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VISTAnet Network Interface Unit:
Future Communications Research

Abstract 

Heterogeneous parallel and distributed computing is gaining broad  acceptance as a viable means of
speeding up a large class of target applications such as medical imaging, weather prediction, and
geological  simulations.  High-speed communication links are necessary and common  among such
infrastructures to enable exchange of code, data, and control information among the host
computers in the network. However, the diversity of hardware and software architectures of
machines pose major hurdles in the path of integrating these systems in a high-bandwidth network.
Programmability to accommodate unforeseen needs and performance to meet the throughput
demands of the applications are competing  requirements on the part of a network interface unit that
needs to  be resolved in order to make networked-computing more practical.

VISTAnet is a research endeavor that attempts to harness the capabilities of three geographically
dispersed supercomputers in North Carolina. These computers are interconnected via a public
network  operating at gigabit speed. We have designed and developed a high-performance,
programmable, custom Network Interface Unit (NIU) for interfacing the Pixel-Planes 5, a custom
graphics supercomputer developed at UNC, to the VISTAnet. Although the NIU is primarily
designed as an error tolerant, low-latency communication interface, it will also serve as a platform
to support  future communications research.  We present an outline of the proposed  research in
real-time operating system and process management, protocol design and development, novel
algorithm design, and to explore the tradeoffs between hardware and software subsystems required
to support  emerging wide area gigabit networks.

1. INTRODUCTION

The VISTAnet project is one of five national testbeds organized by the Corporation for National
Research Initiatives and funded in part by the National Science Foundation, the Defense Advanced
Research Projects Agency, and corporations such as BellSouth and GTE. The project advances
research into both the design and operation of such gigabit networks as well as applications capable
of harnessing gigabit communications.

The infrastructure consists of three supercomputers, namely, a Cray Y-MP at the North Carolina
Supercomputer Center, Pixel Planes 5 (PXPL5), and a MasPar MP-1 in the Computer Science
Department at UNC, and a Silicon Graphics 340 VGX which is the medical workstation in the
Department of Radiation  Oncology at UNC.  PXPL5 is a heterogeneous multicomputer optimized
for graphics applications. The host computers are connected via a B-ISDN network installed and
managed by BellSouth and GTE.

The target application is Dynamic Radiation Therapy Planning (DRTP). Current radiation
treatment planning involves examining two-dimensional Computer Aided Tomography and
Magnetic Resonance Imaging views of various  slices of the patient's anatomy.  Generally, only a
few slices are used to prevent the explosion of information generated by large numbers of slices.
The limiting of the number of views may result in sub-optimal treatment plans in some cases. The
DRTP application displays, in three-dimensions, the  proposed radiation beams superimposed over
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the patient's anatomy and enables the physician to interactively adjust beam parameters (direction,
intensity) or change the point of view. A modification of the radiation beam results in recomputing
of dosage tables on the Cray which are then sent to the  PXPL5 for rendering. A change of view
point is transferred directly to the  PXPL5. In either case, an updated image is produced on the
medical workstation  in real-time.

We have outlined a plan to explore the suitability of object-oriented software, traditional protocol
architectures, and single-processor network interfaces in this environment. This involves profiling
delay in a object-oriented  operating system, performance measurement of various protocol stacks
and  evaluation of alternative methods of error handling and flow control. Sections 2 & 3 provide
an overview of the B-ISDN network, network interfaces to the hosts and performance goals for the
NIU.  The specifics of the future research are presented in section 4.

2. OVERVIEW

2.1 B-ISDN Network

The VISTAnet network (Fig.1) consists of a prototype ATM switch developed by Fujitsu and a
broadband circuit switch developed by GTE. The two switches  are connected by a 2.488 Gbps
fiber-optic link carrying multiple OC-12c  channels. The network is extended to the test sites with
single 622 Mbps  links and is terminated at each site by a Network Terminal Adapter (NTA).  The
NTA is an ATM/HIPPI gateway and is directly connected to the HIPPI interface of each host
computer.  A detailed account of the network  infrastructure is presented by Basch et al [1].  The
switching fabric of the Fujitsu switch is described by Kato et al [6].
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2.2 Network Interfaces

The Cray host interface is a proprietary standard HIPPI interface called model-D IOS channel.  The
protocol software consists of an implementation of TCP/IP stack with intermediate layers such as
HIPPI-LE, IEEE 802.2LLC and HIPPI-FP. The SGI 340 VGX is currently connected via a
HILDA HIPPI interface [9] (designed for network traffic analysis) which will be replaced by a
standard HIPPI interface from SGI when available.  The planned research does not include
modifications to these interfaces although some changes in the protocol software may be
necessary.  The PXPL5 communicates over the network through NIU, a Ring/HIPPI gateway. A
detailed account of the PXPL5 system is presented in [5]. The NIU is the subject of future research
and its salient attributes are summarized here.

The NIU hardware subsystems are shown in Fig. 2. The HIPPI Destination subsystem accepts
HIPPI packets from the network, validates, and then  buffers them in 16 KB FIFO buffers. The
RingBound subsystem  transfers this data from the buffers onto the PXPL5 ring. Since packets
are written and read in round-robin fashion to the buffers, the HIPPI  Destination and RingBound
system operate concurrently. The NetBound subsystem  accepts packets from the PXPL5 ring and
buffers them in a 16 16KB SRAM  buffer and the HIPPI Source subsystem, in turn, transfers the
HIPPI packets onto the network. The Netbound and HIPPI Source subsystems also operate
concurrently. These four subsystems are controlled by the processor subsystem consisting a 25
MHz SPARC processor (CY7C611) with 1 MB of  local memory.

The software architecture is shown in Fig. 3. The operating system is multithreaded and written
primarily in C++ with some SPARC assembly routines. There are four main concurrent tasks: a
Destination task, a  RingBound task, a NetBound task, and a Source task. Each task supports  the
associated hardware subsystem. The current protocol stack implementation, also in C++, consists
of HIPPI-PH, HIPPI-FP. The IP, TCP, HIPPI-LE and  IEEE 802.2 layers are planned for the
future.  The hardware and software specifications of the NIU are covered in detail in [8].

3. NIU PERFORMANCE AND SERVICE GOALS

The performance goals for the NIU hardware and software can be gleaned from the throughput,
latency, and error requirements of the DRTP  application.  The Fig. 4 shows the data flows within
the system. The physician enters the changes in the radiation treatment at the medical workstation.
These changes, less than 1K of data, are transported to the Cray where the dosage distribution
tables are computed. This dosage distribution is then sent to the PXPL5 for rendering and the
output images forwarded to the SGI workstation.

The dosage data frame transferred from the Cray to the PXPL5 is typically 1 MB in size but may
be as large as 8 MB. Depending on whether the  radiation beam is being continuously changed or
not, the rate of dose  data frame recalculations on the Cray can vary from once every 200 ms to
once every 100 ms resulting in a bandwidth requirement, from the Cray  to PXPL5, of 160 Mbps
to 640 Mbps. The rendered images sent from the PXPL5 to the SGI workstation is currently
transmitted as analog data.

The DRTP application is interactive and requires low latency. The maximum tolerable latency is
subjective and depends on the medical usefulness of the rendered image.  A suggested goal for the
latency is based on the ability to display four data frames per second or 250 ms.  Although the
DRTP application produces images, it is not a traditional imaging application.  Radiation  dosage
data is sent from the Cray to PXPL5 in multiple packets.  For this purpose, a loss of entire dose
data (an improbable situation) may be  acceptable, whereas, a loss of partial data (a more likely
scenario) is  not. The DRTP application therefore requires error-free network service  from the
Cray to PXPL5. Data transfers between the SGI workstation and  the Cray, and between the SGI
workstation and the PXPL5 should also be  error-free.
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4. FUTURE RESEARCH

4.1 Software Architecture

4.1.1 Object-oriented design

The basic performance requirement for the NIU is throughput at gigabit rate. This requirement
often directly conflicts with goals of software modularity, portability, and maintainability. The
NIU software architecture conforms with current software engineering paradigm of object-oriented
design and implementation which emphasizes modularity and extensibility.  The performance costs
of this approach need to be determined, however, the method for evaluating these costs is not
clear.  A naive approach of implementing a traditional real-time operating system for the NIU and
comparing performances of individual components is not practical.   A reasonable approach in this
case may be to evaluate the performance of only a few critical components such as the kernel and
the protocol processing objects.

4.1.2 Division of function

The functionality of the NIU software is distributed among four main concurrent threads. This
approach exploits the expected asynchronous nature of the four functional blocks (receiving traffic
from the PXPL5 ring, sending traffic onto the HIPPI network, receiving traffic from the HIPPI
network, and sending traffic onto the PXPL5 ring) and follows established software engineering
principles of strict modularity.  However, such a division introduces the overhead associated with
context switching. This overhead needs to be quantitatively documented and the asynchronicity of
the functional areas must be confirmed. Such an examination could dictate either a merging of
functional  areas to ameliorate context switching overhead or a further subdivision of  areas to
exploit additional asynchronicity.

4.1.3 Priority/Preemption mechanism

The traffic patterns for this network are well defined.  The bulk of the data flows from the Cray to
the PXPL5.  The other data flows are almost negligible by comparison. The NIU exploits this
imbalance by  prioritizing the inbound path over the outbound path.  At  present, an inbound packet
will always be serviced before an outbound packet. The applicability of this approach for a more
general traffic pattern needs to be investigated.  Detailed measurement of the work done by the four
main threads can be used to devise a static real-time schedule that guarantees best performance.

4.1.4 Delay profile of operating system

Effective optimization of the NIU software requires first the identification of the potential
bottlenecks. While the overall  performance of the software (with various protocol software layers)
has been determined, the delay profiles of the individual components will be documented.

4.2 Protocol Stack

4.2.1 Delay profile of protocol stack

A full protocol stack for the NIU will be implemented. The stack consists of the HIPPI-FP, the
HIPPI-LE, IEEE 802.2, IP, and TCP  sublayers. The stack is being implemented as a set of C++
classes built  on a base protocol class.  Strict layering principles are being used: each sublayer is
a class derived from the sublayer below it; flow of control starts at the top (for transmission) or
bottom (for reception) and passes serially through each layer. Each class provides a semantically
equivalent send-packet and receive-packet function with the upper layers’ functions
associating more services with these functions. For example, the send-packet at the TCP layer
includes sequencing and error control.  Additionally, the TCP layer also provides a socket interface
for application programs.
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This approach helps our research by simplifying implementation and facilitating proof of
correctness and performance testing. We intend to determine empirically the bounds on throughput
and processing delay for various partial stacks. The strict layering is helpful here because sublayers
can be excluded by simply terminating the protocol object derivation at any particular class. Each
class has a generic send and receive function so changes to the testing program are minimal. Since
each protocol layer corresponds to a software layer, the bounds for any particular layer can be
incrementally  determined.  

4.2.2 Alternate implementations of TCP/IP

Layering in communication protocols is an established paradigm. It offers a means for effective
abstraction, ease of implementation, and verification as each layer is presumably independent of the
others. Additionally, protocol software layering also makes explicit the processing requirements
for each protocol layer. This information can be useful in evaluating the feasibility of implementing
a  particular layer in hardware.

The alternative approach is a monolithic or semi-monolithic protocol stack. Such combinations
would present the interface of the top-most and bottom-most layers but include the functionality of
all included layers. Because of the minimal processing required for the HIPPI-FP, HIPPI-LE, and
802.2LLC layers, their amalgamation into one protocol entity may improve overall throughput.
Modularity and independence are sacrificed with monolithic and semi-monolithic approaches so
creating other protocol stacks will be more difficult.

4.2.3 Error detection and recovery

The DRTP application is not error-tolerant.  The loss of a packet results in an incomplete dosage
table and the application may hang.  It is clear that packet loss must be detected.  It is less clear as
to what error recovery steps should be taken. The TCP packet retransmission strategy in this
interactive  real-time environment may cause visible effects at the application level.  If the dosage
tables are being constantly updated (such is the case when  the physician is continuously altering
the radiation beam parameters), it may  be better to skip the incomplete dosage table and go on to
the subsequent one.  The protocol software cannot do this transparently to the application. The
application must make the decision to discard incomplete dose tables.  The protocol software can
only inform the application of packet loss. We intend  to investigate this possibility of light-weight
error handling.

4.2.4 Flow control

The HIPPI-FP protocol provides end-to-end flow control.  In the future, however, the possibility
exists for the HIPPI lines to be multiplexed across several ATM connections. In such a scenario,
the throttling effect  of the underlying network is removed and need for transport-level end-to-end
flow control becomes acute. Questions about the efficiency of the TCP/IP sliding window scheme
in certain high-bandwidth environments have  been raised and we need to evaluate it in our specific
environment to ensure that it does not inadvertently throttle data transfer but just prevents the NIU
from being overrun.

4.2.5 Evaluation and implementation of alternate protocols

The throughput of the NIU has been measured with the HIPPI-FP protocol stack in local loopback
mode.  The maximum throughput is in excess of 784 Mbps with single threaded performance
firmware. The full service multi-threaded firmware transfers data over 400 Mbps. The
implementation of HIPPI-LE, IEEE 802.2LLC, and IP layers should not add much overhead since
the processing required in these layers is minimal.  However, the addition of TCP layer with
acknowledgments is likely to add significant latency.  The throughput is also expected to drop.  We
will study these aspects quantitatively in detail.
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Much has been written in the literature about alternative protocols for high-speed low-error
networks [2,3,4,7] as well as adaptations of common protocols [4]. The feasibility of alternative
transport protocols for the NIU will be evaluated in conjunction with efforts to install these
protocols on the Cray and medical workstation.

4.3 Hardware Architecture

4.3.1 Buffer size

Because of expected buffer limitations on the NTAs and the unavailability of sufficiently fast high
density FIFOs at the time of the NIU design, the decision was made to provide two 16 KB buffers
each for the source and destination subsystems. Consequent testing has revealed that the
throughput  of the Cray is severely limited due to the 16 KB packet size.  Additionally, the buffer
limitations on the NTA have been eliminated and higher density FIFOs are now available. We
intend to expand the FIFO buffers  on the NIU in order to accommodate larger packet sizes and
thereby increase the throughput between the Cray and the PXPL5. We do not anticipate that this
expansion will necessitate any board changes other than the replacement of the FIFOs which were
socketed by design.

5. SUMMARY

The Network Interface Unit (NIU), the communications interface for the Pixel Planes 5 graphics
supercomputer, provides a fertile testbed for research in the operating systems, protocols and
hardware necessary for supporting gigabit communications.  Various issues need to be resolved.
The advantages of object-oriented design in applications development has been ably demonstrated
but its suitability in a real-time, high-bandwidth environment has to be verified. The performance
profiles of various components of our software, including the multi-threaded kernel and the
protocol stack, have to be compiled and compared to more traditional implementations. The
environment also raises concerns about the limitations of TCP and the benefits of scaled-down
versions and alternative protocols need to be carefully examined.  Error handling and flow control
are two issues that we feel must be handled differently in this type of environment.

The NIU hardware design has proved to be flexible and testing has  indicated that it is performing
near the theoretical bounds. The design verifies that a single-processor system can provide near
gigabit performance  for lower layer processing. We need to determine whether such rates can be
maintained when transport protocol processing is added. A tentative change envisioned for the
NIU is the expansion of the FIFO buffers to accommodate packet sizes larger than 16 KB. This
upgrade will not require any changes in the circuit board since future devices will be pin-
compatible .
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