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ERIC DOUGLAS GRANT. 
Constraint-Based Design by Cost Function Optimization 
(Under the direction of Turner Whitted). 

Abstract 

Constraint-based design is the process of selecting among alternatives to best satisfy a set 
of potentially conflicting goals. A key problem in constraint-based design is finding 
globally optimal solutions to problems without limiting the complexity of constraints. 

In this work, constraints are encoded as cost functions that express how well the 
constraints are satisfied. A geometric modeling problem is defined by specifying a 
collection of constraints on the desired model. A composite cost function representing all 
constraints is formed by combining the component cost functions. 

The optimal solution to a constraint problem can be found by minimizing the value of the 
composite cost function. A standard probabilistic optimization technique, simulated 
annealing, is used to seek the global minimum value and the corresponding optimal 
solution. In practice, global optima cannot be guaranteed, but often near-globally optimal 
results are satisfactory. 

The cost function representation for design problems is not new; VLSI researchers have 
used annealing-based optimization methods to minimize chip area and wire length. The 
cost functions for general constraint-based modeling problems are not as well defmed as 
the simple VLSI cost functions. A contribution of this research is a systematic method of 
encoding different classes of constraints as cost functions. 

The validity of this approach is demonstrated by applying the methodology to two 
problems: product design (specifically, opaque projector design), and site planning. 
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Chapter 1 

Introduction 

The research presented in this dissertation began with the following goal: to devise an 
automatic design method capable of applying diverse constraints to many different types of 
geometric objects. 

Specifically, the question we sought to answer was: can a design problem involving 
diverse geometric and non-geometric constraints be expressed in such a way that the 

problem may be solved automatically by a computer? This dissertation will show that the 

answer to this question is yes -design problems can be represented by a single scalar cost 
function in which minimum function values occur when optimal design parameters are 
presented as input to the function. Scalar functions can be minimized by probabilistic 
optimization techniques, such as simulated annealing, to yield near-optimal solutions. This 
research combines a systematic way of encoding constraints as cost functions with standard 
annealing-based optimization techniques to form a flexible constraint-based modeling 
system. 

CONTEST (a CONstraint TESTbed) is a software testbed built to explore constraint-based 
modeling problems. The style of design promoted by this work is called result-oriented 
design. In result-oriented design, models are created automatically from a set of properties 
that define the model, rather than by manually specifying data points, or by describing a 
series of steps for constructing the model from its parts. A difference between this research 
and other work is that rather than attempting to always solve a small set of predefmed 
constraint types (e.g., only constraints expressible as linear equations), a variety of 
potentially conflicting constraints may be presented. While the user is responsible for 
specifying the importance of each constraint, the system is responsible for finding a 
solution that best satisfies the set of constraints as a whole. The design methodology is 
geared toward solving design problems, rather than using constraints solely as a means of 
communicating a preconceived design. 



Although the original purpose of this research was to explore constraint -based three
dimensional geometric modeling problems, the techniques developed are applicable to other 
fields, such as VLSI design. The generic tenn configuration is used to refer to potential 
solutions to a problenL A configuration is a collection of parameters that defines a model. 

A key aspect of design problems is that they involve the evaluation of tradeoffs. Thus the 
cost function which encodes a constraint must not only be able to identify configurations 
which satisfy the constraint, but must also define the relative quality of any other 
configurations, so that an optimum compromise may be determined should constraints 
conflict. The heart of this research is a systematic method for defining cost functions to 
properly represent costs over all configurations. 

This chapter provides an introduction to the remainder of the dissertation. First, the term 
constraint is defined, and an explanation of how this research differs from related work is 
presented. The problem representation used by CONlEST is then described: constraints 
are encoded as cost functions which specify how well the constraint is satisfied. Next, 
techniques for finding the optimal solution to the cost functions are introduced. 
Construction of cost functions is then discussed, followed by a description of the types of 
applications well-suited to CONlEST. The chapter concludes with an overview of 
remaining chapters and a summary. 

1.1. What is a constraint? 

Since the term constraint-based modeling encompasses such a large body of work, it is 
important to distingnish the goals of this research from related work. We begin by 
examining the various interpretations of the term constraint, and define its meaning in this 
research. 

In its simplest form, a constraint is simply a relation that must hold in the object we are 
designing. Many applications use constraints in this way as an efficient expression of a 
design. The designer creates an object by selecting a set of constraints that completely 
describes the object. When used in this manner, the user demands that all constraints be 
completely satisfied by the constraint-satisfaction system. 

For example, to defme a square, we can define the length of any side, constrain the other 
sides to be of equal length, and constrain any angle to be 90 degrees. In this style of 
design, we usually know exactly what our desired object should look like (e.g., we might 
be creating a figure for a paper). Thus the issue is not one of fmding the best (or at least an 
acceptable) solution from among many possibilities, but rather of fmding the correct 
solution. 

2 



Because the types of constraints in such applications are generally quite simple, and 
because of the rigorous definition of what constitutes an acceptable solution, algorithmic 
techniques are commonly used to find the solution. Moreover, given a proper problem 
formulation, these algorithmic techniques are often guaranteed to find the solution. 

In other modeling problems the constraints are more complex. In addition, we may specify 
a problem for which it is impossible to satisfy all constraints. For example, an architect 
might specify that parking spaces for a building must not be visible from offices in the 
building. On the other hand, local building codes might require handicapped parking 
access within 50 yards of the building. In this case, we should expect the building code to 
override the aesthetic constraint. 

Artificial intelligence researchers have dealt with such problems by distinguishing between 
satisfying strong constraints and satisfying weak constraints. Strong constraints are 
constraints that must be satisfied for the problem to be solved. Weak constraints specify 
guidelines for an acceptable solution, but it is not mandatory that they be satisfied. In the 
example above, the constraint that offices should not look out on a parking lot is a weak 
constraint. The constraint that handicapped parking access should be provided is a strong 
constraint. 

In addition to constraints which theoretically can be satisfied, it may be useful to specify 
goal constraints which can never be satisfied. For example, an automobile designer usually 
wishes to minimize the drag coefficient in a car design. Such a desire constrains the 
design, but there is no situation where this constraint can be considered completely 
satisfied, since it impossible to have a drag coefficient of zero. This type of unsatisfiable 
constraint is called a goal constraint, or simply a goal. 

In CONTEST, a constraint is any expressed guideline that influences a design. Because of 
the problem formulation, it is not necessary to distinguish weak vs. strong constraints, or 
regular vs. goal constraints. All of these constraints are represented in the same manner, 
and the term constraint will henceforth be used to refer to any type of design guideline. 

1.2. How does this work differ from other work? 

CONTEST differs from other geometric modeling systems in that it provides greater 
flexibility in constraint specification. It removes the following limitations of other systems: 

3 



• limitations in constraint complexity (e.g., only linear or quadratic equations) 
•limitations in constraint type (e.g., only geometric constraints) 
• the need for human problem solving knowledge (e.g., expert systems) 
• limitations in the ability of the constraint solver to handle new constraints without 

changes to the constraint solver 

Consider a constraint to minimize the drag of an aircraft wing. Many systems (e.g., those 

which represent constraints as linear equations) cannot represent a minimization constraint 
Other approaches (e.g., expert systems) require an understanding of what determines drag 
and rules for minimizing it CONTEST requires only that one be able to measure drag 
given a particular model. The solution method is automatic given this measurement. 

The problem of solving systems of sophisticated constraints is, of course, extremely 
difficult To attack this problem, CONTEST takes a step back from the goal of finding the 

best solution to a set of constraints, and instead seeks to find near-optimal solutions using 
a simpler solution method. The basic strategy is to recast the constraint-based modeling 

problem as a function optimization problem. Constraints are represented using scalar cost 
(or error) functions, which return a measure of how badly a particular data set violates the 
given constraint The goal of the optimization is to minimize the sum of the error 

functions. This representation is described in the following section. 

1.3. Description of problem representation 

Choosing a proper problem representation is an important aspect of solving a problem. A 
concise problem statement can often suggest promising solution techniques. Other times, 

successful solution methods for related problems can lead to the problem formulation. In 

this research, the idea of representing constraints using scalar cost functions was examined 
and initially rejected, because of the lack of a suitable optimization method. Later, when 
results in pther fields demonstrated successful global function optimization techniques, the 

idea of combining constraints into a single function was reexamined and forms the basis of 
this work. 

The basic problem is to find the best solution to a collection of constraints. In other words, 
we seek the set of design variables which best satisfy some evaluation measure for the 

constraints. The design variables are the parameters that define a geometric model. These 
parameters usually will be geometric variables (coordinates of points, radii of spheres, 
etc.), though other non-geometric parameters (e.g., color) may be used as design variables. 

4 



The usual means of defining a problem is to specify a collection of constraints that should 
be considered simultaneously. This composition (anding) of constraints can be 

represented by summing individual cost functions so that each contributes to the total cost 
function. Section 5.7 shows that other logical operations (such as or) can be used to 
combine constraints. In all problems encountered thus far, additional operations have not 
been required, so the summation of individual cost functions is presented here as a 
simplification of the formation of the total cost function. 

Each cost function, ci, returns a real number which expresses how well that constraint is 
satisfied by a particular configuration. The cost functions for most constraints have the 
following form: 

• zero, if the constraint is met 
• a measure of how well the constraint is satisfied, otherwise 
(larger costs indicate poorer satisfaction) 

Moreover, for each cost function, there exists a weighting factor, wi, that specifies the 
importance of the constraint relative to other constraints. 

In other words, 

and 

c; = fl design parameters), 
wi = weighting coefficient for constraint i, 
Ctotal = Iwi ci = ftotaidesign parameters). 

The cost or quality of any design is determined by supplying the input (design parameters) 
toftotal> and observing the output, Ctotal· By expressing quality as a scalar value, the 
constraint satisfaction process is converted to an optimization problem. The goal is to find 
the design parameters which minimize c total· 

~:... ---~::l ___ ft-olal __ ........ l---1•• ctolal 

Figure 1.1: black box function evaluation 
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There are many strategies that might be applied in the search for an acceptable solution. 
One obvious solution is to generate and test all potential solutions. Unfortunately, this is 
infeasible because of the tremendous growth of the search space as the number of 
dimensions increases. Another alternative is to use a priori information about the function 
to concentrate the search in promising regions of the space. The difficulty with this 
approach is that the solution method must be adjusted as new constraints are added. 

Instead, CONTEST treats the total cost function as a black box. With the black box 
assumption, information about the function must be learned by formulating inputs and 
observing the resulting costs. New potential solutions are created by modifying previous 
candidate solutions. Figure 1.2 shows the search method used in CONTEST. 

no 

generate initial 
solution 

no 

after current 
solution 

yes 

yes 

Figure 1.2: Improvement search technique 
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1.4. Optimizing cost functions 

The main difficulty in perfonning a black box optimization is finding a global, rather than 
local, optimum. Local optima are easy to find: simply choose a starting point and perform 
hill-climbing toward the goall. Hill-climbing is suitable for unimodal functions, but 
unsuitable for functions with many peaks and valleys. Figure l.3a shows a simple 
unimodal function which can be optimized with hill-climbing. Figure 1.3b shows a 
function with multiple local optima. These are simple one-dimensional functions. The total 
cost functions that CONTEST seeks to optimize are, of course, of much higher dimension. 
Chapter seven, for example, presents an application where cost is a function of 100 
variables (x and y coordinates for fifty buildings). 

(a) 

(b) 

Figure 1.3: functions with single maximum and multiple local optima 

Simulated annealing is an alternate search technique for finding global optima. As with 
simple hill-climbing, simulated annealing generates new configurations by modifying the 
current configuration. It differs from simple hill-climbing in that it sometimes accepts new 
configurations which are worse than the current configuration. The acceptance of these bad 
configurations is necessary to explore the entire search space rather than getting stuck in 
local optima. Both the choice of a new configuration and whether to accept a bad 

1 The term hill-climbing will be used although CONTEST seeks to minimize the 
total cost function. The minimum of a function can be found by maximizing its 
negative. 
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one of six categories: constraining a parameter to be equal to a value, constraining a 
parameter to be TUJt equal to a value, constraining a parameter to be less than a value, 
constraining a parameter to be greater than a value, minimize a parameter, and maximize 
a parameter. 

A subjective constraint is a constraint involving a value judgement. Since these are not 
usually expressed in a computable form, such constraints must be broken down into 
simpler constraints that a computer can evaluate. A divide-and-conquer approach can be 
used to reduce value judgements to a series of objective evaluations, composed of numeric 
(e.g., 0.0 to 1.0) rankings, yes/no questions, and standard objective constraints. 

A search constraint guides the constraint satisfaction search by providing levels of 
confidence to initial positions, or in general by imposing penalties for undesirable 
configurations. While all constraints penalize undesirable configurations, search 
constraints do so at the explicit direction of the user. For example, a designer can assign 
varying levels of confidence to the positions of model parts. When the constraint system is 
solved, the objects whose positions are assigned lower confidence values will be 
repositioned to satisfy the constraints, whereas other objects will tend to remain near their 
initial positions. The confidence level defines the freedom of the variable to solve the 
constraints, where low confidence implies high freedom. 

1.6. Characteristics of applications 

The benefits and limitations of the cost function formulation and simulated annealing 
optimization procedure define the class of problems for which CONTEST can be a useful 
tool. These benefits and limitations are introduced in this section and are discussed in 
greater detail in chapter three. 

The cost function approach has several advantages. It can handle straightforward 
geometric constraints (e.g., distance between two objects), non-geometric constraints 
(e.g., constraints on color), and constraints which are indirectly specified as a function of 
geometry (e.g., drag coefficient of a car). These constraints can be arbitrarily complex; the 
only requirement is that the cost function must be capable of evaluating any potential 
solution. Underconstrained, exactly constrained, and overconstrained problems are all 
properly represented by the total cost function. The optimization technique used by 
CONTEST is independent of the problem specification. The constraint designer is 
therefore responsible only for constructing a cost function that measures constraint 
satisfaction; he is not responsible for devising a solution method for the constraints. The 
user can thus explore design problems even when he has little intuition about possible 

9 



solutions. 

The cost function approach used by CONTEST also has several limitations. First, it cannot 
guarantee that an optimal solution will be found. In fact, CONTEST cannot even determine 
whether a potential solution is optimal. Second, the solution technique is compute 
intensive because it involves iterative search of a high-dimensional space. Third, the 
probabilistic nature of the solution technique results in random positioning of 
underconstrained components (this can also be considered a feature). Finally, the process 
of devising cost functions can be time-consuming for new applications. 

CONTEST is therefore well-suited for the following types of problems: 

• applications with diverse, complex constraints 
• applications with conflicting constraints 
• applications where near-optimal solutions are acceptable 
• applications with many optimal solutions 
• applications with non-intuitive solutions 
• applications where the human design process is not understood 
• applications where some randomness is desirable or acceptable 
• problems in which algorithmic methods are infeasible 

Applications with some of these properties include computer-aided product design, 
modeling of natural phenomena, building layout, and architectural site planning. 

Two problem areas, product design (a family of opaque projectors) and site planning, were 
explored as sample applications for the techniques developed in this dissertation. 
Satisfactory results were achieved in both of these diverse cases, suggesting a broad 
applicability of the techniques. 
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1. 7. Chapter overview 

Chapter two summarizes previous work in constraint-based graphics. A taxonomy of 
constraint satisfaction techniques exhibits the wide range of solution techniques used in 
constraint-based modeling. Chapter three describes constraint-based design issues relative 
to CONTEST. It details the features and limitations of the problem representation in this 
research. Chapter four discusses function optimization, presents the general form of 
probabilistic optimization techniques, and shows how constraint-based modeling can be 
performed by simulated annealing. Chapter five provides guidelines for creating cost 
functions for objective, subjective, and search constraints. Chapters six and seven 
demonstrate the usefulness of the technique. In chapter six, product design constraints are 
used to build an application for exploring opaque projector designs. In chapter seven, 
constraints for architectural site planning are encoded to generate designs for campus-like 
site plans. Chapter eight compares CON1EST with several systems using alternative 
solution techniques. Chapter nine summatizes the dissertation and provides conclusions 
and directions for future research . 

• ·1.8. Summary 

The central thesis of this dissertation is the following: 

Design problems involving diverse, complex geometric and non
geometric constraints can be solved by converting the problem 
formulation into a scalar cost function. 

The cost function expresses how well the constraint is satisfied by a particular model 
configuration. Typically, if the constraint is satisfied, the cost function is zero. If the 
constraint is not satisfied, then the value of the cost function is non-zero, and increases in 
magnitude as constraint violation increases. 

A composite cost function, called the total cost function, is usually formed by taking a 
weighted sum of all individual cost functions. The total cost function expresses how well a 
particular model satisfies all constraints. The inputs to the cost function are the vatiables 
that define the model. The optimal configuration (the best solution to the constraints) is the 
configuration that yields the minimum total cost. 

A probabilistic optimization technique, simulated annealing, is used to search for the 
optimal configuration. In theory, simulated annealing can find the global optimum of any 
function. In practice, limited computing budgets prevent the optimum from always being 
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found. Fortunately, near-optimal solutions are often suitable in many applications. 

Constraints have been categorized into three classes, based on the methods for constructing 
their corresponding cost functions. Objective constraints use a simple evaluation of a 
model property as input to a function which reflects the shape of six basic constraint types: 
less than, greater than, equal to, not equal to, minimize, and maximize. Subjective 

constraints require a divide-and-conquer approach to break subjective issues into a 
collection of objective questions. Search constraints help to concentrate the search in user
specified portions of the search space. 

The solution technique is not applicable to all modeling problems. Because it cannot 

guarantee optimal results or tell when an optimal solution has been reached, it is best suited 
to applications in which near-optimal solutions are acceptable. The technique can easily 
handle underconstrained and overconstrained problems. Since the solution technique is 

totally automated, CON1EST is able to tackle problems where no human solution methods 
are known, or where an expert is unavailable. 
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Chapter 2 

Constraint Satisfaction Techniques 

This chapter describes previous constraint-based systems, and the constraint-satisfaction 
techniques they use. The systems described are drawn from various fields and organized 
in a taxonomy. The chapter concludes with a discussion of the applicability of these 
techniques to this research. 

2.1. Constraint-based modeling 

Constraints have been used in a variety of computer graphics applications, beginning with 
Sutherland's Sketchpad system [Sutherland, 1963]. Constraint-based modeling techniques 
have also been used in other fields, such as architecture, mechanical, electrical, and civil 
engineering. 

In fact, the previous research most relevant to this dissertation comes from the engineering 
fields. Few references to constraint-based modeling systems in other disciplines can be 
found in the computer graphics literature. Two reasons for this oversight exist: the first 
deals with problem complexity and the second with an artificial requirement of rendering 
techniques in computer graphics. 

2.1.1. Problem complexity 

One reason for the lack of references to constraint•based modeling systems from other 
fields in computer graphics is the difference in complexity of design problems in different 
fields. Constraints have been used in computer graphics to make it easier for a designer to 
describe a shape to the computer. For example, constraints may be applied to a rough 
sketch of a design to yield precise geometry. The design is already in the designer's mind; 
the problem is to communicate the design to the computer. For instance, to simplify the 
task of drawing an equilateral pentagon, the user might first sketch a rough five-sided 
polygon, and then apply constraints to adjust the geometry, as depicted by figure 2.1. 



apply 
cmstraints 

Figura 2.1: constraint-based layout 

Engineering problems, however, are more complex than these computer graphics 
problems. The diversity and number of constraints on a particular model can make it 
difficult for a human to fmd the optimal solution to a design problem. For example, the 
design of an airplane wing might be dependent on many factors: lift constraints, stress 
constraints, material cost, safety considerations, and so on. Computer-based constraint
satisfaction techniques have been forced to explore large search spaces, often without a 
good initial approximation to the final solution. The computing time necessary to apply 
these constraint -satisfaction techniques has made them unsuitable for interactive graphics 
applications. 

As geometric models for computer graphics continue to become more intricate, techniques 
for automating the design process must become more sophisticated. For many applications 
it is no longer reasonable to expect interactive constraint satisfaction. Thus it is wise to 
examine not only previous work in interactive computer graphics but also the literature on 
constraint-based engineering design for possible insights to constraint-based geometric 
modeling. 

2.1.2. Modeling vs. rendering 

A second reason for the lack of references to the engineering work in the computer graphics 
literature is that many of the constraint-based architectural and engineering systems did not 
produce images on a display device. Instead, output consisted of tables of numeric data. 
The emphasis of the work was on the creation of models and not on computer-based 
rendering. 

In contrast, most previous research in computer graphics has concentrated on drawing 
models rather than creating them. In recent years, however, interest in the modeling 
problem has increased, and computer scientists have turned to other fields for insight At 
the same time, architects and engineers have increasingly adopted computer graphics 
techniques for visualizing their models. The distinction between what is computer graphics 
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and what is engineering has become blurred as researchers from both fields share and 
expand upon their knowledge. 

This dissertation does not distinguish between computer graphics modeling applications 
and engineering modeling applications. A modeling system will be considered a system 
that generates geometric descriptions of objects, regardless of whether images of these 
objects are rendered. 

2.2. Taxonomy of techniques 

The complexity of any constraint-satisfaction problem depends on several factors: the 
existence and accuracy of an initial guess, the size of the search space, and the complexity 
and number of constraints. The simplest problems have constraints that are directly 
satisfiable using analytical techniques. The most complex problems may require exhaustive 
exploration of all potential solutions. Between these two extremes are a variety of solution 
techniques tailored to the specifics of individual problems. The remainder of this chapter 
discusses previous work based on a taxonomy developed by Mitchell [Mitchell, 1977]. 

Solution methods can be categorized as being either strong or weak. Strong methods 
require specific information or impose requirements on the problem being solved. In 
exchange for these limitations, they can generate solutions very quickly. Weak methods 
place few restrictions on the problem formulation, and thus can be applied to a larger class 
of problems. Weak methods, of course, tend to be time consuming compared to strong 
methods. 

The solution categories below are organized roughly in order from strongest to weakest. 
The categories discussed are: analytical techniques, optimization methods, heuristic search, 
improvement procedures, and generate-and-test. These categories provide only an 
approximate organization; many techniques could be classified in multiple categories, and 
many applications combine techniques from two or more categories. 

2.3. Analytical techniques 

Analytical techniques directly and efficiently solve constraint-satisfaction problems to yield 
optimal results. While most complex design problems cannot be solved analytically, such 
procedures can be used to find solutions to trivial problems or restricted versions of more 
general problems. A particular representation of constraint problems, the constraint graph, 
is useful in explaining analytical solution methods. It is described below, followed by a 
discussion of four analytical techniques: local propagation, propagation of degrees of 
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freedom, graph transformation, and equation solving. 

2.3.1. Constraint graphs 

Constraint problems may be represented using graphs. Nodes in the graph represent 
objects and operators, while arcs represent bidirectional data flow paths. The operators 

defme the relationships (constraints) between objects. The goal is to find values for 

undefined objects (variables). Constraint graphs are frequently used to represent 
constraints based on simple algebra; all constraints are implemented using the operators 

sum, product, and equality. 

For example, the constraint graph below expresses the relationship between x andy 
coordinates of points on the line: y=4x+3. 

y 

Figura 2.2: a simple constraint graph 

Since information flow is bidirectional, a constraint solver can compute the value of x 
given y, or the value of y given x. 

2.3.2. Local propagation 

Local propagation, or propagation of known states, is a very simple technique for solving 

constraint systems. Because the technique is so simple (and fast), it should be used 

whenever applicable. 

The basic strategy is to deduce locally any values that are computable, and propagate this 

information along the arcs of the graph so that additional values may be computed. This is 
equivalent to finding an ordering for the solution of individual constraints. 
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When an operator node has enough information to deduce unknown values, it can fire, 
and thus propagate computed values along its arcs. In the example above, suppose it is 
known that y=ll. The addition node ( +) can then fire since it knows the values of two of 
its arcs. The value 8 would then be propagated to the multiplication node (*), which 
would then fire to yieldx=2. 

This technique cannot solve for all values if cycles exist in the graph. Note that local 
propagation is insufficient to solve for x in the simple relation: x+x=8. 

X 

Figure 2.3: a constraint graph with a cycle 

The problem is that the addition node ( +) can never fire since it needs values from two arcs 
to produce output on a third. Local propagation can solve the equation: 2*x=8, but local 
propagation alone is not smart enough to recognize that the two equations are equivalent. 

2.3.3. Propagation of degrees of freedom 

A similar technique, propagation of degrees of freedom, examines the constraint graph for 
a variable with enough degrees of freedom so that it can be set to satisfy its constraints. 
When such a variable is identified (e.g. if the variable is controlled by a single constraint), 
the variable and the constraints associated with it may be removed from the constraint graph 
and saved for later evaluation. 

When the remaining variables in the constraint graph are solved, the values of the saved 
variables may be deduced. This technique is efficient and can be used to reduce the size of 
the constraint graph should more complex techniques (e.g., relaxation [Sutherland, 1963]) 
be required to resolve cycles._ 
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2.3.4. Graph transformation I term rewriting 

As shown above, local propagation and propagation of degrees of freedom cannot solve all 
constraint systems represented by graphs. These techniques cannot break cycles in the 
graph because they examine only the arcs local to a node in deciding whether to propagate 
infonnation from that node. 

Graph transfonnation techniques attempt to solve constraint problems by examining 
regions of the graph and reducing these regions to simpler but equivalent graphs. One 
could define a rule to convert equations of the fonnx+x=y to 2*x=y. Such a rule would 
transform the example above, x+x=B, into a graph that is solvable using local propagation: 
2*x=B. 

X 

Figura 2.4: graph transformation 

Although graph transformation techniques can break simple cycles in constraint graphs, 
complex graphs require even more powerful techniques, such as equation solving. 

2.3.5. Equation solving 

Constraints define equations relating the variables of the constraint system. If the 
constraints cannot be solved serially.(because cycles in the constraint graph cannot be 
broken), then the problem can be treated as fmding the solution to a set of simultaneous 
equations. 
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The general problem of solving sets of simultaneous equations is complex. Iterative 
numerical techniques (described in a later section) and symbolic techniques (e.g. 
Mathematica [Wolfram, 1988]) can be used but are time-consuming and therefore have not 
been used where interaction is a concern. When interaction has been a concern, the 
approach has been to restrict problem complexity by allowing only simple constraints. 

For instance, one alternative is to impose the restriction that constraints must be linear. If 
constraints are linear then efficient equation solving techniques may be applied [Derman, 
1984]. Derman's technique is similar to Gaussian elimination, though it can be extended to 
solve a combination of linear and nonlinear equations if the nonlinear equations reduce to 
linear equations after substitnting variables computed by solving the original linear 
equations. 

2.4. Modeling systems using analytical techniques 

Sketchpad [Sutherland, 1963], Thinglab [Boming, 1979], and Magritte [Gosling, 1983] 
use local propagation and/or propagation of degrees of freedom in combination with 
slower, more powerful techniques. Ideal [VanWyk, 1980] uses equation solving 
exclusively. Briiderlin [Briiderlin, 1986] uses a hybrid symbolic/numerical approach. 
Rossignac [Rossignac86] implements a user-defined constraint ordering to derive an 
analytical constraint solution. Bertrand [Leier, 1987] uses augmented term rewriting in a 
general purpose constraint language builder. Mathematica [Wolfram, 1988] is, among 
other things, a very general equation solving system. CBD [Ervin, 1990] is a knowledge
based approach similar to Briiderlin's system. Sketchpad and Thinglab are discussed in a 
later section. 

2.4.1. Van Wyk (1980) 

Ideal is a language for defining graphical layouts. Ideal permits hierarchical object 
definitions, with simple constraints defining the relations of parts of the objects. When an 
object is instantiated, the caller must provide enough information to solve the constraints in 
the object definition. 

Constraints in Ideal must be reducible to linear equations. Ideal uses a fast equation solver 
to solve the constraints, although it was not designed for interactive use. 
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2.4.2. Gosling (1983) 

Magritte is an interactive graphical layout system, Magritte uses local propagation in 
combination with graph transformation techniques to solve constraint graphs. Gosling 
notes that while these techniques are sufficient in Magritte, a more general system might 
still have to resort to relaxation to resolve cycles. Magritte is not as general as Thinglab 
(see below), but it is more efficient at solving problems in its limited domain. 

2.4.3. Bruderlin (1986) 

Briiderlin describes an approach in which constraints are solved using a hybrid of 
declarative and procedural techniques. Constraints are first solved symbolically in a 
portion of the system written in Prolog and then evaluated numerically in another portion of 
the system written in Modula-2. The system contains a set of geometric rules which are 
used to generate a symbolic solution for the object being evaluated. 

Prolog permits backtracking, hence Briiderlin's system has some characteristics of a 
heuristic search procedure. The rules, however, are not general rules of thumb, but are 
instead carefully derived rules proven to terminate with a correct solution given proper 
input Briiderlin's system is similar to term rewriting because rules are applied to 
transform the list of supplied predicates into a solution numerically solvable in Modula-2. 

2.4.4. Rossignac (1986) 

Rossignac's CSG system allows the user to describe models in terms of unevaluated 
constraints. A model is constructed by evaluating constraints sequentially in a user
specified order. A constraint is evaluated by performing a rigid body motion (i.e., 
translation or rotation) on an object so that an adjacency relationship between two objects is 
met. 

Rossignac's system is not a problem-solving .system that considers simultaneous 
constraints to reach a solution; instead, it uses constraints to simplify the description of a 
model. The disadvantages of the system are that the user is partly responsible for 
constraint-satisfaction and that cyclic constraints may not be specified or solved. In 
exchange for these limitations, the constraints may be solved algorithmically. 
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2.4.5. Leier (1987) 

Leier's Bertrand is a language that can be used to build constraint satisfaction systems. 
Leier uses augmented term rewriting to solve constraint programs in Bertrand. Augmented 
term rewriting extends term rewriting by allowing binding of values to variables and the 
capability of defining abstract data types. He shows that augmented term rewriting can be 
used to implement an extended version of an equation solver similar to the one used in Ideal 
[Derman, 1984]. The extended equation solver can handle nonlinear equations if 
transformation rules (e.g. cross-multiplication) are provided for transforming the nonlinear 
equations to solvable linear equations. 

Leier's augmented term rewriting approach has several advantages over other constraint 
languages. Bertrand allows new data types and constraints to be implemented. Bertrand 
can handle underconstrained systems by generating an expression for further processing by 
a human or computer. Bertrand can be used to implement both 2-D and 3-D graphical 
constraint languages. Finally, Bertrand is simple and efficient Its performance makes it 
suitable for interactive applications. 

2.4.6. Wolfram (1988) 

The Mathematica system is a sophisticated tool that can be used to represent and solve 
constraint problems. Mathematica is many things: an equation solver, a programming 
language, and a knowledge representation system. Mathematica has an extensive collection 
of built-in transformation rules that can be used to solve equations, including systems of 
simultaneous equations. In addition to these built-in rules, the user may define additional 
rules that specify how equations may be transformed. Once these rules are defined, 
collections of equations representing constraints may be entered. The built-in and user 
defined rules are then used to fmd solutions to arbitrary variables. Results are expressed 
either numerically or symbolically. Complicated nonlinear relations between variables may 
be specified, although the solution method cannot always fmd a solution for one variable in 
terms of the others. 

2.4.7. Ervin (1990) 

CBD (Constraint Based Diagrammer) is a system that was built to explore ideas about 
designing with constraints and diagrams. The system consists of a rule base expressed in 
LISP, and a graphics module for drawing shapes. The system solves design problems by 
using the rule base to convert relations expressed in LISP into a graphical representation. 
This approach is similar to the approach used by Briiderlin. 
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2.5. Summary of analytical techniques 

Analytical techniques can be used to solve simple constraint problems efficiently. Local 
propagation is a basic technique for solving constraint systems without cycles. 
Propagation of degrees of freedom is another technique for ordering constraint evaluation; 
it can be used to reduce the size of a constraint graph containing cycles. Graph 
transformation can eliminate simple cycles, but is not powerful enough to eliminate all 
cycles. Equation solving is a general technique for handling arbitrary cycles, such as those 
defmed by sets of simultaneous equations. Leier [Leier, 1987] describes these analytical 
techniques in greater detail than presented here. 

The simplest techniques are efficient because they solve constraints locally. Local 
propagation, for example, looks at only one constraint at a time during the constraint 
satisfaction process. Once the constraint is solved, the resulting values may be used to 
solve other constraints. This serial solution method is efficient in any case, but is 
particularly efficient when incremental changes are made to a system, since the effects of a 
change need be computed only for the part of the system affected. 

If at all possible, a constraint graph should be reduced to a form solvable by local 
propagation. Propagation of degrees of freedom reduces the graph by removing sub graphs 
that are known to be solvable once its inputs are known. Graph transformations convert an 
unsolvable subgraph into an equivalent, solvable graph. 

If a constraint graph representing a problem cannot be solved serially, even after reductions 
and transformations have been applied, then the constraints need to be solved using global 
solution techniques .. Such techniques consider all variables and all constraints when 
computing a solution, and thus are more complex than local techniques, which only 
consider one constraint at a time. Since constraints can be expressed as equations, the 
global constraint satisfaction procedure requires fmding the solution to a set of 
simultaneous equations. 

If the equations in the system of constraints are linear, then known algorithmic techniques 
such as Gaussian elimination may be applied. If some constraints are not linear, then there 
are two alternatives. If the nonlinear constraints fall into a certain class of equations, then 
one approach is to extend the analytic constraint solver to handle this class in addition to 
linear constraints. The second alternative is to resort to weaker but more general techniques 
(e.g., heuristic search, improvement procedures, and generate-and-test) as described later 
in this chapter. 
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Analytical techniques described in this section have been used extensively in 2-D layout 
problems. Unfortunately, many other design problems involve constraints which are more 
complex than the simple constraints in 2-D layout If the constraint system cannot be 
solved by the strong methods described in this section, then weaker, but more general, 
techniques must be used. The following sections describe some of the alternatives. 

2.6. Optimization methods 

The term optimization methods is potentially confusing, since many constraint satisfaction 
methods treat the constraint satisfaction problem as an optimization problem. The usual 
approach is to express constraints in terms of scalar error functions. The goal of the 
optimization is then to minimize the sum of these error functions. Iterative techniques are 
frequently used; in general these techniques do not guarantee an optimum, but usually they 
yield near-optimal results. 

This section discusses two particular optimization methods which very efficiently and 
. reliably yield optimal or near optimal results: linear and nonlinear programming. These 
methods are stronger than improvement methods, to be discussed later, but they can only 

. be applied to a restricted class of problems . 

.. 2.6.1. Linear programming 

Linear programming techniques can be used when the constraint problem can be expressed 
as the minimization (or maximization) of a linear objective function subject to linear 
constraints on the variables. These conditions are very restrictive; even a simple two
dimensional area constraint, such as width*height<50, cannot be handled by linear 
programming techniques. Consequently, linear programming is poorly suited for 
geometric modeling problems. 

2.6.2. Nonlinear programming 

Nonlinear programming methods have been used by several architectural floorplan layout 
systems (e.g., [Mitchell, 1975], [McGovern, 1976]). The main problem with nonlinear 
progtarmning methods is that they cannot solve arbitrary nonlinear constraints. Suppose an 
algorithm can solve systems of equations consisting of linear equations and equations with 
terms involving the product of two variables. If an application has equations with terms 
involving the cube of a variable, then the solution method cannot be used, even though the 
constraint solver can handle some nonlinear equations. 
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2.7. Summary of optimization methods 

Linear and nonlinear programming methods solve a narrow class of problems. Some of 

these techniques are analytic (e.g., the simplex method for linear programming), while 
others (e.g., Newton's method for nonlinear programming) are iterative numerical 

techniques. As a class these optimization methods can still be considered strong methods, 
although they may not be as efficient as the analytic techniques mentioned in the previous 

section. They yield excellent solutions for problems involving simple constraints and 
objectives. Because these techniques are reliable and efficient, it can be worthwhile to 

convert constraint problems by approximating more complex constraints with simpler 
constraints when possible. 

In the search for a solution method, one should consider optimization techniques as the 

next alternative if simple analytic techniques cannot be found. If optimization techniques 
are not applicable, then weaker methods may be examined. The constraints involved in 
three-dimensional geometric modeling, however, are sufficiently complex that neither 

simple analytic techniques nor optimization techniques can solve all problems of interest. 
On the other hand, heuristic search, improvement methods, and generate-and-test schemes 
are capable of finding solutions to some problems that are not solvable analytically. These 

categories are explored below. 

2.8. Heuristic search 

Heuristic search procedures use knowledge about the design problem to guide the search 

for an acceptable solution. Heuristics are applicable when the problem solving process can 

be viewed as a tree (or graph) of states. The terminal nodes in the tree are potential 
solutions; internal nodes represent intermediate states leading to a solution. The goal is to 

find a path in the tree (a series of actions) that leads to the best solution. 

The simplest forms of heuristic search rules are the general guidelines on how to search the 
tree (e.g., depth-frrst or breadth-first search). More sophisticated systems encode detailed 

domain-specific problem-solving techniques. Many expert systems for solving design 
problems have been developed, including the three representative systems discussed 
below. 
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2.8.1. Pfefferkorn (1971) 

The Design Problem Solver (DPS) [Pfefferkorn, 1971] solved architectural floor plan 

layout problems incrementally. The system entered new components into a room serially. 

If a new element could not be entered without violating constraints, a special procedure was 
called to resolve the conflict. If the conflict could not be resolved, the system incorporated 
backtrack to restart the design at an earlier stage. Optimal solutions were not guaranteed, 
but the system had the flexibility to explore a range of design alternatives. 

2.8.2. McDermott (1982) 

The XCON/Rl expert system [McDermott, 1982] automatically generates VAX computer 

configurations. It uses a rule-based approach without backtracking. The constraints in Rl 
are highly domain dependent. The system is very powerful, but not well-suited to 
exploring a range of designs. The large number of specialized constraints in R 1 makes it 

more difficult to maintain than DPS. 

2.8.3. Brown (1986) 

Brown [Brown, 1986] describes an expert system that closely matches human design 
problem solving techniques. Rather than using a single rule base and inference engine, 
Brown uses a collection of communicating design specialists. Brown organizes the 

specialists into a design hierarchy. Specialists at the top of the hierarchy call lower-level 
specialists to make detailed design decisions. When a subproblem is solved, the 

information is passed back to the higher levels. Each specialist maintains local design 
knowledge. The purpose of this information passing is to reach a globally optimal design 
while using specialists capable of solving local problems. 

2.9. Summary of heuristic search 

Heuristic search techniques can be very successful at simulating the human problem 

solving process, and can do so efficiently. Unfortunately, knowledge-based systems tend 
to be domain dependent and difficult to develop and maintain. Moreover, human design 

expertise is not available for solving all classes of problems. 

If no analytic techniques are capable of solving a constraint system, and heuristic search 

methods are not applicable, then one may have to accept weaker techniques for fmding a 

solution to the problem. Two classes of weak solution procedures, improvement 
procedures and generate-and-test, are discussed below. 
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2.1 0. Improvement procedures 

Improvement procedures generate new potential solutions from previous configurations, 
Whereas heuristic methods use knowledge about the problem in seeking a solution, 
improvement methods typically require no specialized knowledge about the problem being 
solved, and thus can be applied to a wide variety of problems. Three categories of 
improvement procedures are discussed below: variation with selective retention, greatest 
improvement, and numerical methods. 

2.10.1. Variation with selective retention 

Variation with selective retention requires the ability to compare two configurations and 
detennine which better meets the design criteria. New configurations are generated from 
existing configurations, and a decision is made regarding whether the new configuration 
should be retained. Traditionally the better configuration is retained (simple hill-climbing), 
but more sophisticated retention algorithms (e.g., simulated annealing) have been 
developed to prevent the method from getting trapped in local optima. 
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Figure 2.5: variation with selective retention 
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2.1 0.2. Greatest Improvement 

Greatest improvement procedures have been used to speed convergence to a solution. The 
strategy is to alter the configuration in a way that yields the greatest advance towards the 
objective. This can be achieved by analytically computing the direction of greatest 
improvement, or by evaluating several possible perturbations and choosing the one which 
yields the greatest improvement in the objective function. 
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Figure 2.6: greatest Improvement procedures 

2.1 0.3. Numerical methods 

, .. 

no o local optimum reached 

This category encompasses a variety of numerical techniques that iteratively approach a 
final solution to a constraint system. Relaxation is one such technique used by several 
constraint solvers. Relaxation methods compute an estimate of the cost of making specific 
assignments to variables. The value of variables for the next iteration are chosen so as to 
minimize the total cost of the system. The iterative process continues until the rate of 
change in cost falls below some threshold. Several techniques, such as Newton's method 
and its variations, can be considered optimization techniques as well as numerical methods. 
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Since these techniques tend to be weaker than analytic optimization techniques, the systems 
using these methods are described below rather than in the optimization section above. 

2.11. Systems using improvement procedures 

Sketchpad [Sutherland, 1963] and ThingLab [Borning, 1979] use relaxation to solve 
constraint graphs involving cycles. Weinzapfel and Handel [Weinzapfel, 1975] use 
iterative methods in an architectural layout system. Cinar [Cinar, 1975] uses a form of 
greatest improvement in a building planning system. Nelson [Nelson, 1985] uses 
Newton-Raphson iteration in. a 2-D imaging system. Many applications (e.g., [Kravitz, 
1986], [Pincus, 1986], [Romeo, 1985], [Sechen, 1986], [Wong, 1986]) use simulated 
annealing to search for optimal VLSI layouts. Witkin, Fleischer, and Barr [Witkin, 1987] 
use iterative techniques to solve constraints expressed as energy functions. Barzel and Barr 
[Barzel, 1988] invoke forces on objects to satisfy constraints. 

2.11.1. Sutherland (1963) 

Sketchpad was an interactive 2-D system in which the user defined pictures by combining 
various graphic primitives (e.g., points, lines, and circles). The user sketched a rough 
version of a drawing to which constraints were applied. Sketchpad also provided support 
for instancing copies of a previously defined object. 

Sketchpad used two techniques to solve constraints. It frrst attempted to apply propagation 
of degrees of freedom (see analytical techniques). If propagation failed, Sketchpad 
resorted to relaxation. 

In Sketchpad's relaxation method, every constraint generated an error expression. At each 
iteration, the variables in the system were adjusted to reduce the total error. Relaxation 
terminated when all constraints were satisfied (zero error), or when further iterations could 
not reduce the error. The starting point for the relaxation procedure was a rough sketch 
entered by the user. 

2.11.2. Weinzapfel and Handel (1975) 

IMAGE is an assistant for architectural layout. It was designed to aid architects in site 
planning and floorplan layout problems. Image allows the architect to specify a variety of 
objectives including distance, area, adjacency, position, ratio, and visual access 
constraints. IMAGE has two methods for solving constraints: an automated constraint 
satisfaction procedure, and a user-guided exploration procedure. 
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2" 11.2. 1. Automated constraint satisfaction 

The automated procedure starts with an initial configuration provided by the architect. It 
proceeds by modifying one object at a time. For each object that it is modifying, it 
determines which constraints are being violated, and what changes should be made to 

satisfy that particular constraint Since the changes suggested by a particular constraint 
may conflict with those suggested by another, a least mean squares fit is applied to find the 
compromise that will generate the least error atnang all violated constraints. 

After a particular object has been modified, the remaining objects are considered in 
succession" When all objects have been modified, the system returns to the first object and 
continues the improvement procedure. The procedure terminates when no funher 
improvement can be made. 

This procedure is strongly influenced by the initial configuration of objects. It performs 
local optimization based on the supplied configuration; it cannot search out a global 
optimum without a close initial guess. The procedure is also influenced "by the order in 
·which objects are moved. The architect can choose to move objects either in the order they 
·were entered or in an order based on how seriously the objects violate constraints. Despite 
'the somewhat ad hoc nature of the solution procedure, th~ system has been used to fmd 
near-optimal solutions to problems involving over 50 objects. 

:2. 11.2.2. Interactive constraint satisfaction 

IMAGE was designed to be an assistant to (rather than a replacement of) the architect. 
Consequently, the system allows the human to modify computer generated layouts. The 
architect can steer the satisfaction procedure toward an anticipated solution. In addition, 
IMAGE can be instructed to evaluate a library of prototype solutions to a problem. This 
combination of user interaction and automated evaluation allows the architect to explore a 
variety of potential designs. 

2" 11.3. Cinar (1975) 

CRAFI'-3D is a system for facilities planning in multi-story buildings. It attempts to 
minimize the transportation costs of generated facility layouts. The cost of any 
configuration is based on the distance between facilities and the expected flows between 
each pair of facilities. 
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CRAFT-3D uses a simple form of greatest improvement. At each stage of iteration, the 
system evaluates the result of all possible component swappings of two or three facilities. 

The swap that results in the greatest reduction in layout cost is accepted. The iteration 
terminates when no further reduction in cost can be found. In general, this heuristic 
generates suboptimal results. Moreover, it is impossible to tell how close one is to the 

optimal solution. Nevertheless, the CRAFI'-30 system appears to be useful because of the 
lack of an analytical solution to the layout problem it addresses. 

2.11.4. Borning (1979) 

ThingLab applied and extended some of Sketchpad's ideas to a more general environment. 
Whereas Sketchpad was designed for the creation of 2-D geometric figures, ThingLab is 
designed as a simulation laboratory. Constraints can be defined involving both geometric 
and non-geometric objects, making ThingLab suitable for diverse applications such as 

simulation of electrical circuits and mechanical stress. 

ThingLab uses local propagation and propagation of degrees of" freedom when possible; 

relaxation is used to deal with cycles. ThingLab is implemented in Smalltalk, and provides 
the capability of defining new constraints and new object types using Small talk classes. 

When defining a new constraint, the user can specify explicit procedures which, when 
executed, will satisfy the constraint. 

ThingLab continues to be enhanced by Boming and his colleagues. Recent enhancements 
include interactive constraint graph editing [Boming, 1985]. Duisberg [Duisberg, 1986] 
extended ThingLab to handle constraints involving time. 

2.11.5. Nelson {1985) 

Juno is a constraint-based system for image creation. Images are defined using a language 
that allows the user to specify constraints on points. Only four primitive constraints are 

allowed, but these are general enough to implement more complex constraints. The 
primitive constraints are: parallelism of pairs of lines, horizontal lines, vertical lines, and 

pairs of lines constrained to be of equal length. The user can modify a Juno program either 

implicitly by manipulating objects on the display screen, or explicitly by editing the 
underlying text. 
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Juno uses Newton-Raphson iteration to solve the systems of equations defined by Juno 
programs. Nelson reports that although Newton-Raphson iteration is faster than 
relaxation, a powerful workstation is necessary for acceptable performance. The 
computational demands on the system can be lessened by defining objects hierarchically 
and by providing close initial guesses to the final solution. An additional justification for 
providing a close guess is that the nonlinear equation solver may behave unpredictably 
without a good initial configuration. 

2.11.6. VLSI Layout: Kravitz (1986), Pincus (1986), etc. 

Many applications in VLSI layout (e.g., [Kravitz, 1986], [Pincus, 1986], [Romeo, 1985], 
[Sechen, 1986], [Wong, 1986]) have used simulated annealing, a form of iterative 
improvement. Constraints on a problem are represented by summing error functions so that 
a single scalar expresses the quality of any solution. Simulated annealing works by 
perturbing object parameters (usually position) to minimize the objective function. 

Simulated annealing has been very successful in generating near-optimal results. It is well
suited for problems where there is not much insight into solution techniques. A 
disadvantage of simulated annealing is that it can be time consuming because it uses 
stochastic variations which may not provide much improvement at each iteration. 
Simulated annealing is described in greater detail in chapter four. 

,, 2.11.7. Witkin, Fleischer, Barr (1987) 

Witkin, Fleischer, and Barr describe a constraint-based modeling and animation system. 
Constraints are defined using non-negative energy functions, which evaluate to zero when 
the constraint is satisfied. The system attempts to minimize the sum of the individual 
energy constraints. 

Numerical techniques are used to follow the energy gradient to a stable configuration. In 

addition to rigid body motions, objects can vary internal parameters to meet constraints. 
Thus an object might stretch or twist itself to satisfy a constraint A disadvantage of the 
system is that the energy minimization procedure may get trapped in local optima. If this 
occurs, user intervention is necessary to recognize the problem and bump parts of the 
model out of the local minimum. 
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2.11.8. Barzel and Barr (1988) 

Barzel and Barr have pioneered research in the area of physically-based modeling. 
Physically-based models respond to forces and torques in accordance with the rules of 
Newtonian physics. Their method, called dynamic con.strainJs, converts constraints into 
forces which act upon objects in the model, cansing the objects to move into positions 
which satisfy the constraints on the assembly. The problem of finding the forces necessary 
to satisfy constraints is known as an inverse dynamics problem. 

Their system solves the inverse dynamics problem iteratively. At each iteration, the forces 
necessary to solve a constraint are computed. This series of iterations can be rendered to 
form an animation of the constraint satisfaction process. Where possible, constraint forces 
maintain previous constraint satisfaction as new constraints or forces are applied to an 
existing model. For example, a pair of objects with a connectivity constraint will remain 
connected even as external forces are applied. 

2.12. Summary of improvement procedures 

Improvement procedures have been used extensively in constraint-based modeling 
systems. While these techniques can· be time-consuming, they are more efficient than 
generate-and-test methods (see next section). Many improvement methods suffer from the 
problem of getting stuck in local optima. This is not a drawback in situations where good 
approximations to the final solution are provided. In applications where global or near
global optima have been desired, simulated annealing has provided satisfactory results. 

Improvement procedures are so general that they can be applied to many problems. One 
limitation of such methods, however, is that it may be difficult to control what portions of 
the solution space are examined, resulting in unsatisfactory local optima. An orderly 
exploration of the solution space is assured by generate-and-test methods, described in the 
following section. 

2.13. Generate-and-test. 

Generate-and-test procedures attempt to solve a problem by generating and testing potential 
solutions until a satisfactory solution is discovered. The methods described in this section 
are the weakest methods presented in this chapter, but are generally applicable, and, given 
enough time, can yield globally optimal results. Two common forms of this method are 
exhaustive generate-and-test and random generate-and-test 
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Figure 2.7: generate-and-test 

2. 13.1. Exhaustive generate-and-test 

Exhaustive generate-and-test simply enumerates and tests all potential solutions to a 
problem. This technique can be used when the solution space is very small, or when there 
are many feasible solutions to the problem and the solutions are evenly spaced throughout 
the search space. It is not frequently used for design problems because of the large number 
of potential configurations in a typical problem. It has been used for some simple 
architectural floor plan problems [Mitchell, 1976]. 

2. 13.2. Random generate-and-test 

Random generate-and-test proceeds by sampling potential solutions from the solution 
space. It can be efficient when there are many feasible solutions, or when near-optimal 
results are acceptable. The ALDEP architectural floor plan layout system [Seehof, 1967] 
generated random layouts using simple rules; layouts that met most design constraints were 
selected for further processing by an improvement procedure. 
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2.14. Summary of generate-and-test 

Both exhaustive and random generate-and-test procedures are weak but general methods 
for finding solutions that meet design constraints. These bmte force techniques may be 

applicable in specialized problems where the design space is smalL Generate-and-test does 
not appear to be well suited for 3-D (as opposed to 2-D) design involving many variables 
because the inclusion of the third dimension increases the size of the search space 

dramatically. 

2.15. Applicability of constraint satisfaction techniques 

This research is concerned with constraint-based three-dimensional modeling. The 
constraint solver must deal with diverse and complex constraints. Analytical techniques 

cannot be applied exclusively because the problem formulation is too complex; no analytical 
solutions are known. The constraints are not linear, nor do they fall into the class of 
nonlinear constraints solvable by nonlinear progrnmming. Conventional optimization 
methods therefore are not applicable. Generate-and-test methods are infeasible because of 

the tremendously large solution spaces involved. This leaves two candidate solution 

categories: improvement procedures and heuristic search. 

Both of these categories are worthy of investigation. This dissertation describes my 
research into improvement procedures; a fellow Ph.D. student [Amburn, 1991] is 
investigating the application of expert systems to geometric modeling. It is likely that 

future modeling systems will combine aspects of several approaches. For example, a 
reasonable strategy would be to solve trivial tasks analytically, then use human problem 

solving heuristics to further simplify the problem, and finally use improvement procedures 

to complete the constraint satisfaction problem. 
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Chapter 3 

Constraint-Based Design 

Design is the process of selecting among alternatives so as to best satisfy a set of 

potentially conflicting goals. Constraint-based modeling involves constmcting geometric 
descriptions with the aid of constraints; constraints are used as an efficient means of 
expressing a human's preconceived model. Constraint-based design, however, involves 

more than just using constraints as a communication tool. It involves using constraints to 

specify unsolved design problems-problems which the human designer may not be able 
to solve. 

Traditionally, the assumption has been that the human (as the design expert) should be 

responsible for solving hard design problems, and that constraints should be used to help 
solve trivial problems so the human may concentrate on the important issues and hence 
make productive use of his time. In other words, people have been responsible for making 

global modeling decisions, and constraints have allowed local decisions to be solved 
automatically. 

This research expands the role of the computer by using it to make global modeling 
decisions. The goal is not to replace the human, but rather to automate more of the design 

problem. This chapter begins by expanding upon the role of the computer in this work. 
Second, an explanation of what makes design problems hard is presented. Third, the 
specific objectives of this work are presented to distinguish it from other constraint-based 

systems. Next, the solution methods explored in the course of this research are presented. 

The logical progression of this investigation toward the cost function method is described. 
The cost function approach is then detailed. The chapter concludes with characteristics of 

applications with which CONTEST is compatible. 

3.1. The role of the computer 

Although our objective is to enable the computer to make global modeling decisions, the 
purpose of this work is not to replace the human designer. The years of training a designer 



receives define thousands of constraints, opinions, prejudices, and objectives that 
contribute to the decision-making process. Quantifying these constraints is theoretically 
possible but impractical. While objective constraints are readily quantifiable, subjective 
constraints are by definition more open to interpretation and therefore difficult to quantify. 

Even in problems that can be completely described by quantifiable constraints, the designer 
may still need to be involved in the design process. Design is a learning process, and 
constraints may need to be modified as a designer learns of their effect The computer is 
thus best viewed as a design aid. 
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Figure 3.1: Hml-autoiNitlc dealgn of a single model 

The computer can be used as a design aid in three main ways. First, designs generated by 
the computer can be used to stimulate the designer's imagination. He can· examine 
computer-generated solutions as starting points for non-intuitive solutions. Second, the 
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computer can evaluate human-generated designs in addition to computer-generated designs. 
One can thus compare computer-generated designs with manual designs, or make changes 
to a model and see how constraint satisfaction is affected. Third, and most frequently, the 
designer can use the modeling system to refine a problem specification. By examining the 
effect of different constraints and weights on generated designs, the designer can gain 
insight to the problem. He still participates in the design process by creating and tuning 
new constraints, and subjectively evaluating resulting solutions. This is not totally 
automatic design because the designer is involved in the evaluation portion of the design 
loop. This style of design is called semi-automatic design. For completely automatic 
design, one would have to specify all subjective constraints as cost functions and permit the 
computer to perform all design evaluation. 

3.2. Why are design problems difficult? 

Design problems present both practical and theoretical challenges. For humans, it is 
difficult to evaluate properly the interaction of variables. Since constraints can involve 
more than one design variable, in general it is not possible to find the optimal value for 
parameters sequentially. Instead, a large system of constrained variables must be 
considered as a whole. Patrick Winston [Winston, 1984] describes the optimization 
problem using a television set analogy. The goal is to maximize overall picture quality. If 
a single parameter (e.g., the tuner) controls the picture, then we can usually fmd the best 
picture. However, if multiple parameters (e.g., tint, color, brightness, tuning, contrast) 
define picture quality then, as Winston points out, there is likely to be more cursing than 
entertainment. 

One solution to complex interactions of variables is to avoid understanding these 
interactions at all, and simply enumerate all solutions. The tedium of generating and testing 
solutions makes it impractical for people to use this technique for problems involving more 
than two or three variables. Even with the use of a computer, the exponential growth in 
number of configurations makes it difficult to enumerate solutions in problems of more 
than four or five dimensions. Thus, for both humans and computers, design problems are 
difficult because they involve large solution spaces. 

Finally, at a theoretical level, many optimization problems are NP-complete. No 
polynomial-time algorithms exist for such problems, and no transformation of the problem 
representation will yield such an algorithm. 

3.3. Specific objectives of this research 

The main objective of this research was to devise a semi-automatic method of design that 
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allows human modelers to describe assemblies using a diverse set of constraints. The 
primary task is to take a collection of model parameters, along with a set of constraints on 
their values, and use this information to construct a model satisfying the constraints. 
CONTEST differs from other geometric modeling systems in that it provides greater 
flexibility in constraint specification. The system was designed to fulfill the following 
requirements: 

• definition of geometric and non-geometric constraints 
• definition of arbitrarily complex constraints 
• separation of problem specification and problem solution 
• capability of handling underconstrained and overconstrained problems 
• suitable for use as a design aid 

These requirements affect the class of problems that may be specified and the potential 
solution techniques that may be applied. 

3.3.1. Geometric and non-geometric constraints 

Most constraint-based modeling systems deal exclusively with geometric constraints. In 
contrast, CONTEST can also handle constraints that relate only indirectly to geometry, as 
well as completely non-geometric constraints. 

A constraint on the distance between two objects is a simple geometric constraint. A 
· constraint to minimize the internal operating temperature of a part influences the shape of 
that part, yet is indirectly specified in terms of geometry. Finally, a constraint on the color 
of an object is strictly non-geometric. 

3.3.2. Arbitrarily complex constraints 

As noted in chapter two, some systems place restrictions on the complexity of constraints 
that may be specified. For instance, a system might require that design variables meet 
simple linear relationships. CONTEST does not place such restrictions on constraints; any 
constraint that may be evaluated by a procedure call can be used. 

A system without restrictions on constraint complexity can be used to solve a wide variety 
of modeling problems, assuming an appropriate solution method exists. Unfortunately, 
permitting arbitrary constraints limits the range and success of potential solution 
techniques. It becomes trivial to define optimization problems that are NP-complete. The 
traveling salesman problem, for example, is a geometric problem involving a simple goal. 
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3.3.3. Separation of specification from solution 

If the solution method is dependent on details of the particular constraints being used, then 
extending the system to incorporate new constraints also may require that the solution 
method be revised. The constraint specification method in CONlEST is independent from 
the solution method. Thus, the user may define new constraints without worrying about 
the way they are solved. Moreover, the solution method can be improved without affecting 
constraint representation. 

3.3.4. Dealing with overconstralned and underconstrained systems 

Some systems require that a constraint problem be exactly constrained. CONlEST allows 
both overconstrained and underconstrained problems. If a problem is overconstrained, 
CONlEST seeks the best compromise to satisfy conflicting constraints. If a problem is 
underconstrained, CONlEST simply picks a plausible solution that meets the given 
constraints. Most design problems include overconstrained design variables; the difficulty 
in a design problem is finding a design that best satisfies a set of conflicting criteria. Note 
that some design variables in a problem may be overconstrained, while others are 
underconstrained (and still others may be exactly constrained). 

3.3.5. Suitability as a design aid 

As explained above, CONlEST was not constructed to replace the human designer, though 
in some cases designs may be generated completely automatically from an initial problem 
specification. In many other cases, however, design will remain an iterative process, with 
the computer and human interacting to explore the design space. CONlEST allows a 
designer to add and modify constraints to evaluate prototype designs. 

3.4. Exploration of solution methods 

When we began this project, we had some vague ideas of how we might solve problems 
involving collections of complex constraints. We examined four approaches that were in 
some way unsatisfactory. One of our early ideas was to build intelligent objects, each of 
which was capable of determining its correct position and shape, given the list of 
constraints imposed on it. The problem with this approach was that each object needed to 
know about other objects and needed to know about the constraints on themselves. In 
essence a separate constraint solver was needed by each object. Apart from the obvious 
problem of implementing constraint solvers for each object, the approach suffered from the 
additional problem of solutions being local in nature. I.e., while each object could attempt 
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to solve the constraints on itself locally, it did not have information about all constraints on 
other objects, and hence could not in general reach a globally optimal solution to the 
constraints. 

Despite these limitations, we implemented a system which solved mumal constraints by 
allowing communication between neighboring objects [Amburn, 1986]. This ad hoc 
approach was successful in a special purpose terrain modeling application, but broke down 
in the general case because it required a global constraint solver, which we did not have and 
were trying avoid in the first place. 

The second idea was to find a way to reduce the problem to a simpler problem solvable 
using analytical techniques. We tried to find a small set of geometric constraints that could 
be used to implement many complex constraints. We hoped that a large class of geometric 
constraints could be expressed using simple constraints involving distances and 
orientations between points, lines, and polygons. Barzel and Barr [Barzel, 1988] and 
Briiderlin [Briiderlin, 1987] have shown that sophisticated modeling problems can be 
solved using small sets of such constraints, but our goal was not to see what could be done 
with a given set of constraints, but to see whether arbitrary constraints could be converted 
into simpler constraints. This approach was rejected because no general solvable set of 
primitive constraints could be found. While many constraints could be expressed as a 
collection of simpler constraints, the resulting set of simpler constraints still was not 
solvable using analytical techniques. 

A third approach considered was approximating all constraints by simpler constraints 
solvable using analytical techniques. If all constraints could be approximated by linear 
functions, for example, then a technique such as linear programming could be applied. 
This approach was rejected because basic three-dimensional properties such as area, 
volume, and distance are non-linear in terms of the defining coordinates. We may have 
proceeded if only a small number of exceptions needed to be approximated, but it did not 
seem wise to proceed with such a distinct clash between problem definition and potential 
solution methods. 

A fourth idea was to evaluate constraints using a scalar quality measure. This was 
eventually adopted, though it was temporarily rejected because there seemed to be no 
practical way to use the information to find a solution. The feasibility of this approach was 
reconsidered after examining constraint-based specification in a related field, VLSI design. 
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3.5. The cost function representation 

The problem representation used by CONTEST was chosen after noting the success of 
constraint-based VLSI systems. VLSI designers must constantly deal with constrllints: 
basic constraints defining the function of the circuit, design rule constraints imposed by the 
manufacturing process, and cost and speed constrllints involving wire length and chip area. 
One of the fundamental problems in VLSI design is floorplan layout; the goal is to place a 
number of cells so as to minimize chip area. By explicitly casting the problem in terms of 
optimizing the area function, VLSI designers were able to apply iterative improvement 
techniques to generate near-optimal floorplans (e.g., [Wong, 1986]). The design variables 
were the positions of the cells, and the objective function was chosen to minimize the area 
of the resulting floorplan, while also meeting design rules. 

CONTEST uses a similar approach in which the design variables are the geometric 
parameters that define a model. Constrllints are expressed using cost or error functions that 
measure how well the constraints are satisfied. Normally, if a constraint is completely 
satisfied, the value of its cost function is zero. Otherwise, the cost function returus a value 
that indicates how severely the constraint is violated 

For example, suppose we wish to constrain two objects to be five units apart from one 
another. If the objects in a given model are indeed five units apart, then the cost function 
should returu a value of zero. If not, then the cost function should returu a non-zero value, 
with the magnitude of the value increasing with the difference between the desired distance 
(five) and the actual distance. One cost function to accomplish this is: 

cost = abs(5 -distance( object] ,object2)) 

This function provides a cost that increases with distance from the goal. In chapter 5, we 
will see that there are additional guidelines to cost function design which make this function 
a starting point for a more sophisticated cost function. In addition, for each cost function, 
Cj, the modeler may specify a weighting factor, Wj, to reflect the relative importance of the 
constraint The weighted cost values are then summed to yield a total cost function that 
expresses how well an entire model matches all constraints. 
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Formally, 
ci =/,{designparameters) 
wi = weighting coefficient for constraint i 

Crotal = I Wj Cj = f 101aJ( design parameters) 

As was discussed in chapter one, this summation representation represents the composition 
of constraints corresponding to the and operation. A more complex expression is 
necessary to represent additional operations, such as or. The simplified form is used here 
since it corresponds to the current implementation, and support for additional operations 
has not been needed. 

The cost of any particular design can be determined by supplying the inputs (design 
parameters) tof.otab and examining the output, Ctotal· The optimization process involves 
developing and testing different inputs in search of an acceptable solution. 

This approach quantifies constraints to yield a single scalar value which reflects the quality 
of any particular design. The optimal design is the configuration which minimizes the cost 
fu~ction. This problem formulation has therefore transformed the constraint satisfaction 
problem into an optimization problem. 

3;p. Characteristics of applications 
" 

The problem representation used by CONTEST allows flexibility in constraint 
specification, but because of this flexibility, CONTEST cannot guarantee optimal results. 
In addition, the solution method uses probabilistic techniques; this further affects the class 
of problems to which CONTEST it well-suited. In general, CONTEST will perform well 
on constraint applications with the following characteristics: 

• applications where near-optimal solutions are acceptable 
• applications with many optimal solutions 
• applications with non-intuitive solutions or where the design process is unknown 
• applications where some randomness is acceptable or desirable 

3.6.1. Near-optimal solutions acceptable 

CONTEST cannot guarantee that it will find the optimal solution to a constraint problem. 
Even when the system reaches an optimal solution, it cannot detect that the solution is 
optimal. CONTEST is therefore suited to applications that require good solutions, rather 
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than the best solution. When CON1EST does not fmd an optimal solution, the solution it 
returns will tend to be a local optimum. The resulting model will thus appear reasonable in 
that no small changes can be made to better satisfy the constraints. 

D 

a) global optimum b) local optimum c) not locally optimal 

figure 3.3: global vs. local optima In a packing problem 

Suppose we use CON1EST to pack objects together so that the area of their bounding box 
is minimized. Figure 3.3a shows a global optimum. Figure 3.3b shows a local optimum 
that might be acceptable. Figure 3.3c shows a solution that is not locally optimal. 

3.6.2. M~ny optimal solutions 

CON1EST explores the space of all possible solutions when searching for an optimal 
solution. The probability of fmding an optimal solution is greater if there are many optimal 
solutions as opposed to a single configuration. 

3.6.3. Non-intuitive solutions 

CON1EST requires no initial approximation to the fmal solution. Its solution method does 
not attempt to emulate the human design process. Consequently, it explores potential 
solutions that are non-intuitive and might not be found by a rule-based approach. It is 
suited to solving problems where a systematic human design process does not exist, or 
where design experts are unavailable. 
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3.6.4. Randomness acceptable or desirable 

CONTEST searches for a solution to a design problem by making random perturbations to 
the design variables. As a result, underconstrained variables can be set to unpredictable 
values. In some cases this is undesirable; in other cases it can add complexity and 
naturalness to models that otherwise would appear computer-generated. By generating 
several potential solutions, the designer can evaluate different near-optimal solutions and 
potentially gain insight to the problem. 

3.7. Summary 

Geometric design is a complex process involving many thousands of rules and guidelines 
learned through experience. Totally automating the design process is nearly impossible for 
several reasons. The enormous task of both acquiring and encoding design knowledge is a 
limiting factor. Subjective constraints are particularly difficult to quantify. In addition, 
design is usually an evolutionary process in which the problem specification is modified as 
the designer explores the problem. Entirely automated design requires a complete 
understanding of the problem at specification time. 

Despite these limitations, non-trivial design tasks can be solved with the aid of a computer. 
Many constraints are easily quantified, and when a problem can be properly encoded the 
computer can be used to find and evaluate solutions. An objective of this work is to 
expand the role of the computer from solving only trivial local constraints to solving very 
general global constraints. The designer can then better utilize his time in achieving a final 
design. 

CONTEST pursues this objective by using a very broad definition of the term constraint. 
Essentially, any design guideline that can be quantified by a single scalar cost function can 
be used. This representation can gracefully represent underconstrained and 
overconstrained systems. Individual cost functions are summed to yield a total cost 
function which is then optimized using black box optimization techniques. 

Because of the black box formulation, it is impossible to tell when an optimal solution has 
been attained. Moreover, because of the computational complexity of many optimization 
problems, it may be infeasible to expect an optimal solution from this or any method in a 
reasonable amount of time. Therefore CONTEST is best suited to problems where near
optimal results are satisfactory. The optimization method used by CONTEST is described 
in the following chapter. 
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Chapter 4 

Function Optimization 

This chapter discusses optimization of the global cost function. It begins by describing the 
goal of optimization problems in general, and characterizes the optimization problem for the 
geometric modeling application. The limitations of simple hill-climbing techniques are 
examined, and the need for more sophisticated search techniques is justified. Probabilistic 
optimization techniques are introduced as a way of finding global, rather than local, optima. 
The chapter concludes with an explanation of how a particular probabilistic optimization 
technique, simulated annealing, can be applied to the constraint-based modeling problem. 

4.1. Formulation as an optimization problem 

The goal of an optimization problem is to find the configuration that minimizes or 
maximizes the value of an objective function. The objective function in tbis case is the 
global cost function which incorporates the costs of all constraints. The design variables 
(the function input) are usually geometric variables (lengths, positions, etc.), though other 
model parameters (e.g., color) can be used as design variables. Parameters whose value 
cannot change are not design variables; instead, they are simply data that help to define the 
model. 

Although the design variables are free to take on any values, in practice most variables have 
a restricted range. If we are placing furniture in a room, for instance, the set of feasible 
bookshelf positions should be determined by the bounds of the room. Such a restriction 
can be encoded as a constraint, but because it is such a hard constraint, and because cost 
function design is simplified by advance knowledge of such restrictions, range information 
is made available to the optimization procedure. 

4.2. Characterization of the optimization problem 

This section discusses some of the issues that led to the decision to use simulated annealing 
techniques for solving the optimization problem in geometric model design. 



CONTEST was designed to be capable of solving a wide variety of modeling problems. 
Each of these modeling problems is defmed by the particular constraints chosen or defmed 
by the human modeler; The modeler should not be responsible for devising a solution 
method. Instead, a method capable of solving any specified optimization problem is 
needed. 

Without restrictions on the form of the constraints, it is not possible to devise a general 
purpose analytic solution to the constraint satisfaction problem short of trying all possible 
solutions. Any analytic solution method would be computationally intractable since many 
simple optimization problems are known to be NP-complete (e.g., the traveling salesman 
problem). 

Not only do we not have an analytic solution to the general constraint satisfaction problem, 
but we also have little insight about efficient problem-specific heuristics that could be used 
to reach a near-optimal solution. Again this is because of the arbitrary way that constraints 
are specified, and because the problem is subject to interactive change: the modeler may 
continually add new constraints or refine existing constraints. In addition, the constraints 
may be arbitrarily complex (e.g. non-linear in terms of the variables, with costs oscillating 
as a design variable is swept through its range of values) . 

design 
parameters 

• 
objective 
function 

• 

Figure 4.1: black box function evaluation 

cost 

Instead of using information about the form of the function to be optimized, the solution 
method treats the function as a black box. In other words, it has no information about the 
function at the start of the optimization procedure, and all information is gained by 
supplying inputs to the black box and examining the resulting output 

Any such problem formulation requires some heuristics to efficiently explore the solution 
space. Although the process of solving a black box optimization problem requires heuristic 
search, the heuristics must be generally applicable to all functions, rather than custom-
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tailored based on assumptions about the form of the function. Only then can the solution 
method be built entirely separate from the constraint specification. 

Treating this problem as a black box optimization has several important implications. Since 
the solution method has no knowledge of the constraints (and their associated cost 
functions), it cannot determine the minimum value it seeks. Even if it finds the optimal 
configuration, it has no way of knowing that it has done so. The search method cannot 
guarantee finding the optimal solution in any finite amount of time. 

Fortunately, in many applications the global optimum is not needed. Instead, local optima 
near the global optimum may be satisfactory. This work is geared toward those 
applications. Thus, while the optimization method seeks the absolute minimum, the overall 
problem is to fmd a satisfactory solution. 

4.3. The limitations of simple hill-climbing techniques 

Although we seek the minimum of the function, this discussion refers to hill climbing, a 
maximization technique. To find the minimum of a function we need only find the 
maximum of its negative. 

The black box problem formulation assumes that we have no information about the 
function. At times, however, the system designer does have some information about the 
general form of the function and can use this information to select an appropriate search 
procedure. In particular, if the function is unimodal, then a simple hill-climbing strategy 
can be used to find the optimum. Unfortunately, any sophisticated constraint-based design 
problem will generally yield a multimodal cost function. 

Simple hill climbing works as follows: we start at some initial point (random or user 
chosen) on the function, and examine configurations in the neighborhood of the current 
configuration. If a configuration gives a higher function value than the current 
configuration, we accept that move and hence climb the function towards its maximum. 
When we reach the maximum, all moves lead downward, and the search or climb is 
complete. 

This technique assumes that the function is unimodal: i.e., there exists a single extremum in 
the function. It is not successful at finding optima of multimodal functions, where each 
function can have many local minima and maxima. Imagine standing halfway up a foothill 
near a large mountain. Your goal is to reach the peak of the mountain, but with the 
restriction that you can only climb upwards. Unfortunately, the best that you can do in that 
situation is to reach the top of the foothill. To reach a global optimum, one must sometimes 

48 



climb downward before resuming the ascent toward the maximum. This is the goal of 

probabilistic optimization techniques; they allow steps away from direction of interest in the 

hope of finding a path to the global optimum. 

4.4. Description of probabilistic optimization techniques 

This section describes the general form of a class of probabilistic optimization heuristics. 

The specific subclass of simulated annealing techniques is then described. The terminology 

and pseudo-code for these techniques is adapted from [Nahar, 1986]. 

4.4.1. Probabilistic hill-climbing heuristics 

The general form of an adaptive probabilistic heuristic to minimize the value of an objective 

functionft) is presented below. This heuristic is called adaptive because the parameters of 

the heuristic may be changed as the procedure is executed. 

procedure ProbabilisticHillClimbinq; 

s :== s0 ; 

Initialize heuristic parameters; 

repeat 

repeat 

Snew := perturb(S); 

if accept(Snew•S,heuristic parameters) then S := Snew; 

until "time to adapt parameters 11
v 

Adapt parameters; 

until ntermination criteria 111
; 

end; 

s: The current solution to the problem. S0 is usually a random solution, though 

it may be a generated approximation believed to be near the optimal solution. 

perturb: A function that generates a new solution from the current solution. 

sne.; A perturbed version of S. I.e., a version of S with the values of one or 

more of the design variables changed. 
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accept: A boolean function that determines whether the perturbed solution s new 

should be accepted as the current solution. This function has the form: 

accept := f(Snewl<f(S) or 

random<g(f(S),f(Snewl,heuristic parameters) 

where: 

random is a random number in the range [0,1]. 

g( cost] ,cost2 ,heuristic parameters) is a function that determines the 
probability of accepting a perturbation that increases the cost function. 

Adapt parameters: 

a procedure that updates any parameters that are used anywhere in the 
heuristic. 

This heuristic is called probabilistic because of the form of the accept function. 
Conventional heuristics accept a perturbation only if it decreases the value of the objective 
function/(). The probabilistic acceptance function above always accepts a perturbation 
that decreases the value of the objective function; however, it also may accept a perturbation 
that increases the value of the objective function. These "bad" perturbations are accepted to 
prevent the heuristic from always converging to a local, rather than global, optimum. In 

general, the probability of accepting a bad perturbation is set highest during initial 
iterations, and is decreased (possibly reaching zero) as the algorithm proceeds. In intuitive 
terms, the heuristic initially searches the solution space to find the optimal bill, and then 
climbs that bill in later stages of the optimization process. 

4.4.2. Simulated annealing 

A particular probabilistic hill-climbing technique, simulated annealing, has been 
successfully applied to a variety of engineering problems, especially VLSI optimization 
problems [Kravitz, 1986], [Pincus, 1986], [Romeo, 1985], [Sechen, 1986], [Wong, 
1986]. Simulated annealing is based on an analogy between minimizing the cost of a 
function and the careful cooling of a solid so that it reaches its minimum energy state 
[Kirkpatrick, 1983]. 

In physics, annealing is a process for reaching low energy states in a solid. The solid is 
heated until it melts, and then slowly cooled until the particles of the solid are arranged into 
their minimum energy (ground) state. When heated to a high temperature, the particles in 
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the liquid are arranged randomly, and the liquid has an equal probability of being in each 
possible configuration. If properly cooled, however, the particles of the solid are carefully 
structured into the minimum energy configuration with probability one. 

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [Metropolis, 1953] devised an 
algorithm for simulating the annealing process. In the algorithm, each configuration has an 
associated energy. The algorithm starts with a random initial state and high temperature, 
and generates new states by making small perturbations to the current state. Let the energy 
of the current state i be Ei and the new state j be Ei. If Ei is less than E;, then the new 
state is accepted as the current state. If Ei is greater thanE;, however, then state j is 
accepted as the new state with probability 

(4.1) 

where k0 is a physical constant called the Boltzmann constant, and t is the temperature of 
the system. If the cooling of the system is perfonned slowly, then the system is able to 
reach therrruzl equilibriwn at each temperature. When the system is in thermal equilibrium, 
the probability of it being in state i with energy E; is 

exp (-E;) 
qi(t)= kn t 

(-E-) 
I.i exp kn

1
t 

(4.2) 

This is known as the Boltzmann distribution, and is important because it defines probability 
distributions which must be maintained by any simulated cooling if optimal results are to be 
achieved. We use q( t) to refer to this distribution for all states. 

The simulated annealing algorithm may be applied to general optimization problems by 
drawing the following analogies: 

Physics 
State 

Particles 
Energy 

Ground state 

Function optimization 
Configuration/solution: S 

Variables 

Value offunction:f(S) 

Optimal solution 

For general optimization problems, the k0t expression can be replaced by a general control 
parameter T, which acts as a temperature but has no physical meaning outside the solution 
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method. The general form of the simulated annealing heuristic (again adapted from 
[Nahar, 1986]) is as follows: 

where: 

procedure SimulatedAnnealing; 

S ~- S0 ; k := 0; 

T := T0 ; iterations := i 0 ; 

repeat 

repeat 

Snew := perturb(SFT); 

if accept(Snew•S,T) then S :- Snew; 

until inner loop has been repeated iterations times; 

k :~ k + 1; 

decrease(T); increase(iterations); 

until fiter.mination criteria"; 

end; 

decrease(T) decreases the temperature, 
increase(iterations) increases the number ofloop iterations, 

and the acceptance function has the form: 

(
f(Snewl - f(S)) 

accept := if f (S,...) < f (S) or random < exp T " 

The values T0 and iO> and the procedures decrease() and increase(), define the annealing 
schedule for the simulated cooling of the system There are many possible annealing 
schedules" In the following section, two possible schedules are discussed" 

A number of tennination criteria are possible" The simplest is to stop when the system has 
cooled to a certain temperature" Another possibility is to terminate when the marginal 
improvement in the objective function is so small that it appears that the process has 
converged to an optimum A third possibility is to display intermediate results and quit 
based on user intervention" 

Simulated annealing is of interest as an optimization technique because theoretical results 
exist which specify sufficient conditions for convergence to the optimum (e"g", [Geman, 
1984], [Gidas, 1985], [Aarts, 1989])" The conditions for convergence require either 
infinitely slow cooling or an infinite number of iterations at each step" In practice this is not 
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possible, so simulated annealing cannot be used to guarantee an optimal solution. 
However, these results provide a stronger foundation for the success of simulated 
annealing compared to ad hoc probabilistic optimization techniques. 

Consider a method that randomly chooses a finite number of starting points and performs 
simple hill-climbing on those points. Even with infinitely small hill-climbing steps, such a 
method is not guaranteed to find the optimum. With simulated annealing, however, if a 
particular annealing schedule converges to a non-optimum solution, we know that there 
exists a more careful annealing schedule that will perform better. 

The simulated annealing procedure is simple and very general. The specifics of the 
problem are not essential to the execution of the algorithm. It may be possible to use 
problem-specific information to adjust the heuristic parameters or make intelligent 
perturbations, but the improvements would tend to be in execution time rather than in 
optimality of the solution. The tradeoff for this simplicity and generality is computational 
expense. Many hundreds of thousands of iterations may be needed before termination 
criteria are met. 

This section presented the general form of the simulated annealing procedure. The 
following section describes how this general structure may be applied to constraint-based 
modeling. 

4.5. Applying annealing to constraint~based modeling 

This section discusses design and implementation issues of the following components of 
the annealing method: 

• solution representation 
• cost (objective) function 
• perturbation functions 
• acceptance function 
• annealing schedule 

The form of some of these components (e.g., perturbation function) is dependent on this 
application, while the form of other components (e.g., the acceptance function) does not 
differ from previous simulated annealing applications. All components are described here 
for completeness. 
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4.5.1. Solution representation 

A solution is the body of information that defines a model. It may include: 

• passive geometric data 

• procedurnl geometric models and their parameters 
• any other parameters associated the model (e.g. color and other reflectivity 

information) or parameters that control the construction of the model (e.g. 
light source position, camera position, other viewing parameters) 

Any of the above information may be treated as design variables (i.e., variables that may be 
changed during the annealing process), though care must be taken that reasonable 
perturbation functions are associated with these variables. In keeping with an object
oriented design philosophy, the particular effect of changing any given design variable is 
hidden from the annealing algorithm. Thus a procedural geometric model is responsible for 
making the necessary changes to its geometry in response to the perturbation of one of its 
parameters. 

4.5.2. Objective function 

The objective function is simply the sum of the cost functions for each of the constraints. 
These individual cost functions are adjusted by weighting factors that reflect their strength 
relative to the other constraints. Cost function design is covered extensively in chapter 5. 

4.5.3. Perturbation function 

The perturbation function transforms the current configuration into a neighboring 
configuration. For example, if the object has three degrees of freedom, the perturbation 
might be a random translation in x, y, or z. If rotation is permitted, the perturbation could 
be either a translation in x, y, or z, or a rotation (relative to the center of the object) about 
the x, y, or z axes. Similarly, scaling, stretching, squashing, or other arbitrary 
transformations may be applied as perturbation functions. The only requirement is that the 
transformation be reversible, either by an inverse transformation on the perturbed object, or 
simply by saving a copy of the original object. 

The standard geometric object implementation in CONTEST supports the following 
transformations: rotate x, rotate y, rotate z, translate x, translate y, translate z. At object 
initialization time, an initial range for each of these parameters is define<i For translation, 
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this range is nonnally related to the world size, so that an arbitrary translation within that 
range can place the object randomly within the world. The initial rotation range is usually 
chosen to be greater than or equal to 360 degrees, so that initially, a rotation perturbation 
will result in a random orientation. 

CONTEST implements the perturbation function by maintlining a range parameter, 
rangeFactor, which specifies the percentage of the initial range that should be used in 
determining a perturbation. At the start of the annealing process, when the temperature is 
high, rangeFactor=l.O, so perturbations yield essentially random positions and 
orientations. For each successive temperature decrease k, rangeF actor is decreased based 
on an adjustment factor. In addition, a minimum range is chosen so that even after the 
system has cooled to a temperature near zero, reasonably large hill-climbing steps will still 
be performed (for fast convergence to a local optimum). Thus, 

rangeFactork+! =max (rangeFactor~c · rangeAdjust, rangeMin) (4.3) 

· The perturbation function for geometric objects can be summarized as follows: 

1. select an object from list of perturbable objects 
2. select a transformation from the list of available transformations for that object 
3. compute the range of the transformation by multiplying rangeFactor by the 

maximum range for that transformation 
4. select a random perturbation in that range 
5. perform the transformation 

All objects are responsible for providing a perturbation function. Geometric objects are 
able to share the common function described above, whereas non-geometric objects require 
separate perturbation functions (which may or may not be shared among classes of non
geometric objects). 

The randomness of the perturbation function may at first seem needlessly inefficient, since 
it may be possible to make more intelligent perturbations, such as evaluating the gradient 
and taking a step in that direction, or perhaps trying a predefined sequence of perturbations 
(e.g., always try to move down first, then try translation in other directions, then try 
various rotations, etc.). 
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The difficulty in designing intelligent perturbation functions is that while such functions can 
increase the speed of convergence to an optimum, they also increase the probability of that 
optimum being local rather than global. Care must be taken to ensure that the perturbation 
function samples a range of configurations in the solution space. Provable convergence 
depends on the randomness of the perturbations. 

4.5.4. Acceptance function 

CONTEST uses the standard simulated annealing acceptance function: always accept a 
good perturbation, and accept a bad perturbation with a probability that decreases as the 
system cools: 

Pr. (accepting Snew) = { 
1, iff(Snew) !:,ftS) 

exp ( .f(S)-:Snew)} iff(Snew) > f(S) 

(4.4) 

4.5.5. Annealing schedule 

The annealing schedule consists of the definition of initial temperature, initial number of 
iterations in the iuner loop, and functions that update the temperature and number of inner 
loop iterations during each execution of the outer loop. These parameters are difficult to 
define because the notions of temperature and cooling are attificial for this application. 
This section presents two structures for annealing schedules. The first is a simple schedule 
proposed by Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick, 1983]. The second, developed 
by A arts and Van Laarhoven [ Aarts, 1985], is more sophisticated and is described in detail 
in [ Aarts, 1989]. 

Forms of both of these schedules were implemented in CON1EST. The first schedule was 
initially implemented. The non-intuitiveness of parameter selection forced the 
implementation of the second schedule, which automates more of the parameter selection. 

In the discussion below, let z(T) represent the percentage of total transitions that are 
accepted at temperature T. 
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4.5.5. 1. Simple schedule 

This section describes the annealing schedule developed by Kirkpatrick, Gelatt, and 
Vecchio 

Initial temperature: The initial temperature should be high enough that almost all 
perturbations are accepted. It can be set by starting at a low temperature and rapidly heating 

the system (increasing the temperature) until the acceptance ratio XfT) is near one. This 
heating can take place in large increments, since overheating a system has no detremental 
effect other than increasing the time of the cooling process. 

Initial inner loop iterations: At each temperature, we seek to reestablish thermal 
equilibrium. Exact thermal equilibrium can be maintained at all times by cooling the system 
infinitely slowly, or by performing an infinite number of iterations at each temperature. 
Since we are approximating the cooling with a finite number of steps, we can only get close 
to thermal equilibrium, as expressed by: 

II a(iterations,T)- q(T)II < e, (4.5) 

where a(iterations,T) represents the probability distribution after a fixed number of 
iterations at temperature T, and q(T) represents the equilibrium distribution. In practice, 
the initial number of iterations depends on the size of the problem, and is chosen so that a 
substantial percentage of neighbors of the original state are examined. A typical initial 
number of iterations for a small problem involving ten variables is fifty iterations, but this 
is provided only as a rule-of-thumb, since the actual number required depends on the 
complexity of the problem and the rate at which the temperature is decreased. A more 
complex problem requires more iterations, while slower cooling steps permit fewer 
iterations. 

Decrease of temperature: In the simple schedule, the temperature is updated by a 

constant scaling factor a, so that: 

T k+l =a· T k, 0.0 <a< 1.0. 

A typical value for a is .95. 
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Increase of inner loop iterations: At each temperature, quasi equilibrium is achieved 
after acceptance of some finite number of transitions. Since the acceptance rate decreases 
with temperature, it follows that the number of iterations at each temperature should 

increase. This is achieved by a multiplying by a scaling factor /3, so that: 

iterations k+l = f3 · iterations k' f3 ~ 1.0. 

A typical value for f3 is 1.01. An upper bound can be used to keep the number of 
iterations from approaching infmity as the temperature approaches zero. 

(4.7) 

Termination: A simple termination method is to quit when there is no change in final cost 
after a fixed number of decreasing temperatures. 

4.5.5.2. Sophisticated schedule 

This section describes the annealing schedule developed by Aarts and Van Laarhoven. 

Initial temperature: The goal is to set the initial temperature so that the acceptance ratio, 

z(T0), is equal to a predetermined value close to one. Aarts and Van Laarhoven noted that 
a sequence of trials can be used to compute T0• Suppose we run a series of mo trials, 
with the result that m 1 transitions decrease the cost of the function, and m2 transitions 
increase the cost of the function, where m0 = m1 + m2• The acceptance ratio can then be 
approximated by: 

where 11/ represents the average increase in cost for the m2 transitions. From this 
equation we can derive: 

(4.8) 

(4.9) 

To compute T0, we set z(T) equal to the desired ratio Xa. and use equation 4.9 to 
compute successive values ofT after each trial. Experience indicates that the value of T 
converges to T0 rapidly. 
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Initial inner loop iterations: The number of iterations of the inner loop depends on the 

size of the problem and should be chosen so that a fraction of the neighboring 
configurations of the initial configuration is examined For example, a configuration 
consisting of objects with (x,y) positions should evaluate at least two or three increases and 
decreases of both x andy. 

Decrement of temperature: We assume that quasi equilibrium is attained at T0, since 
we have chosen this initial temperature. To maintain quasi equilibrium, we want the 

difference in probability distributions for successive temperatures to be close enough so 
that, for the new temperature, quasi equilibrium can be restored after a fixed number of 

iterations. We can define close as meaning that for each possible configuration i, 

(4.10) 

where 8expresses how close we need to be. In [Aarts, 1989], Aarts and Korst argue that 

for a given 8, the restrictions of equation 4. 9 can be satisfied by choosing new 
temperatures as follows: 

k=O,l, ... (4.11) 

where C1 (T) represents the standard deviation of the function at a given temperature. The 

standard deviation can be approximated by saving and evaluating the standard deviation of 

the costs for the previous inner loop. 

Increase of inner loop iterations: In this schedule, quasi equilibrium is maintained by 
adapting the temperature decrements to the statistical properties of the previous sequence of 
inner loop iterations. The number of inner loop iterations does not change. 

Termination: We make the decision to terminate based on an approximation of nearness 

to the optimum. If we let (f) T represent the expected cost of the function at temperature 

T, then we can define Ll(f) T , the expected distance from the function optimum, as: 

(4.12) 
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We can terminate if this distance is small compared to the initial expected cost, (f)r, =(f)_. 

For small temperatures, i!(f}r may be approximated by: 

We can terminate if, at some k, 

i!(f}r. 
(!}_ 

This can be expressed as: 

expected change in cost 
- initial cost 

T• o(f}r I --- < e (!)_ 'iJT r~r. stop 

< Estop 

The expected cost at each outer loop iteration, k, can be approximated by saving and 
evaluating the average of the costs for the previous inner loop. 

4.5.6. Evaluating the Solution 

(4.13) 

(4.14) 

(4.15) 

Convergence to a solution is affected by many components of the annealing process: the 
cost functions, the perturbation functions, the acceptance function, and the annealing 
schedule. The evaluation of whether a particular configuration is acceptable may be 
determined using one of the following criteria: 

• all constraints are satisfied: this has been the traditional method for 
determining whether a solution is satisfactory. This criterion is unsuitable 
for overconstrained problems, or problems with goal constraints. 

• comparison with previous designs: many design applications involve 
redesign of existing products. In these cases, there exists a basis for 
comparison. The new solution is acceptable if it is better than the 
previous version according to the defmed cost functions. 

• user evaluation: as a last resort, the user of the modeling system must 
subjectively decide whether the solution is acceptable. He or she may do 
this by examining the model and the values of the cost functions for the 
model. 

If the solution has converged to an unsatisfactory local optimum, the user can explore 
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several alternatives: 

• rerun the simulation: the stochastic nature of the annealing process may 
yield a different solution 

• modifY the parameters in the annealing schedule 
• add search constraints to guide the solution process 

The first alternative is simplest but may fail frequently. The second alternative is relatively 
simple and is likely to succeed. The final alternative may be successful if the user has 
intuition about the general form of the final solution. 

4.6. Summary 

This chapter discussed several issues relating to cost function optimization. The decision 
was made to treat the cost function as a black box optimization problem, where knowledge 
about the function can only be gained by evaluating it Probabilistic optimization 
techniques were discussed, and simulated annealing, a particular probabilistic technique, 
was selected as a method applicable to this research. Details of adapting the method to 
constraint-based modeling were provided. One key issue, the form of the objective 
function, was only briefly discussed, and is presented in detail in the following chapter. 
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Chapter 5 

Cost Functions 

A cost function for a constraint is a function that, when evaluated on a configuration, 
returns a measure of how well that constraint is satisfied. This measure is a scalar value 
that expresses the amount of constraint violation. When we compare two designs and say 
that one design is better than the other, we are weighing various factors to reach a 
judgement. The development of cost functions is an attempt to quantify these assessments. 

In one sense, all cost functions are equivalent because they return a single real number; no 
distinction is made between classes of constraints as they are combined to form the total 
cost function, or as the total cost function is optimized by the solution procedure. On the 
other hand, for instructional purposes, three categories of constraints can be identified: 
objective constraints, subjective constraints, and search constraints. Objective constraints 
are constraints that can be objectively evaluated because they deal with material properties 
rather than aesthetic concepts. Subjective constraints involve an individual's value 
judgements. Quantifying subjective constraints is more difficult, but cost functions can be 
constructed by breaking down subjective constraints into a series of simpler, objective 
evaluations. Search constraints provide a way for the designer to direct the constraint 
satisfaction search to a portion of the solution space. 

This chapter discusses cost function design for geometric modeling applications. It begins 
by presenting examples of different constraints. The theory behind cost functions and the 
context of their use is then discussed. Next, general guidelines for cost function 
construction are presented. Individual guidelines for objective, subjective, and search 
constraints are then described, and cost function templates are derived based on these 
guidelines. The chapter concludes with a brief discussion of operations on constraints. 

5.1. Examples of constraints 

Constraints may be applied to all types of geometric objects -- from a single coordinate of a 
vertex to entire assemblies consisting of thousands of primitive objects. Within this 



spectrum lie many object types: 

• vertices • line segments 
• spheres • cylinders 
• bicubic patches • polygons 
• plane equations • polyhedral solids 
• mesh surfaces • etc. 

Later in this chapter, constraints are described as falling into three categories, based on 
construction of their corresponding cost functions: objective constraints, subjective 
constraints, and search constraints. In this section, however, a different classification is 
used. Constraints can be considered geometric, indirectly geometric, or non-geometric. 
These categories distinguish between constraints that have traditionally been used in 
modeling systems (geometric) and constraints that have not traditionally been available but 
which are supported by CONTEST (indirectly geometric and non-geometric). 

5.1.1. Geometric constraints 

Geometric constraints typically involve one or two simple object types. A geometric 
constraint might restrict the range of a particular value (e.g., "make X less than 20.0"), or 
specify a relation between two objects (e.g., "object A should be above object B"). Several 
subcategories of geometric constraints follow. These are only examples and do not form 
an exhaustive list. 

5.1.1.1. Position constraints 

• minimize the y coordinate of a point 
• set z coordinate to 20.0 
• maximize the height of a sphere 

5.1.1.2. Distance constraints 

• place two objects so they are at least 10.0 units apart 
• make two objects be adjacent to one another 
• maximize the distance between two objects 
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5.1.1.3. Orientation constraints 

• make a particular side of a cube face toward a point (e.g., a light source) 
• set the angle between two adjoining line segments to 45 degrees 
• ensure that the base of a cylinder is flush with a particular plane 

5.1. 1.4. Size constraints 

• minimize the surface area of a container 
• maximize the volume of a cylinder 
• ensure that object A can enclose object B 

5.1.1.5. Intersection constraints 

• ensure that two objects do not intersect 
. • set the volume of intersection of two spheres to 15.0 
• ensure that object A is contained within object B 

5.1.2. Indirectly geometric constraints 

The constraints in this category ultimately affect geometry, yet are usually specified 
indirectly in terms of some property that is a complicated function of the geometry. 
Evaluation of the constraints may involve a series of cumputations, which makes it difficult 
to solve the constraints analytically. Examples of such constraints include: 

• ensure object A is visible to object B 
• ensure that a garden plot receives sufficient sunlight for plant growth 
• minimize the drag of an airplane wing 
• minimize the operating temperature of a machine 
• ensure that a part meets federal safety requirements 
• maximize the area of the shadow cast by object x 

64 



5.1.3. Non-geometric constraints 

While the primary product of a modeling system is a geometric description, models may 
also have non-geometric parameters associated with model parts. Color, age, and 
reflectivity parameters are a few examples of parameters than can greatly influence design. 
Examples of constraints involving these parameters include: 

• select an object color so that it matches its environment 
• all else being equal, select newer parts when a choice is available 
• set an object's perceived intensity from a particular viewpoint 

5.2. Theory and use of cost functions 

The purpose of cost function design is to provide a way to compare two or more models. 
Many cost functions return a value of zero if their constraints are completely satisfied, and a 
value greater than zero if the constraint is not satisfied. Functions can return negative 
values, however. For example, a property (e.g., surface area) can be maximized by 
defining a cost function equal to the negative of that property (though CONTEST does not 
use this representation). Since cost functions can take on any range of values, the value 
returned by a cost function has little meaning by itself. Instead, its meaning lies in the 
process of comparing costs between different models. 

CONTEST provides a library of cost functions for use in constructing a model. The library 
consists of functions for objective and search constraints. Subjective constraints tend to 
deal with application dependent interpretation of geometty and must therefore be 
constructed by the designer. A typical application will apply library constraints and may or 
may not apply additional user-defined constraints. 

A user of CONTEST can define new models in two ways. One way is to supply new 
constraints and geometric objects at each session. This is the method of design for a 
person creating a series of distinct models. The site planning examples in chapter seven are 
examples of models in this category. A problem defining the layout of a university campus 
requires a different set of constraints than the plan for a suburban neighborhood. 

The second design method is to first build a single application capable of generating many 
instances of designs from a single class. The user then specifies a particular design by 
providing data or weights to constraints. The opaque projector application in chapter six 
demonstrates this style of design. In that example, a single set of constraints defmes a 
class of projectors. Individual projectors are selected by setting parameters to constraints, 
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rather than creating new constraints. 

5.3. General cost function guidelines 

Cost function design is guided by three concerns: choosing a unit of measure for the cost 
function, specifying a satisfactory shape which reflects design tradeoffs, and selecting a 

function which helps the annealing or optimization process. This section suggests some 
general guidelines for cost function design based on these concerns. 

5.3.1. Units of measure for cost functions 

5.3.1.1. Choose a single unit of measure 

Recall the form of the global cost function for concatenated constraints: 

Ctotal = I: Wi Ci, (5.1) 

' where Wi is the weighting factor for constraint i, and Ci is the cost function. 

"." Suppose each constraint, Cj, has its own unit of measure. The designer must then choose 

· each weighting factor, Wj, to reflect both a conversion to the units in which Ctotal is 
expressed as well as an expression of the relative importance of Ci in these units. Even if 

" the designer does not explicitly state these individual components, the fact remains that he 
has convened from Ci units to Ctotal units for each constraint i. In other words, he has 

effectively defined a single unit of measure for each constraint Thus, if the user does not 
choose a single unit of measure at cost function definition time, he will end up choosing 
one each time a global cost function is defined. The former choice is usually preferred. 

5.3.1.2. Choose dollars as the unit of measure in product design 

For any type of product design, constraints involving pan costs will most naturally be 

expressed in real dollar values. Since this unit of measure will already exist for some 
·constraints, it may simplify things to choose dollars as the global unit of measure. This can 
lead to uncomfortable decisions (e.g., putting a dollar value on items such as safety), 

however these decisions must be made regardless of unit of measure and choosing an 
artificial measure only clouds the issue. 

For other applications, one can choose an arbitrary unit of measure for the first constraint, 
and base new constraints on their importance relative to existing constraints. The problem 
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with this is that reuse of constraints (e.g., from libraries) requires either a common basis or 
a rescaling of each constraint. This issue is further explored in the next guideline. 

5.3.1.3. Select a standard range of values 

From an optimization standpoint, the magnitude of cost function values is not as important 
as the range of values the function assumes. This is because at the end of the optimization 
procedure, we are only interested in the input (i.e., modeling parameters) that yielded the 

minimal cost, and not the cost itself. 

What are the implications of this? First, it means that any cost function can be adjusted 
upward or downward by any constant value and still behave equivalently. Second, it 
means that the value of the total cost function is meaningless in measuring quality. As 
mentioned above, only by comparing configurations can quality be determined. In 

particular, this means that unless a standard range is defined, a cost function with a value of 
zero does not necessarily indicate that all constraints are satisfied. 

From the designer's standpoint, however, comparison and evaluation of cost functions 
becomes difficult if each constraint assumes a different range of values. Thus, a standard 

range of functions values can simplify the comparison and evaluation process. CONTEST 
uses an arbitrary standard of 0.0 representing maximum satisfaction and values greater than 
zero representing increasing constraint violation. 

5.3.2. Shape guidelines for cost functions 

5.3.2.1. Define the cost of compromise configurations 

Consider a constraint that a sphere should have a volume of 20 units. One can simply 

determine whether the constraint is satisfied by computing the volume of the sphere. A 

possible cost function for this constraint is shown in figure 5.1. Problems with this cost 
function are that it is difficult to find the single acceptable point when performing a black 
box optimization, and no distinction is made between unsatisfactory solutions; a volume of 
1.5 is considered no worse than a volume of 19.5. 
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Figure 5.1: a simplistic cost function 

Figure 5.2 shows a cost function in which function values gradually approach the 
minimum value of zero as the volume approaches the desired value of twenty. There are 
twb reasons why cost functions should be designed with broad slopes to the optimum 
value. First, such a slope allows the search procedure to determine the direction of the 
optimum by comparing neighboring configurations, even far from the optimum value. 
Second, in an overconstrained problem, the cost function defines which compromise 
configurations are closest to the optimum. 
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Figura 5.2: a mora useful cost function 
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5.3.2.2. Shape should be accurate and easy to specify 

A designer may specify hundreds of constraints in defining a model. To ease this 
constraint definition task, a minimal number of parameters should be required to specify the 
shape of a cost function. Modifying the shape of the function should only require changing 

the values of one or more of these parameters. 

There is, of course, a tradeoff between ease of definition and accuracy of representation. 
CON'IEST takes the approach of identifying the most common classes of cost functions, 

and allowing the user to shape standard cost function templates for each of these classes. 
This provides simple and accurate cost function representation. 

5.3.2.3. Attempt to separate representation from specification 

Ideally, a designer should not have to understand the way constraints are implemented and 
solved. Instead, the designer should be able to describe constraints in general terms. 

Consider the volume example depicted by figure 5.2. The designer should be able to 
express the cost dropoff in terms of general properties, such as "a broad tolerance for 

values close to 20.0", rather than in specific terms such as "the cost of a volume of 25.0 is 
0.2". Unfortunately, terms such as broad and close to axe not precise, so there is a 

tradeoff between precision and abstraction when specifying constraint properties. 

5.3.3. Constructing functions to aid the optimization process 

5.3.3.1. Functions should encourage hill-climbing 

The simplistic cost function depicted in figure 5.1 is undesirable from a design point of 

view because it does not distinguish between unacceptable solutions. However, it is also 
undesirable based on the characteristics of the optimization process. Any black box 

optimization technique will have zero probability of fmding a single point if the domain of 

function parameters is infinite, and the probability is near-zero even with a finite domain. 
Thus the cost function in figure 5.1 is incompatible with the annealing procedure. 
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Figure 5.3: a wider region of accepted values 

An alternative is to widen the range of accepted values, as shown in figure 5.3. The 
problem with this approach is that it accepts many values as being equally acceptable as the 
desired value. We can narrow the region of acceptable values to prevent this, but as the 
width of the accepted region approaches zero, the probability of finding that region also 
approaches zero. There is a tradeoff between accepting undesirable values and finding any 
parameter near the target. 
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Figure 5.4: guiding search to optimal value 

A third possibility is to shape the function so that the direction of the desired value can be 
determined throughout the parameter domain. Sloping the function as in figure 5.4 
accomplishes this goal. The guidance provided by such a function shape is particularly 
imporant during the last stages of annealing. As the system cools, annealing reduces to 
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hill-climbing toward a local optimum. Note that these annealing-related guidelines are 

compatible with the design tradeoff guidelines of section 5.3.2. 

5.3.3.2. Always reward movement toward the goal 

This guideline is best demonstrated by example. A possible cost function for non

intersection of solids is the volume of their intersection. Now consider a constraint that 

says a small sphere should not intersect a large cube. The simplistic cost function will 
return the same value for any configuration with the sphere entirely within the cube. A 
smarter cost function will reward the sphere for being closer to the edges of the cube and 

thus closer to a correct solution. The general principle is that cost functions should 
distinguish between acceptable solutions whenever possible. 

5.3.3.3. Functions should be easy to evaluate 

Annealing is a time-consuming process. Much of the computation time is dedicated to 

reevaluating cost functions after each perturbation. By selecting functions which are easy 
to evaluate, the total run-time to solve a problem can be reduced. 

5.4. Cost functions for objective constraints 

It is simple to tell when an objective constraint has been satisfied, because objective 
constraints deal with concrete geometric properties such as distance, volume, intersection, 
and area. There can be no argument as to whether two objects intersect, or whether the 

volume of a cylinder is more than 50 milliliters. Cost functions for objective constraints are 

not trivial to define, however. In addition to determining when a constraint has been 
satisfied, the cost function must also defme the cost of compromise configurations in 

problems with conflicting constraints. The two main difficulties in building cost functions 
are: 1) defining the shape of each function, and 2) determining the importance of each cost 
function relative to other cost functions. 

This section attacks these problems in concert Constraints are categorized into six basic 
constraint types: equal(=), not equal (.o), less than(<), greater than(>), minimize, and 

maximize. Standard cost function templates are defined for each of these types. The 
particular parameters that shape the cost function are defined by the user in a natural manner 
and converted to the appropriate function coefficients and exponents. The balancing 

problem is addressed by ensuring that the functions return cost values within a bounded 

range. 
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5.4.1. Selecting the controlling parameter 

The first step in defining a cost function is selecting a parameter which represents the 
property being constrained. For some constraints, this selection is trivial. For a constraint 
minimizing the distance between two points, the obvious parameter to use is the distance 
between the points. Similarly, for a constraint minimizing the area of a surface, the 
obvious parameter is the area. 

For other constraints the parameter is not so obvious. With these constraints, the constraint 
designer must determine a parameter that provides a good representation of the constraint 
Consider a constraint that two spheres not intersect One possible parameter for measuring 
constraint violation is the volume of their intersection. On the other hand, the spheres will 
intersect only if the distance of their center points is less than the sum of their radii. Thus 
an alternate parameter is simply the difference between the distance of the centers and the 
sum of the radii. In the first case, the constraint is converted into a volume minimization 
constraint. In the second case, the constraint is converted into an inequality constraint. It 
is the responsibility of the constraint designer to determine which parameter can best be 
used to measure constraint satisfaction. 

In general, constraints which are already expressed in terms of one of the six basic 
constraint types (see below) implicitly define a parameter. The parameters of other 
constraints, such as the sphere intersection constraint above, can be found readily once the 
constraint is transformed to one of the basic types. 
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Constraint ... Parameter 

• minimize the y coordinate of a point • the y coordinate of the point 

• set z coordinate to 20.0 • the z coordinate 

• maximize the height of a sphere • the z coordinate of center of sphere 

• place two objects so they are at least • the distance between the objects 
10.0 units apart 

• maximize the distance between two • the distance between the objects 
objects 

• make a particular side of a cube lace • the angle between the vector to the light 
a point (e.g., a light source) source and the surface nonnal 

• set the angle b~tween two adjoining • the angle between the line segments 
line segments to 45 degrees 

• ensure that the base of a cylinder is • the angle between the base and the plane 
flush with a particular plane plus the distance between them 

• minimize the surface area of a • the surface area of the container 
container 

• maximize the volume of a cylinder • the volume of the cylinder 

• ensure that object A can enclose • the volume of B which cannot be 
object B enclosed by A 

• ensure that two objects do not • the volume of their intersection 
intersect 

• set the volume of intersection of two • the volume of their intersection 
spheres to 15.0 

• ensure that object A is contained • the volume of the portion of A outside B 
within object B 

Figure 5.5: constraints and associated parameters 

Figure 5.5 gives example parameters for the geometric constraints presented in section 
5.1.1. Once the parameter is chosen, the next step is to shape the cost function as a 
function of the parameter. The following section describes the various constraint types and 
the shape of their associated cost functions. 
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5.4.2. The six basic constraint types 

In the course of this research, objective constraints have tended to fall into one of six basic 
categories, or be constructed of simpler constraints that fall into these categories. No claim 
is made that all constraints fall into these categories. On the contrary, it is easy to define an 
arbitrary constraint (and associated cost function) that has no relation to any of the basic 
categories. Nevertheless, these six categories have been sufficient for nearly all constraints 
encountered in the example problems described in later chapters. 

The functions presented below are templates for the six categories, constructed about a 
target parameter, with function values chosen to range from 0.0 to 1.0. In practice, the 
target value is chosen by the cost function designer, a scaling factor may be applied to each 
function, and the shape of the function (within certain bounds) may be controlled by the 
designer. In a constraint such as "set area to 5.0", the parameter is the area, and the target 
is 5.0. Here, a function value of 0.0 represents complete satisfaction, and 1.0 indicates 
maximal constraint violation. Specific information about shaping these templates is 
provided later in the chapter. 

The minimize and maximize constraints contain subcategories, resulting in the following 
classification: 

• equal to 
• not equal to 
•less than 
• greater than 
$minimize 

• unbounded minimize 
•lower. bounded minimize 
• upper bounded minimize 

•maximize 
• unbounded maximize 
• lower bounded maximize 
• upper bounded maximize 
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Figura 5.6: equal to 

The equal to function has a value of zero when the parameter equals the target The cost 
increases smoothly based on the distance from the target. As the distance from the target 

approaches inlmity, the cost approaches the maximum value of one. 
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Figure 5.7: not equal to 

The IWt equal to function has a maximum value of one when the parameter equals the 

target The cost decreases smoothly based on the distance from the target. As the distance 

from the target approaches infmity, the cost approaches the minimum value of zero. 
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5.4.2.3. Less than (<) 

The less than constraint is completely satisfied when the parameter is less than the target, 
and consequently has a cost of rero for that range. For values greater than the target, the 
cost increases smoothly based on the distance from the target. As the distance from the 
target approaches infmity, the cost approaches the maximum value of one. 

5.4.2.4. Greater than (>) 

target 
Parameter 

Figure 5.9: greater than 

The greater than constraint is completely satisfied when the parameter is greater than the 
target, and consequently has a cost of rero for that range. For values less than the target, 
the cost increases smoothly based on the distance from the target. As the distance from the 
target approaches infmity, the cost approaches the maximum value of one. 
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Figure 5.10: minimize 

5.4.2.5. Minimize 
5.4.2.5.1. Unbounded minimize 

The minimization constraint can never be satisfied completely. It approaches a minimum 
value of zero as the parameter approaches negative infinity, and approaches a maximum 
value of one as the parameter approaches infinity. The target for this class of constraint is 
not the expected value of the parameter, but rather a specification of where to center the 
steepest portion of the curve. 
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Figure 5.11: lower bounded minimize 

5.4.2.5.2. Bounded minimize 
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Figura 5.12: upper .bounded minimize 

There may exist lower or upper bounds on values of the parameter being minimized. For 
instance, a volume parameter might have a lower bound of zero, since a negative volume is 
meaningless. Upper bounds are less common, but can be derived from limits in the object 
definition or firm restrictions imposed by the world holding the object 
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Figure 5.13: maximize 

5.4.2.6. Maximize 
5.4.2.6.1. Unbounded maximize 

Like the minimization constraint, the maximization constraint can never be satisfied 
completely. It approaches a minimum value of zero as the parameter approaches infmity, 

and approaches a maximum value of one as the parameter approaches negative infinity. As 
with the minimization constraint, the target for this class of constraint is not the expected 
value of the parameter, but rather a specification of where to center the steepest portion of 
the curve. 
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Figure 5.14: lower bounded maximize 

5.4.2.6.2. Bounded maximize 

12 

1.0 

0.8 

! 0.6 u 

0.4 

02 

bound 

Parameter 

Figure 5.15: upper bounded maximize 

As with the minimization constraint, lower and upper bounds may exist on a parameter 
being maximized. The lower bounded maximum has a value of one at the lower bound, 
and asymptotically approaches zero as the parameter increases. The upper bound 
maximum has a value of zero at the upper bound, and asymptotically approaches one as the 
parameter decreases. 
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5.4.3. Qualities of cost functions 

This section discusses the properties of cost functions for objective constraints. These 
properties implicitly specify which classes of functions can be used as cost functions. A 
later section will show how additional properties can be used to explicitly select functions 
within those classes. 

5.4.3.1. Areas of Interest 

Cost functions should have a broad extent as previously described and illustrated in figure 
5.2. A broad extent implies a small slope, which implies little difference in cost between 
neighboring solutions. On the other hand, the goal of the cost function is to distinguish 
between various alternatives, and this can be accomplished most effectively if the slope is 
large. These conflicting goals can both be addressed by varying the slope so that it is large 
(in magnimde) in areas of interest and small in other areas. 
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Figure 5.16: cost functions with different tolerances 

Figure 5.16a shows a cost function in which primary importance is placed on 
distinguishing between alternatives near the target value. Because the slope is large near 
the target, even small deviations from the target can result in a large cost Beyond a cenain 
point, however, the cost tends to level out. Little distinction is made between parameters 
that are far from the target value. Such a function emphasizes the importance of reaching 
the target value exactly, and hence is appropriate in an application desiring precise 
specification of parameter values. An engineering problem where the parameter can affect 
the operation or cost of an assembly is one example of such a task. If we need a piston to 
be exactly two millimeters in diameter smaller than a corresponding cylinder, then any 
deviation is likely to result in an inefficient or non-functioning engine. 
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Figure 5.16b shows a cost function with a different emphasis. The slope is small near the 
target, so parameters near the target value have very low cost. Beyond a small 
neighborhood the slope increases and results in much greater costs for similar parameter 
increments. Eventually another threshold is reached, however, and the slope once again 
decreases, with a corresponding decline is cost differential. This function says, in effect, 
that close enough is okay. No hann is done by missing the target by a small amount, but 
missing by a large amount can be very costly. This function is suitable for constraints 
which are guidelines rather than hard-and-fast rules. A landscape guideline on placement 
of shrubbery is a good example. If we say that we want a bush placed 5.0 feet from a 
building, then it may be entirely satisfactory if it is 4.8 feet or 5.2 feet away, but entirely 
unsatisfactory if it is one foot away (where it might block a window), or ten feet away 
(where it might block a walkway). 

5.4.3.2. Bound on function range 

The difference between the minimum and maximum costs of a function defines the 
importance of the function relative to other functions. The true minimum and maximum 
costs are determined by the values assumed during the constraint satisfaction process. If 
variables are restricted (apart from constraint specification) to lie in a certain range, then the 
cost function range may be restricted as well. The cost functions described later in this 
chapter range from zero to one, providing a cap on the importance of each constraint and a 
standard range prior to the assigmnent of weighting factors. 

A function with no upper bound does not present a particular problem because the goal is to 
minimize the cost function, and the unbounded region of the function will be eliminated 
from further consideration at early stages in the constraint minimization search. On the 
other hand, a cost function with no lower bound presents a problem. Because the search 
procedure will concentrate on finding the global minimum, it will attempt to satisfy this 
unbounded minimum cost function to the exclusion of all other constraints. 

5.4.3.3. Monotonically increasing or decreasing cost 

Though not a requirement for cost functions in general, this property holds for the six basic 
categories of constraints. The cost must be monotonically increaSing or decreasing as the 
parameter moves away from the target. For example, given a constraint to minimize the 
area of a surface, a surface with area 2x will always have a greater cost than a surface with 
area x. This rules out oscillating functions which might otherwise satisfy all guidelines. 
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5.4.3.4. User control over shape 

The user must have intuitive control over the shape of the function. This can be 
accomplished by explicitly setting coefficients of a simple function, or by setting more 
natural parameters which are converted to function coefficients. 

5.4.4. Examination of candidate cost functions for =· "'• <, > 

The goal of this section is to find cost functions meeting the properties presented in the 
previous section. For the purpose of this discussion, only one of the basic constraint 
categories (not equal to) will be examined. The remaining categories (equal to, less than, 

greater than) are all based on simple reflections of the not equal to function. 

The previous section introduced the notions of area of interest and natural user control of 
shape. The area of interest can be roughly specified by indicating a center point and width 
of the area. A logical center point is where the cost is halfway between the minimum and 
maximum cost. The width of the area of interest (i.e., how quickly the transition between 
low cost and high cost occurs) can be provided by specifying the slope at the center point. 
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Figure 5.17: user shape specification 

Figure 5.17 illustrates the user specification of shape. Let us call the center of the area of 
interest v, and the slope at that points. The rules governing the shape of the cost function 
can then be summarized as follows: 
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l.f(v) = 112 
2.j'(v) = s 

3./(0.0) = 1.0 

4. ,/~- f(x) = 0.0 

2 2 

The four candidate function categories examined were: f(x) =e-x tza, f(x) = e·nxb, 

piecewise cubics, andft x) = 11 ( rrxb + 1 ). The first function, a Gaussian, was examined 
based on its ability to represent functions with the general shape of figure 5.16b. When it 
was found to be too specific to meet the four rules above, a more general form of the 

function,f(x) = e·nxb, was examined and found suitable. Piecewise cubics can be used to 
approximate many functions, so they were also examined, and a form suitable for cost 
function representation was derived. The final function c!ass,f(x) = l!(rrxh+l), was 
examined because it is capable of providing a steep slope near x=O, which is necessary for 
cost functions with a low tolerance. It also was found suitable. The analysis is presented 
below. 

5.4.4.1. Gaussian: f(x) = e 
• • ·X 12<> 

The function illustrated in figure 5.16b exhibits the characteristics of an inverted normal 
curve. Consequently, functions of the following form were examined: 

2 • 
·% l2a 

f(x)=e • . (5.2) 

Since the a term has no meaning here other than as a constant, we can replace 112 CJ 2 by 
the constant n, yielding 

f(x) "'e·n:i'. 

The goal is to find n, given any sand v, such that 

and 

f(v) = e-nv' = 1. 
2 

f'(v) = ( -2nv) e·nv' = s. 

The problem is that either s or v is sufficient to define n. For instance, if we solve 
equation 5.4 for n, we get 

n=hl. 
v2 
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This value of n completely defines the slope of the function, hence we cannot sets and v 

independently. This function class is unsuitable for cost function representation. A more 
general function is needed to allow control of both slope and value. 

5.4.4.2. t(x) = e-nxb 

This function class is a generalization of the Gaussian class. The goal now is to fmd n and 
b, given any sand v, so that 

and 

f(v) = e-nvb = !. 
2 

f'(v) = e·nvb(-bnvb-1)= s. 

We can solve for n in the first equation, yielding 

Furthermore, 

so 

Substituting for n, we get 

Solving forb gives 

n = hl. 
vb 

f'(v) = f(v)(-bnvb-1) = s, 

s = }(-bnvb-1). 

s=·bln2 vb-1, 
2vb 

b = -2vs 
ln2' 

and substituting b in equation 5.9 gives 

n= ln2 
v -2vs/ln2 

Since we can express nand bin terms of sand v, this class of functions is a suitable 

candidate for cost function representation. 
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5.4.4.3. Piecewise cubic: f(x) = ax3+ bx 2+ ex+ d 

Rather than seeking a single function to match some criteria, we can use portions of two or 
more simpler functions. For example, the curve presented in figure 5. 17 can be split into 
two pans, with the following constraints defining each part: 

-.. 
cS 

Part 1 

1./(0.0) = 1.0 

2./'(0.0) = p 

3.f(v) =OS 

4.f'(v) = s 

1.2 

1.0 

0.8 

0.6 

OA 

0.2 

0.0 
0 

Part1 

v 
Parameter 

Lf(v) =OS 

2.f'(v) = s 

3. ,/~- f(x) = 0.0 

lim f'( ) 4. x-.~ X = 0.0 

Figure 5.18: piecewise construction 

The four constraints of part one defme a cubic polynomial. Constraints three and four of 
part two define a curve which asymptotically approachesf(x)=O.O. Unfortunately, a cubic 
polynomial cannot represent such a curve. The solution is to use another function for part 
two, or to settle for a function without an infmite extent Since the alternate functions for 
part two would be similar to the functions considered elsewhere in this section, we will 
only examine the latter case. As an alternative to the function asymptotically approaching 
f(x)=O.O, we can choose a value kat whichf(k)=O.O, and a slope mat the same point as 
shown in figure 5.19. 
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12 
slope= p 

Ul 

0.8 

• 0.6 8 
0.4 

0.2 
slope= m 

0.0 
0 v k 

Parameter 

Figure 5.19: piecewise function with finite extent 

The modified sets of constraints for this alternative piecewise polynomial are: 

Pan 1 

1./(0.0) = 1.0 
2./'(0.0) = p 
3.f(v) = 05 
4.f'(v) = s 

Lf(v) = 05 
2.f'(v) = s 
3.f(k) = 0.0 
4./'(k) = m 

Sincefl'x) = ax3 + bx2 + ex+ d, andf'(x) = 3ax2 + 2bx + c, these sets of constraints 
defme the following sets of equations: 

Pan 1 

Ld,J.O 

2.c=p 
3. av3+bv2+cv+d = 05 
4. 3av2+2bv+c = s 
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2. 3av2+2bv+c = s 
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The equations of part 1 are easily solved to yield the following values for a, b, c, and d: 

This gives 

a = (I +sv+pv )!v3 
b = (-15-sv-2pv)lv2 
c=p 
d= 1.0 

I ( ) _ (l+sv+pv) 3 (-1.5-sv-2pv) 2 + 1 0 partiX- x+ x+px .. 
v3 v2 

(5.15) 

The equations of part 2 are conceptually easy to solve, but application of a solution method 
such as Gaussian elimination results in extremely complex terms. An equivalent approach 
to solving these constraints is to find the coefficients for a translation of the function and 
then convert from these coefficients to the original equation. In this case, we can solve for 
g(x) = f(x-v ), as shown in figures 5.20 and 5.21. As a further notational simplification, 
let z=k-v. 

1.2 

1.0 

0.8 

11 0.6 
ll 

0.4 

0.2 

0.0 
0 v 

PanunMcw 

Figura 5.20: l(x) 

1.2 

1.0 

0.8 

~ 0.6 

0.4 

0.2 

0.0 
k 0 Z=k-v 

Parameter 

Figure 5.21: g(x) = f(x-v) 

We now wish to findA,B, C, andD, where: 

and 
g(x) = Ax1 + Bx2 + Cx + D 
g'(x) = JAx2 + 2Bx + C. 
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The constraints for this polynomial are: 

1. g(O.O) = 05 
2. g'(O.O) = s 
3. g(z) "' 0.0 
4. g'(z) = m. 

This set of constraints defines the following set of equations: 

l.D = 05 
2. C=s 
3. Az3 + Bz2 + Cz + D = 0.0 
4. 3Az2 + 2Bz + C = m. 

Solving for A, B, C, and D, we find: 

A = (1 +sz+zm)!z3 
B = (-1.5-2sz-zm)!z2 
C=s 
D = 0.5. 

Fromf(x) = g(x-v), we get: 

So, 

f(x) "'A(x-vf + B(x-v)2 + C(x-v) + D 
= A(x3 - 3vx2 + Jv2x -v3) + B(x2 - 2vx + v2) + C(x-v) + D 
=x3A +x2(-3Av +B) +x(3Av2 -2Bv +C)+ (-Av3 +Bv2- Cv +D). 

a=A 1+sz+zm 
z3 

b = -3Av + B = -3 (1 +sz+zm) v + -1.5-2sz-zm 
z3 z2 
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Finally, we can substitute (k-v) for z, giving: 

1 + (s+m)(k-v) 
a 

(k-v)3 

b = _3 (1+(s+m)(k-v)) v + -l.5+(-2s-m)(k-v) 
(k-v)3 (k-v)2 

c= v- v+s 3 (
1 +(s+m)(k-v)) 2 2 (-1.5+( -2s-m)(k-v)) 

(k-v)3 (k-v)2 

d = _ (1+(s+m)(k-v)) v3 + (-1.5+(-2s-m)(k-v)) v2 _ sv + 0_5 . 
(k-v)3 (k-v)2 

Thus, /partlfX) = ax3 + bx2 + ex+ d, where a, b, c, and dare listed above. This 
piecewise function does not have infinite extent, but it is snitable for cost function 
representation because the user has significant control over its shape. Although these terms 

are complex, the coefficients a, b, c, and d need only be computed once for each cost 
function. 

5.4.4.4. f(x) = ! 
nx +1 

This function class can be used in situations where error tolerance is low, since it can 
provide a steep slope near x = 0, and approach a slope of zero as x approaches oo. It was 

informally derived by starting with a simple function,f(x) = 1/x, with the desired slope 
properties, and generalizing so that other constraints,f(O.O)=l.O,J(v )=05, andf'(v)=s, 

could be satisfied. The goal is still to find nand b, given any s and v, so that 

f(v) = 1 = L 
nvb+J 2 

and 

! '( ) _ -bnvb-1 _ v - - s. 
(nvb+1f 

From equation 5.16, we note that nyh=1, yielding 

n=...L. 
vb 
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Substituting, we get 

or 
-b' 

S = IV • 

(l+If 

Solving forb gives 
b = -4vs. 

Substituting forb in equation 5.18 gives 

n = _1_= y4vs. 
y-4vs 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Once again we can express n and b in terms of s and v, so this class of functions is also 
a suitable candidate for cost function representation. This function class is depicted by 
figure 5.16a. 

5.4.4.5. Abstraction of user control 

With the exception of the simple Gaussian, each of the above functions can be used to 
represent cost functions. Rather than dealing with non-intuitive function parameters, the 
above analysis demonstrates that intuitive properties may be converted to function 
parameters. 

The general exponential, f(x) = e-n:x:b, and inverse polynomial, f(x) = 1/(nxb+ 1 ), provide 
simple control through only two parameters, slope and value, at the point where 
f(x)=05. While these parameters provide a certain level of abstraction, they still refer to 
the function explicitly, which assumes some knowledge of the problem representation. 
Fortunately, these parameters can be abstracted into two parameters, sensitivity and 
tolerance, which require no knowledge of the underlying representation. 

The sensitivity parameter controls how rapidly the transition is made from high cost values 
to low cost values, which conveniently is the property controlled by the slope parameter. 
Sensitivity ranked on a scale from 0 to 10 can easily be converted to slope from 0 to 
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infinity. Similarly, the tolerance parameter indicates the distance (from the target) at which 
the cost is halfway between the maximum and minimum costs. If we express toletance in 
these tenns, details of the underlying function are hidden from the designer, while 
providing intuitively meaningful parameters for manipulation by the user. 

Of the three suitable candidates, the piecewise cubic representation provides the greatest 
control over the shape of the function. In addition to slope and value atf(x)=05, the 
designer also has control over the value at whichf(x)=O.O, and the slope atx=target and 
f(x)=O.O. For this representation, a graphical function representation is probably simpler 
to comprehend than a list of abstract properties. 

5.4.4.6. Cost functions: =, ¢, <, >, bounded minimize and maximize 

The candidate cost functions were defined above for the half-plane parameter>O with the 
assumption that the target parameter was zero. These base functions must be defmed for 
parameters less than zero, and provision must be made to center the function about an 
arbitrary target. For parameter<target, we wantf(parameter)=f(-parameter). Given a 
functionf(x), the translation and reflection can be accomplished by: 

g(x) = /( !x-targetl) (5.23) 

1.2 1.2 

1.0 1.0 

0.8 0.8 

~ 0.6 ~ 0.6 

0.4 0.4 

0.2 0.2 

0.0 .p..=;::::::::::..,...-...---.-........ -.-.:::::;::::."r 
target 

o.o-r;;;...,.-.,.--.--..--.--r-..,..;=. 
target 

Pl!mmetfif Parameter 

g(x), wherej(x) = lt(nxf'+l) g(x), where f(x) = e·nxb 

figure 5.22: general form of g(x) given f(x) 

The form of g(x) for the bounded minimize and maximize functions is identical with the 
exception that the target is replaced by the bound: 

g(x) = /( !x-bound!} (5.24) 
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Moreover, given g(x), we can express the cost functions for each category as follows: 

"x = target": cost(x) = -g(x)+ 1 

"x "#target": cost(x) = g(x) 

"x <target": cost(;c) = { 
0, iifx<target 

-g(x)+ 1, otherwise 

"x > target": cost():) = { 0• if x>target. 
-g(x)+ I, otherwzse 

" · · · > b d" t( ) { undefined, if x<bound mznzmzzex,x _ oun :cos x = ()+I •h · -g x , o •. erw 1se 

" · · · < b d" t( ) { undefined, if x>bound m zmm1ze x, x _ oun :cos x "' ( ) h . g x ,ot erwzse 

" · · > b d"· ( ) _ {undefined, ifx<bound 
max1mzze x, x _ oun . cost x - g(x), otherwise 

" · · < b d" ( ) { undefined, if x>bound max!m!zex,x-oun:costx= ()l h · -g x + ,ot erwzse 

Note that cost(x) returns values between 0.0 and 1.0, and is based on the assumption 
thatf(O.O)=l.O, withf(x) decreasing as x increases. 

5.4.5. Cost functions for unbounded minimize and maximize 

The constraints equal to, not equal to, less than, and greater than, as well as the 

bounded versions of minimize and maximize, can each be completely satisfied. This is 
not the case for the unbounded minimize and maximize constraints. For example, the 
unbounded minimize constraint can never be satisfied, because for any parameter value 

there is always another lesser value, with a corresponding smaller-cost. Similarly, greater 
values must have greater costs. 

The goal of designing suitable cost functions for unbounded minimize and maximize is 

complicated by the fact that although parameter values are infinite, the range of function 
values should be bounded (to conform to the guideline of costs between 0.0 and 1.0). An 

asymptotic approach to both the minimum and maximum values of the function is therefore 
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required 

For the minimize and maximize cost functions to be of any use, they must be capable of 
distinguishing between the actual values which occur during the constraint satisfaction 

process. This is accomplished by having the majority of the transition fromj(x)=O.O to 

f(x)=l.O occur in the region of interest. As with previous cost functions, the region of 

interest may be centered about a point, with its width specified by the slope at that point 

5.4.5.1. The minimize cost function 

If we temporarily consider the function centered about x=O .0, the following constraints 

definef(x): 

I. ,/~- f'(x) = 0.0 

""' ' 2. x .... -- f (X) = 0.0 

3. f '(0.0) = s 

4 lim f(x) = 1 0 . x~- . 

r 5. "_::':- f (X) = 0.0 

The slope, s, must be greater than zero. Constraints 1, 2, and 3 can be satisfied by a 

function of the form: 

f'(x) = 1 + h(x) 

where h(O.O )=0.0 and h(x) increases with x. If we let h(x)=x, then 

and 

f'(x)=J_ 
l+x 

Unfortunately, this function grows without bound as x approaches infinity, violating 

constraint 4. However, if we let h(x)=x2, then 
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f(x) =f s dx =sarctan(x)+C. 
1 +x2 

Since arctan (x) ranges from -1fl2 to 1fl2, this function ranges from 0.0 to stt, when 
C=rr/2. We want the function to range from 0.0 to 1.0. We cannot simply scale the 
function by 1/str, since that would affect the value of the slope. However, because 

f 2 2 
dx =~arctan(fi}+C, 

a +x 

we can use a function with derivative form 

2 
f'(x) = sa 

a2+x2 

to meet all constraints. If we integrate, we get 

f(x) = J sa2 
dx=sa arctan (.I.)+ C. 

a2 +x2 a 

To provide the proper scaling, we need a=llstt, and C=05, so 

f (x) = 1. arctan (snx) + 0.5. 
tr: 

This form centers the function about x=O.O. To center the function about an arbitrary 
target, let 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

f (x) = 1. arctan (str: (x-target)) + 0.5. 
tr: 

(5.33) 

If the cost function designer requires constraints that are not satisfied by this function, then 
an alternate approach, such as a piecewise polynomial, may be used. This function class is 
illustrated in figure 5.10. 
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5.4.5.2. The maximize cost function 

The maximize function is very similar to the minimize cost function, with the exception that 
the cost approaches the minimum cost as the parameter gets larger. The constraints 
defining this function are: 

1. ,/~- f'(x) = 0.0 

lim • 
2. x-.-- f (X) = 0.0 

3. f'(O.O) = s 

4. ,/~- f(x) = 0.0 

I' 5. x->"':- f(x) = 1.0 

The slope, s, must be negative. These constraints may be satisfied by f(x) as specified 
for the minimize function. The reflection is accomplished by settings less than zero. 

5.4.6. Summary of cost function design for objective constraints 

The design procedure for objective functions can be viewed as a series of six steps: 

Step 1: Most constraints will already be expressed as one of the six basic 

constraint types:(=, if',<,>, minimize, and maximize). If the constraint is 
· not in this form, it should be converted to this form. 

Step 2: Select the main parameter which represents the property being 
constrained. 

Step 3: Choose the basic type of constraint being implemented. 
CONTEST supports the six basic types, with both the unbounded and 

bounded forms of minimize and maximize. 

Step 4: Select a function template to be used to approximate the actual cost 

function. CONTEST supports templates based on the the type of constraint 

and the functionsj(x) = e·nxb andf(x) = 1/(nxb+l). 
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Step 5: Select the parameters which defme the shape of the particular 
function. CON1EST suppons the specification based on the value where 
cost=05 (v in the discussion above) and the slope at that point (sin the 
discussion above). 

Step 6: Choose a scaling factor for the constraint. The normal range of a 
cost function is from 0.0 to 1.0. The user may select an arbitrary scaling 

factor to conven to a range of 0.0 to scaleF actor. 

These six steps result in a cost function which may be funher scaled and then summed with 

other objective, subjective, and search constraints to yield the global cost function. 

5.4.7. Analysis of cost functions of objective constraints 

Section 53 presented several guidelines for cost function design. This section analyzes the 

cost function templates,j(x) = e·nxb, f(x) = 1/(nxb+l), andf(x)=piecewise cubic (2 

pieces), based on these guidelines. Only the guidelines which distinguish between these 
templates are presented below; other guidelines are satisfied equally by each template. For 
the first two templates, we consider the cases for which a value v and slope s are used to 
specify function coefficients, in addition to the cases where sensitivity and tolerance are 
used to specify these coefficients. We also consider the piecewise cubic made up of more 
than two pieces. Such a piecewise cubic might be specified using an interactive graphics 

program. 

5A.7.1. Functions should be easy to evaluate 

For the purpose of this analysis, we define an abstract model of computation with the 
following costs: an arithmetic function ( +, -, *, !) or comparison requires one time unit, 

and an exponential evaluation requires a function call at an expense of 50 time units. 
Funhermore, we assume a straightforward implemention of the function (no nested 
evaluations for polynomials, no table lookups, etc.). 

With this model of computation, the functionj(x) = e·nxb requires 101 time units per 

evaluation (two exponentials and one multiplication). The functionf(x) = l!(nxh+l) 
requires 53 time units per evaluation (one exponential, one multiply, one add, and one 
divide). A piecewise cubic, for n pieces, requires log2n tests to determine the particular 

cubic function to evaluate, followed by six multiplies and three additions to evaluate the 

cubic, for a total of log2n + 9 time units. The piecewise cubic is the clear winner here, 
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based on the lack of a function call. 

These estimates do not include the potentially expensive cost of recomputing the parameter 
x for each iteration. 

5.4.7.2. Shape should be accurate: theoretical considerations 

In this section, we estimate the flexibility of the function template: i.e., the ability of the 
template to match a variety of target functions. Note that this flexibility may not be 
necessary if all desired functions closely match available templates, even if these templates 
are inflexible. 

All forms of the templates fix)= e-nxb andf(x) = ll(mh+l) have a low degree of 
flexibility because the user has control over only two parameters: either slopes and value 
v for the point at whichf(v )=05, or the sensitivity and tolerance parameters. The slope 
and value and x=O.O and x=oo are predetermined. 

: The two-piece cubics have a medium degree of flexibility because they also allow, in 
addition the sand v parameters, the specification of the slope atx=O.O and atf(x)=O.O. 

c Fmally, general piecewise cubics have a high degree of flexibility because they allow an 
~:' arbitrarily close approximation to any function. 

5.4.7.3. Shape should be accurate: practical considerations 

In this section, we assume that a function template is suitable for estimating a particular 
function, and we analyze the ease with which template parameters can be selected in order 
to best match that function. 

The slope and value versions of the templatesf(x) = e·nxb andf(x) = l!(mh+l) have a 
medium degree of difficulty in matching: the slope and value provide a good starting point 
for matching the target, but some tweaking may be necessary to fmd the best overall fit. 
The sensitivity and tolerance versions of the same templates involve an intermediate stage to 
convert to slope and value parameters. For a designer who understands the underlying 
function representation, this intermediate stage presents an additional hurdle on the path to 
accurate function approximation. 

The two-piece cubic has a low degree of difficulty in matching. Three slopes and one value 
from the target function provide an accurate characterization of the intended function. The 

96 



n-piece cubic has an even higher ability to match a particular function. 

5.4.7.4. Shape should be easy to specify 

This section examines the ease by which any particular approximation may be specified. It 
does not address the issue of the accuracy of this approximation. 

The slope and value versions of the templatesf(x) = e·nxb andf(x) = lt(nxb+l) have a 
medium ease of specification: they require some mental or physical (pencil and paper) 
sketching to estimate the proper parameters. The sensitivity and tolerance versions of the 
same templates have a high ease of specification: they require only a general numeric 
ranking of two parameters. 

The two-piece cubic has a low ease of specification. Physical sketching is most likely 
required to derive the parameters used to specify the function. The n-piece cubic has an 
even lower ease of specification. Some computer assistance, such as an interactive 
graphics program, is needed to quickly find the required parameters. 

5.4. 7.5. Specification should be separate from representation 

A specification method is defined as having a high degree of separation from the underlying 
representation if knowledge of the representation is not necessary to define the function. A 
method is defined as having a medium degree of separation from the underlying 
representation if the method strongly suggests the underlying representation, but complete 
understanding of that representation is not necessary to successfully specify the function. 
A method is defined as having a low degree of separation from the underlying 
representation if a thorough understanding of the representation is necessary to successfully 
specify the function. 

Based on these criteria, the slope and value versions of the templatesf(x) = e·nxb and 

f(x) = ll(nxb+ 1) have a medium degree of separation from the underlying representation. 
These versions require some information about a particular point (where f(v )=05), but a 
complete understanding of the form of the function is not necessary. 

The sensitivity and tolerance versions of the same templates have a high degree of 
separation from the underlying representation. The cost function designer can specify these 
parameters without any knowledge of the internal representation. 
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All fonns of piecewise cubics have a low degree of separation from the underlying 
representation. Information about various boundary conditions requires that the user have 
a firm grasp of the range of slopes and values throughout the entire cost function .. 

5.4.7.6. Functions should encourage hill-climbing 

The term hill-climbing is once again used here to refer to search movement only in the 
direction of a local optimum (even though CONTEST seeks the minimum cost). Functions 
without a gradual descent to the minimum value, such as the simplistic cost function in 
figure 5.1, do not encourage hill-climbing. 

All fonnsofthe templates fix)= e·nxb andf(x) = lt(nxb+l)encourage hill-climbing 
throughout the entire parameter range. Piecewise cubics, on the other hand, cannot 
represent an asymptotic approach to a function value. Instead, they define a descent toward 
the optimum in a finite portion of the parameter range. 

1.2 
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•• 0.6 o.· 
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0.2 
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cost-1.0 for 
,V values outside lhese ~ 

bounding poiniS 

• 8 

target 

Parameter 

(a) 
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cost asymptotically 
approaches 1.0 

target 

Parameter 

(b) 

Figure 5.23: restricted va. unrestricted hill-climbing 

Figure 5.23 illustrates functions with a finite and infinite transition to the minimum. Figure 
5.23a represents a function that might be represented by piecewise cubics, while 5.23b 

represents a function based onf(x) = e·nxb. 
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5.4.7.7. Summary of analysis of cost functions 

f(x) = e-nx• 
slope, value specification 

f(x) = e-nx• 
sensitivity, tolerance 

specification 

b 
f(x) = 1/(nx + 1) 

slope, value specification 

b 
f(x) = 1/(nx + 1) 

sensitivity, toleillllce 
specification 

f(x) =piecewise cubic 
(2 pieces) 

f(x) = piecewise cubic 
(n pieces) 

high 
(101) 

high 
(101) 

medium 
(53) 

medium 
(53) 

low 
(10) 

low 
(9+log n) 

medium 

high 

medium 

high 

low 

very 
low 

low medium 

low low 

low medium 

low low 

medium high 

high high 

high 

high 

high 

high 

medium 

medium 

Table 5.1: summary of cost function analysis 
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high 

medium 

high 

low 
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Table 5.1 summarizes the strengths and weaknesses of each of the cost function 
representations. The overall goal is to approximate a cost function that exists in the 

designer's mind. The slope and value versions of the templates f(x) = e-nxb and 

f(x) = 1/(nxb+ 1) have been found satisfactory in practice. The sensitivity and tolerance 
versions of the same templates have not been implemented because CON1EST is still an 
experimental testbed, not an end-user product. The piecewise cubic form has not been 
used because the extra precision it provides compared to the other templates has not been 
necessary. 

5.5. Cost functions for subjective constraints 

Subjective constraints are the most difficult constraints to quantify because they involve 
value judgements. Computers are good at making objective evaluations, so the basic idea 
behind evaluating subjective constraints is to reduce them to a form that can be evaluated by 
a computer. 

Subjective constraints involve issues such as: safety, reliability, durability, craftsmanship, 
simplicity of operation, ease of maintenance, and ease of manufacture. The guidelines for 
construction of subjective constraints are: 

1. Use a divide-and-conquer approach to refine the problem 
2. Base judgements on a simple scale 
3. Match empirical data if constraints cannot be quantified 

5.5. 1. Divide and conquer to refine the problem 

In a divide-and-conquer approach, problems are successively broken down into simpler 
problems until only trivial problems remain. In this case, subjective constraints are 
progressively expressed in terms of simpler constraints until the simpler constraints can be 
objectively evaluated. If necessary, constraints can be reduced to yes/no evaluations. The 
decisions on how to divide a constraint will of course be based on a particular set of values. 
There can be controversy about whether the criteria properly represent the constraint, but 
there can be no argument about the evaluation of the constraint once the criteria are 
established. 

The divide-and-conquer procedure defines a tree structure in which terminal nodes 
represent basic evaluations, and internal nodes represent subjective constraints. An 
evaluation of every node in the tree can be created by assigning weights to the arcs, and 
having the terminal nodes return standard values (e.g. 0.0-1.0). Figure 5.24 provides an 
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example in which a subjective constraint, "suitable for children", is broken down into 
simpler constraints. If each terminal node returns a value from 0.0 to 1.0, then the root 
node returns a value in the same range. 

rounded 
edges? 

is it suitable 
lor children? 

danger of swallowing 
small parts? 

glass 
construction? 

Figure 5.24: divide-and-conquer approach 

5.5.2. Base judgements on a simple scale 

For value judgements, a common scale helps to reduce confusion and provides a logical 
way to compare pairs of constraints. Most people are familiar with ranking items on a scale 
from zero to ten. On such a scale, zero represents perfect satisfaction and ten represents 
complete failure. Any basic evaluation should be done on this scale. Its importance can 
then be specified by the weighting factors associated with each constraint. 

5.5.3. Match empirical data if constraints cannot be quantified 

If a constraint is too complex to be quantified, it may still be possible to evaluate it by 
comparing with various empirical data. For example, the designer of a ship hull may not 
have a sophisticated model of drag, but he may have relevant data for a variety of 
previously constructed designs. By comparing potential designs with these templates, 
promising configurations may be identified. 
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Similarly, a design may be compared to a particular design style even if it is not understood 
what makes that style successful. Koning and Eizenberg [Koning, 1981] were able to 
describe the style of Frank Lloyd Wright's prairie houses by defming a shape grammar. 
New prairie house designs can be parsed to see if they match the grammar. Design 
frequently involves drawing on previous work without necessarily understanding all of the 
tradeoffs involved in the previous work. Matching new designs with previous designs or 
design styles is a way to encapsulate knowledge without having to reduce everything to the 
most basic level. 

5.6. Cost functions for search constraints 

A search constraint guides the constraint satisfaction procedure toward certain 
configurations. Search constraints can be used when the designer has confidence in the 
position of some part, or when he wishes to avoid undesirable configurations. 

In a paper discussing work related to this dissertation [Amburn, 1986], we introduced the 
idea of a dominance parameter, which specified the objects prevailing when resolving 
constraints. In that work, constraints were solved locally, based on object-to-object 
comparisons, with the less dominant object adjusting its position to satisfy constraints. 
Dominance was considered to be associated with pairs of objects, which allowed the 
possibility of circular dominance, although we did not encounter this is our application. 

In this system, dominance can be implemented by applying search constraints. Instead of 
specifying pairwise dominance parameters, however, a general dominance parameter is 
associated with each object This forces the designer to specify a global ranking of objects, 
but avoids the problem of circular dominance and also provides consistency between 
applications. Mter constraint satisfaction, the most dominant objects are held close to their 
initial positions, while less dominant objects are freer to move about to satisfy the 
constraints. 

Search constraints differ from geometric constraints in that they are intended to provide 
high-level guidance to the search procedure, rather than specifically dealing with the basic 
constraint problem. Just as subjective constraints get reduced to objective constraints, 
though, search constraints are also implemented in terms of objective evaluations. The 
dominance constraint described above, for instance, can be implemented by defining a 
geometric distance constraint that attempts to hold an object to its desired position. The 
cost increases as the distance from the initial position increases, and the rate of that increase 
can be controlled by the dominance parameter (e.g., it might be used as an exponent), so 

that roughly cost = distancedominanc•. 
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5.7. Operations on constraints 

This section discusses possible ways that cost functions may be combined. The first 
method has already been introduced: cost functions are added together to represent that two 
or more constraints should be satisfied. In addition, a simple expression for A orB 

exists. Unfortunately, cost functions are not generally invertible by the not operation, 
which prevents a straightforward derivation of expressions for additional logic operations. 
Nevertheless, the section shows that constraints may be combined in ways other than by 
simple addition of cost functions. 

The theory of fuzzy logic [Klir, 1988] provides an additional source of information 
regarding operations on cost functions, and is a possible source of techniques for shaping 
functions based on subjective modifiers such as "very'' and "broad". 

Operations on constraints can be implemented by using the following cost function 
operations: 

Constraint operation 
AandB 

A orB 

notA 

5.7.1. A and B 

Cost function operation 
cost(A) + cost(B) 

min( cost(A),cost(B )) 

in limited cases: 1.0-cost(A) 

The primary way of defining a constraint problem is to and together a collection of 
constraints. Given the costs functions for two constraints, cost( A) and cost(B), the 
combined cost function must represent the individual costs during minimization. This may 
be accomplished by summing the individual costs: cost( A and B )=cost( A) + cost(B ). 

5.7.2. A orB 

Given a choice of two constraints, a minimizing procedure should choose cost( A) if 
cost(A)<cost(B), and cost(B) if cost(B)<cost(A). The cost function reflecting this is 
cost( A or B)= min(cost(A),cost(B)). Such a combined cost function might be used to 
implement a constraint such as "place the lamp near electrical outlet X" or "place the lamp 
near electrical outlet Y". 
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5.7.3. Not A 

Consider a constraint with a threshold parameter, such as the less than constraint (figure 
5.8),parameter<5.0. When the constraint is satisfied, the cost is 0.0, but when the 
constraint is not satisfied the cost varies based on constraint violation. If we attempt take 
the complement of this constraint, then we still want the resulting cost to vary based on 
constraint violation. However, this information must come from the region of the curve for 
which cost is 0.0. Since this information cannot be derived from a region of constant 
cost, such a function is not complementable. 

On the other hand, consider a constraint with no threshold, such as the equal constraint 
(figure 5.6), parameter=5.0. There is only one point at which the cost is zero; elsewhere, 
the function returns a value which increases based on distance from the target parameter. 
We can take the complement of this constraint, because the information that we need for the 
new function (cost based on distance from the target) can be derived from the old function 
throughout the entire parameter range. 

In general, functions with a threshold are not complementable, while those without a 
threshold may be. Among the six basic constraint types, equal to, not equal to, 

minimize, and maximize are complementable, whereas less than and greater than are 
not. The complement is achieved by negating the original function. If the previous 
function ranges from 0.0 to 1.0, this function range can be maintained by adding 1.0, so 
that cost( not A)=l.O·cost(A). 

A possible way to create invertible versions of less than and greater than is to define the 
quality of acceptable solutions. When the function is inverted, the portion of the curve that 
distinguished between acceptable solutions distinguishes unacceptable solutions. The 
problem with this approach is that the distinction between acceptable values is usually not 
as large as the distinction between unacceptable values. An inverted less than would 
therefore be shaped differently than an explicitly defined greater than function. 

5.8. Summary 

Cost functions provide a way of comparing two or more models to determine which best 
satisfies some set of constraints. Cost functions return a single scalar value which specifies 
the degree of constraint satisfaction. The magnitude of a cost function is not as important 
as the range of values it can assume. This chapter has provided guidelines for constructing 
cost functions for three types of constraints: objective, subjective, and search constraints. 
In addition, rules for combining cost functions were defmed. 
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Six basic types of objective constraints were identified: equal to, not equal to, less than, 
greater than, minimize, and maximize. Cost function templates for these constraints 
were derived from their properties. While the application designer may use these templates 
where appropriate, he is also free to design arbitrary functions for any constraint that 
cannot be suitably represented. Subjective constraints involve value judgements and can be 
difficult to quantify . One approach is to break them down into simpler objective 
constraints which are easily evaluated. Search constraints allow the user to specify a 
preference for the position or freedom of model parts. 
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Chapter 6 

Opaque Projector Project 

Opaque projector design was chosen as a test application area. This project was pursued in 
collaboration with Prof. David Chapin of the NC State University School of Design, and 
students in his senior product design studio. The term project for the course was to design 

an opaque projector. 

My version of this project differed from the students' version in two main ways. First, 
while the assignment for each student was to design a single opaque projector, my goal 
was to design a system capable of exploring opaque projector design alternatives. 
Second, the students were more concerned with the form of the projector; less emphasis 

was placed on engineering aspects such as ventilation and optics. 

The distinction between our two projects becomes clearer if one looks at the output of each 
of the projects. The students generated detailed specifications and mock-ups for the shape 
of the projector. In most cases, however, they did not make specifications for major 

components such as lenses, bulbs, and fans. In contrast, CONlEST generates potential 
designs by choosing parts which best satisfy a set of constraints. CONlEST, however, 
does not generate design specifications to the same level of detail as presented by the 

students in the class. Issues such as where to drill holes and what type of screws to use are 

left to the human designer. 

6.1. Problem overview 

The design of opaque projectors is interesting because their function is well-understood, 

although the choice of parts to accomplish this function is non-trivial. The function of an 

opaque projector is to project an enlarged image of an opaque object (such as a book or 
photograph) onto a screen or other viewing surface. 

Many performance requirements affect the design of opaque projectors. The following 



constraints were encoded in this application: 

• l11Ulge brightness: the projected image should be bright enough to read 

without eye strain. 

• Component cost: minimize part costs to achieve highest profits. 

• Light escaping: the projector should not emit distracting light (e.g., 

through cooling vents). 

• Sound escaping: the projector should not generate intrusive noise. 

• Cord length: the projector should have a power cord long enough to 

conveniently reach power outlets. 

• Energy use: the projector should be economical to operate. 

• l11Ulge focus: the projected image should be crisp rather than blurred. 

• Projector geometry: the dimensions of the projector should conform 

to ratios which ensure proper operation. 

• Projector height: a small projector might be desirable to prevent 

obstruction of view. 

• Temperature constraints: the internal operating temperature should be 

low enough to prevent part failure. Normally accessible parts should not 

cause discomfort if touched. 

• Chassis cost: the price of the chassis should be minimized to achieve 

highest profits. The chassis was separated from other components to 

provide greater flexibility in specification. 

• Ergonomics: conveniences such as lens caps and carrying handles 

should be included. 

• Weight: the weight of the projector affects its portability and should be 

minimized. 

• Durability: the ability of the projector to withstand handling or abuse 
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should be maximized. 

• Full view: the distance from the base of the projector to the the mirror 
should be great enough to image the entire source. 

6.1.1. Constraint conflicts 

Unfortunately, it is not possible to completely satisfy all design goals. For example, the 
internal operating temperature of the unit is affected by several parameters: the wattage of 
the projection bulb, the airflow generated by a fan, and the number of cooling vents. 
Increasing the bulb wattage increases the brightness of the image, but it also increases the 
amount of heat generated. Using a larger fan increases airflow, but also increases cost and 
might increase the amount of generated noise. Adding more cooling vents helps to lower 
the temperature, but allows sound and ambient light to escape into the room. Designing an 
opaque projector for a particular application involves choosing design parameters which 
best satisfy the entire set of constraints. 

6.1.2. Projector classes 

This project assumes simple projector operation as shown in figure 6.1. The source 
document is illuminated by a lamp; its image is reflected off a mirror, then passed through a 
lens and projected on the screen. In addition to the optical components illustrated, a 
projector may also contain a fan and air vents to promote cooling. Within this design 
framework lie an infinite number of specific designs (i.e., designs where distances, 
wattages, focal lengths, etc. are fully specified). 

source 

lens 

Cl 
/ 

Figure 6.1: opaque projector operation 
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The goal of this application is to use the defined constraints and relevant catalog data to 
generate the specific design which best satisfies the constraints. If the weights of 
constraints are varied, then a new design may be generated. The human designer is thus 
free to explore various "what-if' design possibilities with minimal effort 

6.2. Parts inventory 

This section describes the inventory of parts available when designing a projector in this 

application. Part attributes were estimated by consulting an Edmund Scientific catalog for 
typical (in some cases exact) values. 

The part choices and their attributes are: 

• bulb: wattage, price, weight 
• 200 watts, $2.50, 100 g 

• 400 watts, $5.00, 200 g 
• 600 watts, $6.00, 300 g 
• 800 watts, $7.00, 400 g 

• 1000 watts, $10.00, 500 g 
• 1200 watts, $11.50, 600 g 
• 1500 watts, $12.50, 750 g 

• 2000 watts, $15.00, 1000 g 

• fan: wattage, price, weight, airflow (cubic feet/minute) 
• 0 watts (no fan), $0.00, 0 g, 0 cfm 
• 20 watts, $2.00, 200 g, 25 cfm 

• 25 watts, $4.00, 250 g, 40 cfm 

• 30 watts, $6.00, 300 g, 55 cfm 
• 35 watts, $8.00, 350 g, 70 cfm 

• 40 watts, $10.00,400 g, 85 cfm 

• 45 watts, $12.00,450 g, 100 cfm 
• 50 watts, $14.00,500 g, 115 cfm 

• 60 watts, $16.00, 600 g, 130 cfm 
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• lens: diameter, price, weight, focal length (sorted by focal length) 
• 20.00 mm, $4.10, 40 g, 402 mm 
• 8.00 mm, $3:65, 6.4 g, 406 mm 
• 11.00 mm, $3.45, 12.1 g, 424 mm 
• 164.00 mm, $50.05, 2689.6 g, 436 mm 
• 8.00 mm, $3.25, 6.4 g, 460 mm 
• 112.00 mm, $15.65, 1254.4 g, 476 mm 
• 46.00 mm, $5.75, 211.6 g, 480 mm 
• 98.00 mm, $20.75, 960.4 g, 500 mm 
• 9.00 mm, $3.85, 8.1 g, 530 mm 
• 42.00 mm, $6.55, 176.4 g, 534 mm 
• 71.00 mm, $8.80, 504.1 g, 582 mm 
• 7.80 mm, $4.15, 6.08 g, 600 mm 
• 14.00 mm, $4.75, 19.6 g, 610 mm 
• 38.00 mm, $4.45, 144.4 g, 616 mm 
• 20.00 mm, $4.75, 40 g, 630 mm 
• 38.00 mm, $6.20, 144.4 g, 666 mm 
• 48.00 mm, $6.55, 23D.4 g, 694 mm 
• 21.00 mm, $4.95, 44.1 g, 786 mm 
• 20.50 mm, $5.15, 42.02 g, 830 mm 
• 89.00 mm, $14.00, 792.1 g, 952 mm 
• 103.00 mm, $19.30, 1060.9 g, 1010 mm 
• 40.00 mm, $6.55, 160.0 g, 1334 mm 
• 38.00 mm, $5.25, 144.4 g, 1360 mm 
• 76.00 mm, $16.15, 577.6 g, 1370 mm 
• 38.00 mm, $4.90, 144.4 g, 1600 mm 
• 24.00 mm, $6.35, 57.6 g, 2400 mm 
• 12.00 mm, $4.60, 14.4 g, 2540 mm 

• vents: number, weight 
• 0 to 8 vents 
• each vent subtracts 50 g in weight 

• cord: length, price, weight 
•length between 1m and 10m 
• price: $5.00 + $1.00 I m 
• weight: 100 g +40 g/m 
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• chassis geometry: 
• base-to-mirror distance: unrestricted 
• mirror-to-lens distance: unrestricted 
• external height, width, length: dependent on base-to-mirror 
and mirror-to-lens distances 

• chassis construction: 
• type of metal: aluminum or steel 
• steel: 

• weight: 2.5 g /500 mm2 

• cost: $1.00 I 50000 mm2 

• aluminum: 
• weight: 1 g /500 mm2 

• cost: $1.00 !75000 mm2 

• optional extras: 
• carrying handle: $3.00, 100 g 
• lens cap: $3.00, 50 g 
• cart/stand: $20.00 

A bulb, lens, cord, and chassis must be selected. Cooling vents, a fan, a carrying handle, 
a lens cap, and a can are optional. 

6.3. Constraint implementation 

Recall the systematic design method outlined in section 5.4.6: 

1. express the constraint as one of the six basic constraint types 
2. determine the main parameter which represents the property being constrained 
3. select the particular form of the constraint being implemented (determine whether 

bounded or unbounded) 

4. select the particular function template (e.g.,f(x) = e-nxb or f(x) = lt(nxb+ 1 )) 

5. select the parameters of the template 
6. choose a scaling factor 

The sections which follow document the first three steps of this method for each constraint. 
The final three steps involve selection of subjective parameters and hence are not 
documented here. 
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6.3.1. Image brightness 

The goal of this constraint is to maximize image brightness. I assume that the bulb 
brightness is proportional to the wattage (since the bulb wattage is more readily available). 
Furthermore, I assume that the amount of light directed toward the lens is approximately 
the same for all projector configurations, and that the lens itself absorbs a negligible 
percentage of the light passing through it . In other words, the only non-constant 
parameters affecting intage brightness are the bulb wattage and the lens diameter. I further 
assume that the amount of light gathered by the lens is proportional to the area of the lens. 

constraint: maximize brightness 
parameter: <bulb wattage> * <lens diameter>2 
function: lower bounded maximize, bounded by 200 watt bulb, 8 mm lens 

6.3.2. Component cost 

The total part cost of the projector is simply the sum of the component prices. Because this 
sum is already in the global unit of measure (dollars), no further shaping of the parameter is 
required. 

constraint: minimize part cost 
parameter: sum of individual pan costs 
function: no further shaping necessary 

6.3.3. Light escaping 

The amount of light escaping is dependent on the number of cooling vents and the 
brightness of the bulb. I assume a fixed percentage of the bulb's luminance escapes from 
each vent. 

constraint: minimize light escaping 
parameter: <bulb wattage> * <number of vents> 
function: lower bounded minimize, bounded by 0 

6.3.4. Sound escaping 

Information was not available on the noise generated by various fans. Instead, fan wattage 
was used as a rough estimate of the noise generated. I assume a fixed percentage of the 
generated sound escapes from each vent. 

112 



constraint: minimize sound escaping 
parameter: <fan wattage> * <number of vents> 
function: lower bounded minimize, bounded by 0 

6.3.5. Cord length 

This constraint expresses the view that it is convenient to have as long a cord as possible 
(up to the maximum cord length). 

constraint: maximize cord length 
parameter: cord length 
function: lower bounded maximize, bounded by length of lm 

6.3.6. Energy use 

Since power usage is a cost incurred by the consumer rather than the producer of the 
product, this constraint actually reflects an estimate of how various power consumption 
levels will affect the consumer's purchase behavior. 

constraint: minimize energy use 
parameter: sum of individual part wattages 
function: lower bounded minimum, bounded by 200 watt bulb 

6.3.7. Image focus 

This is the most important constraint in the design. The projector is useless if it cannot 
present a focused image on the screen. We can apply the principles of thin lens theory to 
evaluate optical configurations. In the situation where we have a lens projecting an image 
onto a screen, the lensmaker's equation states that: 

1 1 1 (6.1) 
object-to-lens distance + lens-to-image distance focal length of lens 
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Equation 6.1 expresses the following imaging model: 

L.. object I r-- to lens -••+-41-----
distance 

lens to 
image 

distance 

Figure 6.2: thin lens Imaging model 

In an opaque projector, the object-to-lens distance is the sum of the base-to-mirror distance 
and the mirror-to-lens distance. The lens-to-image distance for the cases in this chapter 
was set to a fixed distance of five meters. There is some flexibility in meeting this 
constraint since the lens position is slightly adjustable (focus control). The cost function 
uses the image and object distances to compute the focal length necessary to provide a 
focused image. This focal length is then compared with the actual focal length of the lens. 

constraint: equality between requiredfocallengthfor perfect focus and the 
actual focal length of the lens 

parameter: actual focal length of the lens 
function: equality with required focal length 

6.3.8. Projector geometry 

This constraint provides guidance about the ratios of the base-to-mirror and mirror-to-lens 
distances of typical opaque projectors. Its pmpose is to generate projectors that have the 
ratios of figure 6.1, without explicitly having to encode why such a ratio is good (it leaves 
room for the bulb and fan, it minimizes required desk space, etc.). 

constraint: <base-to-mirror distance> equals twice <mirror-to-lens distance> 
parameter: 2 * <mirror-to-lens. distance> 
function: equality with <base-to-mirror distance> 
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6.3.9. Projector height 

The main parameter affecting the height of the projector is the distance from the base to the 
mirror. Thus to minimize the height, one needs to minimize this distance. One reason for 
minimizing the height is to prevent obstruction of view. 

constraint: minimize base-to-mirror distance 
parameter: base-to-mirror distance 
function: lower bounded minimize, bounded by 0 

6.3.1 0. Temperature constraints 

The internal temperature of the projector must be kept at a reasonable level to prevent part 
failure and for safety considerations. Two internal components generate heat: the bulb and 
the fan. A portion of the bulb's power usage is in the form of internal heat; the remainder 
of the energy is in the form of light which leaves the projector. Similarly, only part of the 
fan's power usage is used to create airflow outside the projector; the remainder generates 
internal heat I have chosen percentages of the wattage of each part as an estimate of 
internal heat generated. 

The heat generated is dissipated to the surrounding environment by three means: 
conduction, convection, and radiation. Conduction is the transfer of heat from direct 
contact of the projector with other surfaces. For example, heat might be conducted through 
the projector's feet to the table the projector is sitting on. Convection is the transfer of heat 
by motion of a hot material (e.g., air or water). Heat transfer by fan-induced airflow falls 
in this category, as does heat drawn away by rising currents of warm air. Radiation is the 
transfer of energy by electromagnetic waves. If one's hand is placed near the side of a 
warm projector, it absorbs radiant energy even though there is no airflow or contact with 
the projector. Although some heat is dissipated by conduction and radiation in an opaque 
projector, the vast majority occurs through convection. 

A sophisticated convection model would consider many factors, including fan and vent 
position, the temperature difference between the inside and outside of the projector, and the 
shape of the chassis and vents. Rather than implementing a complex model of heat 
transfer, I chose to base this constraint on a cooling potential, which I define as being 
dependent on the the number of vents and the fan's airflow specifications. The cooling 
achieved by additional vents when no fan is present is represented by defining a small 
default airflow: 
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cooling potential= <number of vents>* <airflow> (6.2) 

cooling requirements= a* <bulb wattage>+ P* <fan wattage> (6.3) 

The cost function for the constraint is then expressed as: 

constraint: cooling requirements less than cooling potential 
parameter: cooling requirements 
function: less than cooling potential 

Note that there is a limit of eight on the number of cooling vents. When that limit is 
reached, cooling potential can only be increased by using a more powerful fan. 

6.3.11. Chassis cost 

This constraint minimizes the cost of the metal required to build the chassis. Because this 
parameter is already in the global unit of measure (dollars), no further shaping of the 
parameter is required. 

constraint: minimize chassis cost 
parameter: chassis cost 
function: no further shaping necessary 

6.3.12. Ergonomics 

This constraint reflects the added convenience of extras such as a carrying handle, a lens 
cap, and a utility cart. Rather than having a penalty for the absence of these conveniences, 
the cost function equivalently returns a negative bonus when the extras are included. Cost 
is computed as follows: 

• Start with an initial cost of 0.0. 
• Does the projector have a handle? If so, subtract 12.0 from cost. 
• Is there a lens cap for the lens? If so, subtract 4.0 from cost 
• Is a cart included with the projector? If so, subtract 15.0 from cost 
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6.3.13. Weight 

If the projector is to be shared by many people (e.g., by many instructors in a school), then 
a low weight is desirable since it will aid portability. 

constraint: minimize weight 
pammeter: sum of individual component weights 
function: lower bounded minimize, bounded by lightest bulb, lens, and chassis 

6.3.14. Durability 

The constraint reflects the desire to minimize repair or maintenance during the lifetime of 
the product. Two parts are considered: the fan and the chassis. Steel is more durable than 
aluminum, and a projector is considered more reliable if it does not include a fan, since a 
fan can malfunction. Cost is computed as follows: 

• Start with an initial cost of 0.0. 
• Is the chassis made of steel? If so, subtract 40.0 from cost. 
• Is the chassis made of aluminum? If so, subtract 2.0 from cost. 
• Is there a fan? If not, subtract 2.0 from cost 

6.3.15. Full view 

If the distance from the base of the projector to the mirror is too small, the projector will not 
be able to reproduce the entire area of the original. A distance of less than 250 mm is 
considered dangerously close and is penalized with a cost of 20.0. Any distances greater 
than 250 mm are rewarded by subtracting a bonus of 1.0 unit for every 50 mm. This 
function would be better represented by a greater than function template, but this awkward 
cost function was carried over from an early implementation. 
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6.4. Results 

The particular weighting for each of the cost functions was chosen so as to specify a 
generic projector achieving an overall compromise among all constraints. These 
weightings were stored within each cost function, so that an external weight of 1.0 for any 
cost function refers to the same weighting as used for the standard projector. 

Variations on the standard projector were then defined as follows: 

budget projector. set the weighting factor for the component cost and 
chassis cost constraints to 5.0. This represents the situation where cost is 
a primary concern. 

deluxe projector. set the weighting factor for component cost to 0.2 
and for chassis cost to 0.1. This represents a situation where cost is not 
an issue, particularly for fixed parts such as the chassis, as opposed to 
replaceable parts, such as the fan and bulb. 

quiet projector. set the weighting factor for the sound escaping 
constraint to 5.0. This represents the situation where the sound generated 
by the projector is a concern, such as in a small conference room with poor 
acoustics. 

bright projector. set the weighting factor for the image brightness 
constraint to 5.0. This represents the situation where maximum image 
brightness is a concern, such as in a room with windows but no blinds or 
drapes. 

portable projector. set the weighting factor for the weight constraint to 
5.0. This represents the situation where the projector will be moved 
frequently, so a light projector is preferred over a heavy one. 
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Table 6.1 summarizes the weightings for each of the projector instances. 

standard budget deluxe quiet bright portable 

Image brightness 1.0 1.0 1.0 1.0 5.0 1.0 

Component cost 1.0 5.0 0.2 1.0 1.0 1.0 

Ught escaping 1.0 1.0 1.0 1.0 1.0 1.0 

Sound escaping 1.0 1.0 1.0 !U! 1.0 1.0 

Cord length 1.0 1.0 1.0 1.0 1.0 1.0 

Energy use 1.0 1.0 1.0 1.0 1.0 1.0 

Image focus 1.0 1.0 1.0 1.0 1.0 1.0 

Projector geometry 1.0 1.0 1.0 1.0 1.0 1.0 

Projector height 1.0 1.0 1.0 1.0 1.0 1.0 

· Temp. constraints 1.0 1.0 1.0 1.0 1.0 1.0 

Chassis cost 1.0 5.0 0.1 1.0 1.0 1.0 

Ergonomics 1.0 1.0 1.0 1.0 1.0 1.0 

Weight 1.0 1.0 1.0 1.0 1.0 5.0 

Durability 1.0 1.0 1.0 1.0 1.0 1.0 

Full view 1.0 1.0 1.0 1.0 1.0 1.0 

Tabla 6.1: cost function weights for projector Instances 

Figures 6.3 through 6.8 show the components and dimensions chosen to best satisfy each 
of these constraint weightings. These designs were all generated automatically, although 
the figures were prepared by band. 

By using a program such as this, a manufacturer can easily develop a product line. If the 
inventory or pricing of parts changes, one can simply rerun the program with the new parts 
or new part costs. Almost all of the human time investment occurs during the initial cost 
function encoding process. 
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Table 6.2 summarizes the information presented in figures 6.3-6.8. 

standard budget deluxe quiet bright portable 

Bulb wattage 800 200 600 400 2000 800 

Fan wattage 35 none 50 none 45 25 

Lens diameter 112 11 164 164 112 112 

Lens local length 476 424 436 436 476 476 

Cord length 6.55 1.00 7.49 6.55 6.55 6.27 

Cooling vents 4 5 2 8 7 7 

Carrying handle yes no yes yes yes yes 

lens cap yes no yes yes yes yes 

Utility cart no no yes no no . no 

Chassis material steel steel steel steel steel alum. 

Chassis height 438 389 399 399 438 438 

Chassis width 350 350 350 350 350 350 

Chassis depth 300 300 300 300 300 300 

Base-to-mirror 351 311 319 319 351 350 

Mirror-to-lens 175 152 159 159 175 175 

Table 6.2: comparison of part and parameter selection 

6.5. Evaluation 

The image focus constraint is satisfied in each of the six projectors generated, indicating 
that each projector should be capable of functioning. The choice of lenses is greatly 
dependent upon the distance of the lens to the screen, which was fixed at five meters. To 
furthet evaluate the results, it is useful to examine both the generated design parameters 
(table 6.2) as well as relevant attributes which are dependent on these parameters (figures 
6.9 and 6.10). 
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Figura 6.9: comparison of projector attributes 
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Figure 6.10: comparison of projector weights 

The following is a brief evaluation of each projector design: 

stu.ndard projector. This is the least interesting projector. All 
component values tend to be near the middle of the spectrum of legal 
choices. 

budget projector. This is a barely functional projector. It contains only 
a 200 watt bulb, and the lens diameter is too small to pass much light 
Such a projector would be useful only to demonstrate design principles, 
say for a course project 

deluxe projector. I assumed the program would generate a design with 
a higher wattage bulb than the standard projector, since the cost of the 
more expensive bulb would not be much of a concern. Instead, the 
program designed a projector with a lower wattage bulb. It does generate a 
brighter image, but it accomplishes this by selecting a larger diameter lens. 
A larger lens is a more reasonable alternative because it only costs extra 
money, whereas a brighter bulb generates extra heat which in tum can 
cause extra noise. The deluxe projector outperforms the standard projector 
in all attributes of figure 6.9 except cost, yet weights only slightly more. 

quiet projector. Since noise is such an overriding concern, the program 
generates a design without a cooling fan. A projector without a fan is 
susceptible to overheating. The choice of a low wattage bulb, a large 
diameter lens, and the maximum number of cooling vents (eight) all 
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address this concern. 

bright projector. This projector contains the highest wattage bulb (2000 
watts) available. The bulb combines with a reasonable diameter lens (112 
mm) to genetate the brightest image. To dissipate the heat genetated by 
this bulb, the largest number of air vents of any projector with a fan is 
chosen (seven). The result is a noisy, power hungry machine that 
generates a very bright image. It also allows the greatest amount of light to 
escape through the air vents, but this may not be a problem if the bright 
image is necessary because the projector is already in an illuminated 
environment. 

portable projector. The portable projector is quite similar to the 
standard projector, with two main exceptions. First, it has an aluminum 
chassis, which is lighter than the steel chassis of the other projectors. 
Second, it cools by using a smaller, lighter fan and more air vents. In 
essence it allows extra noise and light to escape in exchange for a reduced 
weight Figure 6.10 shows that it is light, but still heavier than the budget 
projector. However, it vastly outperforms the budget projector: it has a 
larger lens and a brighter bulb. 

Projector CPU seconds (DEC 3100) 
#of #of 

constraints iterations 

Standard 3341.2 (55 min, 4 i .2 sec) 15 2991000 

Budget 3638.3 (1 hr, 0 min, 38.3 sec) 15 3301000 

Deluxe 3304.4 (55 min, 4.4 sec) 15 2961000 

Bright 3249.1 (54 min, 9.1 sec) 15 2931000 

Quiet 3267.4 (54 min, 27.4 sec) 15 2941000 

Portable 3398.9 (56 min, 38.9 sec) 15 3041000 

Table 6.3: CPU times for opaque projector problems 

Table 6.3 shows the amount of time used in solving each of the opaque projector problems. 
Each simulation was run until the system cooled to a temperature threshold. Variations in 
run time can be attributed to the adaptive nature of the annealing schedule. The cooling rate 
is dependent upon the variance of cost values for a particular temperature, which in tum is 
dependent on stochastic perturbation of function parameters. Variation in run time 
therefore is to be expected. 
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6.6. Summary 

This chapter has documented the use of CONTEST in opaque projector design. The 
notable feature of the resulting application is that it is capable of generating a range of 
projectors, rather than just a single design. Such an application can be used to design an 
entire product line meeting the vatying needs of consumers. 

To generate a new design reflecting modified importance of certain constraints, the designer 
only needs to change the weighting factors of the cost function associated with those 
constraints. Design tradeoffs can therefore be easily explored. 

A straight-forward design method was followed in this application: 1) specification of the 
problem, 2) identification of available parts and legal parameters, 3) encoding of 
constraints, and 4) evaluation of results. The resulting projector designs properly reflect 
the tradeoffs specified by the constraints and weighting factors. The systematic design 
method described in chapter" five was shown to be suitable for encoding the geometric 
(e.g., optics), indirectly geometric (temperature concerns), and non-geometric (e.g, power 
consumption) constraints of this problem. 

130 



Chapter 7 

Site Planning Project 

Site planning was chosen as a second test application area. This project was pursued with 
the assistance of Ken Pittman of the NC State University School of Design, and other 
members of the Research Triangle Park Project Team. The goal was to implement a system 
capable of automatically generating site plans that meet typical constraints of site plan 
development 

Some constraints were drawn from the manual, Guidelines for Site Development, 
prepared by the Research Triangle Park Project Team [RTP Team, 1987]. The remaining 
constraints were common-sense constraints (e.g., buildings should not overlap) that are 
obvious to humans but not computers. 

The objective of the site planning problem considered here is to place buildings, parking 
lots, and access roads on a predefmed tract of land so as to best satisfy a set of constraints 
on their location. 

The relocatable objects and their attributes are: 

• buildings: A building is represented as a rectilinear solid of fixed length 
and width, randomly chosen for each building. Buildings are predefined 
to be either three, five, or seven stories tall. To satisfy constraints, the 
building may be repositioned to any {x,y) position. The base elevation is 
determined by the elevation of the terrain at that point. Any number of 
buildings may be created, but the simulations in this chapter were run with 
fifty buildings. 



• parking lots: Parking lots also have fixed length and width (randomly 

chosen) and may be repositioned to any (x,y) position. Any number of 

parking lots may be created, but the simulations in this chapter were run 

with three parking lots. 

• access roads: Access roads connect parking lots to main roadways. 

Each parking lot has an associated access road which connects it to the 

nearest roadway. 

In addition to these relocatable objects, a few fixed objects affect the design problem. The 

fixed objects and their attributes are: 

• main roadways: A road network is predefined with roads of varying 
widths. The main parkways are 200 feet wide, the collector roads are 100 

feet wide, and the subcollectors are 75 feet. Figure 7.1 shows the road 

network created for the examples presented in this chapter. 

Jo r75 
75 

75 I 
100 

200 200 

Figure 7.1: road network with road widths 
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• terrain: The tract of land is defined as a square area with hills. The 
elevation at each point may not be adjusted Figure 7.2 shows the height 
of the terrain (lighter shades indicate higher elevations). 

Figura 7.2: terrain elevation 

• trees: The trees are randomly sized and positioned and are considered to 
be unmovable. I.e., man-made objects should be moved to avoid cutting 

trees. Any number of trees may be created, but the simulations in this 
chapter were run with fifty trees. 
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7 .1.2. Constraints 

The following constraints were encoded to guide the design of site plans: 

• object non-intersection: This is a common-sense constraint that 

buildings should not intersect other buildings, parking lots, roads, or 
trees. In addition, parking lots should not intersect other parking lots, 
roads, or trees. Finally, roads should not intersect trees. 

• road setlxu:ks: This constraint defmes the minimum distance between 
roads and any constructed facilities (buildings or parking lots), or 
alternately between any constructed roads (access roads in this 

application) and trees, buildings, or parking lots. 

• place buildings away from main roads: This constraint reflects the 
desire to maintain a pleasant, park-like setting. One way to accomplish 
this is to place buildings as far away from roads and traffic as possible. 

• interbuilding spacing: Certain minimum distances should be provided 
between buildings to allow walkways and maintenance access, and to 

provide less obstructed views from windows than might otherwise occur. 

• place buildings near parking lots: The distance employees or 

visitors must walk from their car to a building should be minimized, 

• place buildings on hills: Placing buildings on hills provides a 

pleasing external appearance, helps to manage drainage, and helps to 

prevent visibility of rooftops. 

• avoid unpleasant views from buildings: To avoid unpleasant 

views of nearby rooftops, neighboring buildings should be approximately 
the same height. · 
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7.1.3. Constraint conflicts 

As in the opaque projector project of the previous chapter, it is impossible to completely 
satisfy all constraints. For example, the goal of maximizing building distance from main 
roads conflicts with the constraint that buildings cannot overlap. In addition, placing 
buildings on hills conflicts with both of these constraints, since hills do not always occur 
away from main roads. 

7.2. Constraint implementation 

This application was implemented before all constraint library routines were completed, so 
the exact shaping functions described in chapter 5 were not used. However, the cost 
functions used were chosen to implement the six basic constraint types. This section 
documents the constraint implementation based on these types, even though explicit calls to 
library routines were not used. 

7.2.1. Object non-intersection· (e.g., building-building) 

The goal of this constraint is to keep objects from overlapping one another. The amount of 
interference can be determined by the volume of the intersection of the objects. This 
constraint was first implemented by approximating all objects by polyhedra and using a 
general polyhedral intersection routine. This gave a precise measure of interference, but 
was also exceedingly slow. To speed up evaluation, the general polyhedral intersection test 
was replaced by a bounding box intersection test, which has performed satisfactorily with a 
much lower computational expense. 

constraint: minimize volume of intersection 
parameter: volume of intersection of objects' bounding boxes 
function: lower bounded minimize, bounded by zero 

135 



7.2.2. Road setbacks 

The manual on site plan development states that building setbacks for the most common 
road widths should be observed as follows: 

Ri~t=of-way width 

300feet 
200feet 
150feet 
120feet 
< 120feet 

Minimum Setback ReQYired 
175feet 
150 feet 
lOOfeet 
100 feet 
lOOfeet 

To implement this constraint, the width of each road is examined and the appropriate 
minimum setback is selected A greater than constraint using that distance is then 
evaluated. 

constraint: object distance greater than required setback distance 
parameter: distance between road and object 
function: greater than 

7.2.3. Place buildings away from roads 

The manual for site plan development states that one of the objectives is "the continuation 
of a park-like character". A park-like character can be maintained by placing buildings 
away from main roads. 

constraint: maximize distance between building and nearest road 
parameter: distance from building to nearest road 
function: lower bounded maximize, bounded by zero 
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7.2.4. lnterbuilding spacing 

Rather than implement a separate constraint for interbuilding spacing, the building non
intersection constraint was generalized to include spacing. The bounding box used for 
interference computations is extended on each side by an amount equal to half of the 
desired spacing. The volume of the intersection of two bounding boxes is zero only if they 
do not intersect and the objects meet the required interbuilding spacing. 

constraint: minimize volume of intersection 
parameter: volume of intersection of objects' extended bounding boxes 
function: lower bounded minimize, bounded by zero 

7.2.5. Place buildings near parking lots 

This constraint is implemented by minimizing the distance of each building to the nearest 
parking lot. 

constraint: minimize distance to parking lot 
parameter: distance from building to nearest parking lot 
function: lower bounded minimize, bounded by zero 

7.2.6. Place buildings on hills 

The manual for site plan development states, "The location of buildings on most tracts can 
occur on either: 1) flat sites on ridgetops or 2) sloping sites off ridges and adjacent to 
natural drainageways." Since no identification is made of natural drainageways in this 
application, the constraint is approximated by maximizing the elevation of the base of each 
building. 

constraint: maximize building elevation 
parameter: building elevation (measured at base) 
function: lower bounded maximize, bounded by lowest terrain elevation 

137 



7.2.7. Avoid unpleasant views from buildings 

The manual for site plan development states that flat rooftops may not be overlooked by 
other buildings" This can occur when a tall building is adjacent to a short building" This 
constraint attempts to enforce this guideline by minimizing the height difference of 
neighboring buildings" Two buildings are considered to be in the same neighborhood if 
they are within 2000 feet of one another (terrain is 10000 by 10000). 

constraint: minimize height difference of neighboring buildings 
parameur: magnitude of difference in height ofroojline of neighboring buildings 
function: lower bounded minimize, bounded lJy zero 

7.2.8. Discussion of cost function weighting factors 

In the opaque projector application of chapter 6, cost function weights played a crucial role 
in creating individual products within a product line" In this application, the goal was to 
generate a single site plan rather than multiple site plans" Constraint weights therefore are 
not emphasized in this chapter, although they remain important and provide utility. For 
example, a fundamental conflict occurs between the goal of placing buildings away from 
roads, and placing buildings on hills" The goal of placing buildings away from roads is 
largely an aesthetic constraint, while the goal of placing buildings on hills has a more 
practical basis involving issues such as storm water management" By changing the 
weightings of these two constraints, the balance between aesthetic and practical issues can 
be exploredo 

7.3. Results 

This section presents the results of a site planning problem involving fifty buildings and 
fifty trees. Intermediate results are presented as new constraints refine the problem While 
these intermediate results might not be of interest to a site planner, they are presented here 
to demonstrate the effect of adding each constraint. 

Although the results are presented incrementally, the !\Qlution technique is not incremental" 
Each new version of the problem was solved independently. 
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Figure 7.3 shows the solution to the problem with only road setback and building non

intersection constraints. All constraints can be (and are) satisfied in this problem. 
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Figura 7.3a: road setbacks and building non-Intersection constraints 
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Figura 7.3b: road setbacks and building non-Intersection constraints 
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Figure 7.4 shows the resulting of adding a constraint to maximize the distance of each 
building from the main roads. This results in a packing problem. 
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Figure i'.4a: add maximization of road/building distance 
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Figure 7.4b: add maximization of road/building distance 
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Figure 7.5 shows the result of including interbuilding spacing, since no actual site plan 
would have buildings as close together as in figure 7 .4. 

DO 

Figura 7.5a: add lnterbulldlng spacing 
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Figure 7.5b: add lnterbulldlng spacing 
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Figure 7.6 adds parking lots to the problem. These parking lots act like buildings: there is 
no constraint yet added to minimize the distance to each parking lot 

0 D D 

Figure 7.6a: add parking lois 
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Figure 7.6b: add parking lots 
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Figure 7. 7 adds a constraint to minimize the distance from buildings to parking lots. The 
distribution of one parking lot to each cluster occurs automatically. 
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Figure 7.7a: minimize parking lot/building distance 
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Figure 7.7b: minimize parking lot/building distance 
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Figure 7.8 adds a constraint to place buildings on hilltops. This pulls some buildings back 

toward roads in order to place them on hills. 
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Figura 7.8a: place buildings on hilltops 
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Figure 7.8b: place buildings on hilltops 
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Figure 7.9 adds trees to the problem. The position of the trees are fixed, so the buildings 

must be positioned to avoid the trees. 
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Figure 7.9a: add ln>es as obstacles 
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Figure 7.9b: add trees as obstacles 
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Figure 7.10 temporarily removes the trees and shows the result of adding a constraint to 
make rooflines of adjacent buildings be the same height. 

·~---------r---------; 
·. 

}. 

Figure 7.10a: match roof heights locally 
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Figure 7.10b: match roof heights locally 
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Figure 7.11 again adds trees to show the final result of including all constraints and 

obstacles. 

oo 0 ::::: 
00Doo 

·:·:· 

D 
Do 

DO 

D====o· D ========· 

.·.• .·.· 

:::: 

00° 
0=:=:· D D 

0::::· :::: 
==== D ::::. 

Dooooo ===== 

Do 
oo ·======= 

D 

.·.· . . ·.· 
::::-

Figure 7.11a: final site plan 
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Figure 7.11b: final site plan 
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7.4. Statistics 

This section presents statistics about the constraints and run times for the site planning 
problems described above. 

Although section 7.2 described only seven main constraints, many instances of each of 
these constraints are used to compose a problem definition. Table 7.1 details the number of 
instances of each constraint that were used in the examples above. These are dependent on 
the parameters used in this application: fifty buildings, fifty trees, and three parking lots. 

Constraint #of pairwise 
this type tests 

Building/building non-intersection 1225 1225 
Building/main road setbacks 50 250 
Building/access road setbacks 150 150 
Maximize distance: building/nearest road 50 250 

.·• Building/tree non-intersection 2500 2500 
··.· Building/parking lot non-intersection 150 150 
•··· Place buildings on hills 50 50 . 

Parking lot/parking lot non-intersection 3 3 
.•. Maximize distance: parking lots/nearest road 3 3 
C Parking lot/main road setbacks 3 15 

Parking lot/access road setbacks 6 6 
Parking lot/tree non-intersection 150 150 
Access road/tree setbacks 150 150 
Equalize building height in neighborhood 1 1225 
Place parking lots near buildings 1 150 
Total 4492 6277 

Table 7.1: constraint statistics for site planning application 

The first column of table 7.1 shows the type of constraint. The second column shows the 
number of instances of constraint, as determined by explicit cost function calls within the 
application. Some of the constraints were implemented as composite constraints, however. 
For instance, the constraint to place buildings near parking lots was implemented as a 
special purpose constraint and therefore was counted only once in column two. Each 
evaluation of that constraint requires the evaluation of the distance between each parking lot 
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and each building, a total of 150 pairwise comparisons. Furthermore, the main roads are 
represented internally as a single road network, and so each setback constraint requires 
only one call even though there-ere five main road segments. 

The third column shows the total number of pairwise constraints for each of the main 
constraints. This provides a more accurate figure of the number low-level constraints being 
considered. Even with the expanded constraint count, however, non-intersection 
constraints comprise over half of the total count. 

Problem CPU seconds (DEC 3100) #of #of 

constraints iterations 

Figure 7.3 235.1 (2 min, 55.1 sec) 1275 6800 
Figure 7.4 5151.7 (1 hr, 25 min, 51.7 sec) 1325 150000 

Figure 7.5 5035.0 (1 hr, 23 min, 55.0 sec) 1325 150000 
Figure 7.6 6302.1 (1 hr, 45 min, 2.1 sec) 1640 150000 
Figure 7.7 6765.9 (1 hr, 52 min, 45.9 sec) 1641 150000 

Figure 7.8 6712.4 (1 hr, 51 min, 52.4 sec) 1691 150000 

Figure 7.9 11374.6 (3 hr, 9 min, 34.6 sec) 4491 150500 

Figure 7.10 19621.0 (5 hr, 27 min, 1 .0 sec) 1692 250400 
Figure 7.11 78463.6 (21 hr, 47 min, 43.6 sec) 4492 724000 

Tabla 7.2: CPU times for alta planning problems 

Table 7.2 shows the amount of time used in solving each of the site plan problems. The 
time is related of the number of constraints, complexity of constraints, number of iterations 
evaluated, and the actual configurations evaluated. The program was set to terminate upon 
reaching a particular temperature or a fixed number of iterations. 

The results indicate that the solution method is not suitable for interactive use on this 
particular platform. If we assume a five-hour run time for a typical site planning problem 
using this implementation, a thousand-fold increase in processor speed is necessary to 
reduce run time to a figure that might allow interactive use (eighteen seconds). 

On the other hand, a five-hour run time is not much of an investment when one considers 
the costs and time typically involved in designing a site plan. 
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7 .5. Evaluation 

In general, the solutions presented above are non-optimal but are close to optimal. The 
following is a brief evaluation of figures 7.3 through 7.11: 

Figure 7.3: All constraints are satisfied in this problem, so it is an 
optimal solution. 

Figure 7.4: An optimal result would probably have the buildings packed 
together with smaller gaps. The packing is dense, however, in that gaps 
tend to be much smaller than buildings. 

Figure 7.5: The interbuilding spacing resulted in two buildings being 
separated in the lower left portion of the terrain. With an optimal packing, 
it may have been possible to place these buildings further from the road (as 
part of the two main clusters). 

Figure 7.6: The addition of parking lots has little effect on the layout of 
buildings. Parking lots are placed near the outside of the cluster to avoid 
interference involving setback constraints on the access roads. 

Figure 7.7: The requirement of having buildings near parking lots 
forces clusters near each of the three parking lots. Buildings tend to 

surround parking lots, as one would expect. The cluster in the lower left 
portion of the terrain appears non-optimal, though relocation of a single 
building would correct that. 

Figure 7.8: The results again appear to be reasonable. Buildings are 
placed on hilltops, yet still maintain proximity to parking lots. 

Figure 7.9: There are no surprises here. The buildings are placed so as 
to avoid the trees. The results are quite similar to figure 7.8 with the 
exception of tree avoidance. 

Figure 7.10: The goal to match building heights results in the building 
in the lower right portion of the terrain being placed far away from a 
parking lot. This is clearly a non-optimal position (though it is locally 
optimal). All other buildings appear to be reasonably placed. 
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Figure 7"11: The final solution reflects the influences of all constraints 
and has no obvious errors. All forms of non-intersection constraints are 
satisfied. Goal constraints, such as placement of buildings on hills and 
away from roads, are clearly reflected in the solution. 

It would be interesting to compare these generated results with optimal solutions. 
Unfortunately, there is no simple way of generating optimal solutions for comparison. The . 
alternative is to examine the results for compatibility with the specified constraints. This 
section has performed such an evaluation and has in general found the solutions to conform 
to the desired constraints. 

7.6. Convergence to final solution 

Figures 7.12 through 7.15 show the convergence of the final site plan depicted by figure 
7 .11. The progression shows the configuration at each of the following number of 
iterations: 

• 0 iterations 
• 88,800 iterations 
• 184,800 iterations 
• 280,800 iterations 
• 37 6,800 iterations 
• 472,800 iterations 
• 568,800 iterations 
• 724,000 iterations 

At high temperatures (figure 7.12), the configurations violate many constraints and no 
structure is readily noticeable. As the system begins to cool (figure 7.13), the general 
distribution of parking lots to clusters becomes noticeable, though buildings still appear 
randomly distributed. Upon further cooling (figure 7.14), the organization of buildings 
into clusters becomes apparent, though a few stray buildings remain far from any parking 
lot. In the fmal stages of cooling (figure 7.15), the buildings settle into a packed 
configuration" 
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7.7. Summary 

This chapter has documented the use of CONTEST in site planning. Unlike the opaque 
projector application, which was created to generate a family of designs, the site planning 
application was oriented toward the design of a single site plan. 

In the opaque ptojector project, the part inventory was fixed and the variables were the 
consumers preferences, reflected by constraint weightings. In site planning, constraints 

tend to remain constant, while the variables are the size, number, and shape of the relevant 

objects: terrain, roads, buildings, trees, and parking lots. 

A constructive approach was used to reach the final solution. This approach was useful in 
designing and presenting the constraints, because the effect of each constraint was 
apparent. A site planner, however, would probably be interested in only the final solution, 

assuming that the solution was satisfactory. 

A straight-forward design method was followed in this application: 1) specification of the 
problem, 2) identification of objects and their parameters, 3) encoding of constraints, and 
4) evaluation of results. The resulting site plan ptoperly reflects the tradeoffs specified by 

the constraints. 

A wide variety of constraints were encoded as cost functions in this application. The 
diversity of the constraints in both this application and the opaque projector application 

demonstrates the versatility of the cost function approach. 
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Chapter 8 

Discussion 

This chapter compares CONTEST with several other systems that are representative of 
particular constraint satisfaction techniques. This comparison is then used as an 
introduction to the contributions of this research. Finally, the implementation of 
CONTEST is described. 

8.1. Comparisons with other systems 

The systems compared are Boming's ThingLab [Boming, 1979], VanWyk's Ideal [Van 
Wyk, 1990], Briiderlin's constraint system [Briiderlin, 1986], Brown's expert system 
[Brown, 1986], Barzel and Ban's physically-based modeling system [Barzel, 1988], and 
CONTEST. These systems were chosen for comparison because they each use a different 
solution method for solving modeling problems. 

These systems are analyzed based on the following criteria: 1) solution method, 2) whether 
the system is capable of satisfying constraints globally or only locally, 3) restrictions on 
constraint complexity, 4) restrictions on type of constraint, 5) user interaction method, and 
6) accuracy of results. 

8.1.1. Thinglab 

· Thingl,ab uses multiple solvers: propagation of known states or degrees of freedom where 
possible, and relaxation to solve remaining constraints (see figure 8.1). Relaxation fmds 
only locally optimal solutions. Constraints in ThingLab may be arbitrarily complex, but if 
relaxation is necessary the constraints are approximated by linear equations. ThingLab can 
handle non-geometric constraints in addition to geometric constraints. ThingLab is an 
interactive Smalltalk based environment, and produces accurate, repeatable results. 



8.1.2. Ideal 

Ideal uses a single constraint solver capable of solving only linear constraints (see figure 
8,2), It finds exact, global solutions to properly formulated problems, It is designed for 
dealing with geometric constraints, Ideal is not interactive; the user creates a data file 
describing a picture and then presents this input to Ideal for processing, 

8.1.3. Bruderlin's system 

Briiderlin's system uses a fixed set of geometric constraints, and cannot be easily extended 
to incorporate new basic constraints. The system runs as an interactive Macintosh 
application. The user interacts with the system by selecting constraints from a menu and 
providing the parameters to those constraints. The constraints are represented as Prolog 
predicates, which are reduced symbolically to a numerically solvable form (see figure 8,3), 
The system finds exact, globally optimal solutions to properly formulated problems, 

8.1.4. Brown's system 

Brown's expen system approach uses a hierarchy of cooperating agents to produce 
globally optimal designs. Each low-level agent solves local tasks, while the higher-level 
specialists direct these local agents to yield a global solution (see figure 8.4), The agents 
model human problem solving procedures, so as long as the appropriate solution 
knowledge is encoded in the expen system, constraints may be arbitrarily complex. 
Constraints can geometric or non-geometric. The user creates a design by describing the 
constraint problem in DSPL, a USP-like language. The success and accuracy of the 
results is dependent upon the quality of the knowledge base. 

8.1.5. Barzel and Barr's system 

Barzel and Barr's system works by converting geometric constraints into forces which in 
turn move objects to solve constraints (see figure 8.5). The constraint forces provide local 
convergence to a solution. This system suppons constraints which are evaluated in terms 
of positions and orientations of geometric objects. The user specifies a problem by 
entering constraint definition commands in a USP environment 

8.1.6. CONTEST 

CONTEST represents constraints as cost functions which are then optimized (see figure 
8.6). The optimization technique searches for a global optimum, though there exists no 
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guarantee that the optimum will be found. Constraints may be arbitrarily complex; the only 
requirement is that the cost function for each constraint be capable of expressing the quality 
of each configuration as a single scalar value. Constraints can deal with geometric or non
geometric properties. The user specifies a design by writing a C++ program and using 
custom constraints or constraints drawn from a library. 

Berning's Thinglab 

problem specification 

constraint selection: user selects constraint 
objects from library and/or builds new constraint 
objects 

selection method: user builds application program 
(SmaiHalk environment) 

constraints encoded as 
Smalltalk objects with methods 

solver 1: 
propagation of 
known states 

constraint 
planner 

solver 2: 
propagation of 

degrees of 
freedom 

solution 

Figure 8.1: structure of Th lnglab 
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Van Wyk's Ideal 

problem specification 

constraint selection: user defines linear equations 
specifying relationships of objects in drawing 

selection method: specification in custom 
constraint language 

' 
constraints encoded as 
linear equations 

linear equation 
solver 

solution 

figure 8.2: structure of Ideal 
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Briiderlin's System 

problem specification 

' 
cxmstraint selection: user selects constraint 
objects from library using program menus 

selection method: user runs application program 
(Macintosh application) 

constraints encoded as 
Prolog predicates 

symbolic 
constraint solver 

simplified predicates 

numeric 
constraint solver 

solution 

Figure 8.3: structure of Brlldarlln's system 
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Brown's System 

problem specification 

constraint selection: user selects constraint 
objects from library and/or builds new constraint 
objects 

selection method: program in custom language 
{DSPL, implemented in LISP) 

constraints encoded as DSPL 
objects with methods 

design ~ ' / design 

agent agent 

design 
manager 

design v ~ design 
agent agent 

solution 

' 

Figure 8.4: structure of Brown's system 
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Barzei&Barr's System 

problem specification 

' 
constraint selection: user selects constraint objects 
from library and/or builds new constraint objects 

selection method: user builds application program 
(LISP environment) 

constraints encoded as 
constraint-force equations 

linear equation 
solver 

forces 

iterative 
animation I 
evaluation 

solution 

' 
Figure 8.5: structure of Barzei&Barr's system 
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CONTEST 

problem specification 

constraint selection: user selects cost functions 
from library and/or builds new cost functions 

selection method: user builds application program 
(C++ program) 

constraints encoded as 
cost functions 

annealing 
engine 

' 

solution 

Figure 8.6: structure of CONTEST 
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8.2. Contributions 

This section documents the contributions of this research. First, specific contributions are 
identified. Next, the advancement of the state-of-the-art by CON1EST is presented. 

8.2.1. Specific contributions 

This is not a dissertation about simulated annealing. Simulated annealing is used as a 
solution method and no new research in simulated annealing was necessary to apply the 
technique to constraint-based design. 

Moreover, the contribution of this research is not the recognition that simulated annealing 
can be used to solve constraint problems. This was known prior to the start of this work. 

The contribution of this research is the development of a methodology for converting 
general constraint -based design problems to scalar cost functions which can be optimized 
cby simulated annealing. This dissertation has identified the various categories of 
constraints and described a method for converting these constraints into cost functions. 

Three main contributions involve quantification of objective constraints. The first 
contribution is an identification of the most commonly used types of constraints. Most 
constraints can be expressed as a minimize, maximize, less than, greater than, not 
equal to, or equal to constraint. The second contribution was the derivation or 
identification of functions capable of representing the costs of these constraints. Several 
alternative function representations were presented, and three of these were implemented: 

the representations based onf(x) = e-nxb andf(x) = ll(nxb+l ), as well as the arc tangent 
form for unbounded minimization and maximization. The third contribution was the 
development of a conversion from convenient user-specified slope and value parameters 
to the non-intuitive n and b parameters of these functions. 

Moreover, the following categorization of constraints was identified as being useful for 
characterizing the cost function development procedure: 

• objective constraints 
• subjective constraints 
• search constraints 

The techniques developed for subjective and search constraints involve reducing and 
converting them to easily evaluated objective constraints. Thus the techniques for 
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quantification of objective constraints also apply indirectly to all types of constraints. 

The theory and development of these methods would be meaningless if they could not be 
used to solve real constraint problems. The validity of the theory was demonstrated by 
successful application of the methodology to two problems. 

8.2.2. Advancement of the state-of-the-art 

CONTEST differs from previous modeling systems by providing near-globally optimal 
results to complex, composite constraint problems, without requiring that someone supply 
problem solving heuristics. 

The use of simulated annealing to solve design problems is not new; many VLSI systems 
use annealing to minimize chip area or wire length. The difference between previous 
systems and CONTEST is that in previous problems the objective function was well 
defined (e.g., minimize chip area). In CONTEST, the objective function is not well 
defmed, and a primary contribution is the methodology for creating a composite cost 
function reflecting diverse constraints. 

Among the systems described above, only the expert systems approach is capable of 
providing global constraint solutions to arbitrarily complex constraints. The difference 
between the expen systems approach and the cost function approach is that the expen 
systems approach simulates human problem solving and therefore requires an 
understanding of how to solve constraint problems. The cost function approach only 
requires that one be able to evaluate a constraint; the solution method is automatic. 

CONTEST removes one or more of the following limitations on the power of previous 
modeling systems: 

• limitations in constraint complexity (e.g., only linear or quadratic equations) 
•limitations in constraint type (e.g., only geometric constraints) 
• the need for human problem solving knowledge (e.g., expen systems) 
• limitations in ability of the constraint solver to handle new constraints without 

changes to the constraint solver 
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8.3. Implementation 

CONTEST is implemented in C++, and contains class definitions for both geometric 
objects and constraints. Constraint (cost function) objects request relevant information 
from geometric objects to evaluate constraints. 

The annealing engine operates on two container classes: a geometry list and a constraint 
list. The geometry list is instructed to perturb or unperturb itself, while the constraint list is 
instructed to return the cost of the current geometry list 

Methods for 
geometric 
objects: 

• return position 

• return volume 

• return distance 
to another object 

• return bounding 
box 

• etc. 

geometric 
object 

geometric 
object 

geometric 
object 

geometry 
list 

perturb/ 
unperturb 

Methods for 
constraint 
objects: 

• lnitianze: 
set objects, 
parameters 

• return cost 

constraint 
list 

evaluate and 
return cost 

annealing engine 

Figure 8.7: Implementation of CONTEST 
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The main program creates geometric objects and places them in the geometry list, and 
creates constraints and places them in the constraint list. It then passes the constraint list 
and geometry list to the annealing engine. After the annealing engine has completed, 
control returns to the main program. The main program then tells the geometry list to dump 
its geometric description. Additional information on the implementation is available in 
[Grant, 1986] and [Grant, 1987]. 

8.4. Summary 

This chapter has compared CON'IEST with several other systems that are representative of 
particular constraint satisfaction techniques: ThingLab, Ideal, and systems by Briiderlin, 
Barzel and Barr, and Brown. ThingLab was chosen to represent systems using multiple 
constraint solvers. Ideal was chosen to represent systems using equation solving. 
Briiderlin's system was chosen as an example of a system restricted by a fixed selection of 
constraints. Barzel and Barr's system was chosen to represent physically-based modeling 
systems. Brown's system was chosen as representative of expert systems. Each of these 
systemg is limited in some way that CON'IEST is not similarly limited. As with most 
advantages there are disadvantages: CON'IEST takes much longer to find a solution than 
any of the described systems. Nevertheless, CON'IEST represents an advancement of the 
state-of-the-art by providing capabilities not otherwise available. 

This chapter has also identified the contribution of this research. The main contribution is a 
methodology for quantifying constraints. Specific techniques for quantifying objective 
constraints are combined with methods for converting subjective and search constraints to 
objective constraints to yield a generally applicable method for all constraints. The opaque 
projector and site planning problems demonstrated that the methodology may be 
successfully applied to real problems. 

Finally the implementation of CON'IEST was described. CONTEST is implemented in 
C++, and uses class defmitions for geometric objects and constraints. The application of 
an object-oriented methodology has helped to manage the complexity of the software 
portion of the system. 



Chapter 9 

Conclusions I Future work I Summary 

Previous chapters documented the development of a system for constraint-based modeling. 
The system was applied to two problems, and the results were presented. Finally, the 
system was compared with other modeling systems to identify the contributions of this 
research. 

This final chapter presents some fmal conclusions about this work, discusses directions for 
future work, and summarizes the dissertation. 

9.1. Conclusions 

Design is an exploration process, even with automated constraint satisfaction tools. It is 
easy to think of the constraint-based modeling process as two simple steps: 1) the designer 
specifies the problem, and 2) the computer finds the solution. Unfortunately, it is not that 
simple. Very rarely does a designer begin the design process with a complete 
understanding of the problem to be solved. Design involves examining tradeoffs so as to 

better understand the problem A more accurate model of design consists of four steps: 1) 
problem definition, 2) the computer finds a solution, 3) the designer evaluates the solution, 
4) the designer modifies the problem and returns to step two. 

It is important to recognize this design process in light of the run times required for the 
applications in chapters six and seven. A five hour turnaround for the design of a site plan 
is not extensive if only one design is required. However, if the designer needs to iterate 
toward a final design, he had better be very patient, as a one day task easily can expand to 
several weeks. I would recommend this solution method for applications that generate 
multiple designs and have a long lifetime after being created, but not for one-time design, 
unless a very precise problem specification is given beforehand. 

One can reduce the time budget for a particular problem to get faster turnaround at the 



expense of the quality of the solution. While developing the opaque projector application, I 
was able to get reasonable results with only a ten minute run time. The results were non
optimal, but I could usually evaluate the results of the particular constraint or constraints I 
was trying to tune or implement. On the other hand, while developing the site planning 
project, there were times when I thought my cost functions were inaccurate when in fact the 
only problem was that I was not allocating enough time to yield near-optimal results. Once 
again, patience is required. 

Despite the frustration of having to wait for these turnaround times, I actually consider 
these results quite encouraging. These were complex design problems that could not be 
quickly solved by a human. I did not have to use a supercomputer to get results. I look to 
the evolution of ray tracing for encouragement. Early implementations required hours per 
frame, but increased computer speed, parallelism, and algorithmic improvements have all 
made its use commonplace for rendering complex scenes. Cost-function-based modeling 
shares the same philosophy of power and generality at the expense of run time. 

9.2. Future work 

Since the computational expense of simulated annealing is a limiting factor in the 
. applicability of this solution method, alternatives to the current implementation should be 
considered. Two possible approaches are: 1) maintain the problem representation but 
concentrate on reducing computation time, and 2) use a more efficient problem 
representation. 

Methods for the first approach are more obvious. Many possible speedups exist for 
evaluating cost functions. Library calls to mathematical functions can be replaced by table 
lookup, since the cost function itself is already an approximation. Language support by 
C++ for inline functions can be used extensively to reduce the overhead of function calls. 
Computations performed during one iteration can be saved and reused whenever possible. 
Finally, much of the annealing procedure can be parallelized to take advantage of multiple 
workstations or a parallel machine architecture. 

While most of these approaches are just implementation details, the parallelization of 
simulated annealing is a worthwhile research topic. Nevertheless, my research interests lie 
in the search for a more efficient problem representation rather than in methods of speeding 
up the current method. 

The fundamental limitation of the current problem representation is that it leads to 
tremendously large search spaces. All possible configurations are considered as potential 
solutions, rather than only feasible solutions. For instance, the site planning application 
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considers many site plans that would not be reasonable for any actual problem instance: 
plans with buildings intersecting one another, plans with trees growing through walls, and 
plans with buildings and trees in roadways. A more efficient approach is to search for the 
best configuration from the smaller set of legal configurations. One way to define this 
smaller set of legal configurations is by using shape grammars. 

9.2.1. Shape grammars 

Shape grammars can be used to describe legal designs. A simple shape grammar for 
campus layouts ruight have rules such as: 

<campus layout> ~<dormitories> <academic buildings> 

or ~<dormitories> <academic buildings> <stores> 

<.dormitories> ~<rectangular dormitory cluster> or <high rise dormitory> 

<rectangular dormitory cluster> ~<central courtyard design> 

or ~ <packed building design> 

_ Eventually these reduce to specific geometric objects through a rule such as: 

<dormitory row> ~<building> <.building> <building> <building> 

Architects have used shape grammars to describe styles of design. Koning and Eizenberg, 
for example, defined a grammar to characterize the style of Frank Lloyd Wright's prairie 
houses [Koning, 1981]. Mitchell [Mitchell, 1990] provides examples of several simple 
grammars and the designs that can be enumerated by each grammar. 

While the enumeration of all shapes is interesting, it is not particularly useful. The real 
power of the shape grammar approach will be realized by using constraints to select the 
best shape from these legal shapes. In other words, it is much more useful to select the 
best campus layout based on the terrain, local building codes, and the needs of the 
university, rather than simply generating ruillions of potential site plans: The following 
section discusses how this may be implemented. 

9.2.2. Combining grammars and cost functions 

The cost function methodology presented in this dissertation is not tied to simulated 
annealing. Cost functions may just as easily be used to evaluate shapes generated by a 
grammar. 
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If the grammar generates a small set of shapes, then the cost function can exhaustively test 
each shape and select the optimal design. Unfortunately, even simple grammars can still 
generate more shapes than may be feasibly tested In this situation, one must search the set 
of potential solutions, just as simulated annealing searches the larger set of all solutions. 

A grammar describes a tree structme, where internal nodes represent partially expanded 
designs, and leaf nodes represent possible solutions. The branches exiting a node 
correspond to the productions that may be applied at that node. Viewed as such, this 
reduces the problem to a tree search. The goal is to find the optimal solution without 
exploring too many paths. Initially, I plan to tty standard techniques such as branch-and
bound to search the tree. If standard techniques are unsatisfactory, I will explore special
purpose search methods. 

The combination of shape grammars and cost function evaluation is potentially very 
powerful. Merging the two techniques can lead to a system capable of producing results 
equal to (and perhaps better than) the results presented in this dissertation, but at a fraction 
of the computational expense. 

9.3. Summary 

Constraint-based modeling problems may be expressed as scalar cost functions. To fmd 
the optimal solution to a modeling problem, one minimizes the value of a composite cost 
function representing all constraints. This research has focused on the problem of 
encoding and combining diverse classes of constraints into a single cost function. 
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