
Upper and Lower Bounds for One-Write
Multi valued Regular Registers

TR91-026

June, 1991

Soma Cbaudburi
Martha J. Kosa

Jennifer L. Welch

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Upper and Lower Bounds for

One-Write Multivalued Regular Registers

Soma Chaudhuri Martha J. Kosat Jennifer L. Welch

Department of Computer Science

University of North Carolina at Chapel Hill

Campus Box 3175, Sitterson Hall

Chapel Hill, NC 27599-3175

June 10, 1991

Abstract

This paper presents an algorithm for implementing a k-ary regular register (the logical register) using

k(k -1)/2 binary regular registers (the physical registers) that requires only one physical write per logical

write. The algorithm is simple to describe and depends on properties of paths in a related graph. Two

lower bounds on the number of registers required by one-write implementations are given. The first lower

bound holds for a restricted class of implementations and implies that our algorithm is optimal for this

class. The second lower bound, 2k -1- flog kl, holds for a more general class of algorithms. Both lower

bounds improve on the best previously known lower bound, which was k. Both lower bounds use a general

technique that we have formalized for "fooling the reader" into violating the regular property. Our second

lower bound uses a general result for transforming a one-write algorithm into another one-write algorithm

for fewer logical values using fewer physical registers. We show that for any one-write algorithm, there is

no advantage, in terms of number of physical registers, to be gained if readers write, or if different readers

follow different protocols, or if a reader's protocol depends on its history. Furthermore, for our second

class of algorithms, there is also no advantage to be gained if the reader reads some physical registers

more than once. These results are shown using transformation techniques similar to the one mentioned

previously.

t Contact Author. E-mail: kosa@cs.unc.edu

1 Introduction

In any concurrent system, processes need to communicate with other processes. Concurrent reads and

writes of shared memory cells, or registers, are required for communication. If the shared memory provides

more guarantees, then it is more useful to the users of the system, but implementing the shared memory

may be more difficult. Thus it is helpful to know which types of registers can implement which other

types and what the costs of these implementations are. Many such implementations have been developed

[Blo87, BP87, Lam86, LTV90, NW87, Pet83, SAG87, Tro89, VA86, Vid88, CW90].

In this paper we focus on implementing a k-ary regular register, the logical register, out of binary regular

registers, the physical registers, for k > 2. A register is a memory cell that supports concurrent reading and

writing by a collection of processes; we assume there are several readers but only one writer. A k-aryregister

can take on k different values; binary means 2-ary. The term "regular" refers to the consistency guarantee

provided in the presence of overlapping reads and writes: a read of a regular register must return either

the value of the most recent preceding write (a well-defined notion since there is only one writer) or the

value of an overlapping write. Although regularity is not as strong a guarantee as atomicity, which means

that the values returned by reads are consistent with some total ordering on all the operations that respects

the relative orderings of the operations, it seems to be much cheaper to implement and may very well be

sufficient for many applications. These definitions were introduced by Lamport [Lam86].

More specifically, we are interested in one-write algorithms-implementations with the property that

every WRITE to the logical register requires only one write to a physical register'. Since bounds on the

number -of physical accesses per logical access can be converted into time bounds for the logical access,

a one-write algorithm would have time-efficient logical WRITEs, perhaps an important characteristic for

applications in which WRITEs outnumber READs.

In this paper, we present a one-write algorithm for implementing a k-ary regular register out of binary

regular registers. Clearly this algorithm is optimal in the number of physical writes per logical WRITE.

The best previous upper bound was [logkl writes per WRITE, due to Chaudhuri and Welch [CW90]. The

algorithm is simple to describe using the complete graph whose nodes are labeled with the logical values.

Its correctness proof is based on properties of paths in this graph.

One drawback of our algorithm is that it requires k(k-1)/2 = O(k2) physical registers. The best previous

lower bound on the number of physical registers for a k-ary implementation was k [CW90], for any number

of physical writes per logical WRITE. Thus binary to k-ary implementations are inherently expensive in the

amount of "hardware" required. In this paper we show two improved lower bounds on the number of physical

registers in any one-write algorithm. Each lower bound holds for a natural class of implementations. The

first lower bound holds for a restricted class of implementations satisfying the toggle property. This lower

bound implies that our algorithm is optimal in the number of physical registers for this class. The second

"The names of logical operations will be capitalized in the remainder of this paper, and the names of physical operations

will remain in lower case.

1

lower bound, 2k- 1 - llog k J, holds for a more general and reasonably unrestrictive class of implementations

satisfying the symmetric property.

Our lower bounds are proved by contradiction; in both cases, the ultimate contradiction reached is a

violation of the regular property. We have formalized a general technique for proving that the regular

property does not hold by "fooling the reader" into returning an incorrect value. We also developed a

general transformation to convert a one-write algorithm for k values into a one-write algorithm for k - 1

values using fewer physical registers. This transformation is used in the inductive proof of our symmetric

lower bound. In proving these two lower bounds, we have developed considerable understanding of such

one-write algorithms. We can prove that, for any one-write algorithm, there is no advantage, in terms of

number of physical registers, to be gained if readers write, or if different readers follow different protocols, or

if a reader's protocol depends on its history. Furthermore, for symmetric algorithms, there is no advantage

if a reader reads some physical registers more than once. Thus our lower bound proofs are simpler, since we

assume the reader does none of the above. These results are shown with transformation techniques similar

to the one mentioned previously.

In Section 2, we present our basic definitions. Section 3 contains the algorithm and in Section 4 we prove

it is correct. Section 5 consists of our lower bounds. We conclude in Section 6.

Some of the results of this paper have appeared in preliminary form in [CKW91].

2 Definitions

We model each system component with an automaton. The automaton is a state machine whose state

transitions are labeled with actions. An execution of an automaton is an alternating sequence of states

and actions, beginning with an initial state, in which each action is enabled in the previous state and each

state change correctly reflects the transition relation for the intervening action.

The complete system is also modeled with an automaton, the composition of the components. Compo

nents communicate by sharing actions with the same name. When a shared action occurs, all components

sharing that action change state simultaneously.

Given a value set V and initial value v0 E V, a logical register implementation is the composition of

n readers, one writer, and m physical registers, defined below.

The ith reader, 1.::;: i 5 n, is an automaton that satisfies the following.

• It interacts with the environment of the logical register using actions READ(i) and RETURN(i, v),

v E V.

• It reads some subset of the physical registers using actions read; (i) and return; (i, v), v E {0, 1 }, where

j ranges over the physical registers read.

2

• It writes some (possibly empty) subset of the physical registers using actions write;(i, v), v E {0, 1},

and ackj, where j ranges over the physical registers written.

The writer is an automaton that satisfies the following.

• It interacts with the environment of the logical register using actions WRITE(v), v E V, and ACK.

• It reads some (possibly empty) subset of the physical registers using actions read;(O) and return;(O, v),

v E {0, 1}, where j ranges over the physical registers re.ad. (The first argument of 0 indicates the

writer.)

• It writes some subset of the physical registers using actions write;(v), v E {0, 1}, and ack;, where j

ranges over the physical registers written.

Given the value set {0, 1} and initial value w;, physical register X;, 1:::; j:::; m, is an automaton that

satisfies the following.

• It interacts with some subset of the read and write processes using actions readj(i) and returnj(i, v),

v E {0, 1}, where i ranges over the processes in the subset.

• It interacts with exactly one of the readers and the writer using write;(v) and ack; actions, v E {0, 1}.

In the complete system, the physical actions of the physical registers and of the readers and the writer

must "match up", i.e., X; has physical action ¢if and only if exactly one reader or writer has physical action

¢.

Each reader and the environment cooperate so that, for all i, READ(i) and RETURN(i, •) actions

alternate, starting with a READ(i). A READ(i) and its following RETURN(i, •) form a logical READ

operation. A logical READ is pending if it lacks its RETURN. Similarly, the writer and the environment

cooperate so that WRITE and ACK actions alternate, starting with a WRITE. A WRITE and its following

ACK form a logical WRITE operation. A logical WRITE is pending if it lacks its ACK.

Each reader, as well as the writer, cooperates with each physical register so that, for all i and j, read;(i)

and return; (i, *) actions alternate, starting with a re;>d; (i). A read; (i) and its following return; (i, •) form

a physical read operation. A physical read is pending if it lacks its return. Similarly, each reader, as

well as the writer, cooperates with each physical register so that, for all i and j, write;(i,•) and ack;(i)

actions alternate, starting with a write; (i, *). A write;(i, •) and its following ack; (i) form a physical write

operation. A physical write is pending if it lacks its ack.

We assume that the physical registers are regular and wait-free, i.e., each X; satisfies the following two

conditions.

3

• (Physical regular property) In every execution, every readj returns the value of an overlapping writej

or the value of the most recent preceding writej (the initial value Wj if there is no preceding writej)·

• (Physical wait-free property) For every finite execution in which X; has a pending physical operation,

the action to complete the operation is enabled in the last state of the execution.

In the complete system, the readers and the .writer must ensure that the logical register is regular and

wait-free, i.e., that the following two conditions hold.

• (Logical regular property) In every execution, every READ RETURNs the value of an overlapping

WRITE or the value of the most recent preceding WRITE.

• (Logical wait-free property) For every finite execution in which a reader or the writer has a pending

logical operation, there is a finite extension in which no other reader or writer takes steps and the

operation completes.

For simplicity in our proofs, we assume that each reader and the writer is quiescent (does not access the

physical registers) unless a logical operation is pending at that reader (or writer).

To describe a register implementation algorithm, it is sufficient to describe the code for the readers and

the writer. An algorithm is a one-write algorithm if, in every execution, every logical WRITE uses at

most one physical write.

We now define several terms which will be used in the discussion of one-write algorithms.

Let A be a one-write algorithm that uses m binary registers to implement a k-ary register with value set

V and initial value v0 . A confignration of A is an element C of {0, l}m; let C[•1 denote the ;th bit of C

fori E {1, ... , m}. The distance between two configurations C1 and C2, denoted d(C~o C2), is the number

of bits that differ in C1 and C2 . Configurations C1 and C2 are neighbors if d(C1, C2) = 1. A configuration

C is initial if C[•1 is the value of the ;th binary register in the initial state of A for all i E { 1, ... , m}. A

configuration C is reachable if there exists a state in an execution of A where no physical write is pending

such that C[z1 is the value of the ;th binary register in the state for all i E {I, ... , m}. (If a physical write is

pending, the value of that physical register is ambiguous.)

3 The Algorithm

In this section, we present our one-write algorithm.

Let V be the value set of the logical register, where lVI = k and vo E V is the initial value. Let Kv

be the complete graph with k nodes and r = C(k, 2) edges in which each edge is labeled with a distinct

number from the set {l, ... ,r} and each node is labeled with a distinct element from V. The special bit

4

set corresponding to v E V is defined as s(v) = { l E { 1, ... , r} : /labels an edge incident to the node labeled

v in Kv }. Since Kv is a complete graph, ls(v)l = k- 1 for all v E V.

Our algorithm uses r binary regular registers (bits). Each bit corresponds to an edge of K v. A reader

reads all r bits and returns the value of a function f applied to the configuration obtained. The function

f is defined below. The writer changes a bit only when the value of the logical register changes; when the

value is changed from v tow, the bit whose label is contained in s(v) n s(w) is changed. There is exactly

one such bit because there is exactly one edge connecting v and w in K v. Figure 1 is a formal description

of our algorithm.

We now define/, the value extraction function. For each v E V and configuration C, let count(C, v) =

l{i E s(v) : C[z1 = 1}1. Configuration C is valid if either (1) count(C, v) is even for all v E V, or (2)

count(C, vo) is odd and count(C, w) is odd for exactly one w # vo. Otherwise, Cis invalid. First we define f
for valid configuration C. If count(C, v) is even for all v E V, then let /(C)= vo. Otherwise, let /(C)= v,

where v # Vo and count(C,v) is odd. Now we define f for invalid configurations. Let c be the closest valid

configuration function, where c(C) is defined to be the first configuration in lexicographic order in the

set {D: Dis valid and d(C,D) is a minimum}. Define /(C), for C not valid, to be /(D), where D = c(C).

If a configuration C is valid, then there is a path in K v, not necessarily edge-disjoint, starting from the

node labeled with vo and initial configuration 0' such that when the path is traversed and the appropriate

bits are changed, then the resulting configuration is C. The resulting node is labeled v, where v = /(C).

For each i E {1, ... , r }, C(i] is the parity of the number of times edge i is traversed in this path. We now

explain the graph-theoretic concepts supporting our definition of count. Suppose the path corresponding to

valid configuration C is noncyclic. The two endpoints of the path are adjacent to an odd number of edges

in the path, while all internal nodes are adjacent to an even number. The last node in the path is entered

one more time than it is left; thus, the count for that node is odd. The first node in the path is left one

more time than it is entered; thus, the count for that node is odd. All other nodes are entered and left the

same number of times; thus, the counts for those nodes are even. C satisfies condition (2) of the definition of

valid. Suppose the path corresponding to valid configuration C is cyclic. All nodes in the cycle are adjacent

to an even number of edges in the cycle. All nodes in the cycle are entered and left the same number of

times; thus, the counts for all the nodes are even. C satisfies condition (1) of the definition of valid.

4 Proof of Correctness

In this section, we prove that our algorithm implements a k-ary regular register from binary regular registers.

The bulk of this section is devoted to showing that the logical register satisfies the regular property.

Lemma 4.1 shows that any reachable configuration is valid and is mapped by f to the value which was

written to the register by the last completed WRITE.

5

Physical Registers (Bits): X 1, ... , X., initially X; = 0, for all j E { 1, ... , r}

Reader i, 1 :5 i :5 n: variables x1, ... , Xr

READ(i):

for j := 1 to r do

read; (i)

return;(i,x;)

endfor

RETURN(i,J(xo . .. Xr-1))

Writer: variables x1, ... , x., initially x; = 0, for all j E {1, ... , r }, and

old, initially old= vo

WRITE(v):

if v # old then

end if

ACK

pick i from s(v) n s(old)

write;(x;)

acki

Xi :=Xi

old:= v

Figure 1: One-Write Algorithm

Lemma 4.1 Let C be a reachable configuration resulting from a sequence of m physical writes corresponding

to the logical values v1, v2, ... , Vm. Then Cis valid, and f(C) = Vm.

Proof We proceed by induction on m.

Basis: (m = 0.) Then Cis the initial configuration and is valid, and f(C) = v0 •

Inductive step: (m > 0.) Suppose the lemma is true for m-1. Now we show that it is true form. Suppose the

sequence of logical values is v1 , v2 , ••. , Vm-l, Vm and the sequence of corresponding reachable configurations

is c1, c2, ... ' Cm-1. Cm. By the inductive hypothesis, Cm-1 is valid, and f(Cm-1) = Vm-1· If Vm-1 = Vm,

then Cm trivially is valid, and f(Cm-d = f(Cm) because Cm = Cm-1· Thus, suppose that Vm-1 # Vm·

There are two possibilities for Vm-1· Either Vm-1 = vo, or Vm-1 '# vo.

Case 1: Vm-1 = vo. Then count(Cm-1,v) is even for all v E V. When the write for Vm is performed,

the unique bit b E s(vo) n s(vm) is changed. Thus count(Cm, vo) and count(Cm, vm) become odd, and

count(Cm,v) remains even for all v E V- {vo,vm}· Therefore Cm is valid, and f(Cm) = Vm.

6

Case 2: Vm-1 # va. Then count(Cm-1, va) and count(Cm-1, Vm-d are odd, and count(Cm-1, v) is even

for all v E V- {vo,Vm-d· When the write for Vm is performed, the unique bit bE s(vm-d n s(vm) is

changed. There are two possibilities for Vm. Either Vm = vo, or Vm =j:. va. First suppose that Vm = vo. Thus

count(Cm, va) and count(Cm, Vm-d become even, and count(Cm, v) remains even for all v E V- { va, Vm-d·

Therefore Cm is valid, and f(Cm) = va. Now suppose that Vm # va. Thus count(Cm, vm) becomes odd,

count(Cm, va) remains odd, and count(Cm, v) is even for all v E V- { Vo, Vm}· Therefore Cm is valid, and

f(Cm) = Vm. •

We need to show that the logical register implemented by our algorithm satisfies the regular property.

If a reader RETURNs value v, we must show that v was actually written to the register by some WRITE

overlapping the READ or by the last WRITE preceding the READ. This is nontrivial because a slow reader

can read either a reachable or a nonreachable configuration by noticing traces from many WRITEs to the

logical register by a fast writer. Lemma 4.2 shows that a WRITE(v) operation has occurred during an

interval in an execution if a bit in s(v) is changed during that interval. Lemma 4.3 shows that if two valid

configurations agree in all bits of s(v) for some v and one is mapped to v by the value extraction function,

then the other must be mapped to v by the value extraction function. Lemma 4.4 shows that an invalid

configuration C agrees with its closest valid configuration CN in the special bits corresponding to f(CN).

Lemma 4.5, which shows that the reader will RETURN a correct value of the register no matter what

configuration it reads, is the main result of this section. The proof of Lemma 4.5 uses Lemma 4.2 initially

to deduce that if a value is not written to the logical register, then its special bit set remains unchanged. If

the reader reads a reachable configuration, then Lemma 4.3 is applied to deduce the correctness of the value

RETURNed. Otherwise, Lemmas 4.4 and 4.3 are applied to deduce the correctness of the value RETURNed.

Lemma 4.2 For any interval in any execution, if no WRITE(v} operation overlaps the interval or occurs

as the last preceding WRITE, then the bits in s(v) are not changed during the interval.

Proof Suppose in contradiction that a bit in s(v) is changed during the interval. Then the value in the

register changed from some w to v or the value in the register changed from v to some w. This is impossible

because no WRITE(v) operation overlapped the interval or occurred as the last preceding WRITE. Therefore,

the lemma is true. •

Lemma 4.3 Choose any valid configurations C and D. If f(D) = v and C[i] = D(i] for all i E s(v), then

!(C)= v.

Proof There are two cases to consider. Either v = v0 , or v =/= vo.

Case 1: v = vo. Thus count(D, w) is even for all wE V. Since C[i] = D(•1 for all i E s(v0), count(C, v0) =
count(D, va). Thus count(C, w) is even for all wE V because Cis valid. This implies that f(C) = vo.

Case 2: v # va. Thus count(D,v) is odd. Since C(i] = D(i] for all i E s(v), count(C,v) = count(D,v).

Thus count(C,va) is odd and count(C,w) is even for all wE V- {v0 ,v} because Cis valid. This implies

that f(C) = v. •

7

Lemma 4.4 Choose any invalid configuration C. Let D = c(C) and v = f(D). Then C[iJ = D[z] for all

i E s(v).

Proof Suppose in contradiction that there exists at least one bit b E s(v) such that C and D are not equal

in that bit. Thus d(C, D) = I 2:: 1. Change bit b in D to yield Cv. Cv is valid and Cv[bJ = C[bJ. So

d(C, Cv) = I- 1. This is a contradiction, because D was supposed to be the closest valid configuration to

C. Therefore, the lemma is true. •
Lemma 4.5 Let C be the configuration obtained by a reader during some execution of the READ protocol.

Suppose f(C) = v. Then the value v was written by a WRITE which overlapped the READ or the value v

was the result of the last WRITE preceding the READ.

Proof Assume for contradiction that the value v was not written by a WRITE which overlapped the READ

and the value v was not the result of the last WRITE preceding the READ. Thus no state of the algorithm

during the READ has the physical registers in a configuration with value v. By Lemma 4.2, the bits in s(v)

are never changed during the READ. Let D be any reachable configuration resulting from either the last

preceding WRITE or any overlapping WRITE. Dis valid by Lemma 4.1, and D[i] = C[i] for all i E s(v).

There are two cases to consider. Either Cis a valid configuration, or Cis an invalid configuration.

Case 1: Suppose Cis valid. Since D has the same values as C for the bits in s(v) and /(C)= v, f(D) = v

by Lemma 4.3, which is a contradiction.

Case 1!: Suppose Cis not valid. Let CN = c(C). Then f(CN) = v. By Lemma 4.4, C[z] = CN[zl for all

i E s(v). By the transitive property of equality, CN[i] = D[i] for all i E s(v). By Lemma 4.3, f(D) = v,

which is a contradiction. •

The result of Lemma 4.5 proves the following theorem. The logical register is seen to be wait-free by

inspecting the code of the read and write processes.

Theorem 4.1 A one-write algorithm for implementing a k-ary regular register from binary regular registers

exists.

5 Lower Bounds on Number of Registers

We have proven the existence of a one-write algorithm for implementing a k-ary regular register from binary

regular registers. The number of registers used by our algorithm is very large, C(k, 2) = O(k2). The best

previously known lower bound on the number of registers for this problem is k, shown by Chaudhuri and

Welch [CW90]. In this section we establish lower bounds on the number of registers required by two classes

of one-write algorithms. Subsection 5.1 gives a lower bound of C(k, 2) for the class of one-write algorithms

8

satisfying the toggle property. Subsection 5.2 gives a lower bound of 2k -1- Llog k J for the class of one-write

algorithms satisfying the symmetric property. These properties are defined below.

A one-write algorithm with the following properties is a normal form algorithm.

1. no reader performs a physical write

2. every reader has the same program

3. every reader starts in the same state at the beginning of every READ

In Subsection 5.3, we show how any one-write algorithm can be converted to a normal form algorithm

without increasing the number of physical registers. Thus we can, without loss of generality, restrict our

attention to normal form algorithms.

If one-write algorithm A uses m binary registers, A has 2m configurations. These configurations are

nodes in a directed m-dimensional hypercube HA. If configurations C1 and C2 are neighbors, then both

(Ct,C2) and (C2,C1) are edges of HA. An edge (Ct,C2) of HA is an algorithm edge if C, and C2 are

reachable configurations and C2 can be derived from C1 after one WR1TE operation. An edge (C,, C2) of

HA is labeled with i, where i is the bit in which c, and c2 differ.

A one-write algorithm A has the symmetric property iffor all configurations C,, C2 that are neighbors,

(C1, C,) is an algorithm edge of HA if and only if (C2, C1) is an algorithm edge of HA. If A satisfies the

symmetric property, the two directed edges connecting any pair of neighboring configurations are either both

algorithm edges or both non-algorithm edges. Thus the two directed edges can be replaced by one edge which

is either an algorithm edge or a non-algorithm edge. Therefore, HA can be considered an undirected graph.

In Subsection 5.3, we show how an arbitrary symmetric algorithm can be transformed into a symmetric

algorithm using no more registers in which every reader reads each physical register at most once during

a READ. Thus we can assume without loss of generality that in a symmetric algorithm every ·reader reads

each physical register at most once during a READ. The symmetric property seems reasonably unrestrictive

and it may allow for implementations requiring fewer physical registers.

A one-write algorithm has the toggle property if for each pair of distinct v, wE V, there exists a bit I

such that whenever the value of the logical register is changed from v to w or from w to v, bit I is written.

A one-write algorithm satisfying the toggle property trivially satisfies the symmetric property. The toggle

property is an overly restrictive property for a one-write algorithm. Our algorithm satisfies this property.

We will show that our algorithm is optimal in the class of algorithms satisfying this property with respect

to the number of physical registers.

In our lower bound proofs, we want to deduce the value which must be RETURNed by a reader given a

particular configuration of the physical registers. This is analogous to the value extraction function from our

algorithm in Section 3. However, for our algorithm, every reader reads every physical register exactly once

during a READ. This makes f easily defined but overly restrictive for proofs of lower bounds. We consider a

9

more general class of symmetric algorithms in which a reader does not have to read all the physical registers.

Thus we need a slightly more complex definition of a general value extraction function. We first define the

term consistent. Bit i is consistent with configuration C if the value of bit i is C(i]. Let A be a symmetric

algorithm for implementing a k-ary regular register from m binary regular registers. For algorithm A we

define a general value extraction function fA : {0, 1}m--> V. If no reader ever reads bits consistent with

configuration C, then fA (C) is undefined. If all the bits that a reader reads are consistent with configuration

C and the reader RETURNs v, then fA(C) = v. Thus fA is a partial function. We now discuss why fA

is well-defined. Consider two logical READs. Suppose the reader performing the first logical READ reads

a subset S, of the physical registers, RETURNing v,, and the reader performing the second logical READ

reads a different subset 52 of the physical registers, RETURNing v2, where v, f= v2. Suppose all bits in

S1 U S2 are consistent with C. This is impossible because the readers have the same program and start

their READs in the same initial state. For the readers to read two different sets of physical registers, there

must be some physical register for which the first reader obtained 1 and the second reader obtained 0 (or

vice versa). Thus one of the readers did not read bits consistent with configuration C. Therefore, fA is

well-defined.

We now define terms which will be used in the formalization of our general technique for "fooling the

reader", which is Lemma 5.1. Let A be a one-write algorithm for implementing a k-ary regular register from

m binary regular registers that satisfies the symmetric property. Let S be a set of reachable configurations

and C be a configuration. Cis constructible from S for each i E {1, ... , m}, there exists a C' E S such that

C'(i] = C(•l (A similar definition was given in (JSL90].) Let !A(S) = {!A(C): C E S}. Sis connected if

for all distinct D, E E S, there exists a path from D toE in HA consisting only of algorithm edges in which

every configuration on the path is an element of S.

Given a configuration C which is constructible from a connected set of configurations S, Lemma 5.1 states

that fA(C) must be in fA (S). In our lower bound proofs, we try to contradict Lemma 5.1 (build an execution

in which a reader is ''fooled") in order to obtain the desired lower bounds. We obtain a contradiction by

identifying a connected set S of configurations and showing how there is a constructible C with the wrong

value. We call this our "fooling the reader" technique.

Lemma 5.1 Let A be a one-write algorithm that satisfies the symmetric property. For all configurations C

and connected sets of reachable configurations S, ifC is constructible from S, then !A(C) E fA(S).

Proof Suppose in contradiction that fA (C) fi fA (S). Consider the following execution of A. First the writer

executes a sequence of WRITEs so that the resulting configuration of the physical registers is in S. This

sequence exists because S is reachable. Then a logical READ starts. For all i, whenever the reader is about

to read bit i, the writer executes a sequence of WRITEs with the following properties: (1) the configuration

of the physical registers after each WRITE is in S, and (2) the final configuration D is such that C(i] = D(i].

Since S is connected, this sequence exists. Thus the reader returns fA (C), which violates the regular property

because fA (C) was not the value of any overlapping WRITE or of the preceding WRITE. •

10

This lemma is true for nonsymmetric algorithms if S is a strongly connected set and the definition of

fA is appropriately modified. In the general case, we can define fA(C) to be the value RETURNed by a

reader if all the bits that a reader reads are consistent with configuration C and if the reader never sees two

different values for the same bit during the READ. The lemma might be useful in proving lower bounds for

nonsymmetric algorithms.

5.1 Toggle Property

We can show that the upper bound of C(k, 2) is tight for the class of algorithms satisfying the toggle

property (which includes our algorithm). Every algorithm A with the toggle property can be represented by

the complete graph on k nodes, in which each node is labeled with a distinct element from V and the edge

between v and w is labeled with some I E {1, ... , m} (when the value of the logical register is changed from

v to w or vice versa, bit I is changed), where m is the number of binary registers used by A. Call this graph

GA.

When k = 3, k = C(k, 2); thus our algorithm is trivially optimal in the number of binary regular registers

used. Theorem 5.1 shows that C(k, 2) binary regular registers are necessary for any k ~ 4.

Theorem 5.1 For all one-write algorithms A for implementing a k-ary {k ~ 4) regular register from binary

regular registers, if A has the toggle property, then the number of binary regular registers used by A is at

least C(k, 2).

Proof Suppose that A is a one-write algorithm for implementing a k-ary regular register from binary regular

registers, where A has the toggle property and the number of registers used by A is less than C(k, 2). Then

there is some register i such that i is the label of at least two edges in G A, say (v,, vz) and (v3, v4). Suppose ·

the edges have a common endpoint. Without loss of generality, assume v1 = va. Then v2 :f; v4 because

otherwise the edges would be the same. If the current value of the logical register is v1 and bit i is changed,

the new value of the logical register is both v2 and v4, which is ambiguous. Thus the edges are disjoint;

v1, v2, va, and v4 are distinct.

Let j, where j I i, label the edge (v1,v3) of GA. Let C1 be any configuration such that !A(CI) = v1.

Let C2 be the configuration that differs from C, only in bit i. Let C3 be the configuration that differs from

C1 only in bit j. Let C4 be the configuration that differs from C1 only in bits i and j. By the definition of

GA, Cz, C3, and C4 are reachable configurations, and !A(Cz) = v2, !A(C3) = v3, and !A(C•) = v4. Figure 2

shows the relationships among C1,C2,C3, and C4. C2 is constructible from the connected set {C1, C3, C4}.

But !A(C2) = v2 is not in /A({C1,C3,C4}) = {v1,v3,v4}, contradicting Lemma 5.1. •

5.2 Symmetric Property

The symmetric property seems to be desirable since it seems intuitive that an algorithm with this property

would use fewer registers. Also, it makes a lower bound proof easier since we can use the "fooling the

11

c,

8
i/~

c2

'/.
Cs

8
c.

Figure 2: Relationships Among the Four Configurations in the Proof of Theorem 5.1

reader" technique. Let SY M(k) be the set of all one-write algorithms which implement a k-ary regular

register from binary regular registers and satisfy the symmetric property. For an algorithm A E SY M(k),

let RA (k) be the number of binary registers used by A. Let R(k) be the minimum number of binary registers

required by any one-write algorithm in SY M(k). The main result of this section is Theorem 5.2, which

states that R(k) > 2k- 2- llogkJ. The proof of Theorem 5.2 is inductive. Lemma 5.2, which shows that

4 binary regular registers cannot implement a 4-ary regular register, forms the base case for the proof. In

the inductive step, either k is a power of 2, or k is not a power of 2. If k is a power of 2, then Lemma 5.4,

which proves that R(k) '=: R(k- 1) + 1, is used. If k is not a power of 2, then Lemma 5.5, which proves

that R(k) '=: R(k - 1) + 2, is used. Then some algebraic manipulations enable us to derive the desired lower

bound. The proofs of Lemmas 5.4 and 5.5 use Lemma 5.3, which gives conditions under which a one-write

algorithm can be converted into a one-write algorithm for fewerlogical values using fewer physical registers.

The proof of Lemma 5.3 consists of a general algorithm transformation.

Lemma 5.2 R(4) > 4.

Proof Suppose in contradiction that there exists an algorithm A such that RA(4) = 4. Suppose without

loss of generality that V = {R,G,B, Y}, the initial configuration is 0000, !A(OOOO) = R, fA(lOOO) = G,

!A(0100) = B, and !A(0010) = Y. We now attempt to assign values to the remaining 12 configurations.

Figure 3 shows the current assignment of values to configurations and the possibilities for some currently

unassigned configurations. Because A is a one-write algorithm, we only need to consider configurations which

differ in one bit from the last assigned configuration 1000. We cannot assign two different values to the same

configuration. Thus, we have six choices to consider:

12

1. fA(1010) =Band fA(1100) = Y.

2. /A(1010) =Band fA(1001) = Y.

3. /A(1001) =Band fA(1100) = Y.

4. fA(1100) =Band fA(1010) = Y.

5. fA(1100) =Band /A(1001) = Y.

6. fA(1001) =Band fA(1010) = Y.

We can eliminate choices 1 and 2 by showing that /A(1010) i B. !A(1010) i B because otherwise 0010 is

constructible from the connected set {0000, 1000, 1010} and !A(0010) = Y is not in !A({0000, 1000, 1010}) =

{R, G, B}, contradicting Lemma 5.1. We can eliminate choice 3 by showing that fA(1100) i Y. fA(1100) i
Y because otherwise 0100 is constructible from the connected set {0000, 1000, 1100} and !A(0100) = B is

not in !A({0000, 1000, 1100}) = {R, G, Y}, contradicting Lemma 5.1.

We now show how to eliminate choices 4, 5, and 6. We consider each of the three choices in turn.

Case 4. Figure 4 shows the current assignment of values to configurations and the possibilities for

some currently unassigned configurations. !A(0110) i G because otherwise 0110 is constructible from the

connected set {0000,0010,0100} and !A(0110) is not in !A({0000,0010,0100}) = {R,B,Y}, contradicting

Lemma 5.1. Thus, we only have one choice to consider: /A(0101) = G and !A(0110) = Y. Figure 5

shows the current assignment of values to configurations and the possibilities for some currently unassigned

configurations. fA cannot map 0011 to both G and B. This case leads to a dead end.

Case 5. Figure 6 shows the current assignment of values to configurations and the possibilities for some

currently unassigned configurations. As in Choice 4, !A(0110) i G and thus !A(0101) = G and !A(0110) =

Y. Figure 7 shows the current assignment of values to configurations and the possibilities for some currently

unassigned configurations. /A(1010) i B because otherwise 1000 is constructible from the connected set

{0000, 0010, 1010} and /A(1000) = G is not in fA({0000, 0010, 1010}) = {R, B, Y}, contradicting Lemma 5.1.

Thus, we only have one choice to consider: !A(1010) = G and !A(0011) =B. Figure 8 shows the current

assignment of values to configurations and the possibilities for some currently unassigned configurations.

fA(1101) i R because otherwise 1001 is constructible from the connected set {0000, 1000, 1100, 1101} and

/A(1001) = Y is not in fA({0000, 1000, 1100, 1101}) = {R, G, B}, contradicting Lemma 5.1. /A(1110) i R

because otherwise 0110 is constructible from the connected set {0000, 1000, 1100, 1110} and /(0110) = Y is

not in fA({0000, 1000, 1100, 1110}) = {R, G, B}, contradicting Lemma 5.1. This case leads to a dead end.

Case 6. Figure 9 shows the current assignment of values to configurations and the possibilities for

some currently unassigned configurations. !A(0110) i G because otherwise 1010 is constructible from the

connected set {0000, 1000,0100, 0110} and !A(1010) = Y is not in fA({0000, 1000,0100, 0110}) = {R, G, B},

contradicting Lemma 5.1. fA(llOO) i Y because otherwise 1000 is constructible from the connected set

13

R

/f~
G B A 0100

B y
llOO llOO
1010 1010
1001 1001

y
0010

Figure 3: First Set of Choices

{0000, 0100, llOO} and !A(1000) = G is not in fA({0000, 0100, llOO}) = {R, B, Y}, contradicting Lemma5.1.

Thus, we have three choices to consider:

6.1. !A(llOO) = G and !A(OllO) = Y.

6.2. /A(1100) = G and !A(0101) = Y.

6.3. fA(0101) = G and fA(OllO) = Y.

We consider each of the three choices in turn.

Case 6.1. Figure 10 shows the current assignment of values to configurations and the possibilities for

some currently unassigned configurations. fA cannot map 0011 to both G and B. This choice leads to a

dead end.

Case 6.2. Figure ll shows the current assignment of values to configurations and the possibilities for

some currently unassigned configurations. fA(OllO) =/= G because otherwise 0100 is constructible from

the connected set {0000,0010,0110} and fA(0100) = B is not in fA({OOOO,OOIO,OllO}) = {R,G,Y},

contradicting Lemma 5.1. fA(OOll) =/= G because otherwise 1001 is constructible from the connected set

{0000, 1000,0010,0011} and !A(1001) = B is not in !A({OOOO, 1000,0010,00ll}) = {R,G, Y}, contradicting

Lemma 5.1. This case leads to a dead end.

Case 6.3. Figure 12 shows the current assignment of values to configurations and the possibilities for

some currently unassigned configurations. fA cannot map 0011 to both G and B. We have nowhere else to

backtrack.

Thus, R(4) > 4.

•

14

R

/f~
G B Y A 0100~010

B Y G Y
1100 1010 0110 0110

0101 0101

Figure 4: Case 4 and Second Set of Choices

R

/f~
G B Y A 0100~0~

B Y G Y G B
1100 1010 0101 0110 0011 0011

Figure 5: Case 4 - Remaining Choice

R

/f~
G B Y A 0100~010

B Y G Y
1100 1001 0110 0110

0101 0101

Figure 6: Case 5 and Second Set of Choices

15

R

/f"' G B Y

~ 0100~0~
B Y G Y G B

1100 1001 0101 0110 1010 1010
0011 0011

Figure 7: Case 5 and Third Set of Choices

G B Y

~ 0100~0~
B Y G Y G B

~0 1001 0101 0110 1010 0011

R y
1110 1110
1101 1101

Figure 8: Case 5 and Fourth Set of Choices

G B Y
~ 0100~010

B Y G Y
1001 1010 1100 1100

0110 0110
0101 0101

Figure 9: Case 6 and Second Set of Choices

16

R

/f" G B Y

~ 0100~0~
B Y G Y G B

1001 1010 llOO Ol10 OOll OOll

Figure 10: Case 6.1

G B Y

~ 0100~0~
B Y G Y G B

1001 1010 llOO 0101 OllO OllO
0011 OOll

Figure 11: Case 6.2

G B Y

~ 0100~0~
B Y G Y G B

1001 1010 0101 OllO OOll OOll

Figure 12: Case 6.3

17

Lemma 5.3 Consider any A E SY M(k) with RA(k) = m. Supposk there exists a reachable configuration

C and a value w f fA(C) such that C hasp neighbors D with fA(D) = w. Then there exists a one-write

algorithm A' E SY M(k- 1) with RA'(k- 1) $ m- p.

Proof We show how to construct A' given A. A' will implement a logical register with value set V - { w},

where V is the value set of the logical register implemented by A, and initial value vo E V - { w}.

For each i E {1, ... ,p}, let C; be the neighbor of C that differs from C in bit b;, where !A(C;) = w.

Consider the set S of all configurations L reachable from C by a path of algorithm edges in which no

configuration X with fA(X) = w appears in the path. Let Z be the subgraph of HA in which the node set

isS and the edge set is the set of all edges inS x S that are algorithm edges in HA. No edge in Z is labeled

with any bit in {b1, b2 , ... , hp} because otherwise some Ci is constructible from S, which is connected, and

!A(C;) = w is not in /A(S), contradicting Lemma 5.1.

Algorithm A' will use m - p binary regular registers. We now define the initial configuration for A'.

Assume without loss of generality that b1 through bp are the last p bits and they are all 0 in C. Thus, b1

through bp are all 0 in every configuration inS. Given DES, define 1r(D) to be the prefix of D consisting

of all but the last p bits. (These will be the reachable configurations of A'.) If !A(C) = vo, let Do =C.

Otherwise, let Do be the neighbor of C in Z such that fA(Do) = v0 • Clearly Do exists. We define the initial

configuration of A' to be 1r(Do).

We now describe the reader's protocol in algorithm A'. The reader's protocol in algorithm A' is the same

as the reader's protocol in algorithm A, except that the reader in A' has local bits c1, ... , cp corresponding

to shared bits b1 , .•• , bp in A. The value of bit c; is 0 for each i E {1, ... , p} at all times. Whenever reader

j in A reads shared bit b;, the reader in A' reads local bit c; using action localread(j, c;).

We now describe the writer's protocol in algorithm A'. If the current configuration of the physical

registers (well-defined becanse readers do not write) is 1r(E) for some E E Sand WRITE(x), for x not the

current value of the logical register, is the next operation, then the writer changes bit b, where b labels the

algorithm edge (E, D) in Z and fA(D) = x. An easy induction shows that in every state of every execution

of A' the physical registers always form a configuration E such that E = 1r(E) for some E E S.

Now we must show that algorithm A' implements a (k- 1)-ary regular register. Algorithm A' clearly

holds (k- 1) values and satisfies the wait-free property. We now show that the regular property holds.

Consider any execution e' of algorithm A'. We build a corresponding execution e of algorithm A as follows.

We construct a sequence of actions of A by starting with a sequence of logical WRITEs to ensure that the

configuration of the physical registers is D0 • We then consider each action in the execution of A' in turn.

If the action is not a read of a local bit c; by reader j, then the action is placed as is in the sequence. If

the action is a read of a local bit c; by reader j, then the actions read,,(j) and return,,(j,O) are placed in

order in the sequence. By construction, there exists an execution_ e of A with the sequence of actions just

constructed. By the assumption about A, e satisfies the regular property. Suppose a READ by reader j in

18

execution e' of algorithm A' RETURNs value v. Then the corresponding READ in the constructed execution

e of algorithm A also RETURNs value v. We must prove that v is a proper value to RETURN in e'. In

e, v is the value of an overlapping WRITE, the value of the last preceding WRITE, or the initial value of

A. We consider each possibility in turn. If in e, vis the value of an overlapping WRITE, then WRITE(v)

overlaps the original READ in e'. Thus v is a proper value to RETURN in e'. If in e, v is the value of the

last preceding WRITE, then either there is a corresponding WRITE(v) in e' or there is not a corresponding

WRITE(v) in e' (so no WRITE precedes the READ in e'). If there is a corresponding WRITE(v) in e', then

v is a proper value to RETURN in e'. O~Jterwise v is v0 , the initial value for A'; thus v is a proper value to

RETURN in e'. If in e, vis the initial value of A and no WRITE precedes the READ, then the initial value

of A is also vo and the READ in e' has no preceding WRITE. Thus v is a proper value to RETURN in e'.

Therefore algorithm A' satisfies the regular property.

A' trivially satisfies the symmetric property because A satisfies the symmetric property, and RA'(k -1) ::;

m-p. •
Lemma 5.4 R(k- 1)::; R(k)- 1.

Proof Choose any A E SY M(k) with RA(k) = R(k) = m. Let C be a reachable configuration of A. Since

A is a one-write algorithm, C has a neighbor D such that /A(D) # /A(C). By Lemma 5.3 with p = 1, there

exists an A' E SY M(k- 1) with RA'(k- 1) ::; m- 1. Thus R(k- 1) ::; m- 1. •

Lemma 5.5 If k is not a power o/2, then R(k- 1)::; R(k)- 2.

Proof Choose any A E SY M(k) with RA(k) = R(k) = m. If we can show that there exists a reachable

configuration C and some w # !A(C) with at least two neighbors D1 and D2 such that !A(D,) = fA(D2) =
w, then the result would follow from Lemma 5.3, substituting 2 for p. The rest of this proof is devoted to

showing that such a configuration exists. Suppose in contradiction that for every reachable configuration C

and every w # !A(C), C has at most one neighbor D with !A(D) = w.

Claim 5.1 For any reachable C, fA maps all nonreachable neighbors of C to !A(C).

Proof Suppose in contradiction that C has one nonreachable neighbor E such that fA (E) #
!A(C). C already has a reachable neighbor D with !A(D) = !A(E) because A is a one-write

algorithm. This means that C has at least two neighbors mapped by fA to !A(E), a contradiction.

End of Claim

Claim 5.2 All configurations are reachable.

19

Figure 13: Relationships Among the Configurations in the Chain from Co to E

Proof Suppose in contradiction that there exists a nonreachable configuration. Then there

exists a reachable configuration Co that has a nonreachable neighbor D0 • /A(Do) = fA(Co) by

Claim 5.1. Suppose Do and Co differ only in bit i. Since we are assuming that the minimum

number of binary regular registers are used, there exists some reachable configuration E such

that E and Co differ in bit i and bit i labels the last edge in some path of algorithm edges

in HA connecting Co and E. The length of the path from Co to E must be at least 2. Let

the path be denoted by the bits that were changed in the path: b1 ,b2 , ••• ,bJ,i. Suppose the

sequence of configurations in the path is Co, C1, C2, ... , CJ, E. Then CJ and E differ only in bit

i. Figure 13 shows the relationships among these configurations. Double lines denote algorithm

edges. Single lines denote edges which are not algorithm edges. For all j, 1 ::; j :<=; J, let D; be the

neighbor of C; that differs from C; in bit i. Notice that Do is nonreachable, and DJ = E, which

is reachable. Since Do, Dt, ... , DJ = E is the sequence of configurations in some path, there

exists a j such that D;-t is nonreachable and D; is reachable. Figure 14 shows the relationships

among C;-1, C;, D;-1, and D;. Dashed lines denote edges which are not known to be algorithm

edges. Let !A(C;-tl = v1. !A(C;) # v1 because (C;-1, C;) is an algorithm edge. Since D;-1 is

unreachable, fA(D;-tl = v1 by Claim 5.1. Since D;_1 is an unreachable neighbor of reachable

D;, !A(D;) = v1 by Claim 5.1. Thus C; has two neighbors mapped by fA to v1, a contradiction.

End of Claim

Choose some v E V. Let b be the number of configurations C with fA (C) = v. Let B be the set of edges

(C,D) such that either /A(C) = v and !A(D) # v or !A(C) # v and !A(D) = v. For each configuration

C such that /(C)= v, C has k- 1 neighbors D with !A(D) oft v by Claim 5.2 and the assumption made

about all reachable configurations. This implies that IBI = b(k- 1). For each configuration C such that

!A(C) # v, C has one neighbor D with !A(D) = v by Claim 5.2 and the assumption made about all reachable

configurations. This implies that IBI =2m- b. Then 2m-b= b(k- 1), which implies that 2m = kb, which

20

Figure 14: Relationships Among Cj- 1, Cj, Dj-1, and Dj

means that k is a power of 2. This contradicts our assumption that k is not a power of 2. •
Theorem 5.2 R(k) > 2k- 2- llogkJ.

Proof We proceed by induction on k.

Basis: (k = 4.) 2k- 2- llogkJ = 4. By Lemma 5.2, R(4) > 4.

Inductive step: (k > 4.) Suppose the lemma is true fork- 1. Now we show that it is true for k. There are

two possibilities for k. Either k is a power of 2, or k is not a power of 2.

Case 1: k is a power of 2.

R(k) ;::: R(k- 1) + 1 by Lemma 5.4

> 2(k- 1)- 2- llog(k- 1)J + 1 , by the inductive hypothesis

=2k-2-2-(llogkj -1)+1, because k is apowerof2

= 2k - 2- llog k J.

Case 2: k is not a power of 2.

R(k);::: R(k- 1) + 2 by Lemma 5.5

> 2(k- 1)- 2- llog(k- 1)J + 2, by the inductive hypothesis

= 2(k -1)- 2 -llogkJ + 2, because k is not a power of2

= 2k- 2 -llogkJ.

5.3 Justifying Restrictions on Readers

•

In this subsection we justify the restrictions that we placed on the readers by showing that general readers

do not allow implementations which use fewer physical registers. Theorem 5.3 shows that any one-write

21

algorithrri can be converted to a normal form algorithm which uses no more registers. Theorem 5.4 shows

that any symmetric algorithm can be converted to a symmetric algorithm using no more registers in which

every reader reads each physical register at most once.

Theorem 5.3 Any one-write algorithm A using m physical registers can be converted to a normal form

algorithm A' which uses at most m physical registers.

Proof Sketch We use algorithm transformation techniques as in the proof of Lemma 5.3. The writer's

protocol in any execution of A' is based on the writer's protocol in a corresponding execution of A consisting

of the same sequence of WRITEs but no READs. Each reader's protocol in any execution of A' is based on

reader 1 's protocol in a corresponding execution of A consisting of the same sequence of WRITEs but no

other READs. •
Theorem 5.4 Any symmetric algorithm A usmg m physical registers can be converted to a symmetric

algorithm A' using at most m physical registers in which every reader reads each physical register at most

once.

Proof Sketch We use algorithm transformation techniques as in the proof of Lemma 5.3. The writer's

protocol in any execution of A' is based on the writer's protocol in a corresponding execution of A consisting

of the same sequence of WRITEs. The reader's protocol in any execution of A' is based on the reader's

protocol in a corresponding execution of A as follows. After a reader in A' reads a physical register for the

first time during a READ, it makes a local copy of that register. It reads the local copy for all subsequent

accesses to that physical register during the READ. •

6 Conclusion

We have proven the existence of a one-write algorithm for implementing a k-ary regular register from binary

regular registers. The algorithm we have developed uses k(k- 1)/2 binary registers. It is optimal in the

number of binary registers used with respect to all one-write algorithms satisfying the toggle property. We

have also improved the lower bound on the number of binary registers required for all one-wri~e algorithms

satisfying the symmetric property from k to 2k- 1 - [log ·k J. Our lower bound proofs are modular, and they

use our general technique for "fooling the reader". We have also simplified the readers and have justified

the simplifications. An interesting open question is to determine tight bounds on the number of physical

registers needed for symmetric algorithms and more general types of algorithms. Lemma 5.3, which is our

general algorithm transformation technique, may help in obtaining tighter bounds. For example, if one can

establish that p = 0(logk), then one can obtain a lower bound ofO(klogk) registers. Another interesting

open question is to determine a lower bound on the number of registers a reader must read.

22

7 Acknowledgments

The work of the first and third authors was supported in part by NSF grant CCR-9010730 and an IBM

Faculty Development Award. The work of the second author was supported in part by a UNC Board of

Governors Fellowship.

References

[Bio87] Bard Bloom. Constructing Two-Writer Atomic Registers. In Proceedings of the Sixth Annual A CM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 249-259, August

1987.

[BP87] James E. Burns and Gary L. Peterson. Constructing Multi-Reader Atomic Values from Non

Atomic Values. In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Symposium on Prin

ciples of Distributed Computing, pages 222-231, August 1987.

[CKW91] Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. A One-Write Algorithm for Multivalued

Regular Registers. Technical Report TR91-016, University of North Carolina at Chapel Hill,

Department of Computer Science, March 1991.

[CW90] Soma Chaudhuri and Jennifer L. Welch. Bounds on the Costs of Register Implementations. In

Proceedings of the Fourth International Workshop on Distributed Algorithms, September 1990.

Also available as TR90-025 from the University of North Carolina at Chapel Hill.

[JSL90] Prasad J ayanti, Adarshpal Sethi, and Errol L. Lloyd. Minimal Shared Information for Concurrent

Reading and Writing. Submitted for publication, August 1990.

[Lam86] Leslie Lamport. On Interprocess Communication. Distributed Computing, 1(1):86-101, 1986.

[LTV90] Ming Li, John Tromp, and Paul M. B. Vitanyi. How to Share Concurrent Wait-Free Variables.

submitted for publication, June 1990.

[NW87] Richard Newman-Wolfe. A Protocol for Wait-Free, Atomic, Multi-Reader Shared Variables. In

Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Sympo~ium on Principles of Distributed

Computing, pages 232-248, August 1987.

[Pet83] Gary Peterson. Concurrent Reading While Writing. A CM Transactions on Programming Lan

guages and Systems, 5(1):46-55, 1983.

[SAG87] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The Elusive Atomic Register

Revisited. In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, pages 206-221, August 1987.

23

[Tro89] J. T. Tromp. How to Construct an Atomic Variable. Technical Report CS-R8939, Centre for

Mathematics and Computer Science, Amsterdam, October 1989.

[VA86] Paul M. B. Vitanyi and Baruch Awerbuch. Atomic Shared Register Access by Asynchronous

Hardware. In Proceedings of the Twenty-seventh Annual IEEE Symposium on Foundations of

Computer Science, pages 233-243, October 1986.

[Vid88] K. Vidyasankar. Converting Lamport's Regular Register to Atomic Register. Information Pro

cessing Letters, 28:287-290, 1988.

24

