
-

A One-Write Algorithm for
Multi valued Regular Registers

TR91-016

March, 1991

Soma Chaudhur
Martha J. Kosa
Jennifer L. Welch

~.'• ,.,<":

F

'
The University of North Carolina at Chapel Hill '

Department of Computer Science
I

I
' CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

A One-Write Algorithm for Multivalued Regular Registers

Soma Chaudhuri, University of North Carolina

Martha J. Kosa, University of North Carolina

Jennifer L. Welch, University of North Carolina

Abstract

This paper presents an algorithm for implementing an n-reader, k-ary, regular register using

n-reader, binary, regular registers which requires only one physical write per logical write.

1 Introduction

In any concurrent system, processes need to communicate with other processes. Concurrent reads

and writes of shared memory cells, or registers, are reqnired for communication. If the shared

memory provides more guarantees, then it is more useful to the users of the system, but implementing

the shared memory may be more difficult. Thus it is helpful to know which types of registers can

implement which other types. Many such implementations have been developed and proven correct

[Bio87, BP87, Lam86, LTV90, NW87, Pet83, SAG87, Tro89, Vid88, VA86, CW90].

A register is a memory cell that supports concurrent reading and writing by a collection of

processes. Reads and writes do not happen instantly; each operation starts at a certain time and

ends at a later time.

Several different types of registers can be defined. The parameters that can be varied to yield

different types of registers are the number of concurrent readers supported, the number of concurrent

writers supported, the number of possible values the register can hold, and the strength of the

consistency guarantees provided when concurrent operations occur. In this paper, we only deal with

registers that support one concurrent writer and n concurrent readers (n 2: 1). A binary register

can hold two different values. A k-ary register, where k > 2, can hold k different values.

Lamport [Lam86] defines three different types of consistency guarantees: safe, regular, and

atomic. These consistency guarantees are listed from weakest to strongest. A read of a safe, a

regniar, or an atomic register returns the latest value written to the register if the read does not

overlap with a write. The differences among the types of consistency guarantees-appear when a read

overlaps at least one write. A read of a safe register can return any legal value of the register. A

read of a regular register must return either the old value of the register or a value written by one

of the overlapping writes. An atomic register imposes a total ordering on the operations performed

on the register. That is, when two reads overlap a write, the read that completes last cannot return

the old value of the register if the read that completes first returns the new value of the register. In

this paper, we only deal with regular registers.

Chaudhuri and Welch [CW90] studied the costs of implementing one type of register (the logical

register) by using registers of another type (the physical registers). The costs they considered were

the number of physical registers, the number of physical operations per logical READ, and the

number of physical operations per logical WRITEt. They were interested in algorithms which were

tThe names of logical operations will be capitalized in the remainder of this paper, and the names of physical

operations will remain in lower case.

1

wait-free, whlch means that each reader or writer can always complete a pending logical operation

by performing a bounded number of actions, regardless of the actions of the other readers and

writers.

Chaudhuri and Welch [CW90] proved that W, the minimum number of physical writes per logical

WRITE necessary in any algorithm for implementing a k-ary regular register using binary regular

registers, was such that 1 :::; W :::; flog k 1· In thls paper, we will show the tight bound W = 1 by

demonstrating that a one-write algorithm for implementing a k-ary regular register using binary

regular registers exists. Section 2 contains definitions whlch will be used in subsequent sections.

Section 3 contains a specification of the algorithm. Section 4 contains a proof of correctness of the

algorithm. Section 5 contains a proof that the algorithm is optimal in the number of binary regular

registers if the class of algorithms to be considered is sufficiently restricted. Section 6 contains

conclusions and a list of open problems.

2 Definitions

In thls section, we define several terms whlch will be used in the specification of our algorithm and

in its proof of correctness.

Assume the existence of a set V, where !VI = k. Let r = C(k, 2). Let Kv be the complete graph

with k nodes where each edge is labeled with a distinct number from the set {0, ... , r -1} and each

node is labeled with a distinct element from V. The special bit set corresponding to v E V is

defined as s(v) ={I: l labels an edge incident to the node in Kv corresponding to v}. Since Kv is

a complete graph, js(v)l = k- 1. Choose some v0 E V to be the initial value in V.

A configuration is any element of {0, 1 }'. If C is a configuration, let C(z1 denote the i'h bit of

C fori E {0, ... , r -1}. Let the initial configuration be the configuration Cr such that Cr[i] = 0

for all i E {O, ..• ,r -1}. Let C be a configuration. For each v E V, let count(C,v) = j{i E s(v):

C[i] = 1}j. Configuration Cis valid if either (1) count(C, v) is even for all v E V, or (2) count(C, v0)

is odd and count(C, w) is odd for exactly one w # v0 •

Let f: {0, 1}"-+ V be the value extraction function. In the following, we define f. First

we define f for valid configurations. Let C be a valid configuration. If count(C, v) is even for all

v E V, then let f(C) = vo. Otherwise, let f(G) = v, where v # v0 and count(C,v) is odd. Now we

define f for invalid configurations. The distance between two configurations C1 and C2 , denoted

d(C1, C2), is the number of bits that differ in G1 and C2• Let c. be the closest valid configuration

2

Physical Registers (Bits): Xo, ... ,Xr-1• initially Xj = 0, for all j E {0, ... , r- 1}

Reader i, 1 ::; i ::; n: variables x 0 , ••• , Xr_1

READ(i):

for j := 0 to r- 1 do x1 := read X; endfor

RETURN(i, f(xo ... Xr-1))

Writer: variables x 0 , ••• , Xr-1 , initially xi = 0, for all j E {0, •.. , r- 1}, and

old, initially old= v0

WRITE(v):

if v # old then

end if

ACK

pick i from s(v) n s(old)

write x; to X;

old:= v

Figure 1: One-Write Algorithm

function, where c(C) is defined to be the first configuration in lexicographic order in the set {D :

Dis valid and d(C,D) is a minimum}. Define f(C), for C not valid, to be f(D}, where D = c(C).

3 The Algorithm

We want to implement a k-ary regular register using binary regular registers such that only one

physical write per logical WRITE is required. Let V be the value set of our logical register, where

lVI = k. Our algorithm uses r binary regular registers (bits). Each bit corresponds to an edge of

[(v. A reader reads all r bits and returns the value off applied to the configuration obtained. The

writer changes a bit only when the value of the logical register changes; when the value is changed

from v tow, the bit whose label is contained in s(v) n s(w) is changed. There is exactly one such

bit because there is exactly one edge connecting v and win [(v. Figure 1 is a formal description of

our algorithm.

3

4 Proof of Correctness

In this section, we prove that our algorithm implements a k-ary regular register from binary regular

registers. The logical register is seen to be walt-free by inspecting the code of the read and write

processes. We now show that the logical register satisfies the regular property.

A terminal configuration is a configuration which appears in the logical register at any point

in an execution of the algorithm in which no logical WRITE is pending. Lemma 1 shows that any

terminal configuration is valid and is mapped by f to the value which was written to the register

by the last WRITE.

Lemma 1 Let C be a terminal configuration resulting from a sequence of m WRITEs for the values

v1,v2, . .. , Vm· Then Cis valid, and f(C) = Vm•

Proof: We proceed by induction on m.

Basis: (m = 0.) Then C = C1. C1 is valid, and f(C) = v0 •

Inductive step: (m > 0.) Suppose the lemma is true form= l. Now we show that it is true for

m = l + 1. Suppose the sequence of WRITEs is v1, v2, .•• , v,, v1+1 and the sequence of corresponding

terminal configurations is C1,C2, ... , C,, CIH· By the inductive hypothesis, C1 is valid, and f(Cl) =

v,. If v, = Vi+l• then cl+l trivially is valid, and f(CI) = f(CI+l) because c, = cl+l· Thus, suppose

that v1 # Vl+l· There are two possibilities for v,. Either v1 = vo, or v1 # va.

Case 1: v1 = v0 • Then count(C,,v) is everifor-an v E V. When the WRITE for v1+1 is

performed, the unique bit bE s(v0) ns(v/+1) is changed. Thus count(Cl+l• v0) and count(Cl+l• vl+d

become odd, and count(Cl+t.v) remains even for all v E V- {va,vl+l}· Therefore Cl+l is valid,

and J(CI+l) = vl+l·

Case 2: v1 # v0 • Then count(C1, v0) and count(C,, v1) are odd, and count(C1, v) is even for all

v E V- {vo,vl}. When the WRITE for vl+l is performed, the unique bit bE s(vl) n s(v/+1) is

changed. There are two possibilities for v1~1 • Either v1+1 = v0, or v1+1 # v0. First suppose that

v1+1 = va. Thus count(Cl+l• v0) and count(Cl+b v1) become even, and count(Cl+l• v) remains even

for all v E v- {va,vl}· Therefore cl+l is valid, and f(C,+t) = Vo. Now suppose that Vi+l # Vo.

Thus count(Cl+h v1+1) becomes odd, count(C/+1, v0) remains odd, and count(C/+1, v) is even for all

v E v- {vo, vl+l}· Therefore c,+l is valid, and f(CI+l) = Vi+l·

0

4

A reader can read any configuration because the reader could be slow and notice traces from

many WRITEs to the logical register by a fast writer. If a reader RETURNs value v, we must show

that v was actually written to the register by some WRITE overlapping the READ or by. the last

WRITE preceding the READ. Lemma 2 shows that a WRITE(v) operation has occurred during

an interval in an execution if a bit in s(v) is changed during that interval. Lemma 3 shows that if

two valid configurations agree in all bits of s(v) for some v and one is mapped to v by the value

extraction function, then the other must be mapped to v by the value extraction function. Lemma 4

shows that an invalid configuration C agrees with its closest valid configuration CN in the special

bits corresponding to f(CN)· These three lemmas are essential to the proof of Lemma 5, which

shows that the reader will RETURN a correct value of the register no matter what configuration it

reads.

Lemma 2 For any time interval in any execution, if no WRITE(v) operation overlaps the interval

or occurs as the last preceding WRITE, then the bits in s(v) are not changed during the interval.

Proof: Suppose in contradiction that a bit in s(v) is changed during the interval. Then the value

in the register changed from some w to v or the value in the register changed from v to some w.

This is impossible because no WRITE(v) operation overlapped the time interval or occurred as the

last preceding WRITE. Therefore, the lemma is true.

0

Lemma 3 Choose any valid configurations C and D. If f(D) = w and C[i] = D[i] for a/1 i E s(w),

then f(C) = w.

Proof: There are two cases to consider. Either w = v0 , or w =I v0 •

Case 1: w = v0 • Thus count(D, v) is even for all v E V. Since C[i] = D[i] for all i E s(v0),

count(C, vo) = count(D, vo). Thus count(C, v) is even for all v E V because Cis valid. This implies

that f(C) = vo.

Case 2: w =I v0 • Thus count(D, w) is odd. Since C[i] = D[z] for all i E s(w), count(C, w) =
count(D,w). Thus count(C,v0) is odd and count(C,v) is even for all v E V- {v0 ,w} because Cis

valid. This implies that f(C) = w.

0

5

Lemma 4 Choose any invalid oonfiguration C. Let D = c(C). Let v = f(D). Then C[i] = D[i] for

all i E s(v).

Proof: Suppose in contradiction that there exists at least one bit bE s(v) such that C and Dare

not equal in that bit. Thus d(C, D) = I ;:: 1. Change bit b in D to yield Cv. Cv is valid and

Cv[b] = C[b]. So d(C,Cv) = 1- 1. This is a contradiction, because D was supposed to be the

closest valid configuration to C. Therefore, the lemma is true.

0

Lemma 5 Let C be the configuration obtained by a reader during some execution of the READ

protocol. Suppose f (C) = v. Then the value v was written by a WRITE which overlapped the

READ or the value v was the result of the last WRITE preceding the READ.

Proof: Assume in contradiction that the value v was not written by a WRITE which overlapped

the READ and the value v was not the result of the last WRITE preceding the READ. Thus no

configuration of the physical registers has the value v during the READ. By Lemma 2, the bits in

s(v) are never changed during the READ. Let D be any configuration of the bits during the READ.

Dis valid by Lemma 1, and D[i] = C[1] for all i E s(v). There are two cases to consider. Either C

is a valid configuration, or C is an invalid configuration.

Case 1: Suppose Cis valid. Since D has the same values as C for the bits in s(v) and f(C) = v,

f(D) = v by Lemma 3, which is a contradiction.

Case 2: Suppose Cis not valid. Let CN = c(C). Then f(CN) = v. By Lemma 4, C[i] = CN[i]

for all i E s(v). By the transitive property of equality, CN[i] = D[i] for all i E s(v). By Lemma 3,

f(D) = v, which is a contradiction.

0

The result of Lemma 5 proves the following theorem.

Theorem 6 A one-write algorithm for implementing a k-ary regular register from binary regular

registers exists.

6

5 Lower Bound on Number of Registers

We have proven the existence of a one-write algorithm for implementing a k-ary regular register

from binary regular registers. The number of registers used by our algorithm is very large, C(k, 2) =

O(k2). The best previously known lower bound on the number of registers for this problem is k,

shown by Chaudhuri and Welch (CW90].

We can show that the upper bound of C (k, 2) is tight for the class of algorithms satisfying the

strong toggle property (which includes our algorithm). A one-write algorithm has the strong toggle

·property if for each pair of distinct v, w E V, there exists a bit l such that whenever the value of

the logical register is changed from v to w or from w to v, bit l is written. Thus every algorithm

with the strong toggle property can be represented by the complete graph on k nodes, where each

node is labeled with a distinct element from V and the edge between v and w is labeled with l. Call

this graph GA.

When k = 3, k = C(k, 2); thus our algorithm is trivially optimal in the number of binary regular

registers used. Theorem 7 shows that C(k, 2) binary regular registers are necessary for any k;:: 4.

Theorem 7 For all one-write algorithms A for implementing a k-ary (k ;:: 4) regular register from

binary regular registers, if A has the strong toggle property, then the number of binary regular registers

used by A is at least C(k, 2).

Proof: Suppose that A is a one-write 3.lgorithm for implementing a k-ary regular register from

binary regular registers, where A has the toggle property and the number of registers used by A is

less than C(k, 2). Then there is some register i such that i is the label of at least two edges in GA.

Thus i labels some distinct edges (v1ov2) and (va,v4) of GA. Suppose the edges have a common

endpoint. Without loss of generality, assume v1 = v3 • Then v2 # v4 because otherwise the edges

would be the same. If the current value of the logical register is v1 and bit i is changed, the new

value of the logical register is both v2 and v3 , which is ambiguous. Thus the edges are disjoint;

vb v2, va, and v4 are distinct. Let j, where j # i, label the edge (v1o v3) of GA. Let f be the function

from terminal configurations to V such that f (C) is the value RETURNed by a logical READ that

observes configuration c. Let cl be any terminal configuration suclt that f(CI) = Vt· Let c2 be

the configuration that differs from C1 only in bit i. Let C3 be the configuration that differs from

C1 only in bit j. Let C4 be the configuration that differs from C3 only in bit i. By the definition

ofGA, f(C2) = v2, f(Ca) = va, and f(C4) = v4. Ct(i] # C4 (z1, Ct[j] # C4[j], and Ct(b] = C4(b] for

7

all bE {O, ... ,r -1}- {i,j}. We now explain how to construct an execution of A which violates

the regular property. We begin in configuration C1 • Then a logical READ begins. For the entire

duration of the READ, the register is in configuration C1 , C3 , or C4 , obtained by occurrences of

WRITE(v1), WRITE(v3), and WRITE(v4) operations. Just before the reader reads bit i, we make

sure the register is in configuration C1 , and just before the reader reads bit j, we make sure the

register is in configuration C4 • Thus the reader obtains configuration C2 and RETURNs v2 , violating

the regular property.

0

A one-write algorithm has the weak toggle property if whenever the logical register is in

configuration C such that f(C) = v and the writer WRITEs wand then v, the resulting configuration

is C. We have proven by brute force that 4 regular binary registers cannot implement a 4-ary regular

register if the weak toggle property is assumed.

6 Conclusion

We have proven the existence of a one-write algorithm for implementing a k-ary regular register

from binary regular registers. The algorithm we have developed is optimal in the number of binary

regular registers used with respect to all one-write algorithms satisfying the strong toggle property.

An interesting open question is to determine a tight bound on the number of physical. registers

needed for more general types of algorithms.

7 Acknowledgments

This work was supported in part by NSF grant CCR-9010730 and an IBM Faculty Development

Award.

References

[Blo87] Bard Bloom. Constructing Two-Writer Atomic Registers. In Proceedings of the Sixth

Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages

249-259, August 1987.

8

[BP87] James E. Burns and Gary L. Peterson. Constructing Multi-Reader Atomic Values from

Non-Atomic Values. In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Sympo

sium on Principles of Distributed Computing, pages 222-231, August 1987.

[CW90] Soma Chaudhuri and Jennifer L. Welch. Bounds on the Costs of Register Implementations.

In Proceedings of the Fourth International Workshop on Distributed Algorithms, September

1990. Also available as TR90-025 from the University of North Carolina at Chapel Hill.

[Lam86] Leslie Lamport. On Interprocess Communication. Distributed Computing, 1(1):86-101,

1986.

[LTV90] Ming Li, John Tromp, and Paul M. B. Vitanyi. How to Share Concurrent Walt-Free

Variables. submitted for publication, June 1990.

[NW87] Richard Newman-Wolfe. A Protocol for Wait-Free, Atomic, Multi-Reader Shared Vari

ables. In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, pages 232-248, August 1987.

[Pet83] Gary Peterson. Concurrent Reading While Writing. ACM Transactions on Programming

Languages and Systems, 5(1):46-55, 1983.

[SAG87] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The Elusive Atomic

Register Revisited. In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, pages 206-221, August 1987.

[Tro89] J. T. Tromp. How to Construct an Atomic Variable. Technical Report CS-R8939, Centre

for Mathematics and Computer Science, Amsterdam, October 1989.

[VA86] Paul M. B. Vitanyi and Baruch Awerbuch. Atomic Shared Register Access by Asyn

chronous Hardware. In Proceedings of the Twenty-seventh Annual IEEE Symposium on

Foundations of Computer Science, pages 233-243, October 1986.

[Vid88] K. Vidyasankar. Converting Lamport's Regular Register to Atomic Register. Information

Processing Letters, 28:287-290, 1988.

9

