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EFFICIENT SUPERSAMPLING ANTIALIASING FOR HIGH
PERFORMANCE ARCHITECTURES 

Abstract 

Steven Molnar 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 27599-3175 

Techniques are presented for increasing the efficiency of supersampling antialiasing in 

high-performance graphics architectures. The traditional approach is to sample each pixel 

with multiple, regularly spaced or jittered samples, and to blend the sample values into a 

final value using a weighted average [FUCH85][DEER88][MAMM89][HAEB90]. This 

paper describes a new type of antialiasing kernel that is optimized for the constraints of 

hardware systems and produces higher quality images with fewer sample points than 

traditional methods. The central idea is to compute a Poisson-disk distribution of sample 

points for a small region of the screen (typically pixel-sized, or the size of a few pixels). 

Sample points are then assigned to pixels so that the density of samples points (rather than 

weights) for each pixel approximates a Gaussian (or other) reconstruction filter as closely 

as possible. The result is a supersampling kernel that implements importance sampling 

with Poisson-disk-distributed samples. The method incurs no additional run-time expense 

over standard weighted-average supersampling methods, supports successive-refinement, 

and can be implemented on any high-performance system that point samples accurately and 

has sufficient frame-buffer storage for two color buffers. 

1 Introduction 

An important requirement for any graphics system, real-time, or otherwise, is that it be 

able to display images without noticeable aliasing. Aliasing results when high frequency 

components of an underlying continuous image map onto low frequency components of the 

sampled digital image. A digital image can only represent spatial frequencies up to its 

Nyquist frequency-half the frequency of its pixel grid [OPPE75]. An image containing 
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lines and polygons has components of infinitely high frequency. During sampling, these 

alias to produce the familiar stairstepping (jaggies), moving artifacts (crawlies), and 

scintillation that have plagued computer graphics. 

Aliasing can be mitigated in a number of ways; the central theme is to bandlimit the 

image before sampling at pixel rates. A full description of the various methods is beyond 

the scope of this paper. [FOLE90] provides a good introduction to the area and pointers to 

the literature. 

Most hardware and software systems antialias using some form of supersampling. 

This involves sampling the image at higher-than pixel resolution and filtering the samples 

down to a single sample per pixel. Supersampling can be done adaptively, based on the 

local scene complexity of an image, but its simplest and most regular form involves 

oversampling the image uniformly. We will use this definition of supersampling 

throughout this paper. 
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Figure 1: Conceptual pipeline of operations performed during 
supersampllng. 

Although supersampling appears simple, it really is a combined implementation of the 

three conceptual steps depicted in Figure 1. The image is first sampled at several times the 

pixel resolution. This high-resolution digital image can represent higher frequency 

components than can a single-sample-per-pixel image. The digital low-pass filter 

(sometimes called a reconstruction filter) removes frequency components that cannot be 

represented in the low-resolution image. Decimation resamples the band-limited image 

with a single sample per pixel. The basic idea behind supersampling is to capture and 

remove frequency components that cannot be represented in the final image. These three 

operations are combined into the single sampling and weighted-average operation that gives 

supersampling its simplicity. 

Supersampling has become the preferred method for antialiasing on most high

performance graphics architectures [FOLE90]. It can be used to antialias images containing 
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any type of primitive and shaded in any way, and can incorporate effects such as depth-of

field and motion blur [HAEB90] and transparency. Unfortunately, supersampling an 

image with k samples per pixel requires rendering the image at k times the resolution or 

rendering it k times with slightly different coordinate offsets-a k-fold increase in 

computational cost over the corresponding unantialiased image. For good quality images, 

k is typically chosen to be 16 or greater. This is a burdensome computational expense for 

any system; it is prohibitive for most interactive systems. 

A great deal of research has been aimed at finding sampling patterns and low-pass 

filters that make supersampling as effective as possible. Gaussian and other filters have 

been shown to produce images superior to those produced by a simple box filter 

[MITC88]. Randomly jittered sample points have been shown to convert residual aliasing 

into less objectionable random noise [DIPP85, COOK86]. Sophisticated stochastic and 

adaptive sampling techniques have been developed for ray tracing [COOK86, KAJI86, 

MITC87, SHIR90]. These approaches have focused on the needs of software systems, as 

opposed to hardware systems, however. 
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Figure 2: a) Regular sampling, b) Poisson-disk sampling, and c) 

jittered sampling. 

A software renderer allows one to choose different sample points for every pixel of an 

image. If samples are placed non-uniformly, this minimizes the correlation in the noise 

pattern produced by residual high-frequency aliasing. It also places constraints on the 

algorithm used to generate sample points; since it must be invoked for every pixel of every 

image, it must be efficient. The best sampling distributions that are known, such as 

Poisson-disk sampling (random points separated by a minimum distance-see Fig. 2b) are 

too expensive to compute for each pixel, and as a consequence are seldom employed. The 

most popular technique is jittering (Fig. 2c), in which a pixel is subdivided into uniform 

subregions, and a sample point is chosen at a random location within each subregion. 
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Jittering only requires calculating two uniformly-distributed random values for each sample 

point. 

Software algorithms also can increase sampling efficiency by sharing samples between 

neighboring pixels. For example, a sample halfway between two pixels can contribute 

equally to each pixel. This capability is seldom found in hardware systems (at least in real

time), because neighboring pixels are often handled on different processors. 

Hardware rendering systems have a different set of constraints. Since most high

performance architectures use pixel parallelism and forward differences to interpolate 

parameter values, they are restricted to sampling on a regular grid. By repeatedly 

rendering the image with small x andy displacements, pixels can be supersampled with 

arbitrarily placed samples, but with two important restrictions: 

• Sample locations must be identical for every pixel in the image. 

• Samples cannot be shared between pixels. 

These characteristics prevent using the best antialiasing techniques employed in 

software renderers. However, they also create opportunities: since the same sample 

locations are used in every pixel of every image, a great deal of effort can and should be 

spent choosing these sample locations. No one has looked at this issue comprehensively to 

date. This paper seeks to do so. 

We first examine the tradeoffs between different sampling patterns, sample weights, 

and low-pass filters. We then develop two methods for supersampling efficiently on 

different types of parallel architectures. The frrst approach achieves good results and is 

applicable to all commercially available hardware graphics systems that implement point 

sampling. The second achieves near ideal results (comparable to supersampling with sub

pixel jittered samples) and can be implemented with little cost on many systems that use 

interleaved frame buffer memories. Both allow the image to be displayed after one or a few 

samples have been computed, and successively refined as more samples are computed. 

2 Efficient Supersampling: Producing the Highest Quality 
Image with the Fewest Samples 

The efficiency of a supersampling algorithm can be defined as the quality of the images 

it produces (in some appropriate units) divided by the cost of creating them (generally, the 
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number of samples per pixel). H samples are located and weighted appropriately, the 

quality of a supersampled image can be enhanced arbitrarily by increasing the number of 

samples. The objective is to produce an image of acceptable quality with a minimum 

number of samples. This section establishes criteria for an efficient supersampling 

antialiasing algorithm. 

Four characteristics contribute to image quality in a supersampling algorithm: 

• Flat field response 

• Correct low-pass fllter 

• Sample density 

• Gamma correction 

Flat field response. Ideally, a given image feature of constant size should contribute 

the same intensity to the image regardless of where it lies. In practice, this means the sum 

of the weights of the sample points in each small area of the image should be constant 

throughout the image. 

Poor flat field response on a small scale produces graininess in regions of constant 

intensity and scintillation when small features move with respect to pixel boundaries from 

frame to frame. Poor flat field response on a larger scale means that large objects with 

constant color appear to have shadows or bright spots. A corollary to flat field response is 

that an image of constant intensity should be reconstructed perfectly after antialiasing. 

Sample distributions like jittering, which clump sample points, adversely affect flat 

field response: a feature that is hit by a clump of samples contributes more strongly than an 

identical feature that is hit by only a few samples. More homogeneous distributions, such 

as samples on a regular grid or Poisson-disk distributions (see Fig. 2), have better flat 

field response. 

A second cause of poor flat field response is a low-pass filter whose weights do not 

add to a constant value when adjacent filter kernels are superimposed. Unfortunately, the 

best reconstruction fllters from a signal-processing standpoint do not have this property. 

Low-pass filter. The low-pass filter attenuates frequency components in the 

oversampled image that would alias in the low-resolution image. The ideal low-pass filter 

from a signal processing standpoint is a sine function (sin(x)/x). Unfortunately, a sine 
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filter has a slow falloff (asymptotically 1/x) and is prone to ringing, which make it a poor 

choice for most graphics applications. Narrower filters, such as a Gaussian or various 

empirically derived filters, have given better results for graphics applications [SCHR85, 

MITC88]. In the remainder of this paper we will assume a normalized 2D Gaussian filter, 

which has the formula: 

2 2 
1 -{.x + y ) 

2 e~ 
27tO'low-pass 

The width of the filter, O'Iow-pass must be a compromise as well: it should attenuate 

frequencies above the Nyquist frequency of the output image and should minimize the 

variation in sampling density when Gaussian filters at neighboring pixels are superposed. 

To attenuate frequencies above the Nyquist frequency, O'Iow-pass should approximately 

equal the pixel-spacing. To minimize the variation in sampling density, O'Iow-pass should 

be 0.43 times the pixel spacing (this reduces the variation to approximately 1 percent by 

volume) [PA VI90]. In practice, O'Iow-pass is generally chosen around 0.5 because larger 

values result in blurring. The price for this image sharpness is aliasing of frequency 

components between the Nyquist frequency and the cutoff frequency of the low-pass filter. 

The only solution to this problem is to use a higher resolution monitor! 

Number of samples. The number of samples per pixel determines the Nyquist 

frequency for the high-resolution, oversampled image. This is a sharply defined value if 

samples are spaced evenly, but is a useful notion even if non-uniform samples are used. 

The Nyquist frequency is then defined in terms of the average sampling rate, and 

corresponds to a blurry transition rather than a sharp cutoff. Some frequency components 

above the average Nyquist frequency are captured, and some below it are lost., in contrast 

to the sharp frequency cutoff that occurs with regular sampling. 

In either case, frequency components above the Nyquist frequency alias in the high

resolution image and cannot be removed by the low-pass filter. Increasing the sampling 

rate allows the low-pass filter to attenuate higher and higher frequency components, 

thereby reducing the amount of aliasing in the final image. No amount of sampling can 

remove all aliasing, however, since geometric images contain components of infinitely high 

frequency. 
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Gamma correction. For supersampling to work correctly, there must be a linear 

relationship between color values and perceived image intensities on the display screen. 

Unfortunately, CRT monitors and photographic film are notoriously nonlinear (the 

intensity of light output from a CRT monitor is a function of the input voltage raised to the 

'Y power, where 'Y is a constant typically lying between 1 and 3). 

This and other nonlinearities can be avoided by setting color map values that 

compensate for this, a process called gamma correction [FOLE90]. Gamma correction 

must be employed for supersampling to work effectively on most monitors. 

The four characteristics above enable a supersampling algorithm to converge to a high 

quality image if enough samples are taken. Two techniques allow one to minimize the 

number of samples for a given quality image: 

Uncorrelated sample points. Dippe and Cook have shown that residual aliasing can 

be made much less objectionable by choosing uncorrelated samples. This transforms the 

energy of the aliased high-frequency components into uncorrelated random noise, which is 

largely ignored by the human visual system [DIPP85, COOK86]. 

Virtually any random sampling pattern has this effect. The frequency of the noise is 

determined by the power spectrum of the sampling pattern. Sampling patterns with low 

frequency components lead to low frequency noise; sample patterns with high frequency 

components lead to high frequency noise. The latter case is preferable, since the human 

visual system is less sensitive to noise of high frequencies. Yellott showed that a Poisson

disk distribution has a power spectrum with the desired characteristics. He also noted that 

light receptors in monkeys' eyes are distributed in this fashion [YELL83]. 

Poisson-disk distributions have been a favorite topic in theoretical papers on 

antialiasing, but have found their way into few implementations, largely because they are 

expensive to compute. Ideally, the sample distribution should cover the entire image. A 

smaller sample distribution with periodic boundary conditions can be repeated to tile the 

screen, though this introduces correlation into the sample pattern. 

Equal weights for each sample. The shape of the low-pass filter is determined by 

the positions and weights of the samples. A desired fllter shape can be achieved in one of 
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sampling (Fig. 3a), or samples can be distributed according to the filter shape and given 

equal weights-importance sampling (Fig. 3b). 
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Figure 3: a) Uniform sampling with weighted samples and b) 
Importance sampling with unweighted samples. 

Uniform sampling has been almost universally used in software and hardware graphics 

systems. In software systems, the image is sampled with uniform density (but not 

necessarily on a regular grid). Samples in the neighborhood of each pixel are assigned 

weights based on the distance to the pixel center and summed together. A single sample, 

therefore, contributes to several pixels, and each sample contributes approximately equally 

to the final image. This is an efficient method for sampling if samples can be rapidly 

communicated to multiple pixels, but this is seldom the case in hardware systems. 

Importance sampling chooses sample locations by their imponance to the final image: 

samples of equal weight are concentrated in areas of high filter weight, and comparatively 

few are placed in areas of low filter weight. If each sample costs the same to compute, this 

maximizes the efficiency of the antialiasing algorithm, since it maximizes the average 

information content of the samples. 

Imponance sampling is the method of choice if samples cannot be shared between 

pixels. It has the added advantage that sample values can simply be summed, rather than 

needing to be differentially scaled. This can simplify rendering' hardware in cenain 

applications. A word of caution is in order: imponance sampling can lead to a poor 

approximation of a low-pass filter if very few samples are used. 

Given these criteria, how, then does one synthesize an antialiasing kernel that is as 

close to optimal as possible? A preliminary observation is that no solution satisfies all 

criteria perfectly. For example, ideal flat field response requires uniformly spaced samples, 

but uniform samples add coherence that makes aliasing more noticeable. Several 
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but uniform samples add coherence that makes aliasing more noticeable. Several 

researchers have developed antialiasing kernels appropriate to ray tracers. The following 

section develops a kernel tailored to the characteristics of high-performance graphics 

systems. 

3 The Poisson-Disk-Gaussian Kernel 

Based on the criteria above, we wish to develop an antialiasing kernel with: 1) 

Poisson-disk-distributed samples over the entire screen, 2) Gaussian distribution of 

equally-weighted sample points within a pixel, and 3) As little clumping as possible for 

samples within a pixel. We considered three ways to build such kernels: 

1) Compute a sample distribution for the entire screen and assign k samples to each 
pixel. 

2) Compute a k-sample kernel for each pixel, superimpose them, and adjust sample 
positions to reduce clumping. 

3) Compute samples that satisfy both criteria at once. 

We investigated all three alternatives. Although all were outwardly appealing, the 

second two led to difficulties: Approach 2 resulted either in a poor overall sampling 

distribution or distortions to the sample pattern for individual pixels. Approach 3 led to 

regularities in the sample pattern when we used attractive and repulsive forces to position 

samples, and poor sampling patterns and approximations to the low-pass filter when we 

attempted to generalize the Poisson-disk sample generation algorithm. 

Approach 1 led to good results, however. By assigning samples to pixels 

appropriately, we were able to achieve an excellent approximation to the desired Gaussian 

filter while reduce clumping between samples in a single pixel to an acceptable level. This 

section describes this approach in fumher detail. There are two main steps: generating a 

Poisson-disk distribution of sample points with equal weights in a pixel-sized region, and 

exchanging sample points between adjacent pixels to produce a sampling pattern that 

approximates the desired reconstruction filter. 

Throughout this section, we will be concerned with antialiasing kernels with k equally 

weighted samples to be used in each pixel of the image. Later, we will describe how to 

generate kernels for each pixel in an m x n pixel tile of the image and kernels for successive 

refmement antialiasing. 
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3.1 Computing a Poisson-Disk Distribution 

The first step is to compute a Poisson-disk distribution of k samples within a rectangle 

of pixel height and pixel width with periodic boundary conditions (i.e. the distribution 

wraps around from right to left edges and from top to bottom). 

Any of several methods can be used to compute the Poisson-disk distribution 

[RIPL77]. The simplest to implement is probably the dart throwing technique described in 

[COOK86]. In this approach, uniformly distributed candidate points are generated in the 

sample region. Each candidate point is checked against all of the existing points. If it is 

closer than a predetermined distance d to any of them, it is disgarded. Otherwise, it is 

added to the distribution. This process is continued until no further points can be added (in 

practice, a large number of attempts are made and if all of them fail, the process 

terminates). As has been reported, this algorithm takes a great deal of CPU time to 

compute distributions with many samples. This is not a limitation for our purposes, 

however, since we are interested in distributions with relatively few samples and only 

calculate the distribution once. 

In generating a Poisson-disk distribution, one controls the number of samples; 

indirectly through the choice of d. A binary search algorithm can be used to home in on the 

correct radius for a given number of samples. 

3.2 Permuting Samples to Approximate the Low-Pass Filter 

The second step is to permute sample points between pixels so that the density of 

samples for each pixel approximates the desired reconstruction filter as closely as possible. 

If dx is the horizontal spacing between pixel centers and !iy is the vertical spacing, one can 

translate a sample point by ±6x in x or ±!iy in y and still obtain the same overall sampling 

pattern when samples from all pixels are superimposed. Translating sample points in this 

manner alters the shape of the low-pass filter. We want to find the arrangement that most 

closely approximates the filter we want 

The best method we have found is a relaxation algorithm that translates sample points in 

pairs in all possible combinations and optimizes the distribution using a merit function. If 

any changes are made during a pass through the sample-point pairs, another pass is made. 

This process continues until a pass is made with no changes. 
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Translating sample points in pairs is a heuristic to avoid an exponential-time search for 

the best sampling pattern. If k samples are taken per pixel, the k samples can be arranged 

in ~ possible patterns (each sample point can be translated by [ -1, 0, 1 ]ax in x and by [ -1, 

0, 1]6y in y). Fork larger than 6 or so, an exhaustive search becomes prohibitively 

expensive. Samples are translated in pairs because this allows samples to exchange places, 

a heuristic that allows the sample pattern to approach the optimum. It requires evaluating 

9•9k(k-1)!2 = 40.5~- 40.5k sample patterns for an antialiasing kernel with k samples

still a large number, but with quadratic, rather than exponential time complexity. 

3.3 The Merit Function 

The merit function is used to compare a candidate arrangement of sample points with 

the desired reconstruction filter. The sample density of the actual sampling pattern is 

measured at typically 30 x 30 grid points spread over a 3-pixel x 3-pixel rectangle. At each 

grid point, the density of the actual sample pattern is calculated and subtracted from the 

density of the ideal filter at the same grid point. The difference is squared and summed 

over all grid points to get an estimate of the overall error of the sampling pattern. 

A troublesome detail is how to obtain an accurate estimate of the local density of sample 

points for each grid point. Clearly, nearby sample points should contribute most heavily, 

but large numbers of more distant samples should contribute as well. We obtained the best 

results by convolving the "image" of sample points with a 20 Gaussian low-pass filter with 

a = 0Iow-pasJ2 . The convolution integral only needs to be evaluated at grid points, and the 

only contributions to the integral occur at sample points. It degenerates to the following 

sum for grid point (xg. Yg) and sample points (Xi, Yi). where 0 S i S k: 

2 2 

L 1 
-{(x

1 
-x;) + (y1 - )I;) ) 

-e 2cl 
2 

samples i 21tO 

Samples further than 2.5 a from (xg. Yg) can be ignored, since the Gaussian drops to 

less than 5 percent of its peak value at that radius. Calculating the sum from scratch each 

time can be avoided by storing the density at each grid point, and subtracting and adding 

the contribution of individual sample points as they are moved. 

For the merit function to work correctly, the sum of the measured densities must match 

the "volume" of the reconstruction filter (also measured and summed over the same grid 

points). To do this normalization, we first place a single sample at the pixel center. We 
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then compute the local density of this trivial sample pattern at each grid point and sum to 

obtain v1, the measured volume for a single sample point. We then sum the weights of the 

reconstruction filter at each grid point to obtain Videa!. the volume of the reconstruction 

filter. When evaluating the merit function, we scale the measured local density at each grid 

point by Yideaii(k•vt). The resulting pattern of sample points determines where equal

weighted samples should be taken for each pixel when rendering the fmal image. 

3.4 The Antialiasing Kernel 

The antialiasing kernel resulting from the optimal arrangement of sample points 

implements a Gaussian-low-pass filter with equally weighted samples and Poisson-disk 

sampling over the entire image-the ideal we were striving for. Fig. 4 shows kernels 

containing 5, 9, 16, and 25 sample points. Since samples are chosen randomly, each run 

of the program produces a different antialiasing kernel. The variation between kernels is 

insignificant when k is large, but when k is small (less than 16 samples or so), they 

noticeably affect the quality of the kernel. 

. 
. . . . . 

I 
. . . 

. . t ;.·: . . . . 
---· :..:..: ..... t-... 

I 
Figure 4: Kernels containing 5, 9, 16, and 25 samples. 

To fmd a good kernel for small k, we run the program many times using different seed 

values for the random number generator. During each run we log the value of the merit 

function for the final sampling pattern, together with the seed value used to produce the 

pattern. We choose the pattern with the least error (merit function result) out of all the 

runs. 

We have used these algorithms to calculate kernels with a Gaussian reconstruction filter 

and from 4 to 49 samples per pixel. The resulting images have fewer artifacts than others 

we have seen rendered with the same number of samples per pixel and the same sampling 
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pattern in each pixel. Section 6 contains test images that were antialiased in this way and 

compares them with the results of other algorithms. 

4 Successive Refinement Supersampling 

Successive refinement is a technique for dynamically trading image quality for 

rendering speed in interactive systems [BERG86]. The image is first rendered crudely, but 

presented to the user as rapidly as possible to maximize interactive response. If no input 

from the user is received, the image is successively refined over a period of time until a 

maximum quality level is reached. Successive refinement has been applied to 

supersampling by constructing a series of kernels with increasing numbers of samples, 

each of which contains all of the samples of the previous kernels [FUCH85]. The 

techniques we have described can be extended to construct kernels in this fashion. For a 

successive refinement kernel with r levels, let ko, kt •... kr be the number of samples in 

each level. 

First, a Poisson-disk distribution with ko samples per pixel is constructed and stored. 

These ko samples are then considered fixed and kt-ko samples are added to the distribution 

using the dart-throwing algorithm combined with a binary search as described in Section 

3.1. The new distribution with kt samples is then stored. The process is repeated for k2, 

k3, ... kr sample points until a distribution with kr samples is obtained. 

Even though distributions with kt - kr samples are not pure Poisson-disk 

distributions, we have found them to be very close approximations in terms of their 

appearance, their Fourier transforms, and the final images they produce. Fig. 5a and 5b 

show a Poisson-disk distribution with 25 samples computed from scratch and its Fourier 

transform. Fig. 5c and 5d show a distribution with 25 samples built successively from 

distributions with 1, 5, 9, 16, and 25 samples together with its Fourier transform. 

The next step is to permute samples, as described in Section 3.2, for each kernel in 

tum, keeping the samples from previous kernels fixed. Fig. 6 shows successive 

refinement kernels with 5, 9, 16, and 25 samples built from the distributions in Fig. 5c. 
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Figure 5: a) Poisson-disk distribution with ..2'5sample points and b)~ S 
its Fourier transform. c) Successive-refinement distribution with~ 
sample points built from distributions with 1, 5, 9, and 16 samples ·and 

d) its Fourier transform. 

Figure 6: Successive refinement kernel with 5, 9, 16, and 25 samples. 

An additional advantage of successive refinement kernels is that they are faster to 

compute. Since the relaxation algorithm is O(k2
) , the work in computing all of several 
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smaller steps is less than the work in computing a single large step. This can be used to 

speed the calculation of kernels with large numbers of samples. 

5 Interleaved Sample Patterns 

Although most hardware systems require the same sample pattern to be used in each 

pixel of the screen, several popular graphics architectures, including AT&Ts Pixel 

Machine and Silicon Graphics' VGX, have somewhat looser requirements: sample 

patterns can be different for each pixel in any m x n tile of the screen. These systems use 

an interleaved array of processors, each with a portion of frame-buffer memory. Each 

processor is responsible for every nth pixel of every mth scanline. Different processors 

can be provided with different sample patterns without affecting the inner loop of the 

rendering algorithm. This brings us one step closer to the ideal of different samples for 

each pixel of the screen. This section describes extensions of the above techniques to 

compute different kernels for each pixel in an m x n pixel tile. 

The first step is to compute a Poisson-disk distribution with k•m•n samples in an m•f:t.y 

x n •Lit region with periodic boundary conditions. Each of the m x n pixels is initialized by 

assigned k samples to it arbitrarily. 

Next, we modify the relaxation algorithm to exchange samples between pixels, rather 

than translating samples as before. We wish to find the assignment of samples to pixels 

that makes the sampling pattern in each pixel approximate the reconstruction filter (now 

moved to the pixel center) as closely as possible. To do this we modify the merit function 

to compute the error between a distribution of samples and the ideal reconstruction filter for 

any pixel in them x n array. The merit function also must handle the periodic boundary 

conditions of the array properly as well. 

Samples are then considered in pairs, this time each from a distinct pixel. The merit 

functions for both pixels are evaluated and summed. The two samples are then temporarily 

swapped and the merit functions are evaluated and summed again. If the sum of the errors 

(merit functions) is less in the new configuration, the swap is made permanent. Then the 

next pair of samples is considered. 

This process continues until all pairs of samples from different pixels have been 

considered. If any samples were swapped, the entire process is repeated until an entire 
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pass has been made with no changes. Note that an exhaustive search of all sample 

permutations is truly impossible here: an m x n footprint with k samples per pixel has 

possible permutations-an astronomical number even for small footprints with few 

samples per pixel (a 2 x 2 pixel tile with 16 samples per pixel has 4*10145 permutations!). 

The pair-wise comparisons can be made more efficient by only considering swaps in which 

both samples remain within a 2.5<Jtow-pass radius of their respective pixel centers. With this 

optimization, computing a kernel with 32 samples on a 5x4 pixel footprint took 23 hours 

on a DECStation 3100. This is a long time, but is tolerable, since a sample pattern only 

needs to be calculated once . 
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Figure 7: Samples for pixels In a 5x4-pixel tile. Samples corresponding 
to pixel (3,2) are emphasized. 

Fig. 7 shows the sample pattern for a 5x4 pixel footprint with 16 samples per pixel. 

Samples corresponding to pixel (3,2) are emphasized. Images rendered with these kernels 

look very good. They are slightly noisier than images rendered with the same samples in 

each pixel, but worst-case artifacts like horizontal and vertical lines look much better 

rendered in this way. Figure 8 shows test images rendered with this approach. 
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6 Results 

We incorporated the one-pixel kernels described here into an interactive display 

program on Pixel-Planes 5 [FUCH89] and into a prototype scan-line renderer. Multiple

pixel kernels were tested on the scan-line renderer. The single-pixel kernels were a drop-in 

change to our existing supersampling code. 

Figure 8 shows a test pattern of 40 white triangles that converge to a single point 

rendered using various antialiasing methods. The converging triangles produce distinct 

Moire patterns and are very difficult to antialias. As expected, increasing the number of 

samples increases the image quality for every antialiasing method. Also, as expected, 

random sampling produces results superior to uniform sampling, both with our method and 

with jittered, weighted samples. Although each kernel has its own artifacts due to residual 

aliasing, the Poisson-disk Gaussian kernels show a noticeable improvement over the earlier 

approaches. 

Figure 9 shows a 512x512 image of a proposed space station and space shuttle dataset 

rendered with a single-pixel25-sample kernel. The dataset contains 3784 polygons, many 

of which are small and thin and have very high frequency components. We found that all 

of the random sampling approaches produced good results on this and other datasets we 

tried (these databases don't have the correlation of the test pattern, so the improvements 

were less dramatic). Differences became more apparent, however, when we animated the 

display. 

We created film loops of the space station and shuttle rotating slowly and antialiased 

them with different methods to test for scintillation and motion artifacts. The space station 

solar panels contain a sub-pixel-width center line that slowly changes from positive slope to 

negative slope. This line exhibited noticeable crawlies when rendered with all of the single

pixel methods, but the crawlies disappeared with the 5x4 kernel. This was the only 

instance we found in which the 5x4 kernel was noticeably better on a real image than the 

single-pixel kernels. This was a considerable surprise to us and offers encouragement that 

hardware architectures of the future may be able to remain simple and still produce high

quality images. 
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7 Conclusion 

We have presented algorithms for constructing supersampling antialiasing kernels 

tailored to the capabilities of parallel hardware systems. These methods allow one to 

produce high quality images more efficiently than previous algorithms. Although these 

kernels are expensive to compute, they only need to be computed once and can be 

incorporated with no run-time cost into most programs that use supersampling antialiasing, 

and since samples receive equal weights, they can be summed together directly, rather than 

requiring a multiply before the addition, as is the case with weighted-sample kernels. This 

can result in time savings during rendering, and can simplify hardware architectures that 

antialias by supersampling. 

In addition to the final algorithms we developed, we experimented with many others 

that didn't work so well. One negative result is worth mentioning: using "repulsion" 

between samples is a very poor way to generate random sample patterns. Whether linear or 

inverse-square repulsion forces are used, this method tends to force samples into a regular, 

closest-packed lattice. Certain values of k lead to regularly spaced samples (these can be 

seen in Figure 4 of [HAEB90]). Even prime numbers of samples lead to local regularity. 

Randomly generated sample patterns have proven to be far superior to patterns generated 

by sample repulsion. 

A surprising result for us is how good the single-pixel kernel images appear relative to 

the multiple-pixel kernels. One can, of course, construct images with features spaced at 

exact multiples of the pixel spacing, and these will alias terribly. This does not happen as 

often as one might expect. Image features seem to be largely uncorrelated with the pixel 

grid for most images, so single-pixel kernels do a reasonably good job. This is confirmed 

by our groups' several years of experience with supersampling with single-pixel kernels: 

such artifacts have been noticed only rarely. 
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Figure 8: Test pattern containing 40 triangles rendered with four 
different antialiasing methods and varying numbers of samples per pixel. 
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Figure 9: Space station and space shuttle containing 3784 polygons. 
Image was rendered at 512x512 resolution with a 25-sample Poisson

disk Gaussian kernel. 




