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Abstract 

The Textlab Research Group has developed a number of tools and 
techniques for automatically recording users' interactions with computer 
systems in machine-readable form, for replaying sessions, for analyzing 
protocol data using cognitive grammars, for filtering analyzed data and 
interfacing with statistical packages, and for displaying results in visual 
forms that facilitate interpretation. The methodology they are developing 
encourages the collection of large numbers of protocols that must be 
stored, retrieved, divided into meaningful groups, etc., before they can be 
analyzed. Thus, managing protocol data becomes increasingly important. 
Our long-term goal is to develop an integrated environment from which to 
control and monitor all stages of the process; the goal of this paper is to 
provide a conceptual foundation for that system. It discusses issues 
concerned with sorting and selecting protocols according to associated 
attributes and with criteria for the proper application of particular 
statistical or other analytic functions to particular forms of protocols or 
data derived from them. The mathematical model presented is general and 
can be applied to other applications in which matching analytic program 
requirements with data type or organization is important. 



Introduction 

During the past six years, the TextLab Research Group has developed 
a number of tools and techniques for automatically recording users' 
interactions with computer systems in machine-readable form. They have 
also developed tools for replaying sessions, for analyzing protocol data 
using cognitive grammars, for filtering analyzed data and interfacing with 
statistical packages, and for displaying results in visual forms that 
facilitate interpretation. While the human interpreter is an integral and 
indispensable part of this process, these tools automate many of the 
protocol analysis steps, making it practical to analyze behaviors of large 
numbers of subjects over extended periods of time under both naturalistic 
and controlled conditions. Consequently, this methodology inevitably 
leads to the collection of large numbers of protocols that must be stored, 
retrieved, divided into meaningful groups, etc., before they can be 
analyzed. Thus, managing protocol data becomes increasingly important. 

Our long-term goal is to develop an integrated environment that 
researchers can use to control and monitor all stages of the process. 
While exploring requirements and design criteria, we encountered several 
difficult, but interesting, issues concerned with sorting and selecting 
protocols according to various criteria and with applying statistical and 
other analytic functions to the selected protocols. This paper discusses 
these issues in more detail to flrovide a conceptual foundation for the 
system we plan to build. 

This paper provides a mathematical specification of a data analysis 
system. The discussion may be of interest to anyone engaged in the high
level specification of data analysis systems. In general, the reader should 
find here ways in which data analysis can be formally modeled. The 
reader will see too how this model of data analysis is reflected in a 
prototype system. It may be that specific objects in the mathematical 
specification can be adapted or extended to solve problems in other types 
of data analysis. 

The mathematical specification presented here represents the 
objects and tasks required for analyzing machine-recorded protocols. 
Protocols present two special difficulties during analysis. These data 
sets are often both massive and cryptic. The mathematical model 
described tries to answer these difficulties. 

This model is not comprehensive; it is a framework to aid the work 
of system design. It is meant to demonstrate how a protocol analysis 



system can be mathematically modeled as a step toward a prototype. This 
model can be extended or implemented in a number of ways, depending on 
specific goals. It forms the basis for the prototype described in the third 
section and could serve as a guide in extending the generality of that 
prototype. 

This first section will discuss the problem of analyzing protocols. 
The second section will give a mathematical specification to model the 
analysis process. The third section suggests how this model of data 
analysis might lead to a software system providing a graphical and 
orderly approach to analyzing protocols. 

What Is a Protocol? 

This paper will use the word protocol to refer to a machine
generated record of a process. Such a record usually takes the form of a 
time-stamped list of events summarizing for later evaluation the course 
of the process. 

For example, the analysis tool described in this paper was motivated 
by a need to handle sessions recorded by a writing support system known 
as WE (Writing Environment). WE records each user action in the process 
of organizing, writing, and rewriting a document. The resultant protocol 
is large and nearly useless without automatic processing. For the 
purposes of this paper, any such recorded list of discrete events may be 
considered to be a protocol. 

These protocols typically have built into them two characteristics 
which make direct manipulation and analysis difficult. First, they are 
massive: since computers can record discrete events very rapidly, the size 
of such a recording is usually orders of magnitude larger than what might 
be produced by a human observer. Second, they are, for the human reader, 
cryptic, ordinarily being recorded in a notation chosen for ease of machine 
manipulation and information density. 

Computer-assisted analysis seems a good way to deal with machine
generated protocols for two reasons: 

First, though large, a protocol is easily packaged as an individual 
file. Thus, the manipulation of protocols can, in part, make use of the file 
system. Since computers normally have in place this system for handling 
large data objects, a system for the specialized manipulation of protocols 
already has a good foundation on which to build. 

Second, the protocol can record its observations in a language suited 
specifically to machines. Automatic transformations can readily be made 
using this language. Results" meaningful to the experimenter may be 
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produced after a series of automatic machine operations on the cryptic 
data set. 

What Is Analysis? 

The purpose of data analysis is to make explicit the implicit. Data 
analysis tries to find meaningful patterns where no specific meaning is 
known to exist. Analytical understanding is arrived at through the 
repetition of a two-part process: distinction and relation. In other words, 
the experimenter has first to isolate the variables of interest and then to 
see how they relate to each other. This model of analysis rests on the 
merits of long-use and long-usefulness, being suggested by Aristotle in 
his Physics and elaborated by Francis Bacon in his Novum Organum. 

This process of distinguishing variables followed by relating them 
suggests a possible form for a graphical tool to assist in the task of 
analysis: a diverging tree, in which finer and finer distinctions are 
established, used as input to another, converging tree of increasingly 
general relationships (see Figure 1 ). 

All variables 

Distinguish 
variables 

Synthesize 
variables 

Figure 1: 
A simple model of analysis 

The analysis system described here follows this basic diamond form 
of top-down sorting followed by bottom-up synthesis. Iteration of such 
analysis then leads to the perception of meaningful patterns and an 
understanding of the nature of the things observed. 
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Design of a Protocol Analysis Tool 

What characteristics should be reflected in the mathematical 
specification of a protocol analysis tool? Such a tool must manipulate 
many large data sets, allowing the experimenter to collect, categorize, 
and distinguish the data sets. Manipulation must be easy, encouraging 
exploration of many possible groupings. This tool should allow the 
protocols to be gathered into groups with similar traits for comparison 
among themselves and with other groups. 

Also, this tool must provide for meaningful transformations of the 
data in order to discover implicit patterns and relations. This is not the 
execution of a prescribed algorithm or predefined solution. Rather, it is 
an interactive execution of transformations exploring likely paths, 
hunting for an unknown solution. Operators in this system should be 
dynamically typed, putting less of a demand on the user to fit data to 
operators. Operators should be flexible in the input they accept and should 
produce a predictable output so that the composition of operators is 
simple. 

This tool must include not only capacities for manipulation and 
transformation, but also for iterations of these operations. The desired 
tool will provide a memory, a thread laid through the maze of all possible 
analytical paths. It should recall which protocols were used as input to 
which operators. Then a previous path may be altered by a single step, 
generating a new result while retaining the context of the simple change 
that caused it. This ability provides the retrospection needed in the usual 
course of data analysis. 

The next section describes the mathematical constructs which seem 
likely pieces to model such a tool. These constructs provide for the ready 
manipulation of formally defined protocols. They also include operators 
which are able dynamically to test their fit to groupings of protocols. The 
third section of this paper will then show how these constructs can be 
used in a prototype system. 
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Mathematical Description of a Protocol 
Analysis System 

The mathematics of this section is intended to serve as a formal 
specification for a system to analyze protocols. The need for such a 
specification became clear during a first attempt at programming a 
protocol analysis system. The implementation ran up against many 
limitations, and it became unclear how deeply design changes would have 
to reach in order to obtain a prototype supporting the tasks typical of 
protocol analysis. By rigorously modeling the objects and operations 
involved in such analysis, this mathematical specification provides one 
way in which the pieces needed for the system can be made to fit together 
logically. This formalism also allows anyone extending the system to 
determine whether a certain extension is possible and how it must be 
designed in order to conform to the existing system. 

This section describes two basic mathematical objects that serve 
as::abstractions for the manipulation and transformation of protocols. The 
first subsection will define a sort tree for the selection and grouping of 
protocols. The second subsection will describe the form of an operator 
which may be applied to these groupings. 

At~ribute-Value Trees 

An attribute-value tree (AVtree) is similar to a full, balanced tree 
and is used for the selection and sorting of protocols. The protocols of an 
AVtree are formally represented as its data objects. Each node of an 
AVtree represents a particular set of data objects (protocols). Each level 
in the AVtree is identified with an attribute. Data objects are sorted at a 
particular level according to their values for the attribute of the level. 
Figure 2 illustrates how a set of data objects (protocols) may be sorted in 
such a tree. 
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Figure 2: 
AVtree for sorting protocols (data objects) 

With this picture in mind, we move into the series of definitions 
concerning AVtrees: 

Definition 1: Data Object 

Let D be the set of all data objects. 

Then d e D is a data object: 

Data objects representing protocols are the original data objects in 
the system. The process of analysis generates further data objects. Thus, 
the intermediate results of analysis can be manipulated in a way similar 
to the original data sets. Any object identified by a set of attributes may 
be represented by a data object. No information is required about the 
contents of an object thus represented. 
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Definition 2: Attributes And Attribute-Value Space 

Let A be the set· of all attributes. Then a e A iff 

a= (fa, Va) where nile Va and 

where fa is a function such that 

fa:D-+ Va. 

Then Va is called the value set of the attribute. Instead of 

fa(d), we may write a(d). (It is possible also to consider the 

set V, the union of the value sets over all attributes.) 

For a e A, (a,v) is an A Vpair iff v e Va. 

For each a e A and each d e D, the position of d in the a 

dimension of the attribute-value space is v = fa(d). 

Attributes and values represent the identifying information stored 
in the protocol's header. Attributes are defined as functions. If the 
protocol has a header with an attribute having a certain value (e.g.: 
subject = Tom), then the data object representing it will have a value 
defined at that attribute. Imagine data objects existing in a space with 
dimension equal to the cardinality of A, each dimension being labelled 
with an attribute of a. Then each object has some position in this space 
determined by its values on the attributes of A, where many of these 
values might be nil. 

Definition 3: Attribute-Value Tree (AVtree) 

For a1, ... , a0 e A , t is an attribute-value tree iff 

t = ((a1, v1), ... , (am, vm). am+1• ... , an) for 1 :S m :S n, 

and Vi e Vai for 1 :S i :S m 

and if i ,_ k, then ai * lik for 1 :S i :S n and 1 :S k :S n. 
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Notation: 

root(t) = (am, vm); 

attr(t) = (a1, ... , an); 

attrseJ(t) = {a1, ... , am} the set of select attributes of t; 

avsel(t) = {(a1, v1 ), ... , (am, vm)}, the select AVpairs of t; 

attrsort(t) = (am, ... , an) the sort attributes of t in order; 

vals(t) = {v1, ... , vm}. the set of values of t; 

height(t) = n - m. 

The attribute-value ordered pairs (AVpairs) of an AVtree serve to 
select a set of data objects from the universe of all data objects, creating 
a starting set for the tree to sort. Each object in this subuniverse has the 
designated values on the selection attributes. The sorting attributes are 
then used to create a sorted tree from these objects. Notice that data 
objects are not mentioned in the definition. Their existence as contents 
of AVtrees is made explicit in the next definition. 

Definition 4: Contents of an AVtree 

For AVtree t = ((a1, v1), ... , (am. vm), am+1• ... , an). 

the contents of t is 

c(t) = {d e D 1 ai(d) = Vi for 1 s; i s; m}. 

t is an empty AVtree if c(t) = 0. 

Therefore, only the select attributes of t determine the contents of 
t, that is, the data objects it selects. To capture the idea of sorting the 
contents of an AVtree, consider each node of an AVtree also to be an 
AVtree. Then the contents of a subtree will have the characteristics of 
the selection A Vpairs of that subtree. 
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Definition 5: Subtrees of an AVtree 

For AVtree t = ((a1. v1 ), ... , (am. vm). am+1• ... , an). u is an 

immediate subtree of t (u e i-subtrees(t)) iff 

u = ((a1, v1), ... , (am, vm), (am+1• Vm+1), am+2• ... , an), 

and u is not empty. 

Furthermore, s is a subtree of t (s e subtrees(t)) iff 

s e i-subtrees(t) 

or s e i-subtrees(r) where r e subtrees(t). 

Notation for levels of subtrees: 

N 1 (t) = i-subtrees(t); 

N 2(t) = i-subtrees(i-subtrees(t)); 

Nk(t) = i-subtreesk(t) for 1 s; k s; height(t). 

A subtree specifies additional selection values in order to produce 
further subset divisions in the starting set of data objects. Some 
additional distinctions concerning these subtrees may be defined. 

Definition 6: Special Types of AVtrees 

t is a terminal AVtree iff t has only select attributes, that is, 

t is a list of AVpairs. 

t is a singleton AVtree if c(t) contains only one data object 

Implications stated without proof: 

1 . A terminal AVtree has no subtrees. 

2. The subtrees Nheight(l)(t) are terminal AVtrees 
known as terminals of the AVtree t (terminals(t)). 

3. A singleton AVtree is not necessarily degenerate. 

4. An AVtree with no subtrees is a terminal. 
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The terminals are like any other subtree except they are on the last 
level. Each terminal has as its contents a set of data objects, as do other 
subtrees. The terminals may be thought of as subtrees rooted at the 
leaves of t. Indeed, each subtree of t may be pictured as rooted at a node 
of t, the node being designated by an AVpair. Each subtree description 
subsumes the information contained in the description of its supertree, so 
the supertree can be derived from the subtree. The relation of the 
contents of the subtree and supertree remains undefined. 

The next definition provides a rudimentary way of comparing 
AVtrees. 

Definition 7: Coextensive AVtrees 

Two AVtrees t and u are coextensive (t - u) iff 

c(t) = c(u). 

Implication: For two AVtrees t and u, t - u iff 

avsel(t) = avsel(u). 

The forms of coextensive AVtrees may be completely different. All 
that is required is that they have the same set of select attributes in any 
permutation. This guarantees that the union of the contents of the 
terminals will contain the same set of data objects. 

It is easy to describe the contents of AVtrees but to deal with their 
shapes is more difficult. In order to specify operators which produce 
results grouped according to the shape of the input AVtree, it is necessary 
to compare the shapes of trees. 

De.finition 8: Isomorphic AVtrees 

Two AVtrees, t and u are isomorphic (t = u) iff 

3 cp:subtrees(t) ~ subtrees(u), a bijection such that for 

t1 , t2 e subtrees(t), 

t2 E N1 (t1) <:::> cp(t2) E N1 (cp(t1 )). 
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Two AVtrees can be isomorphic even if they have completely 
different attributes. All that is required is that they branch at the same 
rate at their subtrees. The neck of selection AVpairs need not be the same 
length. Other than the neck, the two trees could be twisted around and 
laid on top of each other for a perfect match. 

Another simple way of specifying the shape of an AVtree is the 
following: 

Definition 9: Pruning 

For two AVtrees t and u, u is a k-pruning oft (u = prunedk(t}) 
iff 

t = ((a1, v1 ), ... , (am, vm), am+1, ... , an), 

u = ((a1, v1 ), ... , (am, Vm), am+ 1, ... , aq), 

and 

k = n - q for 0 s k s n - m. 

Implication: All prunings of an AVtree are coextensive; 
that is, they have the same contents. 

Pruning simply removes some number of bottom levels of an AVtree. 
Everything else stays the same, including the contents of the pruned tree. 

Attribute-Value Operators 

Having established the ability to group and manipulate data objects 
according to their values on attributes, the discussion turns to the 
problem of transforming groupings of these data objects. Operators will 
take an AVtree as input and produce an AVtree as output. An operator will 
need to know the general shape of input AVtree on which it can work, the 
types of data objects involved, and the type of output data objects it 
produces. A basic assumption of AVoperators is that their output tree is a 
pruning of the input tree. This constraint is meant to provide a graphical 
basis for associating groupings of results with groupings of input objects. 

The framework for an operator consists of three pieces: a domain 
specification, a function on power sets of data objects, and the types of 
data objects it produces. The function associated with the operator 
produces groupings of new data depending on the groupings of the input 
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data objects. If each input data object produces an output object with the 
same attribute-values, then the output tree will be isomorphic with the 
input tree. If the function compares groups of data objects to produce one 
new group of data objects, the output objects will have the attributes 
common to all the input objects. Thus, they will form an AVtree one level 
shorter than the input tree. They represent a summary of the information 
in the input groupings. Such a function is illustrated in Figure 3. 

Figure 3: 
First order synthesis function f 

producing output AVtree from input AVtree 

After defining AVoperators, we next describe how the operators may 
be chained to produce successively shorter AVtrees of data objGcts. This 
process draws to a summary point all the information present in the 
original AVtree. Any number of chains of operators may be applied to an 
input tree, each producing a different summary view of the input 
information. This is the goal of the protocol analysis system. 
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Definition 10: Multivalued Attributes 

a is a mu/tiva/ued attribute iff for aa e A, 

a = (aa. Va) where Va is a cover of Vaa· 

a(d) = Va may be written when aa(d) E Va E Va. 

Also, for a e A, a < a (or a is a subattribute of a) iff 

a is a multivalued attribute on a. 

Furthermore, for (a,va) with Va!:: Va, a multivalued attribute 
and value set pair (MAVpair), and (a,v) an AVpair, 

(a,v) < (a,va) iff a< a and v e Va· 

If some variable a may be an attribute or multivalued 
attribute, a <= a may be written if a = a or a < a for 
attribute a. 

A multivalued attribute specifies a covering set of subsets for the 
value space of some attribute. A multivalued attribute will be used below 
to specify the domain of an operator. This allows the operator to accept a 
range of values which fall into some specified set. 

More difficult is to allow the operator to check the structure of the 
AVtree it is working on. The operator must know the general type of trees 
on which it can work. If it is to compare a to b and c to d and then 
compare those results, it has a subset structure like {{{a},{b}}, {{c},{d}}}. 

The notation could quickly get out of hand without a more convenient 
form. The idea of subcontents captures the AVtree structure in a simple 
notation. 

Definition 11: The Subcontents of AVtrees (see Figure 4) 

Notation: For the set of all data objects D, the power set of D 
is represented by p (D). 

p2(D) = p(p(D)); p3(D) = p(p2(D)). 

Thus, if x e p"(D), then x s:: p n-1 (D). 
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Definition: The subcontents of t at some level is defined in 

terms of the contents of t, c(t), thus: 

cO (t) = c(t); 

c1 (t) = {8 e p (c(t)) I 8 = c(t') fort' e N1 (t)}; 

Then, 

c1 (t) = {c(t1,1), c(t1,2), ... c(t1 ,n)}; 

c2(t) = {c1 (t1,1 ), c1 (t1,2), ... c1 (t1,nH; 

c3(t) = {c2(t1,1), c2(t1,2), ... c2(t1,n)}; 

ck(t) = {ck-1 (t1 ), ck-1 (t2), ... ck-1 (tn)}; 

ck+1(t) = {ck(t1). ck(t2), ... k(tm)}; 

where 1 ~ k ~ height(t) -1. 

Implication: 8 e ck(t) ~ B e p k(c(t)). 

--·-----~-------------------------------- Subcontents 

root 

{1,2,3,4,5,6,7,8} 

subject 

{(1,2,3},{4,5,6,7,8}} 

Figure 4: 
Subcontents of an AVtree with 8 protocols 
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The subcontents notation provides an easy way to refer to the 
various levels of groupings applied to the contents of an AVtree. With 
these levels of groupings accessible, it becomes possible to consider a 
function which maps from some groupings of data objects as subcontents 
to an output data object. This function is peculiar in that it does not take 
a single object or vector of objects as input. Rather, it takes some order 
of power set of data objects. Such a function will be the heart of the 
AVoperator. 

Definition 12: Synthesis Function 

So = {f I f: D ~ D}, 

81 = {f I f: p (D) ~ D}, 

82 = {f I f: p 2(D) ~ D}, 

and 

Sk = {f I f: p k(D) ~ D}. 

Then, if f e Sk, f is a k-order synthesis function, and we write: 

order(f) = k. 

Implication: For k-order synthesis function f, and AVtree t 
with k ~ height(t), ck(t) is in the domain of f. 

Since a synthesis function maps elements of some order of power 
set of data objects to a single data object, it can be used to summarize 
those sets of data objects. In this way, it can collapse an AVtree into a 
shorter tree in order to create a more generalized representation of the 
input. 

Such a function must be combined with two other pieces to form an 
AVoperator: a filter that selects trees of suitable shape and type; and a 
way to type the output of the function. With these three pieces known, 
AVoperators may be composed to produce new operators. The resulting 
AVtrees will form a regular pattern which can be easily drawn. Both the 
domain filter and the output form can be specified as sets of AVpairs. A 
set of AVpairs is the abstraction for a protocol header. The manipulation 
of these headers is, therefore, conveniently accomplished by AVoperators. 
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Definition 13: AVoperators 

p is an A Voperator iff 

p = (tp, fp. rp) where tp is a set of AVpairs and/or MAVpairs, 

fp is a synthesis function of order k, and rp is a set of AVpairs 

unique for each output AVtree. 

The definition begins by specifying the three parts of the 
AVoperator: the domain set, the synthesis function, and the result set. It 
then explains how the domain is tested and how the output data objects 
and AVtree will look. In particular, the output objects will be marked 
with uniquely identifying values in rp: e.g., their creation operator, their 
input tree, and the time they were generated. 

Definition 14: Domain of an AVoperator 

For tp = {(a1, v1) •... , (am, vm)}, 

then an AVtree u is in the domain of p (u E domain(p)), iff 

order(fp) :s: height(u), 

and 

'V (ai. Vi) e tp. 

either 3 (a', v') e attrsel(u) I (a', v') <= (ai. Vi); 

or 3 a' e attrsort(U) I a' <= ai and Vi = Va•. 

The domain set and the order of the synthesis function determine the 
input trees accepted. The domain set may include multivalued attributes. 
Thus, it can act as a range within which the input tree's AVpairs must 
fall. The input tree T is tested in two steps: First, its height must be 
sufficient for fp to work on it. Second, all the AV/MAVpairs in the domain 
set must be matched or must contain an AVpair in T. A special case is the 
MAVpair whose value set is the value set for a sort attribute of T. This 
allows the operator to c:heck only for the presence of an attribute in T and 
not for a particular value. If T passes both tests, the operator can produce 
from it an output tree which makes sense in the system. 
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Definition 15: Function of an AVoperator and Type of Its 
Result 

For AVtrees T (input tree) and U (output tree), 

with T e domain(p), and order(fp) = k, then 

p(T) = U, iff: 

1. avsei(U) = {(ai,Vi) I (ai,Vi) e rp u avsel(attrsei(T) - attrsel(rp))} 
and attrsort(prunedk(T)) = attrsort(U). 

2. ':t t e Nheight(Ul(T) , where fp(ck(t)) = de' , 
then ':t (a1, Vi) e avsei(U), ai(d,;') = Vi ; 
and ford,; e c(t) and a e attrsort(U), a(d,;') = a(d-c). 

U, the output AVtree, must be structured to uniquely select the 
created data objects and to sort them into a shape isomorphic with the 
input tree pruned. The objects must be typed to conform with this 
scheme. Since rp uniquely marks the objects, it is sufficient for U to have 
these as selection AVpairs. In addition, U takes all AVpairs from T which 
do not conflict with rp. Its sorting attributes are the same as T. The data 
objects are then made to agree with the select attributes of U and with 
the sort values held by their input data objects. Thus, they will be sorted 
into a tree isomorphic with T pruned according to the number of lower 
levels used up by fp. The output objects will, therefore, be sorted to 
reflect the groupings of their source objects. 

For practical purposes, a time stamp may be included in rp since the 
contents of an AVtree may change. The same operator applied to the same 
AVtree may produce different results at different times depending on the 
universe of data objects. The AVtree is a filter for data and not a 
container. The time stamp allows the user to keep track of the origin of 
these different sets of results. The implementation, as discussed in the 
next section, must include a time-stamped database for exact recreation 
of an analysis session. 

The three preceding definitions describe how to outline the 
structure of an AVoperator withouLdetailing its specific action. Such an 
outlined operator can be tested and composed with other operators 
without having to worry about its actual function. Any operator, whether 
dummy or working, will pass on the information necessary to keep the 
relationships between output data objects consistent. 
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Since the chaining of operators produces narrower and narrower 
trees, it is possible to stack up the bottom layers of output trees into a 
pyramid which is shaped like the original input tree, though perhaps 
stretched out. This pyramid may be defined as the product of an input tree 
and a series of operators, producing a tree of stacked results. 

Definition 16: Result Trees (Retrees) 

For t, an AVtree, and P1 ... Pn. AVoperators, r is a Retree iff 

r = (t, P1 •... , Pn) where 

P1 (t) e domain(p2), and 

Pi(Pi-1 ( ... (p1 (t)) ... )) e domain(Pi+1 ), for 2 ~ i ~ n-1. 

Also, r is defined to be fully specified iff 

height(Pn(Pn-1 ( ... (p1 (t)) ... ))) = 0, and 

contents(pn(Pn-1 ( ... (p1 (t)) ... ))) = d, a single data object. 

r is partially specified if for tn, the output of Pn, 

height(tn) * 0 and/or lcontents(tn)l > 1. 

Implications: 

1. For ti, the output of Pi. ti is isomorphic to a pruning of t 
shorter then the input tree of Pi by the order of fpi-

2. Any permutation of the sort attributes of the 
input tree of a Retree will still produce a Retree. 

3. A new sort attribute inserted into the input tree 
of a Retree still produces a Retree. 

The Retree represents a record of a sequence of operations 
concatenated with each other, starting on a particular input AVtree. Its 
structure reflects the structure of the input tree, relating result nodes to 
their various sources. The narrow top of the Retree contains those data 
objects which are produced from the previous levels of the tree. 
Therefore, the top of the Retree is a summary for what goes before. The 
Retree _is subject to permutations determined by how the operators fit 
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together. It will be the basis for the visible representation of analysis 
results as described in the next section. 

Definition 17: Operator Tree (Optree) 

For the AVtree T, 

optree(T) = {p is an AVoperator I T e domain(p)}. 

Implication: For t e subtrees(T), optree(T) !: optree(t). 

An Optree allows us to picture the composition of operators without 
considering functionality. The nodes (subtrees) of an AVtree may be 
thought of as containing sets of possible operators instead of data 
objects. For some AVoperator P and AVtree T, optree(P(T)) sorts out all 
the possible operators which may follow P applied to T. 

The structures outlined above allow manipulation and 
transformatiQn of protocols to be carried out according to regular 
patterns. They allow equivalencies and similarities to be spotted and 
exploited. Using this foundation, the relationship of various sortings and 
the interaction of different operators may be denotationally specified. 
The mathematics is not simple, but these definitions provide a means by 
which to develop an analysis system having pieces consistent with one 
another. They are the basis for the control of the prototype described in 
the next section. 
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Design for a Prototype 

This section describes the design of a prototype protocol analysis 
system which is being implemented along the lines specified in the 
mathematical formalism. The system provides a graphical means for 
manipulating and operating on large numbers of machine-generated 
protocols. The principal graphical structure is a selection tree placed 
base-to-base with a tree of converging operations. This shape reflects 
the process of distinction followed by relation. The converging tree is 
formed by concatenating the increasingly narrow base layers of the output 
trees generated by succeeding operators. These layers combine to form 
the converging Result tree, a picture of the summary process (compare 
Figure 1, above). 

The system consists of three modules: First, the database is an 
interface to the file system. It creates the universe of data objects from 
the files of protocols and serves as a communications link. The database 
also keeps a historical record of the objects in it at any particular time. 
Second, the select-sort mode is for creating and manipulating AVtrees. 
Third, the operator mode provides access to operators on AVtrees and 
access to the results of those operators. 

Select-Sort Mode 

The select-sort mode enables the visual selection and grouping of 
data objects as a necessary step in analysis. Data objects may be created 
from filed protocols or generated by operators to become data objects in 
the system. These results may also be selected and grouped for further 
analysis. 

Figure 5 pictures an AVtree in select-sort mode. The select AVpairs 
form a neck stacked to the left. All data objects in the contents of the 
tree will satisfy these AVpairs. The tree is then sorted on the key 
attributes listed along the bottom menu bar. The data objects themselves 
ordinarily are not pictured but are grouped together in the terminal tree 
nodes. Here they are shown as the shaded leaf nodes, but they may be 
hidden by clicking a menu selection. 
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Figure 5: 
Select-sort mode with AVtree grouping data objects 
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Many potentially complex tree manipulations are made simple. The 
sort attribute keys can be added, deleted, or shuffled, immediately giving 
a new sort tree. Any AVtree, defined as a series of AVpairs and 
attributes, can be saved as a filter and recalled later. Any supertree of 
the current tree can be reached by clicking on a node of the neck. 
likewise, a subtree can be made the displayed tree by clicking on its root. 
Also the number of sublevels displayed for the current tree can be 
adjusted. These subtree changes and level selections combine to hide a 
great deal of information contained in a large set of data objects. 

Direct access to the contents of the data objects is also provided 
through the select-sort mode. Changes to the AVpairs identifying each 
data object can be made on the local level or written back to the protocol 
files. Identical changes to all the contents of a particular subtree may be 
made with a single operation. An edit mode is also connected to the 
select-sort mode so that the protocol file associated with a data object 
can be edited. 

Operator Mode 

Figure 6 shows a Result tree which has been filled in by the 
operators listed along the bottom menu bar. Each operator produces a tree 
shaped like the input AVtree, only some number of levels shorter. In this 
case, each of the average operations produces a tree with one less level 
than the tree produced by the previous operator. When the bottom levels 
of these output trees are concatenated, the Result tree is formed. 
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Figure 6: 
Result tree produced from AVtree in operator mode 
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The first operator takes protocols as inputs. It reads the protocols 
and creates new protocols listing all events as generic transition events. 
The next operator counts the number of transitions in the new protocols. 
The third operator averages these counts. Because of the shape of the 
AVtree, these are averages for protocols grouped by subject and grade. 
The last operator also takes an average, this time for each subject. These 
last nodes represent a summary of all the input data objects in their 
peculiar groupings. 

These operators are kept simple so as not to obscure the structure 
of the operator mode. In fact, the function of an operator may be complex, 
perhaps passing data to a statistical analysis package and receiving back 
a graphical output. Complex data objects are not viewed directly in 
operator mode, but rather in a data object viewing mode. All results are 
organized in the Result tree showing their relationships with each other 
and with the input data objects. Thus, relations between data objects are 
clarified by hiding much of their information, but that information is 
immediately available in a viewing mode. 

The operations available at any point in the analysis are offered on a 
dynamic menu. The menu selections depend on the type and structure of 
the AVtree. Operators are queried as to whether they can work on the 
existing AVtree, and those which can are placed on the menu. The use of 
an operator is recorded in the bottom menu bar. A series of operators thus 
forms a script which can be reapplied to any suitable input tree. A script 
may be edited by moving and deleting operators, and the new Result tree is 
immediately produced. A script may also be composed into a single 
operator for repeated application and later use. 

Operators do one of three things: produce a new attribute and value 
for a data object by looking at its data set; produce one new data object 
for one input object; or combine input data objects. The actual function of 
an operator can be programmed in the system or called externally, e.g., 
from a statistics package. 
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Conclusion 

The massive and cryptic nature of machine-recorded protocols 
creates special difficulties for analysis. A tool for the manipulation of 
protocols and for the translation of their recorded languages into 
meaningful summaries ameliorates these difficulties. The mathematical 
specification described in this paper provides a logical and commodious 
framework within which such an analysis tool may be developed. The 
complexities due to massiveness and crypticness are hidden. 

The analysis of protocols, however, has another problem which is 
common to all data analysis. Since it is exploration, data analysis is 
inherently difficult. Analysis has no path or algorithm to follow. It 
proceeds by experiment, experience, and insight. The mathematical model 
presented here constrains analysis by assuming a characteristic 
regularity. It supports a metamethod for analysis: the method of repeated 
distinction and relation. These restrictions provide a simplified problem 
more susceptible of solution. 

A number of problems are not answered by this model. If the data 
sets are few in number or recorded without a regular notation, this model 
fails ... Also, since operators may only be applied in sequence, only simple 
analysis sessions are repeatable. Finally, the connection of input objects 

. to op~rators is. strictly controlled by the form of the tree. One possible 
extension to this design would be a network mode for the linking of data 
and operations in a manner beyond the limitations of the two trees. A 
petri-net control on a network of data objects and operations would allow 
an operation to fire when presented with sufficient data of correct type. 
The groupings of data and the relation of output to input would be less 
clear in such a network mode. The difficulties of such a mode are similar 
to the general problem of programming-by-pictures. Another possible 
mode would be used to collect and compare similar analysis sessions, 
giving an overview of the variations among the sessions. 

The use of computers in data analysis is an active field. The design 
of this protocol analysis system suggests two useful directions for 
further work. First, in analysis, temporary and adjustable constraints are 
an effective way to limit the otherwise overwhelming number of 
possibilities. Too many possibilities obscures potential solutions. 
Second, the construction of an operator should not require a complete 
algorithm. To be able to build approximate operators is useful if the 
nature of the result can only be partially specified. The ability to be 
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vague about what comes next is not natural to an algorithmic description 
but very natural for exploration. 

The protocol analysis system modeled here seems to conform to 
some basic needs of the experimenter as well as offering feasible 
extensions. Within the framework of the mathematical description, a 
number of theorems might be developed to enable the automatic 
generation of AVtrees and application of operators for rapid testing of 
whole branches of the analysis space. Such potential power could prove 
useful for an experimenter. This model was originally designed to raise 
and explore such possibilities. The results suggest further effort in this 
direction might be fruitful. 
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