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Abstract: 
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The design space of parallel volume rendering algorithms is large and relatively uncharted. No 

adequate framework currently exists for classifying approaches so that distinctions between them are 

clearly understood based on the categories they fall into. We present an analytical decomposition of 

volume rendering tasks that yields a taxonomy of volume rendering algorithms for distributed memory 

multicomputers. In addition to the primary categories, secondary attributes are introduced to build a 

hierarchical classification system. Representative algorithms in each category are described and 

analyzed, giving insight into a whole range of approaches; some as yet untried. 

1. Introduction: 

Recently, in analyzing parallel volume rendering algorithms for a distributed memory machine, it 

became apparent that evaluation of proposed algorithms was hampered by the lack of descriptive 

names and categories for the various approaches. This experience motivated a search for a set of 

meaningful classification parameters which could serve to describe, as well as group, the algorithms. 

A good classification scheme is useful in that it provides a framework for problem analysis, and 

makes clear the distinctions between different solutions. The major features of distinction should place 

an approach into a category with only similar approaches. Minor attributes should then serve to 

distinguish between items in a category, not move them to a new category. Thus, a hierarchy of 

attributes is developed with corresponding levels of importance in determining an algorithm's features. 

We present two major and two minor attributes useful for creating a hierarchy. 
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Volume rendering techniques can be roughly divided into three approaches: Surface 

Representation, Binary Classification, and Multi-valued Classification (MVC). MVC is useful, 

general, and potentially presents the fewest visually objectionable artifacts [Hoehne '90]; therefore we 

focus on this technique. Uniprocessor MVC volume rendering may be decompose into three distinct tasks 

which are: shading, resampling, and compositing. In multicomputer systems we must add a fourth 

task which is: redistributing. The main taxonomy categories are derived from the gamut of 

possibilities which arise from re-ordering these tasks. Sub-categories stem from attributes that are 

common to all algorithms, regardless of which main category they fall into. 

Each main category contains algorithms which share major performance features. By describing 

the features of a category, the main features of all algorithms in that category are communicated. This 

simplifies tradeoff analysis since the number of major alternatives is limited. A representative 

algorithm from each category is presented and discussed to gain an appreciation for that categories 

features. 

The taxonomy and algorithms are general. No specific architecture is targeted, but features 

required to achieve good performance for an algorithm are discussed. The following assumptions are 

made about the system: 

1) It is a message passing distributed memory machine with identical nodes. 

2) Any node may send or receive messages from any other node. 

3) Routing cost may not be constant across all pair of nodes. 

4) A host system is present that can initialize the system and pass user input to the nodes. 

The algorithms scale well since there is no central or master node acting as synchronizer for the 

activities within a frame. This is frequently a bottleneck in systems with many nodes. Frame to frame 

synchronization is performed by the host. 
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2. Volume Rendering Tasks: 

For our purposes, shading will refer to all the processing that is required to convert a data sample to a 

color and opacity. The output of this process is an R, G, B, alpha four-tuple. Examples of this process 

are amply described in the literature [Hoehne '89] [Levay '88] [Drebin '88]. Levay, for example, uses the 

difference between neighboring samples to compute a normal vector at each point. The intrinsic color 

and normal vector is used in a Phong lighting calculation [Phong '75] to yield the final shaded R, G, B 

values for each point. 

In Levay, shading is applied to the original input data array. Alternatively, one may reconstruct 

the continuous input function, resample it based on the current view direction, and shade the new 

samples [Upson '88]. Using either alternative, the shading of any sample point is a function of its 

neighbor's data. Global data is not required. 

The resampling task refers to the reconstruction of a continuous-valued function from fixed samples, 

and the resampling of that function at new positions. Ray-casting with interpolation [Levay '88] , and 

splatting [Westover '89] techniques are commonly used and appropriate for our algorithms. 

Reconstruction during ray casting requires multiple data values in the neighborhood of the new sample 

point. The size of the the reconstruction filter kernel determines how large a neighborhood is needed. 

For simplicity, we assume a maximum kernel size such that eight nearest neighbors to a new sample 

point are sufficient. 

Given a three-dimensional array of shaded points aligned with the view plane, compositing 

[Porter, Duff '84] is done to compute their projection onto the view plane. The points must be ordered 

front-to-back, or back-to-front for this process to work correctly. Note that compositing is associative 

and therefore works correctly if arbitrary, contiguous sets of points are composited to a single value 

which is then composited with the remaining points. This fact is crucial to several algorithms. 

The fourth task, redistribution, arises from the need to move data from node to node in a 

distributed memory multicomputer. Since computation and data is distributed, it is necessary at some 

point to merge or re-sort the data via a communications network. Any such non-local data access is part 
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of the redistribution task. 

3. Major Attributes 

Given the four tasks we have outlined, we may re-order them within certain constraints. Compositing 

must come after shading and resampling; of the 24 possible orderings, only 8 options remain and are 

shown below: 

1. SHade -> ReSample -> COmposite - > ReDistribute => SH-RS-CO-RD 

2. SHade -> ReSample -> ReDistribute -> COmposite = > SH-RS-RD-CO 

3. SHade -> ReDistribute -> ReSample -> COmposite=> SH-RD-RS-CO 

4. ReDistribute -> SHade -> ReSample -> COmposite = > RD-SH-RS-CO 

5. ReSample -> SHade -> COmposite - > ReDistribute => RS-SH-CO-RD 

6. ReSample -> SHade -> ReDistribute -> COmposite=> RS-SH-RD-CO 

7. ReSample -> ReDistribute -> SHade -> COmposite=> RS-RD-SH-CO 

8. ReDistribute -> ReSample -> SHade -> COmposite=> RD-RS-SH-CO 

These eight re-orderings give rise to the taxonomy categories. There are two attributes that 

determine an algorithms major category: 

i) Where redistribution occurs in the sequence of tasks. 

ii) Whether we shade and then resample or vice-versa. 

We group the algorithms by their sequence of shading and resampling. Due to their similarity and in 

the interest of brevity, we analyze only the first four approaches in detail. 
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4. Minor Attributes 

There are minor attributes which an algorithms in any category may possess. Two such attributes are 

the initial data distribution scheme and whether tasks are performed in image or object-space. These 

attributes help to refine the specification of the algorithm. 

4.1. Image and Object-Parallelism: 

Image-space and object-space are often used to refer to parallelism schemes. While they serve to 

distinguish between two methods for parallelizing a single task, like ray casting for example, they do 

not adequately identify algorithms which are a set of tasks; nor do they account for communication 

functions. Parallelism in multicomputer systems is difficult to capture in a single term, since it exists on 

many levels. Traditional object-space parallelism at a high level may coexist with screen-space 

parallelism at a lower level. These terms are inadequate for describing parallelism methods, but are 

still useful for relating task organization for a single node. 

MVC volume rendering tasks may be performed in object-space or image-space. Object-space tasks 

are performed per macro at each node, regardless of that data's projection onto the viewing plane. This 

is a forward mapping [Westover '90] of the data toward the screen projection. Image-space tasks are 

performed per screen element (pixel or ray); a reverse mapping of a pixel into the data at a node. The 

redistribution task generally does an image-space sort of the data, and usually forms a boundary 

between object-space and image-space tasks. It is important to note that the data is already partially 

sorted due to its organization into macros and distribution among nodes. 

4.2. Data Distribution: 

Since volume data sets may be very large, and we assume each node of the system has a fixed memory 

size which is insufficient to hold the entire data set; simple replication of the entire data set at each 

node is not practical. Data distribution is a parameter that classifies an algorithm. Data distribution 

may be static or dynamic, and of any granularity. The minimum redistribution quanta is the 
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granularity of the data distribution. Coarse granularity implies that a node may only send all or none 

of its data to another node. Fine granularity allows any number of arbitrarily connected samples to be 

transmitted. Medium granularity implies that data is transmitted in fixed-size chunks, each some 

fraction of the total data at a node. Note that fine granularity has very high addressing overhead; 

how does one efficiently address arbitrary regions of the 3-D sample grid? Coarse granularity is 

potentially wasteful in that if only one voxel is needed from a node, an entire node's data set must be 

transmitted. Medium granularity is a good compromise between addressing complexity and waste. We 

will refer to a data chunk of medium granularity as a macro. Typically, macros are spatially adjacent 

cubes of data addressed by a single coordinate (ie: the lowest x, y, z voxel coordinate in the macro). The 

optimal size and aspect ratio of a macro is a function of the communication network and the algorithm. 

Peano addressing of the data set [Laurini '85] produces a high probability that spatially close 

points are also close in a linear address space. Peano addressed macros have contiguously addressed 

data points. This has good implications for cache coherence during ray casting, and simplifies 

addressing during macro redistribution. 

Grouping of medium granularity macros is another issue. A node's macros may be a spatially 

adjacent subset of the data set, or some interleaved or random subset. If they are adjacent, we refer to 

the macro distribution as grouped, otherwise it is interleaved or random. 

Resampling by ray casting requires data at neighboring points which gives rise to a redistribution 

problem at node data boundaries. Nodes must request neighboring voxels from other nodes by fetching 

the macros that contain these voxels. The cost of these fetches is a function of the macro size and 

grouping. An adjacent macro distribution may avoid these fetches by replicating the neighboring data 

at each node. Assume N nodes, V samples in the data set, and the macros at each node form a cube. 

Each node must store V /N unique samples. Each face of a node's local data has (V /N)2/3 samples. To 

resample at an arbitrary position, there must be some node with the 8 nearest samples. By replication 

of 3 faces, 3 edges, and 1 corner of neighbor voxels at each node, arbitrary points can always be 

resampled at some node. This results in 
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Dnode = V /N +3(V /N)2/3 + 3(V /N)l/3 + 1 (1) 

total voxels at each node (except at three faces of the the data set where no replication is needed). For 

a non-adjacent macro distribution, the replication must be done for each macro, resulting in a much 

higher total cost. Fig.1 illustrates the replication scheme in two dimensions; extension to three 

dimensions is straight forward . 

• • 
• • These nodes have nine 

Node 3 unique voxels each. 

• • The shaded area shows 
all the voxels that 

• • must be stored at node 
4, including seven 

• • • • • • replicated voxels. 
Node 1 Node 2 

• • • • • • 

(Fig. 1) 

2D nodes with shading showing voxels included in upper right node after replication. 

The table below shows the effect of changing the number of nodes for a 1283 data set. 

#of Nodes Unique Voxels/Node Replicated Voxels/Node % Replication 

8 262,144 12,481 4.76 

64 32,768 3,169 9.67 

512 4,096 817 19.9 

4,096 512 217 42.4 

32,768 64 61 95.3 
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The efficiency of memory usage clearly decreases as the number of nodes increases. 

5.0. Algorithm analysis: 

Analysis of the algorithms is done with respect to memory usage, cpu task organization, and inter-node 

communication. We take into account data size, screen size, number of processing nodes, image quality, 

and data distribution options. Dependence upon data grouping and distribution of interesting voxels 

will be discussed with respect to their impact upon load balancing. The ability to support efficiencies 

such as adaptive ray termination or alpha cut-off, adaptive refinement, and octtrees will also be 

considered [Levay '90]. 

5.1. SHade -> ReSample -> COmposite·> ReDistribute: 

Each node shades its local data and computes its projection onto the view plane in the first three steps. 

The re-sampling and local compositing may be done by either the ray-casting or splatting methods. 

Depending on the macro grouping, the projection at each node will yield one or more sub-images on the 

view plane. These sub-images are globally collected and composited in front-to-back or back-to-front 

order. The redistribution task is therefore moving 2D image data rather than 3D volume data. 

The global compositing may be distributed or centralized to one (or more) screen servers. If 

centralized, the order of region arrival may be controlled by using tokens; or the server may store and 

sort the image regions as they arrive in arbitrary sequence, if it has sufficient memory. Centralized 

compositing is a serial operation and may thus be a poor match for machines with many nodes. 

Distributed compositing would have each node partition its image region(s) into sub-regions which 

are then sent to the node(s) whose data is next in line for compositing. In effect, view rays are passed 

among nodes and travel through the data, wherever it may reside. If this sub-region propagation is 

also used to prioritize the scheduling of rays at each node, then efficiencies due to alpha cutoff may be 

realized. Nodes whose data has not yet been "reached" by any sub-region, should have a default ray 

schedule and hope that their work is not wasted. To minimize waste, adaptive refinement may be used 
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to compute only the coarsest level of refinement for each region; further refinement is performed or 

skipped depending on the alpha values of incoming sub-regions. Some alpha cutoff benefit will be 

realized regardless, since compositing local regions with opaque sub-regions need not be done. 

Goldwasser, et al ['85] have implemented an algorithm of this category in custom hardware with a 

macro size of 643. It did not do any filtering when it resample data so no data was replicated. and used 

central compositing. Simple shading was done as a postprocess based on Z value only. Yazdy, eta! ['90] 

used this approach, with central compositing, on an array of transputers. 

Memory Usage: Equation (1) gives the average number of data samples at each node. These are shaded 

and resampled to produce again that many new shaded points. Additional memory is needed for the 

screen region, and with distributed compositing, a node must also provide memory for incoming regions 

which total at least the size of its own region. 

CPU Tasks: Below are image-space and object-space examples. Image-space methods favor ray casting, 

while object-space methods favor splatting techniques. 

Image-space 

for each ray of the sub-image { 

for each ray step { 

if step neighbors not shaded 

shade step neighbors; 

resample; 

composite into local region; 

} } 

global composite; 

Object-space 

for all voxels 

shade; 

for all voxels in view order { 

resample; 

composite into local region; 

global composite; 

Communication: It is possible for each node to produce a full screen array of pixels as its sub-image. 

Slab shaped macros will cause this; and in this case each node must send and receive an entire screen 
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array of data. More cubic macro aspect ratios will produce smaller sub-images and lower bandwidth 

requirements. 

Efficiencies: Alpha cut-off, adaptive refinement, and an octtree may be used within a node's local data. 

Distributed compositing offers additional efficiencies described previously in connection with ray 

scheduling. 

Load Balance: Load balance is statically set by the data distribution since no 3D data samples move. It 

is dependent on the relative effects of the efficiency techniques at each node, and the view dependent 

compositing sequence. Levoy [89] has shown that there is high spatial coherence in the set of 

interesting voxels for some data sets. Therefore, a medium granularity random or interleaved macro 

grouping would improve the load balance, however this increases the memory requirement and the 

redistribution cost. 

5.2. SHade - > ReSample - > ReDistribute - > COmposite: 

This approach is essentially algorithm 1 with oniy global compositing. Each node is assigned one or 

more rectangular screen regions, called tiles, which it is responsible for. Tile assignment may be static 

or dynamic for each frame. The volume data is statically distributed evenly among nodes. Each node 

shades and resamples its local data in the first two steps. Resampling produces a view-aligned data 

array for each macro. The resampled macro arrays are redistributed to all nodes upon whose tiles they 

project. This task moves 3D volume data which may also be duplicated up to four times if a macro's 

projection overlays four tile corners. The redistributed macros are composited at each node, producing 

tile pixel arrays that are sent to a frame buffer. 

A major complication of this approach is that resampling on the pixel coordinate grid does not 

yield a fixed number of sample points per macro. During compositing, each node could pre-compute the 

"shape" of a resampled macro array it requests, or "shape-parameters" could be sent with each macro. 

An alternative is to resample on the voxel coordinate grid so that each resampled macro has the same 
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size and shape. After compositing, the voxel coordinate pixels are interpolated across the actual screen 

pixels. This is only practical for orthographic projections, but we assume it as the method used for the 

remaining analysis. 

Memory Usage: Equation (1) gives the average number of shaded voxels per node. Resampling adds 

approximately the same number of new shaded points. After redistribution, if resampled macros are 

clipped against tiles as they arrive, we have V /N additional shaded points that must be composited. 

CPU Tasks: Shading and resampling each macro is done in object-space, while requesting and 

compositing macros is most naturally done in screen-space. Ideally they are independent processes. 

Shading and resampljng 

for each macro { 

) 

for each voxel of macro 

shade; 

for each new sample point 

resample RGBA; 

Com positing 

for each tile { 

for each ray in tile { 

for each sample along ray { 

if sample not local 

fetch macro of needed sample; 

composite sample into ray; 

) ) 

interpolate rays across tile pixels; 

Communication: A macro must be transmitted to all the tiles that need it. As the number of nodes is 

increased, tile size shrinks more rapidly then macro size; so macro replication will also increase. 

Efficiencies: With redistribution between shading and compositing, alpha cut-off can not avert wasted 

shading and re-sampling. Adaptive refinement may be used for each tile, but saving only compositing. 
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By detecting completely transparent macros during shading, (a one-level octtree), we may save the 

effort of resampling, redistributing, and compositing. Levoy has shown that often a large fraction of 

the data set is transparent, so this savings is significant. Macros must be small to exploit this. 

Load Balance: Without alpha cutoff, each node will shade all of its data; but due to transparent 

macros, there may be large variation between nodes in the effort of resampling, redistributing, and 

compositing. Dynamic tile assignments provide a solution at the expense of an assignment mechanism 

(ie: centralized tile-pool, or tile-tokens). 

Multi-tasking is useful for keeping the nodes busy; shading and resampling should be interleaved 

with requesting macros and compositing received macros. 

5.3. SHade - > ReDistribute - > ReSample - > COmposite: 

As in algorithm 2, nodes are assigned tiles, and data is statically distributed, but by moving the 

redistribution task one step closer to the beginning, we gain several advantages over algorithm 2. Each 

node shades its data but retains it as a fixed size array. This allows perspective projections and 

arbitrary resampling points. With resampling and compositing done on a single node, splatting may be 

used in addition to ray-casting and multi-pass methods to resample the volume projected onto a tile. 

The redistribution task is moving 3D volume data which may be duplicated up to four times if a macro's 

projection overlays four tile corners: 

Westover [89] has presented this approach in the form of multiple shading nodes and one 

centralized resampling and compositing node. Levoy [89] outlined this approach using the Pixel-Planes 

5 heterogeneous architecture. The author and John Rhoades have implemented Levoy's approach on 

Pixel-Planes 5. Current performance is about 1.4 frame per second for 1283 data sets. 

Memory Usage: Macro fetches are performed by each node to acquire the data that projects onto its 

tile(s). During redistribution, if shaded macros are clipped against tiles as they arrive, we have 

approximately V /N shaded points that must be resampled and composited. The faces, edges, and 
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corner of each node's fetched data must be replicated, as previously described, so that rays cast along 

tile edges can be properly resampled. This will increase the memory requirement. 

CPU Tasks: Shading each macro is done in object-space; resampling and compositing macros may be done 

in object or screen-space. Ideally they are independent processes. We illustrate the object-space 

splatting method below. 

Shading 

for each macro { 

for each voxel of macro { 

shade; 

} } 

Resampling and compositing 

for each macro in view-order { 

if macro not local 

fetch macro; 

for each voxel of macro in view-order { 

resample; 

composite; 

} } 

Communication: A macro must be transmitted to all the tiles that need it. As the number of nodes is 

increased, tile size shrinks more rapidly then macro size; so macro replication will also increase. 

Efficiencies: Alpha cut-off can not avert wasted shading. Adaptive refinement may be used for each 

tile, saving resampling and compositing. Detecting completely transparent macros during shading 

saves resampling, redistributing, and compositing effort. 

Load Balance: Each node shades all of its data; but due to transparent macros, there may be a large 

variation in the effort of redistributing, resampling, and compositing. Dynamic tile assignments 

provide a solution at the expense of an assignment mechanism. Multi-tasking is useful for keeping the 

nodes busy; shading should be interleaved with requesting, resampling, and compositing macros. 
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5.4. ReDistribute - > SHade -> ReSample -> COmposite 

Each node is assigned one or more screen tiles, then we redistribute the raw data based on macro 

projections onto the tiles. When macros arrive at a node, they are shaded, resampled, and composited 

to produce tile pixel arrays which are then sent to a frame buffer for display. This approach has the 

unique attribute that the raw data itself is moved during resampling. This permits a dynamic macro 

distribution. Macros are not bound to any single node over successive frames; they migrate to nodes as 

they are needed. For systems where adjacent tiles are assigned to adjacent nodes as far as routing is 

concerned, the average macro migration distance during redistribution .is proportional to the change in 

view point. This allows some predictability of message traffic in the routing mechanism that may be 

exploited by some machines. If only shading parameters change from frame to frame, no redistribution 

is needed. 

While tile assignments may be dynamic, efficiency of redistribution and machine routing distance 

dictates that consistent tile assignments be made from frame to frame whenever possible. Care must be 

taken when macros are clipped off screen; they must be kept at some node or they will be lost. We 

suggest two ways to handle this case: If no node requests a macro during a frame, it is retained by the 

current owner node even if it has no use for it itself. Original macros are tagged, copies may be 

deallocated and disappear if not used, but the tagged originals may only be passed on. 

Since macros have no fixed home, how is a node to know where to sent a request for one? One 

solution, which depends on static tile assignments, is to use the previous frame's viewing 

transformation to determine where the macro was last frame. An alternative solution assigns tiles to 

preferred nodes, which are globally known, until a node has consumed all of its preferred tiles. Then as 

further tiles are assigned to the finished but non-preferred nodes, a message is sent to the preferred node 

informing it of the tile reassignment. When, in the next frame, a macro request arrives at the preferred 

node, and the macro is not found locally, a tile reassignment list may be used to forward the request. 

Load balancing and macro tracking require careful consideration, but are not mutually exclusive. 
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Memory Usage: There will be data replication after redistribution due to the need for replication 

imposed by resampling. Unlike in algorithms 1, 2, and 3, the memory requirement is not constant or 

equal at each node; it varies with view direction and scaling. The worst case occurs when the object is 

scaled down to appear entirely in one tile. The trivial solution is to limit the view transformation to 

some acceptable bounds. 

CPU Tasks: As in algorithm 1, shading, resampling and compositing macros may be done in object or 

screen-space. Image-space ray casting and object-space splatting are shown below: 

Image space 

for each tile { 

for each ray through tile { 

for each ray step { 

if step neighbors not local 

fetch macro(s); 

if step neighbors not shaded 

shade step neighbors; 

resample; 

composite; 

} } } 

Object space 

for each tile { 

fetch all macros that project onto tile; 

for each macro in view order { 

for each voxel in view order { 

shade; 

resample; 

composite; 

} } } 

Communication: As mentioned above, the redistribution cost is variable. If we limit the change in view 

point between successive frames, we may likewise limit the redistribution cost in terms of routing 

distance. The acceptability of this, from a user standpoint, is a function of frame rate. As we tighten 

the transformation limit, we increase the frame rate, thus the real-time rate of rotation is kept about 

the same, but rotation is smoother due to the higher frame rate. 
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Efficiencies: Alpha cut-off is effective at averting wasted shading, resampling, and compositing. 

Adaptive refinement may be performed for each tile saving shading, resampling and compositing. A 

local octtree may be constructed to save the effort of resampling and compositing, but the octtree 

construction requires shading every voxel which is what alpha cutoff and adaptive refinement could 

prevent. The architecture will likely influence the mix of efficiencies to use. 

Load Balance: As mentioned above, dynamic tile assignments with preferred tile-node pairing, and 

constrained view positions, are necessary for effective load balancing. 

5.5. Hybrid Extensions: 

If we generalize the notion of tiles to allow each screen tile to be the composite of multiple stacked 

tiles, then we may add an additional composite phase to the end of algorithms 2, 3, and 4. This 

technique allows machines with large numbers of nodes to maintain larger tiles and therefore minimize 

the replication of volume data during redistribution (as given by equation (2)). 

6. Results: 

We have presented a hierarchical taxonomy of volume rendering algorithms for multicomputers based 

on a decomposition of tasks. Four algorithms, representative of the eight major categories in the 

taxonomy, were described. Two of the four were presented for the first time. Several actual 

implementations were classified into their appropriate categories. Secondary attributes were detailed 

that succeed in further strengthening the descriptive power of the taxonomy. This has created a frame 

work for further algorithm development and system exploration. 
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