
VISTAnet Network Interface Unit: 
Prototype System Specification 

(TR91-017) 

Raj K. Singh 
Stephen G. Tell 
David Becker 

Microelectronic Systems Laboratory 
The University of North Carolina 
Department of Computer Science 
CB# 3175 Sitterson Hall 
Chapel Hill, NC 27599-3175 

The work undertaken for the VISTAnet project is supported, in part, by the 
National Science Foundation and the Defense Advanced Research Projects 
Agency under cooperative agreement NCR 8919038 with the Corporation for 
National Research Initiatives. Support is also provided by BellSouth Services 
and GTE Corp. 



1. Introduction 

2. Characteristics and Constraints 
2.1 The VISTAnetApplication 
2.2 Computing Resources 

2.2.1 Cray Y-MP 
2.2.2 Medical Workstation 

CONTENTS 

2.2.3 Pixel-Planes 5 and its salient features 
2.2.3.1 Ring Network 
2.2.3.2 Graphics Processor 
2.2.3.3 Frame Buffer 
2.2.3 .4 Renderer 

2.2.4 Classification of Resources 
2.3 The Network 

2.3.1 Performance: overhead, throughput and flow control 
2.3.2 Protocol and Interfaces 

2.3.2.1 HIPPI-PH 
2.3.2.2 HIPPI-FP 
2.3.3.3 Intermediate Protocols 

3. NIU Architecture and Implementation 
3.1 Introduction: Hardware/software decomposition philosophy 
3.2 HIPPI interface subsystem 

3.2.1 HIPPI-PH 
3.2.1.1 Connection, LLRC and Parity 
3.2.1.2 Ready pulse generation 

3.2.2 HIPPI-FP 
3.3 Ring Interface 

3.3.1 RingP: all ring bound communication 
3.3.2 Message routing and addressing styles 

3.3.2.1 Peripheral style network-bound communication 
3.3.2.2 Host style network-bound communication 

3.3.3 Control port messages 
3.4 Protocol Processing 

3.4.1 Data Buffers 
3.4.1.1 Ring bound FIFO buffers 
3.4.1.2 Network bound SRAM buffers 

3.4.2 Checksmn computation hardware and software 
3.4.3 NIU testability 

4. NIU and Future Research 

Acknowledgment 

References 

Appendices: 
A. NIU Software Architecture 
B. NIU Hardware Registers 
C. NIU PROM Services 

VISTAnet NIU System Specification 

2 

2 
2 
2 
3 
3 
3 
3 
4 
4 
5 
5 
5 
7 
8 
8 
8 
9 

10 
10 
10 
11 
11 
11 
12 
12 
12 
12 
14 
14 
16 
16 
17 
17 
17 
18 
18 

18 

18 

19 

20 
20 
21 
27 

pg. I 



VISTAnet Network Interface Unit: 
Prototype System Specification 

1. INTRODUCTION 

Emerging trends in high-speed networking and high-performance computing systems have 
revitalized the research in distributed parallel computing. The notion of metacomputers is being 
developed, where a large number of heterogeneous computing resources are networked together 
and operate in tandem to solve problems beyond the scope of the resources of any one system in 
the cluster. The advent of high-speed networks of increased bandwidth is putting demands on 
performance and functionality of the host interfaces. 

VIST Anet is one of five national research test beds organized by the Corporation for National 
Research Initiative (CNRI) and funded in part by NSF, DARPA, and private corporations such as 
BellSouth and GTE. The key goal of the VISTAnet project is to harness the capabilities offered by 
emerging public network standards such as A TM and SO NET to support interactive 3-D radiation 
treatment planning by linking three supercomputers namely, Cray Y -MP (Y), MasPar MP-1 (MP), 
and Pixel-Planes 5 (PXPLS) and a Medical Workstation (MWS) through a gigabit BISDN 
network. 

The Network Interface Unit (NIU) is an intelligent custom communication interface that provides 
full-duplex I/0 channel directly to the message passing token ring network of the PXPL5 machine. 
It uses a standard PXPL5 ring board providing two pairs of transmit and receive ports to the ring 
backplane. The NIU interfaces to the A TM/SONET fiber-optic network over a pair of 800 Mbits/s 
simplex High Performance Parallel Interface (HIPPI) links through the Network Terminal 
Adapter (NTA). The HIPPI interface will be implemented as two simplex channels: one receive 
(RX) and one transmit (TX). 

The general characteristics of the application, computing resources and various interfaces in the 
network are described in section 2. The constraints imposed due to these characteristics on NIU 
design will also be described. Section 3 describes an architecture and outlines a proposed 
implementation. Various hardware and software trade-offs and their impact on future research will 
also be discussed in this section. 

2. CHARACTERISTICS AND CONSTRAINTS 

2.1 The VIST Anet Application 

The driving application of the VISTAnet project is radiation treatment planning. It is a visually 
oriented interactive application and generates traffic that requires a low latency but tolerates an 
imperfect network. The interactive nature of the application requires that the NIU offers a low 
latency and high throughput path to PXPL5. The visual nature of the data makes it relatively 
insensitive to the infrequent errors expected on a high-quality fiber-optic network. 

2.2 Computing Resources 

Preliminary studies show that various computing resources in the network have unique 
communication requirements. For example, PXPL5 is a multiprocessor system with four 
subsystem types which communicate via the custom ring network. A brief description of different 
computing resources is given below. 
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2.2.1 Cray Y-MP 

The Cray Y-MP 8/432 with four processors provides the basic parallel and pipeline computing 
resource and serves as the workhorse for the numerical computation associated with radiation dose 
calculation and visualization. For communication with other resources, we will use the high-speed 
HIPPI interface and its associated drivers. 

2.2.2 Medical workstation 

The Medical Workstation (MWS) serves as a front end for user interaction with the application. In 
the minimum configuration, it will provide a display monitor for generated images and some input 
devices such as joystick, keyboard, and mouse. 

Although the fmal MWS system configuration is yet to be determined, we will explore three 
proposed hardware configurations and assess their impact on design and development of network 
interfaces, upper-level protocol and related driver software. Our intent is to design the NIU to 
support any of the following three proposed configurations for the MWS. 

1. A commercial workstation with built-in high-resolution framebuffer. The workstation would 
be connected to the A TM/SONET network through a smart HIPPI interface card with a master 
interface for the native bus of the host workstation. This HIPPI interface card would be connected 
to an NTA. This configuration would offer an advantage in interesting network related research by 
allowing small control packets from pointing devices to be mixed with large data packets on the 
same high-bandwidth network. 

2. A scaled-down PXPL5 system with minimal resources. For example, a one-rack system with 
communication ring, few renderers, few GPs and a host-interface. We will refer to this system as 
a mini-PXPL. The host for the mini-PXPL would have to be a Sun-4 workstation. This 
arrangement would also support generation of mixed traffic by channeling the control data packets 
into the network through NIU. It will also support research into additional ways to decompose 
the problem among distributed computing resources. As we will see in the next section and later, 
a network with multiple PXPL5 machines poses some unique problems. 

3. · A commercial framebuffer with on-board HIPPI interface and a monitor. The frame buffer acts 
as a dumb peripheral device and connects to an NT A. Since a dumb framebuffer is not directly 
coupled with the workstation, the MWS would interact with other nodes through Internet or dial­
up connections. 

2.2.3 Pixel-Planes 5 and its salient features 

The primary application of the Pixel-Planes 5 (PXPLS) system is real-time rendering of 3-D 
graphics images. The PXPL5 system is a collection of heterogeneous computing resources 
connected through a high-speed ring network. The three primary resources are: (1) Graphics 
Processor (GP), (2) Renderer, and (3) Framebuffer. GPs process 3-D polygon data to generate 
commands for the Renderers. These commands cause the Renderers to create an image that is sent 
to the Framebuffer for display. A fourth resource, the host interface (HIF), provides the 
communication to the host workstation. The PXPL host workstation is a SUN-4 system which is 
required for initialization and monitoring of PXPL5, but is not involved in the main data flow of 
the application. The remaining components of the PXPL5 system require more detailed 
examination as they are used heavily by the application. 

2.2.3.1 Ring Network: Each ring port (node) provides both receive and transmit channels at a 
sustained transfer rate of 20MW /sec (i.e. 32-bit words at 640 Mbps). Internally the ring is 
implemented with a high-speed clock (160 MHz or 6.25 ns period). The channel acquisition time 
is proportional to the total number of ports on the ring. Since there can at most be 128 ports on the 
ring, the maximum ring latency is equal to (128*6.25 ns*2.5 = 2 JJ.S). The factor of 2.5 accounts 
for two ring cycles, one each for acquiring a channel and for acquiring the receiver and some 
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additional overhead. Actual channel acquisition delay can be arbitrarily long as application boards 
will not allow their respective receivers to be acquired until their input buffers are sufficiently 
empty. There is no provision for polling of receivers; once a transmitter begins sending a 
message, it is blocked until the addressed receiver is acquired and the message delivered. 

The ring boards provide a message passing system between the ring ports on each application 
board. The beginning and the end of a message are delimited by out of band hardware signalling; 
size is typically included in the message. The general form of all ring messages is shown in Fig. 
1(a). The first word of each message, called the Ring Address Word (RAW), contains a 7-bit 
Ring Node Address that is interpreted by the ring boards as the destination port of the message. 
The remaining 25 bits are encoded as per application software requirements. 

The following sections examine message formats used by each of the existing application boards. 
Based on these message formats, we propose an addressing mechanism for integrating the NIU in 
the ring and the network. 

2.2.3.2 Graphics Processor: GPs can send messages as large as their memory. However, 
the size of incoming messages is limited to 1792 words. The message format of the GP is 
completely under control of software running on the Intel i860 microprocessor on board. This 
software, known as the Ring Operating System (ROS) uses the message format shown in Fig. 
1(d). 

Mailboxes are a software abstraction provided by ROS for use by upper layer software. The 
mailbox number is in effect another level of addressing that identifies different tasks in the upper 
layer software such as the PPhigs polygon graphics system, or the volume rendering system. 

2.2.3.3 Frame Buffer: The two ports on the frame buffer are used for different types of 
messages; each message contains only one command. Both ports use the message format shown 
in Fig. 1 (b). Each command, however, must be sent to a particular port. Commands with display 
data are sent to port 0 or 1 depending on the target memory bank. These commands use the 18-bit 
memory address field of the address word. The commands for writing the color look-up table, 
cursor position, or cursor .shape include a variable number of additional words and ignore the 
memory address field of the address word. The Write CSR and Write Address Register 
commands are each followed by a single 32-bit word. The Read CSR command consists only of 
the address word. The status is sent to the ring address set by the most recent Write Address 
Register command. The following table summarizes the format of all six framebuffer 
commands. The "length" column refers to the total length of the message including the address 
word and any data words. 

Command Length 
Write Data 

Write Ramdacs 

Write Cursor 

WriteCSR 2 

ReadCSR 1 

VISTAnet 

InterpretatiOn of address data words 
Address word: 18 bits of memory address 

3 bits of command code 
Data Words: Display data (N is a multiple of 128) 

Address word: 
Data words: 

Address word: 
Data words: 

Address word: 
Data word: 

Address word: 

NIU System Specification 

command code only 
Ramdac address and data 
(N is a multiple of 2) 

command code only 
Cursor chip address and data 
(N is a multiple of 2) 

command code only 
5 bits of new CSR value 

command code only 
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Write Address 
Register 

Read Address 
Register 

2 

2 

Address word: 
Data word: 

Address word: 
Data word: 

command code only 
New value for address register 

command code only 
return address to which register 
value is sent. 

2.2.3.4 Renderer: Each renderer application board contains two ports to the ring. One port is 
labelled IGC Port and the data received at this port is interpreted by the microcode sequencer 
called Image Generation Controller (IGC). The IGC generates instructions and control for the 
array of custom SIMD processors. 

The other ring port is known as the backing store port. The backing store (BS) is composed of 
dual-ported video RAMs (VRAMs) with one port connected to the SIMD array and the other to 
the BS port. The memory system is fast enough to provide a path from the backing store to the 
ring at a sustained rate of 20MW/sec. The SIMD array can be instructed through the IGC to write 
data into the backing store. Once the data is in the backing store, it can be transferred to other 
devices on the ring. 

The Renderer is a typical dumb device; transfer of data to and from backing store must be 
coordinated by other devices on the ring. In order to transfer data out of backing store, some ring 
device must send a command to the backing store port instructing it to send data to a particnlar ring 
address. The ring device sending the BS_TRANSMIT command (Fig. l(c), Opcode=Ox3) to the 
backing store port need not be the one receiving the data. The BS _TRANSMIT command is 
followed by a destination address word which is used verbatim as the RAW for the message 
containing transmitted data. This aspect of the renderer backing store operation constrains data 
flow from the renderer to the NIU (Ref: PXPL5 Renderer Functional Description Sec. ill.4.l.-2) . 

The backing store port command format is shown in Fig. l(c). Multiple commands can be sent in 
a single message. These commands are of varying length. The frrst word of a command contains 
a 4-bit opcode. If the opcode is a no-op, the remaining bits of the command word are ignored; for 
other opcodes all25 application-board-specific bits are significant and have the meanings as shown 
in the Fig. l(c). 

2.2.4 Classification of Resources 

The computing resources, described in previous sections, can be categorized based on their 
communication capabilities. It is important to distinguish between two classes of devices: smart 
and dumb devices. A smart device is one that is capable of processing arbitrarily formatted data. 
Such devices can be programmed in software to handle changing protocol requirements and 
support flow controL Example of such devices are Y, GP, MP and MWS. A dumb device, on 
the other hand, is one that is constrained to fixed data formats since all processing is implemented 
in hardware. It provides limited capability for flow control and error handling. Examples of 
dumb devices are Renderer and Framebuffer. This poses significant constraint on the design of 
NIU. 

The following section describes the network characteristics across the HIPPI network. The 
implementation section will later return to the details of messages and addressing styles among 
application boards and their role in the network. 

2.3 The Network 

A network is generally characterized by its hardware and software components. At the lowest 
level, networks provide an unreliable packet delivery due to lost or destroyed packets due to 
hardware failure and delivery of packets in scrambled order. To provide a reliable packet delivery 
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system, a stack of upper layer protocols (ULPs) with the capability for positive acknowledgement 
and retransmission is implemented on top of the hardware layer. In the following section, we 
estimate the NIU requirements from the standpoint of supporting a protocol stack that will enable a 
reliable delivery of packets. 

31 

31 25 24 0 

Ring Node Application Board Specific 
Addr (7 bits) (25 bits) 

Data Word* 

Fig.1(a): Generic Ring Message Format 

31 25 24 21 20 3 2 0 

Ring Node unused MemAddr Cmd 
Addr (7 bits) (4 bits) (18 bits) (3) 

Data Word* 

Fig.1(b): Framebuffer Message Format. 
Mem Addr used for certain commands only. 

25 24 18 17 11 10 4 3 0 

Ring Node #lines sector# start line Opcode 
Addr (7 bits) (7 bits) (7 bits) (7 bits) (4) 

Data Word* 

#lines sector# start line Opcode 
(7 bits) (7 bits) (7 bits) (4) 

Data Word* 

Fig.1 (c): Renderer Backing Store Message Format. 
Multiple commands may be sent in same message. 

31 25 24 12 11 

Ring Node Msg Size in Mbox# 
Addr (7-bits) Words (13·bit) (12-bits) 

Fig. 1 (d): Ring Operating System (ROS) Message Format 
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2.3.1 Performance: overhead, throughput and flow control 

The hardware complexity of various NIU subsystems is directly dependent on the division of 
tasks (between software and hardware), network buffering capacity, and flow-control mechanism 
(acknowledgement, retransmit etc.) supported by the upper layer protocol (ULP). 

The following paragtaph describes the basic network components such as SONET and ATM 
protocol and discusses their impact on the design of protocol processing subsystem of NIU. This 
will result in specifications for the size and speed of various building blocks of the protocol 
processing subsystem. It must, however, be noted that cenain constraints are imposed due to the 
state-of-the-art in technology and availability of off-the-shelf components. For example, we have 
decided to limit the HIPPI packet size to 16KB due to the size limitation of available fast FIFO 
devices. In future, as bigger and faster components become available, the older devices can be 
replaced to update the hardware system. A simple software change at different hosts will enable a 
full access to the enhanced capabilities of the NIU. The basic network characteristics are as 
follows: 

Maximum SO NET throughput 

Maximum ATM cell payload size 
Total ATM cell size with header 
Maximum ATM throughput 

Maximum size ofHIPPI packet 
Maximum size ofHIPPI burst 

- 622 Mbps * 0.9654 (overhead)- 600 Mbps 

= 44Bytes 
= 53 Bytes (5B header + 4B adaptation) 
= (44/53) * 600 Mbps = 498 Mbps 

= 16KB (4KW) 
= 1 KB (256W) 

Thus, with the maximum bandwidth of 498 Mbps between NTA and NIU 

HIPPI burst service time 
HIPPI packet service time 

- (1KB * 8)/498 Mbps = 16.5J.Ls 
= (16KB*8)/498 Mbps = 263J.Ls 

A PXPL5 ring pon can transfer data at the peak rate of 640 Mbps. However, the effective 
throughput is slightly lower due to added overhead shown below: 

Ring channel acquisition time 
Ring message payload (4KW) 
Start and end of message overhead 
Effective HIPPI packet service time 

- 3J.Ls 
= (4KW*32)/640Mbps = 204J.Ls 
"' lJ.Ls . 
= 208J.LS. 

The time difference between a packet received from the network and the time required to transmit it 
over the ring is (263-208)J.Ls = 55J.Ls. This time is available for the time-critical ULP related 
processing, i.e., acknowledgement, retransmit, and local control processing. In the best case 
estimate, with a high performance processor (e.g. 25MHz RISC processor with 40ns period and 
average of 1.5 cycles/instr), one can execute nearly 55J.LS/(40ns*1.5) = 916 machine instructions in 
this duration. 

To determine the size of on-board memory, we need to estimate the buffering capacity of the 
network. We estimate the maximum length of the fiber between MCNC and UNC as 20 miles (or 
32 km). With the speed of light in fiber at 200,000 km/s, the time of flight - 160 J.LS. 

HIPPI burst data in fiber 
Buffering capacity of A TM network 
Buffering capacity of NTA 

- 160J.Ls * 1KB/16J.Ls - 10 KB 
= 1400 cells * 44B/1024 = 60KB 
= 32KB 
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Thus, there is nearly 102KB (-6.4 HIPPI packets) of data in transit in one direction, or a total of 
13 HIPPI packets in flight in both directions. The buffer size of 64KW or 16 HIPPI packets 
should be sufficient to support the flow control algorithm of ULPs. These calculations indicate 
that we can experiment with a wide range of window sizes in software. 

Excluding the adaptive time-out capability of many protocols, to establish a time-out period for 
retransmission from the NIU, we need to estimate the worst case tum-around time for the 
acknowledgement. This is directly dependent on the number of packets in the network and the 
packet processing overhead at the Y. In the worst case scenario, with 13 packets in the network in 
both directions (13*2541J.s) and about 101J.s packet processing overhead at theY, the time-out can 
be set in the vicinity of 3-4 ms. 

2.3.2 Protocols and Interfaces 

The NIU's primary role is to provide a high speed data transfer channel between PXPL5 and 
remote hosts. In order to maximize the data throughput, we have decided to minimize the protocol 
overhead by trimming the protocol stack. This decision is also in concurrence with the 
requirements of low latency and high error tolerance of the underlying application in our network. 

The deliverable NIU will implement the following stack of protocols: 

HIPPI-PH Transfer of bursts of data to the NTA 
HIPPI-FP Unreliable connectionless datagram service 

(Optional standard and experimental protocol layers) 

Rm2P Encapsulated PXPL5 ring message delivery service 

Nevertheless, NIU will provide a flexible platform that will support many different protocols 
through changes in software. It will provide for protocols such as TCP/IP, XTP, TP4, and others 
running at gigabit rates by performing common computation-intensive tasks, such as checksum 
computation and data transfer, in hardware. Future research into network protocols will involve 
changing the software running in the NIU's microprocessor. The HIPPI-PH, HIPPI-FP, and 
RingP layers are required by the NIU hardware design. The following sections describe each of 
these three layers at a behavioral level. 

2.3.2.1 HIPPI-PH: The HIPPI-PH protocol provides for physical signaling to transfer 256-
word bursts of data and to delimit packets composed of these bursts. It provides the test for 
transmission related errors by employing a 2-D parity and LLRC checks on each burst. However, 
certain types of error may still go undetected. It does not provide any mechanism for error 
correction and recovery. The HIPPI-PH is based on two simplex connection-oriented channels. 
A 32-bit 1-field is used at the start of a connection to convey addressing, routing and control 
information. The HIPPI-PH data format is shown in Fig. 2. 

2.3.2.2 HIPPI-FP: The HIPPI-FP provides an unreliable datagram service to its client upper 
layer protocols. It supports multiple protocols through the use of ULP-ID byte in its header. It 
breaks and establishes HIPPI-PH connections, as required, based on the destination of each 
datagram. The FP layer breaks up client protocol data (data set) into HIPPI-PH bursts. HIPPI­
PH packets transmitted by HIPPI-FP consist of three areas, called the Header, D1 area, and D2 
area, each starting and ending on a 64-bit boundary. Figure 3 shows the HIPPI-FP packet 
format. 

Each client datagram consists of two parts, a short Dl_data_set and a long D2_data_set. 
However, each of these may be omitted from the FP-packet. A D 1 and D2 data set pair is sent in 
its own HIPPI-PH packet. The size of the D1 and D2 data sets is delivered, although the D2 size 
can be left unspecified at the start of the packet by setting the D2_data_size to a value of Oxffffffff. 
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This unspecified D2 size feature will not be supported by the NIU. The use of HIPPI-FP is 
desirable as it allows for interoperability among testbeds and emerging computing systems with 
standard HIPPI interfaces. 

connection 

packet wait packet 

wait burst LLRC burst LLRC 

Fig.2: HiPPI-PH Data Format 

The processing of the HIPPI-FP header will be carried out by the NIU's microprocessor. The 
intermediate protocol layers are at liberty to use the Dl and D2 data sets and ULP-ID as desired. 
Multiple intermediate protocols can be supported through the use of different ULP-IDs. 

Header_ 
Area 

D1_Area 

D2_Area 

31 

ULP-id 

24 23 22 21 11 10 3 2 0 

p 8 Reserved 01_Area_Size D2_0ffset WordO 

02 Size 

D1_Data_Set 

D2_Data_Set 

Fig. 3: HiPPI-FP Packet Format 

2.3.2.3 Intermediate Protocols: To allow maximum flexibility in future research, the NIU 
makes minimal assumptions about the protocol layers located between HIPPI-FP and RingP. The 
protocol software can determine the number of header words required by the intermediate 
protocols. A 16-bit l's complement checksum is computed over the entire arriving HIPPI packet. 
The software can determine how this checksum relates to any headers in the intermediate layers. 

The intermediate layers can be omitted completely. A simple control program can pass data directly 
to the RingP layer after HIPPI-FP processing is completed. Initially, NIU will be operated in this 
manner. More complex protocol stacks can be added later. The NIU research document outlines 
the implementation of a standard protocol stack consisting of the HIPPI-LE, IEEE 802.2/SNAP, 
IP, and TCP layers in some detail. 
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For convenience, we will refer to the variable contents of this intermediate layer as 
To-Be-Determined-Protocol (TBDP). It has been proposed that the standard TCPIIP stack will be 
the first complete protocol stack to be implemented. In this case TBDP can be read as "TCP." The 
transfer units or packets used by TBDP will be referred to as "TBDP transfer units". In case of 
TCP/IP, the transfer unit is called a segment. 

All arriving HIPPI data is treated identically by the associated NIU. When a HIPPI packet arrives 
at the NIU, the HIPPI-FP and intermediate protocol related data will first be processed as 
described later. The intermediate protocol's payload will contain RingP-encapsulated ring 
messages. These messages are placed directly on the ring without further processing. 

RingP is a simple layer that encapsulates various forms of PXPL5 ring messages. It consists of a 
single header word prepended to each ring message indicating its length. The use of a length word 
provides record boundaries between messages for use with recordless stream protocols such as 
TCPJIP in intermediate layers. RingP can also be used in a synchronized mode with 
intermediate protocols that provide record boundaries. In synchronized mode each transfer unit of 
the intermediate protocol contains an integral number of complete ring messages; ring messages do 
not span intermediate protocol's transfer units. 

3. NIU ARCHITECTURE AND IMPLEMENTATION 

The NIU will consist of the following three major subsystems: 

• HIPPI Interface 
• Network Protocol Handler 
• Ring Interface 

A nomenclature for NIU channels is established to avoid confusion of relative terms like "transmit" 
and "receive". The channel routing data from the NIU to the outside world is called the network­
bound channel; the channel routing data from the outside world to the NIU is known as the ring­
bound channel. 

-
In designing the NIU, attention will be paid to providing adequate testability. Additional data paths 
will be provided to exercise the protocol processor and data buffers through ring portl. 

Figure 4 shows a block diagram sketch of the protocol processor subsystem. It should be 
emphasized that the design is in development phases. A system level simulation will help in 
refining details of the specific circuit design. 

3.1 Introduction: Hardware/Software decomposition philosophy 

To accommodate the high data transfer rate, many NIU functions will be implemented using fast 
programmable logic devices. Some NIU functions will be implemented with the help of a high­
performance microprocessor to provide flexibility for future research. The exact division of tasks 
between hardware and software has been based on detailed analysis of these requirements. 

3.2 HIPPI interface subsystem 

3.2.1 HIPPI-PH 

The HIPPI interface will consist of two simplex channels; one each for transmit (HIPPI-PH 
source) and receive (HIPPI-PH destination). The NIU design will be implemented using high­
performance, low power TTL and CMOS devices. At the destination port, the differential ECL 
signals from the HIPPI cables will be converted to TTL signals using lOOK series ECL-to-TTL 
receivers. Similarly, at the source port, the differential ECL signals will be generated using lOOK 
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series TIL-to-ECL drivers. The signal levels and timing will conform to the HIPPI-PH standard 
specifications (Ref: X3T9.3/88-023 REV7 .1). 

Processor 
4Kx36 subsystem Cmd 

~ FIFO - FIFO ... . 
BankO j.!P: SPARC 1Kx32 D EPROM: 16Kx32 

H e 32 4Kx36 SRAM: 256Kx32 
s • FIFO r+ i • 

p t Bank1 ADDR DATA CTRL ~ 
p r r , 

Checksum • 
I -- Unit 110 Bus -
s Real-
u Time 
b Clock 
s 
y 32 
s • 
t 
e s Header 
mo FIFO SRAM Msg Len Ring Addr 

~ f+ Counter Word u 1Kx32 32Kx32 
r t 

BankO A 

c • . . 
e 32 SRAM 32 

.... 32Kx32 ~ Checksum 
Bank1 Unit 

Fig. 4: Protocol Processor Subsystem 

3.2.1.1 Connection, LLRC and Parity: Hardware state machines in the HIPPI interface 
subsystem will handle the connection initiation and termination as per the HIPPI-PH specification. 
The HIPPI interface subsystem will check the parity and LLRC information on the received data 
and generate the same for the transmitted data. It will interact directly with the data buffers of the 
network protocol subsystem to transmit and receive data. While a packet is received and placed 
into a FIFO buffer, the LLRC and parity evaluation hardware will set a flag if an error is detected 
anywhere in the packet This flag will be the primary indication to the protocol software whether a 
packet was received correctly. 

3.2.1.2 Ready pulse generation: The flow control of HIPPI-FP using ready pulses for 
each burst requires special attention because the FIFO buffers of the NIU are packet-oriented 
instead of burst-oriented. In order to send the correct number of ready pulses to accept a long 
packet without being overrun by possible small packets, we propose to first send a single ready 
pulse to receive the first burst of a packet Later, based on the length in the HIPPI-FP header, we 
will send the appropriate number of additional ready pulses to receive the remainder of the packet. 
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Software reading the header will write to a hardware register called the destination ready pulse 
counter. When written with a nonzero value, the hardware will count down and generate the 
specified number of ready pulses. Software control of this counter allows other ready pulse 
strategies to be explored. This counter should not be confused with the count of incoming ready 
pulses at the HIPPI source port, which is handled entirely in hardware. 

3.2.2 HIPPI-FP 

The implementation of the IDPPI-FP layer in the NIU will be distributed among various 
subsystems. The HIPPI interface subsystem hardware will handle the function of segmenting 
packets into HIPPI-PH bursts for transmission, and reassembling received bursts into contiguous 
packets. Most of the other HIPPI-FP tasks will be handled by software. 

Software in the microprocessor will keep track of the HIPPI !-field addresses used for network 
routing. When a different !-field is required from the previous packet, the sofrware will signal to 
the HIPPI subsystem to break the current connection and initiate the new. 

The HIPPI-FP offset and fill features will not be supported by NIU. An offset at the start of the 
D2 area is not required because the RingP messages consist of 32-bit wide words. The f:tl.l area at 
the end of the D2 data set is not supported due to increased complexity of the hardware to discard 
data at the end of the packet. Generally, after the header words are removed from the front of the 
packet, the hardware controller will deliver the data to the ring until the end of the packet is 
reached. The overall result of this implementation is that a short HIPPI burst, if any, must occur at 
the end of the packet. An instance of such a packet is illustrated in Figure 3b of the Appendix B of 
HIPPI-FP standards document 

3.3 Ring Interface 

The ring interface provides the communication link between the NIU and the PXPL5 system. 
Each of the two ports, namely port 0 and port 1, provide simultaneous transmit and receive 
capabilities. The port 0 will be used for communications directly to the microprocessor. It will be 
designated as the command port and used for system initialization, testing, and monitoring tasks. 
The port 1 will be used to transfer ring messages to and from the network. It will therefore be 
designated as the data port. 

3.3.1 RingP: all ring-bound communication 

Only the lower 16 bits of the 32-bit RingP header word are used to encode the length of the 
message. A length of one indicates a message consisting only of RAW and no data words. A 
length of zero indicates that there is no valid ring message. The header with zero length can be 
beneficially used to pad the HIPPI-FP packet in building a packet containing an even number of 
32-bit words. The remainder 16 bits are reserved and should be set to 0 for compatibility with any 
future work. 

A timeout mechanism will be implemented on the data port to recover from the situation where a 
corrupted RAW selects a nonexistent ring device and the NIU would otherwise hang waiting for 
the receiver to be acquired. 

3.3.2 Message routing and address styles 

The application devices in the PXPL5 ring network are assigned a fixed hardware address of 7 
bits. In view of the emerging possibility of multiple PXPL5 resources in the same network, we 
have developed an augmented addressing scheme that extends over the entire ATM/SONET 
network. The modified address is composed of two parts, namely, major or global address and 
minor or local address. 
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A major address is associated with each of the computing resources, Y, MWS, MP, and PXPL in 
the ATM/SONET network. The minor address serves as the ring node address if the major 
adc:Iress identifies a PXPL5 system. However, a PXPL5 system is connected to the network via 
an NIU. Thus, NIU plays the role of a gateway and would be assigned a major address. It 
provides the address translation capability through look-up tables to route data to correct 
destination devices in the network. This address translation is carried out by software in the 
microprocessor, and can be modified or omitted if necessary. · 

The derivation of the routing information varies with different source and destination devices. 
Two unique communication styles with associated addressing requirements have been identified: 
(1) the peripheral style, and (2) the host style. The peripheral style addressing is typically used 
for communication whenever a dumb device is involved, while the host style addressing is 
primarily used between smart devices. Figures 5 & 6 show the details of peripheral and host style 
communications, respectively. 

3.3.2.1 Peripheral style network-bound communication 

The peripheral style communication was developed due to the need for a Renderer to send data 
through the network to a Framebuffer located on a distant PXPL5 ring. The Renderer is 
constrained because only one word, namely, the RAW can be prepended to outgoing backing store 
data. The RAW must contain enough information for the NIU to route the data to the frame buffer 
on the remote ring and for the framebuffer to place the data in its memory. As shown in Fig. 1(b), 
4 bits of the RAW are nnused by the framebuffer, and therefore can be used by the sending NIU to 
route the message. 

When a ring message with peripheral style addressing arrives at an NIU, bits 21-24 (4 bits) of the 
RAW will be used as an index in a table. Each entry of this table will contain the following three 
items: 

• a new 7 -bit ring node address 
• a 13-bit protocol-specific value (e.g. port number) 
• a 32-bit HIPPI !-field global network address 

The new 7 -bit ring node address from the table will be substituted into the RAW replacing the ring 
node address used to reach the NIU. The modified RAW and .all data words in the message will 
be encapsulated in a TBDP transfer unit. A 13-bit destination port number, connection number, or 
other TBDP-specific information will be taken from the table. The entire TBDP transfer unit will 
be sent to the network node identified by the HIPPI !-field from the table. 

In the case of messages destined for another PXPL5 ring, the receiving NIU will extract the 
message from the TBDP transfer unit. The resulting message will be placed on the ring without 
any further processing. The messages bound for theY, MP, or MWS do not need a 7-bit ring 
node address. In such cases, these 7 bits could be ignored by the receiver or may be used to 
convey other control information. If the ring node address field is ignored, the substitution from 
the table could be omitted. This look-up table will be referred to as the Network Address 
Table (NAT), and the index in the NAT will be known as the Peripheral Address Table 
Index (P-ATI). 

3.3.2.2 Host style network-bound communication. 

Host style communication is used where more addressability is desired than is available with the 4-
bit table index of the peripheral style. This style is based on the message format used by ROS as 
shown in Fig. 1(d). The 12-bit "mailbox" field of the address word will be used to index a table. 
Each entry in the table will contain the following four items: 

• a new 7 -bit ring node address 
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• a new 12-bit mailbox number 
• a 13-bit protocol-specific value 
• a 32-bit HIPPI I-field value 

The new 7 -bit ring node address from the table will be substituted into the RAW replacing the ring 
node address used to reach the NIU. The new mailbox number will be substituted into the RAW 
replacing the table index. The new mailbox number specifies a mailbox located on the remote host. 
The modified RAW and all data words in the message will be encapsulated in a TBDP transfer 
unit. The destination port number of the TBDP segment will be taken from the table. The entire 
TBDP transfer unit will be sent to the Network node identified by the HIPPI !-field from the table. 

In the case of messages destined for another PXPL5 ring, the receiving NIU will extract the 
message from the 'IBDP transfer unit. The resulting message will be placed on the ring without 
any further processing. Messages bound for theY, MP, or MWS need not have the 7-bit ring 
node address replaced. This substitution can either be omitted, or used to convey other 
information. 

This table will be known as the Network Address Table (NAT) and its index as the Host 
Address Table Index (H-ATI). The Host and Peripheral modes will use the same NAT with 
4096 entries. 

3.3.3 Command port messages 

In addition to the two styles of network-bound messages, there are messages that terminate at the 
NIU itself. The latter type of messages support functions like testing, initialization, and 
monitoring. We will refer to this type of messages as control messages. The ring port 0 will 
be exclusively used for control messages. 

Messages sent to the control port will be decoded by software running on the microprocessor. The 
RAW of each control message will include an opcode indicating the type of the control message. 
Opcodes will be assigned as needed by particular NIU programs. Opcodes to be assigned will 
include functions for loading programs into the NIU, examining NIU memory, querying status, 
and setting software parameters. 

The EPROM bootstrap code for the microprocessor will implement the required opcodes for 
downloading the network software and some minimal system testing. 

Standard protocol software will need to assign control message opcodes to select between the two 
addressing styles discussed above. When a ring message arrives at the NIU interface port, we 
must a priori know the RAW format of the message. The existing RAW formats that led to the 
two addressing styles, described above, leave us no room to indicate the type in the message itself. 
The host and peripheral style data messages will be intermixed with control messages indicating the 
style of the data messages to be transmitted next. It will be the responsibility of ROS and 
application software to send these control messages when necessary. If a host style message 
arrives at the data port when a peripheral style message is expected or vice-versa, it may result in 
transmission of the message to an incorrect destination. 

3.4 Protocol Processing 

The protocol handling subsystem further consists of the following subsystems: 

• Ring bound data FIFOs 
• Network bound data buffers 
• High-performance microprocessor 
• Processor RAM/ROM 
• Checksum computation units 
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The Cypress CY7C611 SPARC integer unit has been selected as the NIU's microprocessor for its 
low context switch overhead and simpler hardware design. 

3.4.1 Data Buffers 

3.4.1.1 Ring bound FIFO buffers: The incoming data from the HIPPI subsystem will be 
placed in a FIFO buffer. There will be two FIFO buffers for efficiency. The buffer accesses will 
be interleaved, i.e., while one buffer is being filled by the HIPPI subsystem, the ring interface will 
empty the other. The following more detailed discussion assumes that a HIPPI connection has 
already been established at the destination port. 

When a packet arrives at the HIPPI destination port, a data buffer controller will direct it to one of 
the two buffers. As soon as the first word is received, the buffer controller will indicate to the 
microprocessor that a header is arriving . The microprocessor will proceed to read and process the 
header while the rest of the packet is being written into the FIFO. The software can read a variable 
number of words from the FIFO making up the packet header. Any data not read by the processor 
can later be transferred to the ring. 

The ULP-id byte of the HIPPI-FP header will be used to determine the ultimate destination of the 
data. Multiple ULP-ids will be assigned to NIU to support services such as loop-back test and 
data transfer to the ring via multiple upper level protocols. 

If examination of the header by ULP software reveals that a potentially valid packet is arriving, it 
will wait until the entire packet has been received. At this point, an error flag indicating parity 
and/or LLRC error is available from the HIPPI subsystem. The checksum unit will provide the 
computed checksum for the packet received. If these two checks are successful, the 
microprocessor immediately flags the ring interface subsystem to start transferring the data from 
buffer to the ring. If any of the data validity tests (parity, LLRC, header or checksum) on the 
packet fails, the processor will flag the buffer controller to discard the packet and not place it on the 
ring. 

To clarify the above discussions, each of the two FIFO buffers can be in one of the following 
states: (1) receiving data from the HIPPI subsystem only; (2) receiving HIPPI data with the 
processor reading the header; (3) waiting for the processor to determine if a packet was good; (4) 
sending data to the ring; (5) waiting to receive the HIPPI data. The buffer controller will maintain 
these states for the two buffers in cooperation with the protocol software. 

3.4.1.2 Network-bound SRAM buffers: Data from the ring will be placed into a buffer 
system similar to that used on the ring bound side. As the ring message comes in, a partial 
checksum will be computed and its length determined. The RAW of the message will be captured 
into a separate register and not placed in the buffer. The protocol processor will be flagged that 
RAW is available. 

While the remainder of the message from the ring is being written into the buffer, the protocol 
processor begins constructing headers for the HIPPI-FP and ULP layers. Table look-up in the NAT 
can be performed during this time. When the complete message is stored in the buffer, the message 
length and partial checksum is made available to the protocol processor. Header formation is 
completed at this time. The header is then written into the header FIFO and the data buffer 
controller is signaled to begin sending the packet to the H!PPI subsystem. 

Multiple buffers will be implemented to support research into high performance reliable transport 
protocols. A reliable protocol will use a positive acknowledge and retransmit scheme with sliding 
windows, requiring buffers for all unacknowledged packets. The microprocessor will have control 
over buffer allocation, and therefore software can reuse buffers when acknowledgements are 
received. When the protocol software needs to do a retransmission, it must re-write the header into 
the header FIFO but the data part of the packet remains stored in the same buffer. The number of 
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buffers is based on the calculation of section 2.3.1 using buffering capacity of the network. A timer 
facility will be provided for protocol software to implement time-outs for packet retransmission. 

3.4.2 Checksum computation hardware and software 

In order to keep up with the high data rates, the packet checksum computation must be performed 
in hardware. We intend to support a 16-bit checksum, as used in TCP. This type of checksum, 
however, is not most suited for hardware implementation in NIU's environment with 32-bit data 
paths. Furthermore, protocols implemented during later research may handle checksums on their 
headers differently. 

The checksum computation hardware will add up two independent 16-bit checksums over each 
half of the 32-bit word in the data stream. The entire HIPPI packet will be added on ring bound 
data, and the entire ring message on network-bound data. 

The hardware checksum units will provide the two 16-bit partial sums to the protocol processor. 
Software on the processor will make protocol-specific adjustments to the checksum. Such 
adjustments may include subtracting the partial checksum over the header section from the 
checksum received from the hardware unit to arrive at the final checksum value. Based on the 
checksum, the protocol software will determine if the ring-bound data can be passed on to the ring 
interface. On network -bound data, the protocol software will insert the adjusted checksum into the 
header. 

Protocols that do not use a checksum can ignore the header computation units. Checksum schemes 
that can not be adapted to use these 16-bit hardware checksum adders are incompatible with the 
NIU. Protocols that require incompatible checksum schemes can not be implemented on the NIU 
without modification to the protocol. 

3.4.3 NIU Testability 

Additional data paths will be provided between the microprocessor and data buffer memories so 
that these components can be tested in isolation. We will develop diagnostic software for the NIU 
to verify proper operation of these components. These data paths will be available to protocol 
software, which could use them to implement performance test features. Desirable test features of 
protocols include loop back tests, data sinks, and data sources. 

4. NIU AND FUTURE RESEARCH 

The hardware discussed in the preceding sections provides an adaptive platform for 
communications related research. The software running on the microprocessor will control the data 
buffering hardware to implement several network protocols. 

The first protocol software written will be essentially "no protocol." The RingP delivery service 
layer will run directly above the HIPPI-FP layer. Future protocol research will be carried out by 
writing new software running in the NIU. A possibility includes implementation of the full HIPPI 
standard stack ofHIPPI-LE, IEEE-802.2, IP, and TCP. 
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APPENDICES 

The following sections outline the details of software architecture and hardware register 
definitions. These details will be updated as the system design and implementation is further 
developed. 

A. NIU SOFTWARE ARCHITECTURE 

NIU's software architecture will be object oriented where each object maps onto a corresponding 
hardware module. A real-time supervisor kernel will provide prioritized scheduling of service 
requests from various subsystems on the board. The service request can be generated either by 
setting a bit in a status register or via a hardware interrupt. 

The modular software architecture will facilitate network research by allowing the protocol stacks 
to be changed with minimal impact on the application. A raw or no-protocol stack will be 
implemented first. The hardware and software architecture has been designed to support TCP/IP 
as the target protocol and will be implemented next. The Fig. Al shows the software hierarchy. 
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B. NIU HARDWARE REGISTERS 

1.0 Interrupts 

Interrupt Level Priority Polling Equivalent Activated By 

Ox7 PKTARRIVINGx to l 
Ox7 PKTARRIVEDx to l 

RINGBOUND 
RINGBOUND 
NETBOUND 
NETBOUND 
DATAPORTWRITE 
HIPPISRCWRITE 
COMANDPORT 
COMANDPORT 
CLOCKOVERFLOW 

Ox6 DPRECEIVING of RINGCTRL to l 

RBINTENABLE 
RBINTENABLE 
DPARRVINTENABLE 
DPININTENABLE 
DiTXINTENABLE 
HSINTENABLE 
CPRXINTENABLE 
CPTXINTENABLE 
Always activated. 

Ox6 DPRECEIVING back to 0 
OxS DATAPORTBUSY to l 
Ox4 SENDINGPKT of HIPPICTRL to 0 
Ox3 No equivalent to msg anived interrupt 
Ox3 CMDPORTREADY of RINGCTRL to l 
Ox2 High bit of CLOCK in NIUSTATUS to 0 

2.0 Registers 

Some of the registers in the following table are labelled "trigger". This implies that they are 
activated by performing a write to them. The value written is ignored, however, write enable 
triggers the action controled by that register. 

Register 

CLEARERROR 
CMDPORTCLOSE 
CMDPORTFIFO 
CMDPORTWRITE 
DATAPORTABORT 
DATAPORTLEN 
DATAPORTOPEN 
DATAPORTRAW 
DATAPORTXMIT 
HIPPICTRL 
HIPPIIFIELD 
HIPPILEN 
HIPPIXMIT 
NETBNDCHKSUM 
NETBNDCTRL 
NETBNDHEADER 
NIUSTATUS 
RESETFIFOO 
RESETFIFOl 
RINGBNDCHKSUM 
RINGBNDCTRL 
RINGBNDFIFOO 
RINGBNDFIFOl 
RINGCTRL 
RINGP 

CLEARERROR 

CMDPORTCLOSE 

VISTAnet 

Address 

Oxffffff54 
Oxffffff40 
Oxffffff04 
Oxffffff04 
Oxffffff58 
Oxffffff24 
Oxffffff5c 
Oxffffff20 
Oxffffff4c 
OxffffffOc 
OxfffffflO 
Oxffffff24 
OxffffffSO 
Oxffffff28 
Oxffffff2c 
Oxffffff18 
OxffffffOO 
Oxffffff44 
Oxffffff48 
Oxffffff14 
Oxffffff30 
Oxffffff18 
Oxfffffflc 
Oxffffff08 
Oxffffff34 

Trigger 

Yes 
Yes 

Yes 

Yes 

Yes 
Yes 

Hardware Signal 

PPClrErr 
CPEndPktEnL 
CPFifoRdEnL 
CPCmdWrEnL 
DPResetEnL 
DPLenRdEnL 
PRcvEnL 
DPRawRdEnL 
DPTxGoEnL 
HPCsr{Rd,Wr}EnL 
HSIFWrEnL,HDlFRdEnL 
HSLenWrEnL 
HSTxGoEnL 
NBCksmRdEnL 
NBCsr{Rd,Wr}EnL 
NBHeadWrEnL 
PPStatRdEnL 
RBORstEnL 
RBlRstEnL 
RBCksmRdEnL 
RBCsr{Rd,Wr}EnL 
RBOHeadRdEnL 
RBIHeadRdEnL 
RPCSRRdEnL 
PIDRdEnL 

Trigger this register to clear the ERRORRESET bit in NIUSTATUS. 

This trigger closes the channel acquired by the Command Port 
allowing another channel to be acquired 
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CMDPORTFIFO 

CMDPORTWRITE 

DATAPORTABORT 

DATAPORTLEN 

DATAPORTOPEN 

DATAPORTRAW 

DATAPORTXMIT 

HIPPICTRL 

HIPPIIFIELD 

HIPPILEN 

HIPPIXMIT 

NETBNDCHKSUM 

NETBNDCTRL 

NETBNDHEADER 

NIUSTATUS 

RESETFIFOx 
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Reads from this register return the next word in the Command Port 
FIFO and remove that word from the FIFO. Valid only when 
CMDFIFOAVAIL is set. 

The first word written to this register is used as Ring Address Word 
(RAW) to acquire a ring channeL Successive words are transmitted 
on this channel until CMDPORTCLOSE is triggered. 

Trigger this register to stop the RingP hardware from attempting to 
acquire a ring channeL The next FIFO read is assumed to be the 
begirming of a new RingP packet. 

Length of the last packet to enter the data port. Valid from the 
second NETBOUND interrupt until next trigger of DATAPORTOPEN. 
Only the lowest 16 bits are used. Use DATAPORTLEN _MASK to 
mask out invalid bits. 

Trigger the Data Port to accept the next ring message sent to it over 
the PXPL5 ring. 

The first word of the packet entering the data port. Valid from first 
NETBOUND interrupt until next trigger of DATAPORTOPEN. 

Trigger this register to start the RingP hardware reading the buffer 
indicated by the RBFIFOSELECT bit. 

The control and status register for the HIPP I interface 

Write I-Field of aremote destination to this register before raising 
MAKEREQUEST bit in HIPPICTRL. 

Write the length minus 1 of the data in the window the Source Port 
is reading from. A zero causes one word to be read from the 
window. 

Trigger the Source Port to send a packet. Must be connected, i.e. 
have ACCEPTED raised. 

Adds both halves of the incoming data. Does not include RAW. The 
low 2-bytes contain the sum of all the low 2-bytes in the incoming 
data. The high 2-bytes sum the high 2-bytes. 

The control and status register for the netbound buffers 

Words written to this address are stored in the Netbound FIFO until 
the Source Port reads them. Should not be written to when the FIFO 
is full or transmitting to the source. 

The control and status register for the Processor Subsystem 

These triggers clear their respective Ring Bound FIFOs to allow 
another HIP PI packet to enter. 
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RINGBNDCHKSUM 

RINGBNDCTRL 

RINGBNDFIFOx 

RESETFIFOx 

RINGP 

3.0 Register Bit Fields 

Ring Bound Check sum can be read after PKTARRIVED comes on. 
The left and right shorts of the packet are summed into the right and 
left halves of this register. The lower half does not overflow into the 
upper half. If CHKSUMSTATE is SUMERROR, too many packets 
have come in and a check sum has been lost. If CHKSUMSTATE is 
SUMQUEDO, this register contains an invalid value. 

The control and status register for the Ring Bound FIFOs 

Reads from the register return the last value in Ring Bound FIFO x 
and remove that word from the FIFO. Only valid if FIFO x is 
selected to be read from the processor and is not empty. 

These triggers clear their respective Ring Bound FIFOs to allow 
another HIPP I packet to enter. 

The register holds the last value the RingP hardware read from the 
Ring Bound FIFOs unless the RINGPCOUNTER bit is raised in 
which case is holds the RingP counter value. 

3.1 HIPPICTRL Bit Fields 

The control and status register for the HIPPI interface. 

HIPPICTRL Field 

ACCEPTED 
CONNECTREQUEST 
DSTINTERCONNECT 
HAVEPULSES 
HIPPICONNECT 
HSINTENABLE 
IFLDPARITY 
MAKEREQUEST 
PULSE COUNT 
PULSE ZERO 
REJECTED 
SENDINGPKT 
SOFTLEDO 
SOFTLEDl 
SOFTLED2 
SOFTLED3 
SRCINTERCONNECT 

ACCEPTED 

CONNECTREQUEST -

DSTINTERCONNECT-

VISTAnet 

Bit Mask Low Active Read/Write Hardware Signal 

Ox00020000 Read HSConnectH 
OxOOOOOOOl Read liD Request 
Ox00000004 Read RXINTCSDH 
OxOOlOOOOO Read SRdyPosH 
OxOOOOOlOO Write RXCONNECT 
Ox00020000 Write HSintEnab 
Ox00000078 Read HDPErrL[0 .. 3] 
OxOOOlOOOO R/W HSRequestH 
Ox0000003f Write 
Ox00000002 Read RxCzero 
Ox00040000 Read HS RejectH 
Ox00200000 Read HSPacket 
Ox01000000 Yes Write 
Ox02000000 Yes Write 
Ox04000000 Yes Write 
Ox08000000 Yes Write 
Ox00080000 Read TXINTCDSH 

Bit is 1 while the remote destination accepts the connection. Valid 
after MAKEREQUEST is raised. 

Bit is 1 while the remote HIPP I Source requests a connection or 
wants to continue a connection. 

Bit is 1 while there is a physical connection to a remote Source. 
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HAVEPULSES 

HIPPICONNECT 

HSINTENABLE 

IFLDPARITY 

MAKEREQUEST 

PULSECOUNT 

PULSE ZERO 

REJECTED 

SENDINGPKT 

SOFTLEDx 

SRCINTERCONNECT-

Bit is 1 while the Source Pon has burst request pulses it can respond 
to. 

Set bit to 1 to complete a HIPP I connection to the Destination Pon. 

Set bit to 1 to enable HIPP ISRCWRITE interrupts. 

All bits of this field are 1 when the parity is correct across the !-Field 
word. Valid while CONNECTREQUEST is raised. 

Set bit to 1 to request a connection from an interconnected remote 
destination. Set bit to 0 to break down connection. Current value is 
readable. 

Write to this field the number of burst request pulses to be sent to 
the remote Source. 

Bit is 1 whenever the Destination Pon has no burst request pulses to 
send. 

Bit is 1 when a remote destination refuses the connection 
request. Valid after MAKEREQUEST is raised. 

This bit becomes 1 when the Source Pon is triggered and returns to 
0 after a packet is sent. 

Set bit to 0 to tum on LED. LEDO is the inner light and LED3 is 
the outer light of the four lights. Note that writes to HIPPICTRL 
must maintain the other writable fields in the register. 

Bit is 1 while the source cable is connected to a remote destination. 

3.2 NETBNDCTRL Bit Fields: The control and status register for the netbound buffers 

NETBND(.TRL Field 
BANKS ELECT 
HEADERACTIVE 
HEADEREMPTY 
HEADERFULL 
NETBNDWINDOWO 
ETBNDWINDOWl 
PACKET SENT 
SENDDATA 

BANKSELECT 

HEADERACTIVE 

HEADEREMPTY 

HEADERFULL 

VISTAnet 

Bit Mask Low Active Read/Write Hardware Si,.al 
Ox00000040 Write BankSel 
Ox00000004 Yes Read HdrActiveH 
OxOOOOOOOl Yes Read NBHEFL 
Ox00000002 Yes Read NBHFFL 
Ox00000007 Write NBMWinO 
Ox00000038 Write NBMWinl 
Ox00000010 Read NBEOPL 
Ox00000080 Write NBMDataH 

Set this bit to 0 for incoming data to enter a window in bank 0 and 
for the Source Pon to read data from a window in bank 1. Set to 1 
to direct incoming data into bank 1 to read data from bank 0. 

Bit is 1 when the Netbound Header FIFO is being read by the 
Source Pon. 

Bit is 1 when the Netbound Header FIFO is empty. 

Bit is 1 when the Netbound Header FIFO is full. 
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NETBNDWINDOWx 

PACKET SENT 

SEND DATA 

Set this field to the window number (0-7) that data will enter or 
leave bank x. 

Bit is I when the Netbound buffer window is emptied by the Source 
Port. 

Set bit to I when Source Port should send the the Netbound Header 
FIFO and the currently selected buffer window. 

3.3 NIUSTATUS Bit Fields: The control and status register for the Processor Subsystem. 

NIUST ATUS Field Bit Mask Low Active Read/Write Hardware Signal 
CLOCK OxOOOOffff Read 

Read ERRORRESET OxOOOlOOOO PPWasErrH 

CLOCK 

ERRORRESET 

This field is the clock tick counter. It is incremented every 40 ns. 
Overflows cause a CLOCKTICK interrupt to occur. 

Bit is I after NIU resets processor because it halted in the ERROR 
state. 

3.4 RINGBNDCTRL Bit Fields: The control and status register for the Ring Bound 
FIFOs. 

RINliBNDt;TRL Field 
CHKSUMSTATE 
SUMERROR 
SUMQUEDO 
SUMQUEDl 
SUMQUED2 
FIFOEMPTYO 
FIFOEMPTYl 
FIFOFULLO 
FIFOFULLl 
LONGPKTO 
LONGPKTl 
PKTARRIVEDO 
PKTARRIVEDl 
PKTARRIVINGO 
PKTARRIVINGl 
RBFIFOSELECT 
RBINTENABLE 
TESTBITO 
TESTBITl 
XMITERRO 
XMITERRl 

CHKSUMSTATE 

SUMQUEDx 

VISTAnet 

Bit Mask Low Active Read/Write Hardware Signal 
Ox00003000 Read RBChs[O .. l] 
OxOOOOOOOO 
Ox00003000 
Ox00002000 
Ox00001000 
OxOOOOOlOO Yes Read RBOEFL 
Ox00000200 Yes Read RBIEFL 
Ox00000400 Yes Read RBOFFL 
Ox00000800 Yes Read RBIFFL 
Ox00000004 Read RBOLongPktH 
Ox00000040 Read RBlLongPktH 
Ox00000002 Read RBOinH 
Ox00000020 Read RBlinH 
OxOOOOOOOl Read RBOArrH 
OxOOOOOOlO Read RBlArrH 
Ox00004000 R/W RBSe!H 
Ox00008000 R/W RBintEnab 
OxOOOlOOOO R/W TESTO 
Ox00020000 R/W TEST! 
Ox00000008 Read PktOErrH 
Ox00000080 Read PktlErrH 

This field reports the current state of the checksum hardware. 

These states indicate x checksum values are available to be read 
through the RINGBNDCHKSUM register. 
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SUMERROR 

FIFOEMPTYx 

FIFOFULLx 

LONGPKTx 

PKTARRIVINGx 

PKTARRIVEDx 

RBFIFOSELECT 

RBINTENABLE 

TESTBITx 

XMITERRx 

This CHKSUMSTATE indicates hardware lost a checksum value 
since it already held two checksum values. 

Bit is 0 when Ring Bound FIFO xis empty. 

Bit is 0 when Ring Bound FIFO x is full. 

Bit is 1 when the Destination Port has attempted to buffer a packet 
larger than the size of Ring Bound FIFO x. 

Bit is 1 while a HIPPI packet is entering Ring Bound FIFO x 

Bit is 1 after a packet has entered Ring Bound FIFO x and is cleared 
when the FIFO is cleared. 

Set this bit to 0 for the RingP hardware to read Ring Bound FIFO 0 
and the processor to read FIFO 1 from the RINGBNDFIFOl 
register. 

Set bit to 1 to enable RINGBOUND interrupts. 

Set these bits to test processor connections with hardware registers. 

Bit is 1 when the packet in Ring Bound FIFO x was received with a 
HIPPI parity error. 

3.5 RINGCTRL Bit Fields: The control and status register for the ring interface. 

RINGCTRL Field 
CMDFIFOAVAIL 
CMDFIFOEMPTY 
CMDFIFOFULL 
CMDPORTREADY 
CPRXINTENABLE 
CPTXINTENABLE 
DATAPORTBUSY 
DPARRVINTENABLE 
DPININTENABLE 
DPRECEIVING 
DPTXINTENABLE 
DPWAITING 
RINGPCOUNTER 

CMDFIFOAVAIL 

CMDFIFOEMPTY 

CMDFIFOFULL 

CMDPORTREADY 

VISTAnet 

Bit Mask Low Active Read/Write Hardware Silmal 
OxOOOOOOlO Yes Read CpA vail 
OxOOOOOOOl Yes Read POFEFL 
Ox00000002 Yes Read POFFFL 
Ox00000008 Read CPTxReadyH 
OxOOOOOOOl Write CPRxlntEnab 
Ox00000002 Write CpTxlntEnab 
Ox00010000 Yes Read DPTxBusyL 
Ox04000000 Write DPArrlntEnab 
Ox08000000 Write DPinlntEnab 
OxOlOOOOOO Read DPRxBusyH 
OxlOOOOOOO Write DPTxlntEnab 
Ox02000000 Yes Read RxlReadyL 
Ox20000000 Write RBMOeL 

Bit is 1 when the processor can read a word from the 
CMDPORTFIFO register. 

Bit is 0 while Command Port FIFO is empty. 

Bit is 0 while Command Port FIFO is full. 

Bit is 1 while the Command Port has a ring channel open. 
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CPRXINTENABLE 

CPTXINTENABLE 

DATAPORTBUSY 

DPARRVINTENABLE-

DPININTENABLE 

RINGBNDCTRL 

RINGCTRL 

DPRECEIVING 

DPTXINTENABLE 

DPWAITING 

RINGPCOUNTER 

Set bit to 1 to enable COMMAND PORT interrupts to occur when ring 
messages arrive. 

Set bit to 1 to enable COMMAND PORT interrupts to occur when the 
Command Pon acquires a ring channel. 

Bit is 0 while the RingP hardware is trying acquire a channel or 
sending a packet over an acquired channel. 

Set to 1 to activate the arriving NETBOUND interrupt 

Set to 1 to activate the arrived NETBOUND interrupt 

The control and status register for the Ring Bound FIFOs. 

The control and status register for the ring interface. 

This bit is 1 while a ring packet is entering the Data Port 

Set bit to 1 to activate DATAPORTWRITE interrupt. 

This bit is 1 after a complete ring packet is received and 0 after 
DATAPORTOPEN is triggered. 

Set bit to 1 to read the RingP counter from the RINGP register. Set 
bit to 0 to read from the RINGP register the last word RingP read 
from the selected Ring Bound FIFO. 

C. NIU PROM SERVICES 

When Pixel Planes 5 is reset, the NIU stans executing its PROM program. This program monitors 
the Command Port for command messages from the ring. The command messages allow the NIU 
software to be downloaded and execution to switch to the new program. 

RAW Bit Field 

Command 
Length 
NIU Rinq Address 

Mask 

OxOOOOOOOf 
OxOOOffffO 
OxfeOOOOOO 

The Ring Address Word of command messages has the command in the low 4 bits, an optional 
length in next 16 bits. The possible commands are: 

NIUROM PING 

VISTAnet 

(.ommand Name 
NIUROM PING 
NIUROM READ 
NIUROM WRITE 
NIUROM JUMP 
NIUROM LED 
NIUROM STATUS 
NIUROM VERSION 
NIUROM MTEST 

(.MD 

0 
1 
2 
3 
4 
5 
6 
7 

This command requests the NIU to send the second word of the 
packet back out the command port as a packet in and of itself. 
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Format Word Descnptwn 
RAW 
Reply RAW 

Command is NIUROM PING. Length is ignored. 
1 word packet to be sent out Command Port 

Reply Description 
Reply RAW From command packet 

NIUROM READ 

Format Word 
RAW 
Reply RAW 
Address 

Reads from NIU memory. 

Descnptwn 
Command is N IUROM _READ. Length is number of words to read. 
1 word packet to be sent out Command Port 
Address to read data from 

Reply 
Reply RAW 
Data words 

Description 
From command packet 
Length words of data 

NIUROM WRITE Write data in command packet to memory. The NIU does not send a 
reply to this message. 

Format Word DescriptiOn 
RAW 
Address 
Data Words 

Command is NIUROM WRITE. Length is how many words to write to memory. 
Where to write remainder of packet 
Length words of data. 

NIUROM JUMP Command NIU processor to start executing at a new address. The 
NIU does not send a reply to this message. 

Format Word Description 
RAW Command is NIUROM JUMP. Length is ignored. 
Address Where execution should jump to. 

NIUROM LED This command sets the NIU software controlled LEDS. The NIU 
does not send a reply to this message. 

Format Word Description 
RAW Command is NIUROM LED. Length is ignored. 
Display The low four bits of this word are displayed on the LEDs. Bits set to one indicate 

the respective LED should be turned on. 

NIUROM STATUS Request the NIU to send back a status message. 

VISTAnet 

Format Word 
RAW 
Reply RAW 

Descnptwn 
Command is NIUROM _STATUS. Length is ignored. 
RAW to which status message is sent. 
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Reply 
Reply RAW 
BoardiD 

Self Test Result 

Clock Counter 
Clock Overflows 
Trap Base Rell;ister 

NIUROM VERSION -

Description 
From command packet with length set to length of reply. 
24-bit magic number identifying the NIU board and an 8-bit board serial 
number (actually an EPROM serial number; there is no separate 
Board-ID chip) 
00000000 - all passed. 
00000001 -last reset was from cpu ERROR state. 
00000002 - EPROM checksum failure 
00000004 - short RAM test failure 
00000008 - I/0 register loopback test 
00000010- Network data handling status register sanity check 
The low 16 bits are the current value of the clock tick counter. 
Count of counter overflows since the last reset. 
Value of the SP ARC %tbr at the last reset 

Request the NIU PROM version. 

Format Word Description 
RAW 
Reply RAW 

Reply 
Reply RAW 
Version String 

NIUROM MTEST 

Command is NIUROM_ VERSION. Length is ignored. 
RAW to which status message is sent. 

Description 
From command packet with length set to length of reply. 
Null terminated string containing the RCS IDs for the PROM 
source files. 

This command starts the continuous memory test. Board must be 
reset to halt test. Errors detected by the test are indicated on the 
software controlled LED s. 

Format Word DescriptiOn 
RAW Command is NIUROM MTEST. Length is ignored. 
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