

printf("bad curr_room • 'l.d\n",curr_room); 
exit(-1); 

zroomBound(curr_room] = n*ZCELLLENGTH; 
prlntf("z curr_room • 'l.d; bound • 'l.g\n",curr_room,zroomBound[curr_room]); 

I* Find the number of polygons wi~hin each room *I 
for(i=O; 1<oldPoly ; i++) 
{ tempPoly = old_poly_list + i; 

patchCenter[X] = patchCenter[Y) = patchCenter[Z] = 0.0; 
for(j • 0; j<tempPoly->numverts; j++) 
{ patchCenter[X] += tempPoly->verts(j] [X]; 

patchCenter[Y] +a tempPoly->verts[j] [Y]; 
patchCenter(Z] +• tempPoly->verts[J][Z]; 

} 

patchCenter(X] I= tempPoly->numverts; 
patchCenter [Y] I= tempPoly->numverts; 
patchCenter[Z] I= tempPoly->numverts; 
xpatch c (plural byte) ((patchCenter[X]- MinX)/XCELLLENGTH); 
ypatch ~ (plural byte) ((patchCenter[Y) - kinY)/YCELLLENGTH); 
zpatch • (plural byte) ((patchCenter[Z]- MinZ)IZCELLLENGTH); 

if (xpatch >• XCELLS I I ypatch >= YCELLS I I zpatch >• ZCELLS) { 
p_printf("bad patch: Y.d,%d,'l.d\n" ,xpatch,ypatch,zpatch); 
exit(-1); 

} 

if (xpatchRoom[xpatch] >~ XROOM_DIM I I 
ypatchRoom(ypatch] >• YROOM_DIM I I 
zpatchRoom(zpatch) >• ZROOM_OIM) { 
p_pnntf ("bad patch room: 'l.d, 'l.d, 'l.d\n", 

xpatchRoom(xpatch] ,ypatchRoom[ypatch] ,zpatchRoom[zpatch)); 
exit(-1); 

} 

roomCount[xpatchRoom[xpatch))[ypatchRoom[ypatch))[zpatchRoom(zpatch) ]~+ ; 
} 

I* Print out the minimum and maximum number of polygons per room • / 
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minRoomCount = 10000; 
maxRoomCount = -HUGE; 
numpoly = 0; 
for(n = 0 ; n < XROOM_OIM; n++) { 

for (r • 0; r < YROOK_OIM; r ++) { 

} 

} 

for (q = 0 ; q < ZROOM_DIM; q++) { 

} 

roomsum[n) [r) [q) = reduceAdd32(roomCount(n) [r) [q]); 
minRoomCount = MIN(minRoomCount , roomsum[n)[r][q)); 
muRoomCount = MAX(muRoomCount , roomsum[n) [r] [q)); 
numpoly += roomsum[n] [r] [q] ; 
printf("room Y.d,Y.d,'l.d count= Y.d\n",n ,r,q ,roomsum [n)[r][q]); 

printf("nwnpoly = Y.d minRoomCount s Y.d m&.XRoomCount = Y.d\n", 
numpoly ,minRoomCount,maxRoomCount); 
fflush(stdout); 

I • Transfer the polgyons to the appropriate PE taking 1nto account the ~ay 
rooms are mapped onto the KasPar grid . 

all newPolyCount = 0; 

for( i=O; i<oldPoly; i++) 
{ tempPoly = old_poly_l ist + i; 

I• Find the Vlrtual room to which this polygon belongs •I 
patchCenter (X] • patchCenter[Y] • patchCenter[Z] a 0 .0 ; 
for (j = 0; j <tempPoly- >numverts ; j++) 
{ patchCenter[X] +• tempPoly- >verts[j] [X); 

patchCenter[Y] +• tempPoly->verts[j) (Y]; 
patchCenter[Z] +• tempPoly- >verts [j)[Z) ; 

} 

pat chCenter[X) I= tempPoly->numverts; 
patchCenter [Y) I= tempPoly- >numverts; 
patchCenter[Z) I= tempPoly->numvert s; 
xpatch = (plural byte) ((patchCenter[X) - MinX)IXCELLLENGTH); 
ypatch = (plural byte) ((patchCenter [Y) - KinY)IYCELLLENGTH); 
zpatch = (plural byte) ((pat chCenter[Z) - MinZ)IZCELLLENGTH) ; 

1f (xpatch >• XCELLS I I 
p_pri ntf (''bad patch : 
exit (- 1); 

} 

ypatch >= YCELLS I I zpatch >= ZCELLS) { 
l(d, Y.d, Y. d\n" ,xpatch, ypatch, zpat ch) ; 
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} 

xroom = xpatchRoom[xpatcb] ; 
yroom = ypatchRoom(ypatch]; 
zroom = zpatchRoom[zpatch]; 

if (xroom >= XROOM_DIM II yroom >= YROOM_DIM I I zroom >~ ZROOH_DIM) { 
p_printf("bad patch room: i(d,i(d,Y.d\n", xroom,yroom,zroom); 
exit(- 1); 

} 

I• Find the processors to which this room is assigned and get the processor 
to which to send the cur rent polygon 

• I 
room_rou = xroom•YROOM_DIM + yroom; 

if (room_row > nxproc) { 

} 

p_printf("bad room_rou 'l.d\n",room_ro..,); 
exit(-1); 

curr_yproc a room _rov; 
curr_xproc • ixproc; 

if (curr_yproc < 0 I I curr_yproc >• nyproc) { 
p_printf("bad yproc: i(d\n",curr_yproc); 
exit(-1) ; 

} 

all m = 0; 

I• Transfer the polygon t o the destination processor using router •I 
while ((plural) 1) { 

lf (connected(curr_yproc*nxproc ~ curr_xproc)) { 

all 
{ neuPoly = ne..,_poly_list + newPolyCount; 

ne..,PolyBuf • (plural int* plural)newPoly; 

oldPolyBuf = (plural int• plural)tempPoly; 

m = router [curr_yproc•nxproc + curr_xproc] .ne..,PolyCount; 
m++; 

142 



all if (m >= maxPEpoly) { 
p_prin-ef("bad m = 'l.d\n",m); 
exit(-1); 

} 

} 
} 

} 
} 

newPEpoly = roomsum[xroom) [yroom)[zroom]/nxproc+l; 
newPol yTo"tal = 

(curr_xproc < roomsum[xroom)[yroom)[zroom)-(newPEpoly-l) •nxproc? 
newPEpoly : newPEpoly- 1); 

1f (m > newPolyTo-eal) { 
curr_xproc++; 
curr_xproc %= nxproc; 
continue; 

} 

else { 

} 

for (n e 0; n < sizeof(Poly)/s izeof(int); n++) 
router[curr_yproc*nxproc+curr_xproc) .nevPolyBuf[n) = oldPolyBuf[n] ; 

router[curr_yproc*nxproc + curr_xproc) .newPolyCount = m; 
break; 

f * Print the number of minimum and maximum number of polygons to a processo 
after the above rou-ting and grouping of polygons to rooms. 

•I 
all 
{ numpoly = reduceAdd32(newPolyCount); 

maxpoly = reduceMax32(newPolyCount); 
minpoly = reduceMin32(newPolyCount); 
printf("new polys= 'l.d; max,. 'l.d, min= 'l.d\n",numpoly,maxpoly,minpoly); 

} 

!***************************•***************************************** 
clip_to_ortho_plane 

This routine clips the polygon according to one of the orthogonal 
planes specif1ed (X, Y, or Z) and returns the number of clipped 
vertices. 

143 



plural int clip_to_ortho_plane(n,src,si,sv,bad_side,dest) 
plural 1nt n; /• Number of vertices•/ 
plural float src[2•MAXVERT)[3]; I• Input vertices *I 
plural int si; I* Orthogonal Plane •/ 
plural float sv; I• Equation of ortho plane•/ 
plural int bad_side; 
plural float dest[2•MAXVERT) [3); I• Clipped verts •I 
{ 

plural int clipped_n ~ 0; 
plural int i ,k; 
plural int side,next_side; 
plural float t; 

I• this is really part of the loop in1tial1zation •/ 
if ((src [0) [si] - sv) < -Ll_NORM_MIN) side • -1; 

else if ((src[O] [si) - sv) > Ll_NORM_KIN) side = 
else side • 0; 

for (i ~ 0; i < n; i++){ 
I• add the point if side is the correct side •I 
if (side != bad_side){ 

if (clipped_n >= 2•MAXVERT) 

1; 

die("clip_to_ortho_plane","too many clipped verts",l); 
dest[clipped_n] [X] • src(i](X]; 
dest[clipped_n][Y) e src(i)[Y); 
dest[clipped_n++] [Z] = src[i][Z]; 

} 

I• no~ check to see if the edge has an intersection point •/ 
k = ((i+l) =: n? 0 : i+l); 
1f ((src[k)[si) - sv) < -Ll_NORM_MIN) next_side = - 1; 
else if ((src[k)[si] - sv) > Ll_NORM_MIN) next_side = 1; 
else next_side = o· ' 

if (side != 0 kk next_side != 0 kk side != next_side){ 
I• solve sv • t•(v2 - v1) + v1 *I 
I• and use the solut1on to compute the intersection •I 
t = (sv - src[i][si)) I (src[k)[si] - src[i)[si]); 
1f (clipped_n == 2*KAXVERT) 

die("clip_to_ortho_plane","too many clipped verts",l); 
dest[clipped_n) [X] • src(i] (X] + t*(src[k) (X] - src(i) (X)); 
dest[clipped_n)(Y] = src[i)[Y) + t•(src[k)[Y) src[i)[Y)); 
dest [cllpped_n++) (Z) = src (i] [Z) + t• (.src [k) (Z] - src [ i] [Z]) ; 

} 

side ~ next_side; 

144 



} 

return cl i pped_n; 
} 

!••••********************************••*****************************•* 
clip_face_to_box 

This routine clips the polygon to the six extents specified in its 
argument list and returns the clipped polygon vert i ces 

*********•************************•*******************************.**' 
plural i nt c l ip_face_to_box(xmin,xmax,ymin,ymax,zmin,zmax, f ,dest,orientatlon ,ex 
plural =loat xmin,xmax,ymin,ymax,zmin, zmax;/• Cl1pping extents•/ 
plural Poly* plural f; I• I nput Poly *I 
plural float dest (2•MAXVERT)(3); / • Output verts • / 
plural int orientation; / • Polygon orientation• / 
pl ural float ex (6); I* Input Poly extents•/ 
{ 

plur al int n; 
plural float b[2*MAXVERT](3); 
plural float v1(3),v2(3] ,norm(3]; 
plural int i,j,k; 

if ((n • f - >numverts) > KAXVERT) 
die("clip_face_to_box","too many verts in poly",l); 

for (i • 0; i < n; i••){ 

} 

dest [i] [X) ~ f->verts [i) (X) ; 
dest (i) [Y) = f - >verts (i](Y]; 
dest(i)(Z) = f ->verts(i](Z); 

sqitch (orientation){ 
case Z: I* have to clip to xmin,xmax, ymin,ymax *f 

if ( ex[MINZ) > zmax I I ex[MINZ] < zmin) return 0; 
if (!(n • cli p_to_ortbo_pl ane(n ,dest,(plural i nt )X , 

xmin , (plural int)(-l ), b))) 
return (plural int)O; 

if ( 1 (n = clip_to_ortho_plane(n,b, (plural int)X, 
xmax,(plural i nt) l,dest ))) 
return (plural int)O; 

if ('(n = clip_to_ortho_plane(n,dest,(plural i nt)Y , 
ymin,(plur al int)(-l),b))) 
return (plural int)O; 
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if (! (n = clip_to_ortho_plane(n,b,(plural int)Y, 
ymax,(plural int)l,dest))) 
return (plural int)O; 

break; 
case Y: I• have to clip to xmin,xmax, zmin, zmax *I 

if (ex(MINY) > ymax II ex(MHIY] < ymin) return 0; 
if (!(n = clip_to_ortho_plane(n,dest,(plural lnt)X, 

xmin,(plural int)(-l),b))) 
return (plural int)O; 

if (!(n = clip_to_ortho_plane(n ,b,(plural int)X, 
xmax,(plural int)1,dest))) 
return (plural int)O; 

if ( ! (n = clip_to_ortho_plane(n,dest, (plural int)Z, 
zmln,(plural int)(- l),b))) 
return (plural int)O; 

if (! (n • clip_to_ortho_plane(n,b,(plural i nt)Z, 
zmax,(plural int)1,dest))) 
return (plural int)O; 

break; 
case X: I • have to cl1p to ymin,ymax, zm1n, zmax *I 

if (ex(MINX) > xmax I I ex(MINX] < xmin) return 0; 
if (!(n = clip_to_ortho_plane(n,dest,(plural int)Y, 

ym1n,(plural int)( -l ),b)) ) 
return (plur al int)O; 

if (!(n = clip_to_ortho_plane(n,b, (plural int)Y, 
ymax,(plural int)i,dest))) 
return (plural int)O; 

if (!(n = clip_to_ortho_plane(n,dest,(plural i nt)Z, 
zmin,(plural int)(-1), b))) 
return (plural int)O; 

if (! (n = clip_to_ortho_plane(n,b,(plural int)Z , 
zmax,(plural int)l,dest))) 
return (plural int)O ; 

break; 
case SKEWX: 
case SKEllY: 
case SKEWZ: 

if (•(n • clip_to_ortho_plane(n,dest,(plural int)X, 
xmin,(plural int)(-1),b))) 
return (plural int)O; 

if (! (n = clip_to_ortho_plane(n,b,(plural int)X, 
xmax, (plural ut) 1 ,dest))) 
return (plural int)O; 

if (!(n = clip_to_ortho_plane(n,dest, (plural int)Y, 
ymin,(plural int)(-1),b))) 
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return (plural int)O; 
if (!(n = clip_to_ortho_plane(n,b,(plural int)Y, 

ymax , (plural int)l,dest))) 
return (plural int)O; 

:f (!(n = clip_to_ortho_plane(n,dest,(plural int)Z, 
zmin,(plural int)(-l),b))) 
return (plural int)O; 

if (!(n = clip_to_ortho_plane(n,b,(plural lnt)Z, 
zmax,(plural lnt)l,dest))) 

return (plural int)O; 
break; 

} 

I • need to check that the clipped poly is not degenerate •I 
if (n > 2){ 

for (i = 0; i < n; i++){ 
J " (i+l) '!. n; 
k "' (j +1) '!. n; 

vl [X) = dest [j] [X) - dest [i] [X] ; 
vl (Y] = dest [j) [Y] - dest [i] [Y] ; 
vl (Z] = dest [j] [Z) - dest (i) [Z); 

v2 [X) = dest (k] (X] - dest [j] (X]; 
v2 [Y) = dest [k) [Y) - dest [j) [Y) ; 
v2[Z] : dest [k) [Z] dest (j] [Z] ; 

norm(X)"' v1(Y)•v2(Z) - vl(Z)•v2[Y); 
norm(Y] = -vl[X] •v2[Z] + vl(Z]•v2[X]; 
norm (Z] = vl[X)•v2[Y] - vl[Y)•v2[X]; 

} 

if (fp_fabs(norm[X))+fp_fabs (norm[Y))+f p_fabs(norm[Z])< Ll_NORM_MIN) 
return (plural int)O; 

} 

return n; 
} 

else return (plural int)O; 

!******************************************************************** 
refine_ balance 

This function improves on the load balancing achieved by the 
routine balance(). It does this by patchifying at a finer level the 
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polygons on each processor . After this, the newly formed patches 
are further rebalanced across all the processors representing a 
room (a DPU row right now) 

***********************************•********************•************! 
refine_ balance() 
{float rowGrid[NYPROC]; 

1nt row_n; 
int rowPolyCount [NYPROC]; 
plural float gridSide[3]; I• Finer patchification grid • I 
plural inti, j, jj, k, 1, m; I• Mise counters • / 
plural Poly• plural tempPoly ; 
int n, r, q; I• Mise counters •/ 
plural float ex[3•2]; I• Extents of the polygon •I 
plural float clipbox(3•2); I • Clipping Box for patches•/ 
plural float normal(3] ; I• Normals of the polygon •I 
plural int orientation;/• Axis t o which the poly is mainly normal•/ 
plural int xO, x1, x2; / • Temporaries • I 
plural int xli, x2i, x1dim, x2dim; 
plural float wb[2•MAXVERT](3] ; I• Clipped vertices •I 
plural float new_verts[2•MAXVERT] [3]; 
plural Poly polyBuf; I• Temporary buffer for a poly•/ 
plural char polyBufvalid • 0; 
int maxRowpoly ; /• Max no of rows per poly •I 

I• Compute the max number of polys in a rov •I 
r • 0; 
for(n = 0; n < nyproc; n++) 
{ if (iyproc == n) 

r = MAX(r,reduceAdd32(nevPolyCount)); 
} 

I• Compute the new patchification grid for each rov •I 
for(n = 0; n < nyproc; n++) 
{ if (iyproc == n) 

} 

{ rovGrid[n) = f_sqrt(f_floor(r•1.0/{MAX(1,reduceAdd32(nevPolyCount}}}}}; 
gridSide[X] - XCELLLENGTH/rowGrld [n); 
gr idSide[Y) = YCELLLENGTH/rowGrid[n]; 
gridSide(Z] • ZCELLLENGTH/rovGrid(n]; 
I • Clamp at 24 • 24 inch patches •I 
gridSide[X] = MAX(24 .0,gridSide(X]); 
gridSide[Y) • MAX(24.0 ,gridSide[Y]); 
gridSide(Z) = HAX(24.0,gridSide[Z]); 

} 
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oldPoly • 0; 
for(l ~ 0; i < neYPolyCount; i++) 
{ tempPoly ~ new_poly_list + i; 

ex [Mill EX (X)) ~ ex [MINEX (Y)) = ex (HINEX (Z)] ~ HUGE; 
ex[MAXEX(X)] = ex[MAXEX(Y)) = ex[MAXEX(Z) ] ~-HUGE; 

I* Find the polgyon extents *I 
for(j ~ 0; j<tempPoly->numverts; j ++) 
{ ex[MINEX(X)] = MIN(ex(MINEX(X) ) ,tempPoly->verts[j](X]); 

ex(MINEX(Y)) = MIN(ex(MINEX(Y)] ,tempPoly->verts[j](Y]); 
ex[MINEX(Z)] = MIN(ex[MINEX(Z)] ,tempPoly->verts[j) [Z] ); 
ex[MAXEX(X)] = MAX(ex(MAXEX(X)] ,tempPoly->verts[J) [X]); 
ex (MAXEX(Y)] = MAX(ex[MAXEX(Y)] ,tempPoly->verts(j] [Y]); 
ex [MAXEX(Z)) = MAX(ex [MAXEX(Z)] ,tempPoly- >verts[j) [Z]); 

} 

I• Find the orientation - ie the principal axis which is most nearly 
normal to the polygon 

•I 
normal[X] ~ fp_fabs(tempPoly->eq[A]); 
normal[Y] = fp_fabs(tempPoly->eq[B]); 
normal[Z] = fp_fabs(tempPoly->eq[C]); 

if (normal[X) > normal[Y)) 
{ i f (normal[X) > normal[Z)) orientation = SKEWX ; 

else orientation • SKEWZ; 
} 

else 
{ if (normal(Y) > normal(Z)) orientation= SKEWY; 
else orientation • SKEWZ; 

} 
if ((normal(Y] == O)tt(normal[Z) == 0)) orientation = X; 
if ((normal[X) =~ O)tt(normal[Z) • = 0)) orientation • Y; 
if ((normal[Y] ~~ O)k&(normal(X) -~ 0)) orientation~ Z; 

switch (orientation) 
{ case X: case SKEWX: xl • Y· • x:2 = Z; xO = X; break; 

case Y: case SKEWY: xl s Z; x2 = x· xO = Y· break; • • 
case Z: case SKEWZ : x1 • X; x2 ~ Y; xO = Z; break; 

} 

I• Determine the clipping boxes required for patchifying the polygon •/ 
xli ~ (plural int)(fp_floor(ex[MlllEX(xl)] /gridSide[xl] )); 
x2i = (plural int)(fp_floor(ex [MINEX(x2)] /gridSide[x2])); 
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xldim = (plural int)(fp_ceil(ex[MAXEX(xl}]/gridSide[xl)}} - xli; 
x2dim ~ (plural int}(fp_ceil(ex[MAXEX(x2))/gridSide[x2])) - x2i; 

clipbox[MINEX(xO)) = ex[MINEX(xO)]; 
cllpbox[MAXEX(xO)] = ex[MAXEX(xO)]; 
clipbox[MINEX(xl)) = xli*gridSide[xl]; 
clipbox[MAXEX(xl)] = clipbox[MINEX(x1)) + gridSide[xl); 

I• Clip and ~rite out the ne~ finer patches from the polgyons •I 
for (1 = 0; l < xldim; l++) 
{ clipbox(MINEX(x2)) • x2i•gridSide(x2); 

clipbox [MAXEX(x2)) • cl ipbox[MINEX(x2)] + gridSide(x2]; 
~or (J = 0; J < x2dim; j++) 
{ if ((m • clip_face_to_box(clipbox(MINX] ,clipbox[MAXX], 

clipbox(MINY] ,clipbox(MAXY), 
clipbox[MINZ] ,clipbox[MAXZ] , 
tempPoly,wb,orientation,ex)) > 2) 

else 

} 

} 

{ if (m <= 4) 
~rite_patch(tempPoly,wb,m); 

} 

{ ~rite_patch(tempPoly,wb,(plural int)4) ; 
if (m%2 •= 1) k = m - 1; 
else k • m; 
for (jj • 1 ; jj <• (k-4}/2; jj++) 
{ for(r•O;r<3;r++) 

} 

{ new_verts(O] [r] = wb [OJ [r]; 
new_verts(l][r] = vb[(jj•2)+1](r]; 
nev_verts[2] [r) = vb[(jj•2)+2] [r); 
nev_verts[3][r] = wb[(jj • 2)+3] (r]; 

} 

vrite_patch(tempPoly,new_verts,(plural int)4}; 

if (mY.2 •= 1) 
{ for(ra0;r<3;r++} 

} 

{ nev_verts[O] [r] = wb (O] [r]; 
new_verts[1] [r] = wb[(j j•2)+1] [r]; 
new_verts [2] [r] = vb[(jJ•2)+2) [r]; 

} 

vrite_patch(tempPoly,new_verts, (plural int}3); 

clipbox[MINEX(x2}) = clipbox[MAXEX(x2)]; 
cllpbox[MAXEX(x2)] += gridSide[x2]; 
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} 

} 

clipbox[MINEX(xl)] = clipbox[MAXEX (xl)] ; 
clipbox[MAXEX(x1)] += gndSide(xl]; 

if ( oldPoly > maxPEpoly) 
{ orintf("Excessive Poly Counts after finer pa.tchification\n") ; 

p_printf ("['l.d ,Y.d]=Y.d ",ixproc,iyproc,oldPoly); 
} 

I• No~ try and balance the number of patches across each r ow •/ 

for(n = 0; n<nyproc; n++) 
{ if (iyproc •= n) ro~PolyCount (n) = reduceAdd3?.(oldPoly); 

rowPolyCount (n) I= nxproc; I+ Find the desired no of patches per proc • I 
} 

I • Start dis tributing patches to achieve the above no of patches per p~oc * I 
I • within rowPolyCount (n)+1 is ok •I 
~hile (oldPoly > rovPolyCount ( iyproc) + 1) 
{ tempPoly = old_poly_list + ( --oldPoly); 

for(n • 0 ; n<MAXVERT; n++) 
for (r=O; r<3; r++) 

polyBuf.verts(n](r] • tempPoly->verts[n) (r] ; 
f or(r : 0; r<4; r++) 
{ polyBuf.eq[r] • tempPoly->eq[r]; 

for (n = 0; n<MAXVERT; n++) 
polyBuf .colors (n] [r] • t empPoly->colors [n] (r ) ; 

} 

polyBuf.numverts = tempPoly->numverts ; 
polyBuf. area = tempPoly->area; 
polyBufvalid • 1; 

all for(q=O; q<nxproc q++) 
{ if (polyBufvalid) 

{ polyBufvalid = 0; 
if (ol dPoly <= rowPolyCount[iyproc]) 
{ tempPoly = old_poly_list ~ oldPoly++; 

for(n = 0; n<MAXVERT; n++) 
for(r=O; r<3; r++) 

tempPoly->verts[n][r] = polyBuf.verts(n) (r) ; 
for(r = 0; r<4; r++) 
{ tempPoly->eq[r] = polyBuf.eq(r]; 

for(n = 0; n<MAXVERT; n++) 
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} 

} 
} 

} 

tempPoly- >colors(n)(r) = polyBuf.colors[n)(r]; 
} 

tempPoly->numverts = polyBuf.numverts; 
tempPoly->area = polyBuf.area; 

} 

else 
{ ss_xsend(O,l,&polyBuf,kpolyBuf, sizeof(Poly)); 

xnetE(l) .polyBufvalid = (plural cnar)l; 
} 

I • Find the total and the maximum number of patches in a row •I 
f or (n~O; n<nyproc; n++) 

if (iyproc == n) { 

} 

row_n = reduceAdd32(oldPoly); 
?rintf("Total patches on row 'l.d = 'l.d\n" ,n,ro,_n); 
maxRowpoly = HAX(maxRowpoly ,row_n); 

printf ("max ro" patches = 'l.d\n" ,maxRowpoly); 

maxPEpoly = reduceMax32(oldPoly); 
printf("max PE patches • 'l.d\n" ,maxPEpoly); 

! ******************************************************************** 
vri te_patch 

This patch is written onto the current processor if it has 
enough memory space available. Else it is vr1tten to the nearest 
processor t hat has space for i t . 

.......•.....................•.....•........•........•......•..•..... , 
vr1te_patch(poly, verts, numverts) 
plural Poly• plural poly; I• Parent polygon •I 
plural float verts[2•MAXVERT) [3); I• Patch vertices •I 
plural int numverts; I• No of patch vertices•/ 
{ plural Poly* plural tempPoly; 

plural Poly polyBuf; 
plural char polyBuivalid = 0; 
plural int i,j; 
int n,r,q; 
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plural float temp_area; 

•empPoly = old_poly_list + oldPoly; 
temp_area = area(verts, numverts ); 

if (oldPoly < maxPEpoly) 
I* Write the patch on this proc if possible•/ 

{ for(n = 0; n<MAXVERT; n++) 

} 

for(r=O; r<3; r++) 
tempPoly->verts[n] [r] • verts[n] [r]; 

for(r • 0; r<4; r++) 
{ tempPoly->eq[r] • poly->eq[r]; 

} 

for(n = 0; n<MAXVERT; n++) 
tempPoly->colors(n][r] = poly->colors[n)[r]; 

•empPoly->numverts • numverts; 
•empPoly->area = temp_area; 
if(temp_area > 1. 0) oldPoly++; 

else I• Not enough memory on this processor •I 
if (temp_area > 1.0) 
{ for(n = 0; n<MAXVERT; n++) 

for(r=O; r<3; r++) 
polyBuf.verts[n] (r) • verts[n] [r]; 

for(r = 0; r<4; r++) 
{ polyBuf .eq[r) = poly->eq[r); 

} 

for (n = 0; n<MAXVERT; n++) 
polyBuf.colors[n)(r) • poly->colors(n)(r); 

polyBuf.numverts • numverts; 
polyBuf.area • temp_area; 

I* Spread to the nearest proc on the right •hat is still not fully fi l :ed•/ 
j = ixproc; 
i = j + 1; 
while ((i != j) ~ (polyBufvalid)) 
{ if (polyBufvalid) 

{ polyBufvalid = 0; 
if(oldPoly < maxPEpoly) 
{ tempPoly = old_poly_list + oldPoly++; 

for(n = 0; n<MAXVERT; n++) 
for(r=O; r<3; r++) 

tempPoly->verts [n] [r) = polyBuf.verts[n)[r]; 
for(r = 0; r<4; r++) 
{ tempPoly->eq[r) = polyBuf.eq[r); 
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} 
} 

} 

} 

for(n = 0; n<MAXVERT; n++) 
tempPoly->colors[n][r] = polyBuf .colors(n] [r]; 

} 
tempPoly->numverts = polyBuf.numverts; 
tempPoly->area = polyBuf.area; 
} 
else 
{ ss_xsend(O,l,&polyBuf,kpolyBuf,sizeof(Poly)); 

xnetE[l] .polyBufvalid = (plural char)!; 
} 

i = (i+1)%nxproc; 

/ •••••••••••••••••••••••••••••••••••••••**•****************•****••••• 
print_poly 

Print out the polygon tempPoly at processor(x,y) on the DPU . 

···············-········································••*~······•••! 
prlnt_poly(x,y,tempPoly) 
plural int x; 
plural int y; 
plural Poly* plural tempPoly; 
{ if ((ixproc =z x)&&(iyproc •• y)) 

p_printf("Poly at [Y.d,Y,d]: \n XO Y.f YO %t ZO Y.f\n X1 %f Yl %f Z1 Y.f\n X2 Y.~ 

} 
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