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Abstract: This article surveys data models developed for hypermedia systems over the 
last several years. Each model is briefly summarized and identified according to the 
primary motivating factor: application requirements, refinement and formalization, and 
most recently, standardization. A more detailed description of the following data model 
characteristics is provided: low-level abstractions, high-level abstractions, operations, 
and relationship to system architecture. Lastly, the models are reviewed with respect to 
how they address some hypermedia issues such as versioning, collaboration, 
interoperability and interchange, and security. 



Introduction 

Hypermedia is an approach to the representation and management of information 

characterized by a set of nodes interconnected by links. Each node corresponds to a media 

object which may be text, graphics, audio, or video recordings; links represent 

relationships among media objects. Hypermedia research efforts and system 

implementations focus on what Conklin [Conk87] describes as either the front end (the user 

interface) or the back end (the database). The purpose of this article is to survey work 

related to an important component of the hypermedia back end: the data model. Data 

models are reviewed from several perspectives: 

o Motivating factors 
Some of the earlier models were developed to support a specific application domain, 

e.g., software development or authoring environments. Others evolved as research 

projects, are more general purpose in nature, and serve to refme and formalize the 

hypermedia data model. Recent efforts propose reference models to promote 

standardization - an indication of the growing diversity of models appearing, and the 

need to support interchange among emerging systems. 

o Data model characteristics 
Most models employ the basic node-and-link paradigm. This section focuses on the 

different refinements made to the basic model. Some of the properties that distinguish 

them are 

o Low-level representation primitives 
o Higher-level abstractions for aggregation and generalization 
o Operations to support model definition and manipulation 
o Relationship of the data model to system architecture, i.e., how does the 

data model interface with the underlying storage system and the user 
interface 

o Issues for hypermedia data models 
Many of the identified data modeling issues are not unique to hypermedia; they are the 

same issues confronting modelers of conventional databases. However, given the 

collaborative and distributed nature of most hypermedia environments, these issues are 

especially important. This section reviews the issues and how some models propose to 

address them. 
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SOME PRELIMINARIES 

What is a Data Model ? 

Ullman [Ullm88] defines a data model as a mathematical formalism with two parts: 

o A notation for describing data, and 

o A set of operations used to manipulate that data 

In the hypermedia domain the data model is typically some variation of the basic node-and

link paradigm. This model reflects the essence of hypermedia environments where 

information has a non-linear organization; it is stored in "chunks" with machine-supported 

links within and between the "chunks" [Conk87]. The notation used to describe the models 

varies from English language descriptions to more formal methods such as set notation and 

graph grammars. The set of operations provided are as diverse as the models themselves, 

but usually always include basic manipulation primitives for viewing and editing data 

objects. A summary of model abstractions and operations is provided in the "Data Model 

Characteristics" section. 

Why do Hypennedia Systems Need a Data Model ? 

There are two ways to answer this question: 

o From an architecture perspective it is important to isolate the data model as a separate 

layer in a hypermedia system for several reasons: 

o So that diverse applications and presentation services can be built on a single 

hypermedia database. 

o To maintain independence from the physical implementation; the data model should 

be independent of the underlying file management system to support system 

portability. 

o Data models provide the definition mechanism to partition information in a 

systematic way for distributed data environments. 

o From a database perspective, the traditional models (hierarchical, network, relational) 

do not map well to the hypermedia environment for at least two reasons: 

o Restrictive semantics of the entities and relationships in these models 

o Lack of support for structural abstraction. The class of semantic models probably 

provides the best fit since it supports constructors for building complex data types 

[Kim89]. 
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Most of the models in this review emphasize the structural abstractions not found in 

traditional models. The importance of positioning the data model within a system 

architecture has only recently been addressed by reference models developed by 

standardization work groups. 

HISTORICAL BACKGROUND 

The first description of hypertext is attributed to Vannevar Bush in his 1945 article "As We 

May Think" [Bush45]. Even the extended concept of hypermedia and the use of a 

persistent information store can be found in Bush's comments on the recording of research 

results: 

"A record, if it is to be useful to science, must be continuously extended, it must be 

stored, and above all it must be consulted. Today we make the record conventionally 

by writing and photography, followed by printing; but we also record on. film, on 

waxdisks, and on magnetic wires." 

Bush proposed the "memex," a device for the storage and retrieval of such records. Two 

essential capabilities of the "memex" continue to be fundamental properties of hypermedia 

data models: 

o "The process of tying two items together is the important thing." 

The basic node-and-link paradigm is common to most hypermedia models. 

o "Selection by association" 

As noted by Conklin, machine-supported links are the essence of hypertext that permit 

the traversal of a network of nodes in a user-directed manner. 

In 1958 Good [Good58] proposed a network model of knowledge that he described as 

resembling Bush's "memex." This network contained "nodes .and roads" - nodes which 

represent propositions, and roads which represent associations of varying strength. He 

compared the network to the nervous system where the network is highly connected, 

perhaps with some tree structures, but with "innumerable cross-connections." His model 

also introduced two abstractions: 

o The notion of changing views as one moves further from the network. For example, at 

close range it is a network of propositions, then a network of documents, then a 

university diagram. 

o The notion of aggregation where a subset of nodes is a "clump or ganglion" with a 

computable attribute known as "dumpiness." 
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Influenced by both Bush and Good, Engelbart wrote "A Conceptual Framework for the 

Augmentation of Man's Intellect" in 1963 [Enge63]. He proposed the H-LAM/T (Human 

using Language, Artifacts, and Methodology, in which he is Trained) concept where a 

hierarchically structured repertory of capabilities provides the foundation for augmenting 

intellect. Users work "within a symbol structure of some sort, shifting their attention from 

one structure to another as they guide and execute the processes that ultimately provide 

them with the comprehension and the problem solutions they seek." Several years later 

these concepts were implemented as NLS (oN Line System), a text processing system for a 

multi-user environment. The data model is essentially hierarchical where each node 

represents a "statement." A statement is the basic work unit which may represent 

paragraphs or sections. Links are supported for text citation and can be specified between 

and within nodes in the file hierarchy [Enge73]. NLS is now known as Augment and has 

been made available commercially. 

Work Related to Hypermedia Data Models 

OVERVIEW 

This section provides an overview of data models that have been developed during the last 

several years. Earlier models were developed to support specific applications and were 

implemented as part of a larger system. Others have evolved as a means to refine and 

formalize the data model. Several of the most recent efforts address the need for model 

standardization in future hypermedia systems. 

GRAS 

GRAS (GRAph Storage) is the database component of a system developed at Osnabrock 

University to support software development environments [Bran85]. Software documents 

are represented as attributed, labelled graphs which are organized into database 

collections. Separation of structural and non-structural information is a central design 

principle which is realized in both the graph model and the storage representation to 

achieve an efficient implementation for associative queries. 

KMS 

KMS (Knowledge Management System) is a distributed hypermedia system for 

collaboration based on the ZOG system developed at Carnegie-Mellon University [Aksc88, 

Aksc84]. Unlike most hypermedia data models, the basic paradigm is tightly coupled with 
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the user interface. The screen-sized frame is the primary object in KMS; users navigate 

among interconnected frames to view and edit their contents. Although frames are typically 

organized hierarchically, KMS permits the user to augment the structure with links for 

cross-referencing and commentary. 

HAM 
The HAM (Hypertext Abstract Machine) is a general purpose, transaction-based server for 

hypertext storage that is based on the storage system of Neptune, a prototype hypertext 

system developed at Tektronix Computer Research Laboratory [Camp88, Deli86]. The 

graph-based, object-oriented storage model employs hierarchically-organized context 

objects to partition graph contents. Contexts may contain node objects of arbitrary data 

related by link objects; relationships between nodes in different contexts are supported by 

cross-context links. In addition to model and storage management, the HAM provides 

versioning, filtering, and access control mechanisms. 

HyperBase 

HyperBase is a general purpose hypermedia engine that was motivated by the development 

of an authoring environment at the Integrated Publication and Information Systems 

Institute, West Germany [Schu90]. HyperBase uses a commercial relational database 

system that supplies transaction management and multi-user access services. Influenced by 

the HAM model, the HyperBase data model is object-oriented, and application and 

storage-system independent. Complex objects provide an abstraction capability to represent 

collections of references to nodes and links. This abstraction, as well as nodes and 

attributes, maintain history information about object modification. Complex objects 

additionally maintain versions which record the state of invalidated objects. 

Graph Server 

The Graph Server is a transaction-based, multi-user server for object-oriented hypertext 

applications under development at the University of North Carolina [Ande90]. The 

underlying data model is general purpose, graph-based, and object-oriented. Like the 

HAM's contexts, the subgraph object provides a useful abstraction for refining the graph 

database. The subgraph has extended semantics that include typing (e.g. directed graphs, 

connected graphs, lists, trees, acyclic graphs) and aggregation into composite subgraphs by 

bridging and embedding individual subgraphs. 
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MINOS 

MINOS is a prototype multimedia information system developed at the University of 

Waterloo that supports presentation, browsing, extraction, sharing, editing, and formatting 

of multimedia documents [Chri86]. The document model is object-oriented with support 

for higher-level abstractions such as aggregations and generalizations. Links between 

objects are known as annotations that relate logical components. The document model 

actually consists of two submodels: the logical model describes the logical components of 

documents such as paragraphs or audio segments; the physical model defines the 

presentation specifications for the logical component. The submodels are united by 

mapping objects that relate the logical and physical components for information display. 

Trellis 
The Trellis hypertext model is the basis for a prototype hypertext browsing and authoring 

environment developed at the University of Maryland [Stot89]. The system is based on a 

Petri net model which clearly separates document structure, content, and presentation via 

mapping functions in the Petri net definition for a given hypertext. For example, content 

elements map to Petri net places, places map to logical windows, and transitions map to 

logical buttons that represent browsing actions. Unlike other graph-based models, the Petri 

net model permits not only the specification of information structure and content, but also 

the specification of browsing and concurrent execution semantics. 

Intermedia 

Intermedia is an object-oriented hypermedia system that supports applications development 

[Meyr86]. The system, developed at Brown University, has a single database built on the 

Ingres database management system for network-wide access and concurrency control. 

Block, link, and web objects are the foundation of the document-oriented data model and 

are the user paradigm for interaction with the database. Blocks are document segments, or 

anchors, which can be related through navigational links. Their defmition is very open

ended, permitting the user to equate any valid selection from the user interface to a block. 

The abstraction for a collection of blocks and links is the web. By defining webs, users can 

access and share groups of documents based on various sets of linkages, thus providing 

different views of related documents. 
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The following models were primarily motivated by the need to refine and formalize the 

hypermedia data model versus supporting a specific implementation. As prototypes and 

systems have developed and been exercised, several design issues have been identified and 

addressed by these efforts. 

Contexts 

User collaboration is a primary objective of hypermedia systems. To be effective, Delisle 

and Schwartz [Deli87] identify several characteristics which must exist in a collaborative 

environment: 

o A means to organize related hypermedia information 

o Independent partitions to minimize interference among users 

o V ersioning mechanism and a configuration facility to relate versions of nodes and links 

o Distributed database support 

The authors propose contexts to partition hypermedia information into disjoint collections 

of nodes and links which may be related by cross-context links. An example of usage is 

document revision by multiple users. Each user defines a context for their work unit which 

may reside on different machines. The revised contexts are eventually merged back into the 

master context for the document, with appropriate updates made to the version histories of 

node and links. 

Garg' s Abstraction Mechanisms 

Garg's work focuses on the importance of abstractions in the hypermedia model [Garg88]. 

In addition to aggregation and collaborative partitioning, Garg identifies several other 

ways that abstractions can be of value: 

o Filtering information based on its relevancy to the user 

o Definition of information structure versus content 

o Definition of domain knowledge rather than information instances 

o Maintenance of revisions 

A set theoretical model is used to formally define three useful abstractions that permit the 

manipulation of information with different views and granularity. 

o Aggregation is a collection of objects that can be referenced by an identifier. Since an 

aggregate object is similar to a relation, operations such as projection, join, and 

selection can be defined. 
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o Generalization is a collection of objects which share a similar characteristic. In 

contrast with an aggregation, individual properties of constituent objects are hidden; 

only shared characteristics are visible. Advantages of this view are the specification of 

generalized queries, attributes, and relationships, as well as default properties for the 

collection. 

o Revision is an information object that contains some changes that distinguish it from a 

source object. The concept of a revision tree is employed to define "delta sequences" of 

changes to an object. This approach permits the recreation of a previous version by 

applying the appropriate backward deltas to the current object. 

A simple filtering mechanism can be applied to each of these abstractions through the 

specification of keyword attributes associated with objects and links. An interesting 

extension to this mechanism is suggested whereby the predicate meaning of a link can be 

interpreted by a PROLOG-like language for filtering information. 

Hypergraph Data Model 

The data model adopted by many hypermedia systems is based on a directed graph. Tompa 

rromp89] proposes a model based on directed, labelled hypergraphs to address several 

shortcomings of the simpler graph model: 

o Inadequate separation of nodes and content 

o Inadequate support for shared structures of components 

o No support for sets of pages, where pages represent node contents 

A formal definition of the hypergraph data model includes a set of nodes, a set of pages, 

and a value function which maps nodes to pages, to achieve the desired separation. Sharing 

of structures among users is accomplished via user views. Unlike traditional database views 

which often are a restriction on database contents, Tompa's user views can augment or 

override the underlying database, thus also providing a customization capability. Labelled 

hyperedges provide the means for specifying sets of nodes and their associated pages. 

The following models are not hypermedia-motivated but are of interest in that they provide 

additional formalisms for a graph-based representation of data. Both are oriented toward 

the development of database user interfaces. 
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Conceptual Graphs 

Sowa proposes a formalism, conceptual graphs, to describe data in a way which is similar 

to a user's mental picture of that information [Sowa76]. The familiarity and naturalness of 

the paradigm are expected to facilitate the user's interaction with a database system 

without having to be knowledgeable about the underlying representation. 

A cot;~ceptual graph is an undirected graph with two node types: 

o Concepts are the basic unit; they are essentially labelled symbols which can represent 

anything the user chooses 

o Conceptual relations are the connections between concepts and can contain one or 

more links 

A powerful enhancement to the basic graph model is achieved by integrating artificial 

intelligence concepts. Formation rules and inference rules are used to maintain model 

integrity and to infer relations that are not explicitly defined. Relationship semantics are 

also enhanced via function links between concepts that permit the specification of 

quantifiers and functional dependencies. The resulting graph is called a conceptual schema 
which can map directly to a relational database. 

GOOD 
The GOOD (Graph-Oriented Object Database) model was developed to demonstrate the 

value of graphs to both describe and manage databases [Gyss90]. The basic model is a 

directed, labelled graph containing nodes that represent database objects, and 

interconnecting edges. The GOOD data manipulation language supports five operations: the 

addition and deletion of nodes and edges, and an abstraction operator that specifies a 

collection of nodes based on shared properties. An interesting technique employed by the 

operations is the use of a metamodel construct, the pattern, to describe subgraphs in a 

database instance. The pattern is the mechanism for selecting a subgraph for addition, 

deletion, or abstraction. 

Many hypermedia systems have been motivated by front end objectives and 

implementation-specific requirements. These efforts have significantly advanced the 

technology but have at the same time resulted in a variety of highly disparate systems 

which cannot easily communicate with each other. Given the importance of collaboration 

and the inherent distributed nature of hypermedia information, this situation inhibits the 
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effectiveness of existing and future systems. As a result, various proposals for hypermedia 

reference models have been made. These models serve several purposes: 

o Through formal descriptions they provide a basis for comparison and analysis 

o By developing standards for systems and terminology, standard interfaces for 

interchange and communication can be developed 

o They provide a framework within which design issues, problems, and solutions can be 

identified 

The following models were presented at the Hypertext Standardization Workshop, 

sponsored by the National Institute of Standards and Technology in January, 1990. 

Trellis Hyperlext Reference Model 

This reference model describes a three-level architectural framework that is primarily 

concerned with the presentation of hypertext information [Furu90]. The concrete level 

addresses the physical organization of the hypertext, i.e., how to format and display 

characteristics of abstract components. The visible level maps the concrete representation 

to the external user view. Below the concrete level is the abstract level of hypertext 

which defines its components and associations. Components include: 

o Structure - the "placeholders" and relationships which define the hypertext 

organization but are separate from the contents. This is the component which would 

include the data model; however,this reference model makes no assumptions about 

the organization of the underlying model. In their work the authors used the Petri 

Net model as described earlier. 

o Contents - text, graphics, audio or video segments 

o Buttons - definitions of how relationships are displayed 

o Containers - how to aggregate information for display purposes 

At the abstract hypertext level associations between components are defined, i.e., the 

associations between structures and contents, buttons, and containers. Although this 

proposal provides minimal detail about the data model, it is included here because it 

provides a useful framework for the mapping of back end abstractions to front end 

abstractions. 
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Strawman Reference Model 
This reference model describes hypermedia systems in terms of basic, advanced, and 

open features [Thom90]. Basic features are those which all systems have and can 

provide a foundation for comparison: 

o Media types - the content part of the representation of hypermedia information 

o Data model - the structure part of the representation. Like the Trellis model, this 

model does not define a specific paradigm, but does note that in all hypermedia 

systems the common primitive is the link object. 

o User interface 

o Persistent store 

Advanced features are not found in all hypermedia systems but are generally required 

for more complex applications. These features include: 

o Multi-user support 

o Distributed data 

o Uniform representation - unlike existing models which emphasize separation of node 

contents and structure, this proposal suggests a recursive data model where contents 

can contain nodes, thus permitting structure within media objects. 

o Computational completeness - inclusion of procedural information in the data model 

to describe the behavioral characteristics of information 

o Specialized facilities for navigation, search, and complex queries 

o Versioning, configurations, and change management support 

Open features are generic characteristics found in many computer systems and include 

human factors provisions, an open and modular architecture, portability and 

availability. 

An ideal architecture for hypermedia systems that is characterized by the basic and 

advanced features is described. An important aspect of the architecture is its modularity 

which the authors argue will accelerate the development of system standards. 

Van Dyke Parunak's Reference Model 

The model outlined in this paper focuses on the functional elements, implementation, 

and interface issues of hypermedia systems [VanD89]. The functional elements address 

the basic components of the hypermedia model: nodes and links, and the composite 

structures derived from them. The salient characteristics of the elements are described: 
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nodes can be characterized by their contents, type, and structure; links can be 

characterized by their directionality, topology, type, anchors, and modes. Composites 

can be defined either topologically or rhetorically. An example of a topological 

composite is a predefined route for navigation through an application. Rhetorical 

composites are logical groupings of nodes and links which, for example, might represent 

an argumentation schema. 

The functional elements are the foundation of a four layer architecture for hypermedia 

implementation. At the lowest level is the data layer which is responsible for data and 

transaction management in a multiuser environment, distributed data access, and 

possibly versioning. The next higher level is the element layer that supports node and 

link management services. Generalized link traversal is provided by the inference layer, 

and the user's view is managed by the interface layer. Several user interface issues are 

identified which deal primarily with techniques for constructing links, screen layout and 

manipulation, and navigational mechanisms. 

Dexter Reference Model 
Unlike the previous models described here, the Dexter model provides a more extensive 

and formal definition of meaningful hypermedia abstractions [Hala89]. These are part of 

the storage layer, the focus of the three-layer reference model. The storage layer is the 

middle "database" layer which describes the network of components and interconnecting 

links. Components are the basic unit of the model and represent generic placeholders for 

hypermedia contents. A component may represent an atom (similar to a node), a link, or a 

composite which consists of other components. 

As in other models, separation of structure and content is an important objective and is 

maintained by associating contents with the within-component layer. Component contents 

(text, graphics, audio, etc.) and internal structure are not part of this model; however, a 

generic interface between the storage and within-component layers is provided by an 

anchoring mechanism. Anchors define link end points and may be associated with a 

segment of a component's contents, e.g., a document paragraph or citation. 

The third layer of the model is the runtime layer which supports the presentation of 

hypermedia information. Like the within-component layer, the runtime layer is not 

addressed by this model in detail; instead, the emphasis is on the storage layer interface to 

the presentation services. A generic interface is supplied via presentation specifications that 

13 



describe how a component is to be displayed to the user. The specifications are included in 

the storage layer definition of a component and are made accessible to the presentation 

services. 

In addition to the structural definition provided by the storage layer, the Dexter model 

defines a set of operations to access and manage hypermedia components. These include 

the basic management primitives for addition, deletion, and modification, and a pair of 

resolver/accessor functions for retrieval. A formal specification of the operations and 

abstractions is included in the model. 

Lange's Fonnal Model 

Lange's hypertext model concentrates primarily on the data model; it is not an architectural 

framework for hypertext systems [Lang90]. Nodes and links are the basic units of the 

model which defines two composite abstractions, networks and structures. Unlike the 

previous models, Lange's does not strongly separate structure and content, but rather 

provides explicit support for contents. His model defines the slot abstraction as a node 

substructure, or template, for contents. A node may contain multiple slots that are 

connection points for links. Slots are further refmed through the notion of buttons and 

fields which are anchoring points for links and represent text segments in a document. 

Networks are an abstraction for a set of hypertext links. Structures define an organization 

for nodes and networks; for example, a structure might be a sequence, a set, or a tree, 

depending on the application. 

DATA MODEL CHARACTERISTICS 

Despite the diversity of purpose, refinement, and implementation, the data models 

described here have several common characteristics: each defmes primitive objects which 

are interrelated in some way and each has a basic set of operations for viewing and editing 

objects. Each model also defines at least one higher level abstraction which serves as a 

collector for primitive objects. The following table summarizes the structural abstractions 

and operations that characterize each model. 
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T bl 1 S a e . wnmaryo fD taM del Chara te . ti a 0 c ns cs 
DATA MODEL LoW LEVEL HIGH LEVEL OPERATIONS 

ABsTRACTIONS ABSTRACTIONS 

GRAS attributed nodes, labelled attributed and directed insertion, deletion, 
edges graphs, database, multi- assignment, query 

database 

KMS frames, links hierarchy of frames navigation, frame editing 

HAM nodes~ links,cross-context graphs, contexts editing, filtering, string 
links, attributes search, merge 

HyperBase node and link objects with complex objects editing, copy 
attributes 

Graph Server nodes, links, attributes database, subgraph, editing, copy, traversal, 
composite subgraph set operations on 
(bridged and embedded sub graphs 
subgraphs) 

MINOS attributed objects, aggregation hierarchies, viewing, browsing; 
annotations generalization hierarchies information extraction, 

sharing, correlation, 
generation; document 
formatting 

Trellis places, transitions, flow Petri net browsing, editing 
relations 

Intermedia blocks and links with documents, webs generic management 
keywords operations for blocks, 

links, webs and their 
attributes 

Contexts nodes, links, cross-context context, supercontext editing, navigation, 
links pruning, destroy, merge, 

difference detection 

Garg' s Abstraction objects, attributes, aggregation, filtering 
Mechanisms predicates generalization, revision 

Hypergraph nodes, hyperedges, user views query, view creation, 
labelled edges update 
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Conceptual Graphs concepts, concept relations conceptual graphs, copy, detach,restrict, join, 
conceptual schema conjunction,negation, 

disjunction,implication 

GOOD nodes, edges, labels directed and labelled add, delete, abstract, 
graphs, subgraphs query, browse, 

restructure, update 

Trellis Reference Model placeholders, relationships abstract structure 

Strawman Reference nodes, links 
Model 

Van Dyke Parunak's nodes, links composites 
Reference Model 

Dexter Reference Model components (atoms, links), composite corriponents addition, deletion, 
anchors, attributes modification, aod retrieval 

of components 

Lange's Formal Model nodes, links, slots, structures, networl<s generic management 
buttons, fields operations for node, 

networks, and structures; 
version management, 
access control 

Low Level Abstractions The low level abstractions in most models are structural entities 

that are independent of their content, applications, and the user environment. Two 

exceptions are KMS where nodes are represented by screen-sized workspaces called frames 

and the structured definition of node contents in Lange's model. His node interior 

definition includes a collection of uniquely-identified slots which in tum may contain 

buttons and fields that are anchorable locations for links. 

The most common refinement for nodes and links is the specification of attribute-value 

pairs which may be system- or user-defined. The Petri net is an exception in that nodes are 

viewed as placeholders only, without any attributes. 

Link definitions exhibit greater diversity across the models than node definitions. Several 

distinguishing characteristics are type, direction, arity, attributes, anchors, and 

relationship to nodes. Most models treat links as "first-class" objects, i.e., they are 
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abstractions whose semantic importance is equivalent to nodes. In several models link

specific high level abstractions have been defined which provide a "collection of links" 

perspective: Hypergraph defines hyperedges, Intermedia has webs, and Lange defines 

networks. Garg, on the other hand, does not explicitly define links in his abstractions, but 

rather refers to "two-place predicates" on objects. The Trellis Petri net model views links 

as transitions to defme browsing execution, as opposed to the more conventional view of 

links as structural connectors. 

In most models links are binary and without type; however, the Dexter model permits links 

of arbitrary arity, and the KMS distinguishes between structural links (tree items) and 

referential links (annotation items). An important refinement of the link construct is the 

anchor, generally defined as the end point of a link. The anchor references some portion of 

a node's contents and is used, for example, to relate text segments within and between 

documents. The anchor is considered a structural entity whose value is managed by the 

application so as to maintain the separation between structure and content. Like other 

model constructs, the anchor has various refmements. The Dexter model provides the most 

formal definition which includes an anchor id and value that are part of the component 

specifications; the anchor value is arbitrary and application-defined. Lange distinguishes 

between the source and target end points of a link - these are known as anchors and 

destinations, respectively. A link is anchored to buttons and fields in a node and may have 

multiple endpoints associated with it. HyperBase describes "point-to-point links" which are 

functionally similar to anchored links but are not supported by an explicit anchor 

abstraction. It is suggested that object attributes can be used for this purpose. Van Dyke 

Parunak discusses link end points between structured and unstructured nodes and describes 

two types of end points: one which references a node substructure, the other references an 

arbitrary segment of node contents. 

High Level Abstmctions Another characteristic shared by the hypermedia data models is 

the provision for a higher level abstraction, usually of an aggregation type. For the graph

based data models this abstraction is a graph or subgraph. GRAS employs attributed, 

directed graphs which can be grouped together to form databases. In the HAM storage 

model the graph is the highest level object which is partitioned into contexts. The Petri net 

abstraction in the Trellis reference model is a generalization of a directed graph that also 

defines the browsing semantics for the user interface. 

A more complete refmement of the graph abstraction can be found in the Graph Server. In 

this model subgraphs represent a set of nodes and links and are the basic unit of 
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manipulation, i.e., all operations on nodes and links are performed in the sub graph 

context. Subgraphs are typed, and correctness is ensured through type-specific methods. 

Another level of abstraction is provided by composite subgraphs which are formed by 

bridging and embedding graphs. A bridge graph represents a set of links which spans 

multiple subgraph instances and the set of incident nodes. An embedded graph is a bridge 

graph where the bridge links are restricted to relating nodes within the same subgraph. 

The MINOS and HyperBase systems adopt an object-oriented view of the data model. 

MINOS defines aggregation and generalization hierarchies of objects, whereas HyperBase 

defines the more general complex object as a collection of objects which may optionally be 

ordered. Garg's abstraction mechanisms include revision since a most current version 

"conceals" historical version information. This is similar in concept to Delisle and 

Schwartz's "contexts" which can be used to partition a document's contents for revision by 

multiple users. 

Operations Operations for most of the models described here include specifications for 

generic management functions such as viewing and editing. To varying degrees the 

operations ensure model integrity. The Graph Server verifies type-correctness of 

subgraphs; HyperBase prohibits dangling references, ensures object uniqueness, and 

disallows recursive definition of complex objects. An important operation in the Contexts 

model is the merge. This model provides support for detecting conflicts and highlighting 

differences when a revision is merged with the original context. 

Relationship to System Architecture A general architecture which characterizes most 

computer systems consists of three layers: end user interface, applications, and data 

management. The systems and models described here emphasize a refinement of the data 

management layer that distinguishes between the structure and content of information. This 

approach is especially important for hypermedia systems where the same structure may be 

used to represent a variety of media types. Conversely, the same media types may map to 

multiple structures to support different user views or display devices. Several methods have 

been used to maintain data model independence from contents and the end user interface. 

Both the Trellis and Hypergraph models provide formal definitions of the relationship 

between structure and content. The Trellis Petri-net model defines a mapping function 

from content elements to "places" in the net. A similar function can be found in the 

hypergraph definition which relates nodes with pages (or contents). The MINOS 

implementation employs logical tables which define the aggregation hierarchies that map to 
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the document files. The Dexter model defines a clear separation via its layered 

architecture. The storage layer contains the structural definition of hypermedia components 

which interfaces to the within-component layer through anchoring specifications. 

Data model support for the end user interface is another discriminating characteristic. 

Although most models are concerned with data representation, the importance of coupling 

the hypermedia front end with the back end is reflected in some models. In the MINOS 

model the physical table defines the presentation characteristics of components in the 

logical table. A mapping mechanism between the tables permits multiple presentation 

schemes for a set of logical components. Presentation specifications in the Dexter model 

are included in component definitions, thus providing a generic mechanism for 

interpretation by the presentation services. 

Perhaps the tightest coupling of model with user interface can be found in the Trellis 

reference model where the visible and concrete layers of the model define the format and 

display of hypertext information. The abstract layer, which encompasses the data model, 

emphasizes the association of structures with buttons (how relationships are displayed) and 

containers (how to display aggregates). This close coupling of user view with data view 

results in a consistent system architecture based on the node-and-link paradigm that is 

effective in a single-user, single-database environment. Whether this same approach is 

compatible with interoperability objectives is an issue to be evaluated. 

Data Model Issues 

As hypermedia data models mature, design issues are emerging which have been addressed 

to varying degrees by the models included here. The issues are not hypermedia-specific, as 

they apply to any database environment; however, they are particularly significant for the 

development of collaborative and distributed hypermedia systems. 

Versioning 

Versioning support provides the capability to manage changes to information over time; 

this contrasts with traditional "snapshot" databases where the state of an object has one 

representation which is subject to modification. An extension to versioning is the concept 

of configuration where a collection of versions of related information is maintained. For 
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example, a software configuration management system maintains multiple versions of 

source code, which is related to multiple versions of documentation and object modules. 

Some of the versioning issues which affect data modeling include: 

o Application versus data model support 

Responsibility for defining, maintaining, and validating version control mechanisms 

varies widely. Functionality that was once the domain of application programs is now 

being absorbed by semantic data models. 

o Version propagation 

When a component of a composite object is revised, is version information propagated 

to related components.? 

o Space efficiency 

Should new versions be represented as copies or deltas to the original object ? 

o Configuration integrity 

How can the consistency and completeness of a configuration be verified ? 

The Strawman reference model assumes no versioning support is provided by the data 

model. The architecture includes a change management module that handles the recording 

and propagation of changes. The HyperBase engine provides some definition support for 

history information, but assumes the application interface supplies the management 

function. Model support includes definition of history attributes for individual objects and 

maintenance of versions for complex objects. The KMS supports versioning of frame 

hierarchies by maintaining linked lists of successive versions. 

The Neptune model, on which the HAM is based, maintains complete version histories of 

graphs. Two link types are defined: one which refers to a specific version, the other to the 

most current version. This typing can be used to defme a configuration by designating a 

"conftguration node" with links to related versions. Concerned with space efficiency , the 

Neptune model records version changes as deltas to the original, not with multiple copies. 

This approach is very similar to the functionality outlined by Garg for the revision 

abstraction. 

MINOS and Contexts both support the notion of version trees; i.e., the tree root represents 

the original document, and the leaf nodes correspond, for example, to annotated versions 

generated by reviewers. MINOS improves on space requirements by permitting the sharing 

of common objects. Contexts supports sophisticated merge operations to consolidate 

multiple revisions into a new document version. The multi-user and distributed 
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characteristics of Contexts' versioning most nearly approaches the requirements of 

collaborative environments. 

Collaboration 

Support for collaborative environments by hypermedia systems exhibits the same features 

and problems as very large database environments: multiple users, concurrency control, 

and distributed function. The data model implications of this environment have not been 

investigated extensively; however, concerns on how to provide support have been 

expressed, and partial solutions proposed. 

Perhaps the most expeditious approach was that taken by HyperBase which is "tightly 

coupled" with a commercial data base management system to provide concurrency control 

and transaction management. Two of the reference model proposals suggest organizations 

which emphasize the role of the data model for distributed support. Van Dyke Parunak's 

four-layer architecture isolates the data layer which would provide distributed data access. 

Thompson's Strawman model suggests that distributed support could be implemented with 

a relational database for structural information and a WORM device for contents. 

Concurrency is improved in the KMS data model by defining a construct that represents a 

small unit of work. The frame is the basic unit and typically corresponds to a few 

paragraphs. The small unit, in conjunction with an "optimistic" concurrency control 

algorithm, reduces interference among users when manipulating large amounts of data. 

Tompa' s hypergraph model also defines a unit of work, the "user view," which is the basis 

for update and managing concurrency. 

The most extensive work thus far in developing a useful data model for distributed, 

collaborative environments is Delisle and Schwartz's Contexts. Their data partitioning 

concept, which has been implemented in the HAM, addresses several needs: a useful 

aggregation abstraction for nodes and links, a mechanism for defining independent 

partitions to reduce user interference, and a mechanism for defining distributed units of 

work. 

lnteroperability and Interchange 

An issue related to distributed hypermedia environments is the need to communicate among 

heterogeneous hypermedia systems. The ideal solution would be one where a global 
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schema maps to, and resolves, the differences among various systems, thus allowing 

applications to access any environment with the same interface. 

An interim solution which provides a measure of interoperability is Sun's link Service 

[Pear89]. The service defines a protocol which allows independent applications to define 

relationships in a hypertext system. The relationships are stored as pointer pairs between 

linked objects in a link database. By registering with the link database, an application 

becomes part of an extensible front end to the hypertext system. 

In the absence of a global schema or interoperability, exchange of information between 

heterogeneous systems requires file format standardization. Riley's proposal for an 

interchange format standard supports "first-order" hypertext systems, i.e., those which 

define documents, links, anchors, and attributes [Rile90]. 

Security 

Restricting access to information is a concern in any multi-user environment. Security 

mechanisms are found throughout a system, from the user interface to the underlying file 

system. The types of restrictions and the granularity of data to which restrictions apply can 

vary greatly. 

For database security the unit of access is often derived from the data model 

representation. For example, the basic unit of the KMS model is the frame. Each frame has 

an owner and access control is obtained by owner-specification of permissions granted to 

other users. The Petri net model supports "subhypertexts" which are individual Petri net 

structures that have access control classes associated with them; the classes identify users 

with browsing capabilities. In the HAM, object types are optionally related to access 

control lists which defme a user or group and associated permissions, e.g., access, 

annotate, update, destroy. 

These methods assume a multi-user, single database environment. Additional work is 

needed to determine if they are adequate for the collaborative environment, and to what 

extent the data model provides support for security of hypermedia information. 

Conclusion 

In this paper I have reviewed the work related to hypermedia data models with the 

objective of consolidating and summarizing the developments in this important component 

of hypermedia systems. Where early models focused on satisfying' requirements for a 
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specific implementation, more recent efforts are concerned with refmement and 

standardization. These efforts have surfaced many issues, several of which are described 

here. Additionally, there are system-level issues identified by Halasz (Hala88] which have 

ramifications for data models of next-generation hypermedia systems. These include query

based access, composite and virtual structures to augment the basic node-and-link 

paradigm, extensibility and tailorability, and support for computational engines by 

integrating hypermedia with AI technology. Progress in these areas is important if 

hypermedia systems are to overcome a fundamental obstacle described by Bush in 1945: 

"we can enormously extend the record; yet even in its present bulk we can hardly consult 

it." Further refinements to existing data models will be essential for users to effectively 

use the abundance of information made available by future hypermedia systems. 
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