
The UNC Graph Server:
A Distributed Hypermedia
Data Management System

TR91-019

April, 1991

Douglas E. Shackelford
John B. Smith

Joan Boone
Barry Elledge

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175
919-962-1792 .
jbs@cs.unc.edu

A TextLab Report
Major support has come from NSF (Grant #IRI-9015443) and the IBM Corpor'!tion
(SUR Agreement #866), with additional support from ONR (Contract #N00014-
86-K-00680).

UNC is an Equal Opportunity/Affirmative Action Institution.

Abstract

Our project is studying the process by which groups of individuals work together to build
large, complex structures of ideas and is building a distributed hypermedia system to support that
process. This description focuses on the hypermedia data management system -- which we call a
graph server -- we are developing to support groups of collaborators working on individual
workstations within a distributed computing environment. The discussion covers the graph-based
data model provided by the server to client hypermedia programs as well as the architecture of the
system. A number of research issues are raised and discussed in context including: partitioning
the hypermedia graph; an open, extensible architecture for applications; composite objects;
anchored links; and the integrity, consistency, and completeness of the artifact as a whole.

Introduction

Our research is concerned with the activities of groups as they work collaboratively to build
a large, common database of materials. As part of this project, we are building a distributed
hypermedia environment for software development. That system -- which we call the Artifact
Based Collaboration (ABC) system -- is described in more detail in a companion paper [Smith &
Smith, 1991]. Here, we focus on one component-- the hypermedia data management system,
which we call the graph server.

The key issue that must be addressed by a hypermedia data management system is scale.
Most hypermedia systems have been single user systems running on individual microcomputers or
workstations. They support structures containing from a few hundred to a few thousand nodes.
To meet the requirements of an 0(10) person software team working over a period of months, a
hypermedia data management system must support 0(10,000) nodes and 0(100,000) links. For
larger industrial projects, such as those carried out by defense contractors, requirements are likely
to be several orders of magnitude larger. No current system or design can scale to meet these
needs. For organization-wide hypermedia applications currently being contemplated, the
requirements are larger still. As a university research project, we cannot build a system that meets
these requirements, but we can build proof of concept systems that elucidate key issues.

To be scalable, a hypermedia data management system must be partitionable. This is true
from the standpoints of capacity, performance, and human comprehension. Any single-platform
storage system will be outgrown eventually, and transmission bandwidth will pose problems in
servicing from a single site the needs of large, widely distributed groups for at least the foreseeable
future. The demands for human comprehension of large structures are different but no less
important. When hypermedia structures become too large or too complex, human beings lose their
orientation and become "lost in hyperspace" [Halasz, 1987]. To avoid this condition, users must
be able to isolate small, coherent portions of large hypermedia structures in order to understand
them and to work with them, but they must also be able to freely create links between "distant"
parts of the database. Thus, partitioning poses a variety of problems, both for the data model
provided by a server and for the system architecture that supports it.

In the discussion that follows, we describe the hypermedia data management system we are
building. The discussion begins with an overview of the ABC system to provide context; the
majority of the discussion, however, concerns the data model, the architecture of the server, and
their relation to other research and other points of view. We also identify and discuss in context
issues that we believe are important for hypermedia data management systems if they are to be be
scaled upward to accommodate large, distributed hypermedia applications.

System Overview

ABC has six key components (see Figure 1) that include the graph server, a set of graph
browsers, a set of data application programs, a shared window conferencing facility, and real-time
video and audio. The sixth component, a set of protocol tools for studying group behaviors and
strategies, is not illustrated in the figure.

The graph server is the (logically central) data management system in which all of the data
objects associated with a project are stored. Individual documents (or other collections of data) are
represented as separate graph structures in which nodes in one subgraph may be related to nodes in
another subgraph. The working environment is distributed across multiple workstations connected

1

~
I

'o-o

Figure 1:

Artifact-Based Collaboration System Overview

to one another and the graph server through a data communications network. One kind of tool
available on the workstations is a set of graph browsers, built by our project, that support
development and use of different types of subgraphs -- e.g., trees, general directed graphs, lists,
etc. A second kind of tool is a set of conventional data applications used to work with "raw" data
stored as the contents of nodes within graph structures. We are taking an open architecture
approach so that people may use familiar text editors, drawing packages, etc., as applications

A shared windows facility permits any browser or application program to be shared by two
or more users. Users can, thus, set-up conferences, add and delete members, pass control from
one member to another, launch an application, etc .. A video/audio system enables users to see and
talk with one-another as they work on the same drawing or document using the shared windows
facility. At present, video is supported by a closed-circuit analog network, but we are developing a
real-time digital video system, based on DVI technology, that will allow voice and video to be sent
over the data network and integrated directly into the workstation.

A sixth component, included in the system but not illustrated in the figure, is a set of
protocol tools for recording users' actions in machine-readable form, for analyzing them, and for
displaying collaborative strategies. These data will be analyzed to identify patterns of behavior so
that we can see who works with whom, on what portions of the artifact, at what time during a
project, etc.

Data Model

The data model provided by the UNC Graph Server is based on the formalism of directed
graphs. It is a multilevel model that includes four levels, excluding physical storage. One of its
primary distinctions from other models and one that we believe will help to make partitioning
practical is the concept of sub graph. Thus, one should pay particular attention to its role in the data
model.

Primitive objects in the UNC Graph Server include nodes and links, with attributes on both
nodes and links. Nodes, but also links, may have associated contents, which in our case are most
often data files whose access is controlled by the graph server. This much of the data model is
fairly standard, except that some systems -- e.g., GRAS [Brandes & Lewerentz, 1985] -- restrict
the number and/or use of attributes for one element or the other.

Subgraphs play a dual role in the model. From one perspective, they form a second level
since they consist of sets of nodes and links. They may be named and, like nodes and links, may
have associated attributes and contents, as well. However, subgraphs may be viewed from a
second perspective as primitives. That is, within the architecture of the server, they are primary
objects in their own right and are handled analogously to nodes and links. The most important
function of this dual property is with respect to contents. Subgraphs, as well as files, may serve as
the contents for a node or for other primitive objects in the model. The implications of this are
subtle, but important, and can perhaps best be seen from the end user's point of view.

The overall organization for a document or project might be represented as a tree. This tree
may be quite large, which can result in performance problems as well as concurrency problems if
more than one person attempt to work on it at the same time. Under the Graph Server data model,
overall organization may be specified down to a certain point where the leaves might represent, for
example, the chapters of a document. At this· point, separate subgraphs may be identified as the
contents of the leave-nodes in which the more detailed structure of the document is defined. These
subgraphs are disjoint with respect to the frrst tree in terms of links, but related to it through the
content relation. This process can be repeated to as many levels of depth as needed. Relationships
among disjoint subgraphs associated through the contents property can be seen in Figure 6, below.

2

The sub graph property is also useful for defining temporary subgraphs that comprise portions of a
larger graph (e.g., a branch of a tree) for locking and access control Thus, the subgraph concept
provides a simple, clean mechanism that addresses the problem of composite structures, partitions
large graph structures into tractable and understandable pieces, and, thus, facilitates distribution
across multiple platforms.

The third level of our data model is based on a typing scheme for subgraphs. Subgraphs
are classified and maintained as one of five basic graph types: general directed graph, acyclic
graph, connected graph, tree, and list. As subgraphs are created and nodes/links added and
deleted, the graph server checks each operation to ensure that it does not violate the integrity of the
particular graph type. Thus, for example, a tree object can not have a (structural) link that would
create a cycle. This typing scheme provides a first step toward addressing issues concerned with
consistency, completeness, and correctness of software systems and other complex hypermedia
artifacts.

The fourth level of the data model is based on the concept of composite subgraphs. In an
earlier model, we identified two basic kinds of composite sub graphs: embedded and bridge.
Embedded composites handle problems with cross-references. Since links that violate the integrity
of a sub graph type (e.g., crosslinks in a tree) are prohibited, cross references between nodes in
different branches of a tree are prohibited. To provide needed flexibility, we defined a second
subgraph whose nodes set was restricted to that of the original subgraph but whose links were
separate. Since this second sub graph could be of a different graph type -- e.g., general graph -- its
links could freely denote relationships of any sort. The two subgraphs -- the original tree and its
related subgraph of cross-reference links -- were considered an embedded composite sub graph. A
similar structure applied to links between two independent subgraphs -- e.g., two trees
representing two different documents and the references between them; this kind of structure we
termed a bridge subgraph composite.

This approach proved awkward. The basic issue being addressed is a distinction between
links that are structural with respect to a particular subgraph type -- the backbone of a hierarchical
document, the constrained structure of a dag, etc. -- versus more flexible hypertextual relations in
which users can represent any kind of semantic relation meaningful to them. Consequently, in a
second design, we eliminated the embedded and bridge concepts and, instead, dropped all the way
down to level one and introduced a distinction between structural/inks and hyper/inks. This led,
in turn, to a distinction between structural subgraphs (normally referred to as just subgraphs) and
hyper subgraphs (normally referred to as hypergraphs), the latter consisting of sets of nodes and
sets of hyperlinks. Type restrictions apply only to structural links. Thus, a given node may be a
member of one or more subgraphs, but it may also be a member of one or more hypergraphs.
Two important properties derive from these distinctions. First, subgraph type integrity is
preserved in the data model while permitting flexible hypermedia linking. Second, it further
partitions the graph space. Thus, when a given (structural) subgraph is loaded for a browser, the
server can also identify the hypergraph associated with that subgraph, consisting of all hypertextual
references (hyperlinks) to and from nodes in the subgraph. Our current architecture includes an

. intelligent cache that anticipates that users are likely to access hyperlinks and loads the relevant
hypergraph as a background activity soon after a given subgraph is loaded.

The final concept remaining at level four of the data model is the notion of bound
subgraphs. When multiple users are working on different portions of the same tree, they must be
able to lock their respective branches. This is done by designating some specified portion of the
tree to be a separate (perhaps temporary) subgraph. At times, users will want their changes to be

·kept separate from the underlying tree; at other times they will want changes made in the sub graph
to be reflected immediately in: the underlying tree. Both options are provided through a binding
mechanism. Unbound subgraphs provide a convenient mechanism for maintaining different
versions of a component while bound sub graphs provide a mechanism that prevents conflicts while
supporting immediate updates to the underlying object.

3

Our understanding of the graph model for a hypenext data management system is still
evolving. We believe the issues it raises are deep and that no design-ftrst strategy will work.
Instead, we are following a "spiral" development approach. Thus, in the preceding discussion, we
have tried to identify problems and point out paths that we followed but did not work out as well as
describe our current data model.

Architecture

The architecture of objects within the data model is layered. Nodes are defined in terms of
N+2 levels, as shown in Figure 2, where N is the number of subgraphs in which a given node
appears. The top layer is the system layer; it contains information about a node that is accessed
only by the server, such as the unique id of the node. The second layer contains user-deftned
information that is common to all subgraph contexts in which the node appears -- for example,
content is normally the same in all sub graphs. One additional layer is defined for each subgraph in
which the node appears. Each layer contains both the incoming and outgoing links for the
subgraph and any hyperlinks also beginning or ending with that node within the context of the
sub graph for that layer. Node attributes restricted to the particular subgraph are, of course, also
stored within the layer, such as the date the node was added to the particular subgraph.

Links also have N+2layers, as shown in Figure 2, where .N is the number of sub graphs in
which the link appears. Temporary subgraphs, such as the branch of a tree, provide examples of
links existing in more than one subgraph. Again, the architecture contains both system and
common layers. Source and target nodes are stored in the system level. A type attribute specifies
whether the link is a structural link or a hyperlink; thus, both forms of links have the same
architecture.

Subgraphs and hypergraphs have the same architecture, as shown in Figure 2, but provide
different functions. They contain two layers: a system layer and a common layer. A subgraph is
composed of a set of nodes and a set of structural links. Both the source and target nodes of each
link must also be contained in the sub graph. A hypergraph is composed of a set of nodes and a set
of hyperlinks. Both the source and target nodes of each hyperlink must be contained in the
sub graph. Furthermore, every node in the hypergraph must be either the source or target of at least
one hyperlink in the hypergraph. Thus, a hypergraph cannot contain unconnected nodes.

A procedural programing interface is provided that is used by client programs -- i.e.,
browsers and applications -- to work with nodes, links, attributes, subgraphs, etc. Since it
includes over 50 methods or procedures, we will not describe it funher here.

From a system point of view, the "server" is a logically central data management system
that is distributed across multiple platforms. It is programmed in ISIS [Birman & Joseph, 1987]
and makes extensive use of its distributed systems capabilities. Figure 3 provides an overview of a
basic distributed configuration. The architecture has two principal kinds of components: a local
server that runs in the client environment and a set of distributed servers, including at least one for
each of three process groups -- subgraphs, nodes, and links.

The local server normally runs on the host machine although this is not required. A
communication manager communicates with the client program through a language-independent
protocol. It packs and unpacks client requests and sends and receives messages to and from the
data managment system. A local data manipulation manager implements basic operations on data
objects provided by the procedural programming interface, mentioned above.

4

Layered Model ol a Node

Layered Model of a Link

Layered Model of
Subgraphs and Hypergraphs

Each of the "Links" boxes on
the left represents an
ordered set of lnlinks and an
ordered set of Out links

Structural LinKs

for the tree

lnlinks: { Tl)
O~ILinks: { T2. TJ)

The System Attributes space
in both nodes and Jinks
includes a special attribute
called the~.

In addition, links have a~
attribute which specifies
whether the link is a
structural !ink or a hyperlink.

Subgraphs and hypergraphs are slm!!ar In
strtll:ture, but provide different luncllons.

A~ Is composed of a set of nodes and
a set of structural links. Both the source
end target node of each link must also be
contained Jn the subgraph.

A~ Is composod of a sat of nodes
and a set of hyperllnb. Both the sou~e
and targel node of each llnk must also be
contained In tha hypergraph. Furthermore,
every node must be either the source or
target of at least one link in the
hypergraph.

Figure 2:
Graph Server Layered Architecture

CLIENT PROCESS

User-written
Coda

Communication
Manager

Language-independent
Protocol, a. g., SQUID

LOCAL SERVER

Communication
Manager

Local Oata

BEQ·Ii~~ iolat:lli~::!:!
Manipulation

Unpacks user
Manager _... Implements cps on

requests and data. For example:
forwards them to 1- creare_node
the database. remove_node
Packs the response create_attribute
and sends it back etc.
to the client

.- -ISIS Broadcast/ /

/ ~
/_, ~
1/~ ·~ erver r

Host

~-r
Host

Subgraph
Process Group

/'""'
GNodo)
Server -
Host

....--...
lGNode) Server -
~
Node

Process Group

Figure 3:

Client
Host Machine

(An ISIS Process Group)

tCQcal Transaction

1- and Lock Manager

~ I oc~ I~Q!l 1-- - --
Local Cache ,_
Manager

0~ ~

/ "" ..:-.. ~ ~ r r

Host Host -
1 Glink.)

SaNer

Host

Link
Process Group

Graph Server Distributed Architecture

The local cache manager maintains the local data structure with respect to a client program
that is loaded from the data managment system and on which all operations are performed. It is an
intelligent cache, in the sense that the system anticipates data likely to be needed by the end user
and loads that information from the server into the local cache before it is requested. For example,
when a given subgraph is loaded in response to some action by a user, the intelligent cache will
also load, as a background operation, the associated hypergraph in anticipation that the user may
soon wish to follow a hyperlink.

A local transaction and lock manager is used to maintain concurrency within the overall data
managment system. A strict two-phase locking scheme is used. The transaction manager is
responsible for obtaining all necessary locks during a transaction and releasing them after the
transaction has completed.

Remote server processes, shown in Figure 3, are primarily responsible for storing data on
disk. Each contains a transaction and lock manager and a storage manager. There are three types
of remote server processes -- subgraphs, nodes, and links -- each responsible for a different
portion of the data managment system. When a local server needs information from the data
managment system, it broadcasts the request to the appropriate process group. The one that
contains the requested information, determined by a unique id for the data objected requested,
handles the request When a local server commits a transaction, it again broadcasts a message to
all applicable groups, and the appropriate remote servers handle the request. Additional servers
within a process group are created automatically by the system under certain load and capacity
conditions and in response to network conditions, including failures.

Related Research

To place the UNC Graph Server in context with other perspectives of hypermedia data
models and management systems, one must consider the design space of possible decisions along
several dimensions. First, data models can be differentiated according to their underlying
assumptions as to the relationship between documents and graph structure. Second, storage and
access requirements vary according to the nature of the data object provided to users. Third,
systems differ as to whether they include the data store as an integral part of the application system
or whether it is treated as a separate component or server. Fourth, they differ according to the
specific details of the graph abstraction that underlies the model. A fifth dimension concerns the
support platform on which the model is implemented.

Two points of view p~ominate regarding the rehitionship between document and graph.
One perspective takes the position that the text (or other form of content) is fundamental and that
the graph structuie overlays the document, linking content• in one location with content in another
location. The other perspective views the graph structure as fundamental and views content as
being contained within individual nodes. In this second model, links join nodes but may be
extended by anchors into the contents of nodes. Examples of systems that have taken a document
oriented perspective include NLS [Englehart, et.al., 1973], Xanadu [Nelson, 1981], Intermedia
[Meyrowitz, 1986], and MINOS [Christodoulakis, et.al., 1986]. A variation on this point of view
are systems in which links are "virtual," implemented by fast text or content search algorithms.
Examples include SuperBook [Remede, et.al., 1987]. and Document Examiner [Walker, 1987].
Systems that have viewed the graph structure, rather than document content, as fundamental
include NoteCards [Halasz, 1987], glbis [Conklin, & Begeman, 1987], and WE [Smith, et.al,
1987]. Design decisions along this dimension result in fundamentally different data models and
implementations, as can be seen, for example, in Xanadu's "tumbler notation" approach,
Document Examiner's inverted/hashed keyword approach, and NoteCard's graph storage
approach. The UNC Graph Server views the graph structure as fundamental.

5

A second distinction concerns the data object made available to users. Two approaches
dominate. One approach retrieves and provides the user with a basic window of content. KMS
presents single fixed-sized frames of information [Akscyn, et.al., 1988]; HyperCard retrieves and
displays one card at a time [Apple Computer, Inc., 1989]. The alternative approach is to retrieve
all or a substantial portion of the graph structure and present a representation of that strucmre for
display and manipulation; NoteCards [Halasz, 1987], gibis [Conklin & Begeman, 1987], Trellis
[Furuta & Stotts, 1990], and WE [Smith, et.al., 1987] are all examples. The Graph Server is in
this second camp, providing the application program with complete subgraphs through a single
access. This distinction is important from the standpoint of performance for access and retrieval.
For example, a one-second response time for a frame of information is acceptable but a fifty
second response to retrieve a relatively small fifty node graph is not.

Most hypermedia systems have been developed as closed architecmres in which the data
store was included as an integral component. The alternative is to adopt a server approach, as was
done for the UNC Graph Server, in which the data store exists as a separate, stand-alone object on
the communications network that can be accessed by independent hypermedia applications. Since
most earlier systems have adopted integral architectures, we will not list examples. Notable
exceptions, that have adopted separable stores, include HAM [Campbell & Goodman, 1988],
GRAS [Brandes & Lewerentz, 1985], and HyperBase [Schutt & Streitz, 1990].

A fourth distinction concerns the formal properties of the graph model underlying the data
model supported by the store. This dimension is more varied, and extends from actual systems to
abstract designs and proposed standards. Several systems have adopted data models that are
basically hierarchical, sometimes with secondary links across the hierarchy. Examples include
NLS [Engelhart, et.al., 1973] and Xanadu [Nelson, 1981]. Most have adopted some form of
general directed graph model, but they differ in details and extensions. Delisle and Schwartz
[1987] propose contexts for use in collaborative environments to organize information and to
reduce user interference by partitioning information into collections of nodes and links which may
be related by cross-context links. Hyper Base defines complex objects which represent collections
of nodes and links [Schutt & Streitz, 1990]. Garg's set theoretical model, which has not yet been
implemented, defmes the aggregation, generalization, and ryvision abstractions for the management
of information with different views and granularity [Garg, 1988]. The Trellis hypertext model is
based on a Petri net model which specifies information structure and content, as well as browsing
and execution semantics [Furuta & Stotts, 1990]. The Strawman reference model describes a
system architecmre characterized by advanced features ~uch as multi-user and distributed data
support, computational completeness, and versioning [Thompson, 1990]. Van Dyke Parunak's
reference model [1990] identifies the salient features of a hypermedia data model: nodes are
characterized by contents, type, and structure; links are characterized by directionality, topology,
type, anchors, and nodes. The Dexter reference model [Halasz & Schwartz, 1990] provides a
formal definition of hypermedia abstractions consisting of a network of components and
interconnecting links; components are the basic unit which represent generic placeholders for
hypermedia contents. Lange's model [1990] defines nodes and links as the basic units, with
abstractions for aggregation and node substructure. The UNC Graph Server is unusual in its
emphasis on typed, composite subgraphs and its distinction between structural links and
hyperlinks, the second resulting in hypergraphs. It is perhaps closest to the Dexter model, but the
Graph Server provides additional layers of abstraction not defmed in that model, and it differs in its
perspective with respect to anchored links. For a more detailed examination of similarities and
differences with respect to basic data models, see [Boone, 1991].

The fifth difference concerns basic implementation strategy. There seems to be strong
agreement in the field regarding the desirability to buy, rather than build, the underlying storage
management platform on which hypermedia data management systems are built. Three basic
approaches predominate. Many projects have built their own stores. Regrettably, the UNC Graph
Store is among that group, although our current impleJ;Uentation effort is using a high-level
distributed system support package, ISIS, as a base. We still hope to purchase a complete object-

6

oriented platform in the future. Perhaps the most wide-spread approach has been to use a B-tree
utility or similar subsystem; Hyperties [Schneiderman, 1987] is an example of such a system.
The third approach has been to use a standard relational database utility. Systems that have gone
this route include Intermedia [Meyrowitz, 1986] and HyperBase [Schutt & Streitz, 1990]. The
problem posed by this choice is performance and the inherent awkwardness of implementing graph
structures within the relational paradigm. There is strong hope that emerging object-oriented
databases will provide suitable platforms. We share this hope, but do not expect near-term help.
These systems, first, require considerable more development effort to implement data models than
is required to build systems on top of traditional database utilities; and, second, performance is
likely to remain a problem for some time. (Our experiments conducted just over a year ago found
performance penalties, relative to Small Talk, of I Ox to 35x for one such commercial object
oriented database system.)

Conclusion

In describing the UNC Graph Server, we have discussed both the data model it supports
and the architecture of the system. We have emphasized what we believe to be the fundamental
problem that must be confronted by hypermedia data management systems ifthey are to scale up to
support large industrial applications -- that they be partitionable in natural ways both for system
access and human comprehension. We have also identified a number of other technical issues, that
include an open, extensible architecture with respect to application programs; composite nodes and
data objects; information hiding and user comprehension; and the integrity, consistency, and
completeness of the artifact as a whole. We have produced a working prototype server, and we are
in the process of completing a second version of the data model. We expect to complete by the end
of the year a second prototype that implements the distributed architecture described here. By
describing the development path we have actually followed, we hope to contribute to a growing
body of knowledge about what does not work as well as what does.

Acknowledgments

A number of organizations and individuals have contributed to this research. Major
support has come from NSF (Grant# IRI-9015443) and the IBM Corporation (SUR Agreement#
866), with additional support from ONR (Contract# N00014-86-K-00680). We are grateful to all
of our faculty and student colleagues on this project who have contributed to the common body of
ideas in which we work. Especially important have been the contributions of Don Smith, Rick
Snodgrass, Mike Wagner, Zhenxin Wang, and John Hilgedick.

7

References

Akscyn, R.M.; McCracken, D.L.; & Yoder, E.A. (1988). KMS: A distributed
hypermedia for managing knowledge in organizations. Communications of the ACM, 31(7), 820-
835.

Apple Computer, Inc., (1989). HyperCard User's Guide Cupertino, CA: Apple
Computer, Inc.

Birman, K.P.; & Joseph, T.A. (1987). Exploiting virtual synchrony in distributed
systems. Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,
(Austin, Texas), pp. 123-138

Boone, J. (1991). A Survey of Data Models for Hypermedia. Chapel Hill, NC: UNC
Department of Computer Scieence Technical Report# 91-022.

Brandes, T.; & Lewerentz, C. (1985). GRAS: A nonstandard data base system within a
proramming support environment. Proceedings of the GTE Workshop on Software Engineering
Environments for Programming in the Large, pp. 113-121.

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101-108.

Campbell, B.; & Goodman, J.M. (1988). HAM: A general purpose hypertext abstract
machine. Communications of the ACM, 31(7), 856-861.

Christodoulakis, S.; Theodoridou, M.; Ho, F.; Papa, M.; & Pathria A. (1986). Multimedia
document presentation, information extraction, and document formation in MINOS: A model and
a system. ACM Transactions on Office Information System, 4(4), 345-383.

Conklin, J.; & Begeman, M. L. (1987). giBIS: A hypertext tool for team design
deliberation. Proceedings of Hypertext '87, pp. 247-252.

Delisle, N.; & Schwartz, M. (1986). Neptune: A Hypertext System for CAD
Applications. Beaverton, Oregon: Tektronix Computer Research Laboratory Technical Report#
CR-85-50.

Delisle N.; & Schwartz, M. (1987). Contexts-A partitioning concept for hypertext, ACM
Transactions on Office Information System, Vol, 5(2), 168-186.

Engelhart, D.C. (1963). A conceptual framework for the augmentation of man's intellect,
Vistas in Information Handling P.D. Howerton and D.C. Weeks (editors), Spartan Books,
Washington, D.C., 1-29.

Engelhart, D.C.; Watson, R.W.; & Norton, J.C. (1973). The augmented knowledge
workshop, AFIPS Conference Proceedings, 1973 National Computer Conference and Exposition
(June 4-8, 1973 New York, New York), 9-21.

Furuta, R.; & Stotts, P.D. (1990). The trellis hypertext reference model. Proceedings of
the Hypertext Standardization Workshop (Gaithersburg, Maryland), 83-93.

Garg, P.K. (1988). Abstraction mechanisms in hypertext, Communications of the ACM,
Vol. 31 (7), 862-870.

Halasz, F.; & Schwartz, M. (1990). The dexter hypertext reference model. Proceedings of
the Hypertext Standardization Workshop (Gaithersburg, Maryland), 1-39.

Halasz, F. (1987). Hypertext 87 Proceedings.

Lange, D. (1990). A formal model of hypertext. Proceedings of the Hypertext
Standardization Workshop, (Gaithersburg, Maryland), 145-166.

8

Meyrowitz, N. (1986). Intermedia: The architecture and construction of an object-oriented
hypermedia system and applications framework. Proceedings of the Conference on Object
Oriented Programming System, Languages, and Applications (OOPSLA '86) (September 29-
0ctober 2, Portland, Oregon).

Nelson, T.H. (1981). Literary Machines. Swarthmore, PA: Available from the author.

Remede, J.R.; Gomez, L.M.; & Landauer, T.K. (1987). SuperBook: An automated tool
for information exploration -- Hypertext? Hypertext 87 Proceedings., pp. 175-188.

Schneiderman, B. (1987). Userinterface design for the hyperties electronic encyclopedia.
Hypertext 87 Proceedings., pp. 189-194.

Schutt, H.; & Streitz, N. HyperBase: A hypermedia engine based on a relational database
management system, Integrated Publication and Information Systems Institute, West Germany,
submitted to ECHT '90.

Smith, J.B.; & Smith, F. D. (1991). ABC: A Hypermedia System for Artifact-Based
Collaboration. Chapel Hill, NC: UNC Department of Computer Scieence Technical Report # 91-
021.

Thompson, C. (1990). Strawman reference model for hypermedia systems. Proceedings
of the Hypertext Standardization Workshop, (Gaithersburg, Maryland), pp. 223-246.
Tomp89

Parunak, H. V. D. (1990). Toward a reference model for hypermedia. Proceedings of the
Hypertext Standardization Workshop (Gaithersburg, Maryland), pp. 197-211.

Walker, J. (1987). Document Examiner: Delivery interface for hypertext documents.
Hypertext 87 Proceedings., pp. 307-323.

9

