
Providing Common Access Mechanisms for
Dissimilar Network Interconnection Nodes

TR91-013

February, 1991

John Menges

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Providing Common Access Mechanisms for

Dissimilar Network Interconnection Nodes

by

John E. Menges

A thesis submitted to the faculty of The University of North Carolina at Chapel Hill

in partial fulfillment of the requirments for the degree of Master of Science in the

Department of Computer Science.

Chapel Hill

1990

eader: Dr. J. Dean Brock

Reader: Dr. Daniel A. Pitt

© 1990

John E. Menges

ALL RIGHTS RESERVED

ii

John E. Menges. Providing Common Access Mechanisms for Dissimilar Network Intercon

nection Nodes (Under the direction of Stephen F. Weiss.)

ABSTRACT

Over the past several years, thousands of Local Area Networks (LANs) around the world

have been interconnected to form huge computer networks. These interconnections between

LANs have been made using a variety of different classes of Interconnection Nodes (INs)

made by many different vendors. Management of these essentially similar INs has been more

difficult than necessary because of the dissimilar methods required to manage the various

IN types.

This thesis describes the design and implementation of access mechanisms that make it

possible to manage the similar aspects of the various IN types in a common manner, without

sacrificing the type-specific functions of the various proprietary management systems.

iii

ACKNOWLEDGMENTS

I would like to thank those who read earlier drafts of this thesis and suggested many im

provements to both the thesis and the design and implementation of this project. They are

my advisor, Steve Weiss, my committee members, Dean Brock and Dan Pitt, and associates

Laura Bottomley, Dave Ogle, Steve Ornat, and Don Smith. Special thanks are due to Laura

Bottomley, Steve Ornat, and Ken Whitfield, who used the software as it was being developed

and gave me some very good feedback.

Many thanks to the Microelectronics Center of North Carolina (MCNC), and Alan Blate

cky in particular, who recognized the need for a network management system for the North

Carolina Data Network and initially funded this work. Numerous discussions with Pat

Richardson, Wayne Sung, and Ken Whitfield of MCNC guided the early stages of the design

of this project. MCNC also provided the diagrams of the CONCERT network in chapter 3.

I would also like to thank the Office of Naval Research, which supported this research

in part, under Contract #N00014-86-K-0680.

Finally, I am grateful to God for my good friend and wife Nancy, whose love and en

couragement keep me going, my son Nathaniel, who makes me proud to be a daddy, and

my second child yet to be born, already a wonder and a joy to me.

iv

TABLE OF CONTENTS

List of Figures viii

I An Introduction to the Problem. 1

II An Overview of IN Management Tools .

2.1 Classes of Tools
2.2 Display Only Tools
2.3 Display and Control Tools .
2.4 Monitoring and Alerting Tools
2.5 Statistical Tools
2.6 Direct Interaction Tools
2.7 Summary

III The North Carolina Data Network

N Design Constraints

v

VI

4.1 Requirements Imposed by Desired Tools .

4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

4.1.1 Display Only Tools
4.1.2 Display and Control Tools .. .
4.1.3 Monitoring and Alerting Tools
4.1.4 Statisticaf Tools
4.1.5 Direct Interaction Tools
4.1.6 Tool Complexity
Requirements Imposed by the Target Network.
Summary

Network Management Standards

ISO Standards
Internet Standards
The Structure of Management Information (SMI) .
Management Information Bases (MIBs)
The Simple Network Management Protocol (SNMP)
Conclusion . .

Design Overview

v

5

5
7
8

10
15
15
16

17

22

22
22
24
24
25
25
26
26
27

29

29
30
31
34
36
39

40

6.1 Build, Buy, or Wait?
6.2 Protocol, Operating System, and Language Choices
6.3 Defining the Access Mechanisms
6.4 Query Using Internet Protocol (QUIP) .
6.5 The SNMP Proxy Agent
6.6 General Design Considerations
6.7 Summary

VII The QUIP Server .

7.1 QUIP Messages and the QUIP Library .
7.2 The Main Body of the QUIP Server ..

7.2.1 Timeouts and Housekeeping Chores
7 .2.2 Connection Requests .
7.2.3 QUIP Query Arrivals
7.2.4 IN Input Arrivals

7.3 The QUIP Daemon Driver Interface
7.4 IN Drivers

7.4.1 The IB Driver
7.4.2 The TransLAN Driver
7.4.3 The IBX Driver.

7.5 Summary

VIII The QUIP Interactive Program

8.1 The QUIP Database
8.2 The QUIP Program
8.3 Conclusion

IX The Human Interface Parser (HIP)

X

XI

9.1 How to Use HIP
9.1.1 The HIP Library Routines.
9.1.2 The Parsing Specification

9.2 Parser Implementation
9.3 Examples

9.3.1 Example 1: A Simple Example
9.3.2 Example 2: A More Complex Example.
9.3.3 Example 3: Parsing Large Tables .

9.4 Conclusion

The SNMP Proxy Agent .

10.1 The Main Body of the Proxy Agent
10.1.1 SNMP Packet Arrival Events
10.1.2 QUIP Response Arrival Events

10.2 The Proxy Agent Driver Interface.
10.3 Conclusion

An Evaluation of the Resulting System .

vi

40
40
41
43
44
46
47

48

48
52
53
54
54
55
56
58.

58
59
60
61

62

62
63
65

66

66
66
67
69
71
71
73
74
76

77

77
78
83
85
86

88

11.1 Requirements vs. Results
11.2 Conclusion ..

XII Future Projects .

88
92

94

Bibliography . 97

A Source Code . 98

vii

LIST OF FIGURES

1.1 Getting Link-Level Statistics from an IBX LAN mark Bridge 0 3
1.2 Getting Link-Level Statistics from a 3Com IB/1 Bridge 3

201 An Overview of Network Management Tools 0 0 0 0 0 0 0 6
202 A Simple Full Screen Display Only Tool 0 0 0 0 0 0 0 0 0 9
2.3 A Simple Display and Control Tool for a Bitmapped Display 11

5o1 An Abbreviated View of the Current lAB MIB 33

6o1 SNMP and QUIP Overview 0 0 0 0 0 0 42

701 A Sample QUIP Query and Response 49

9o1 IBX LAN mark Bridge Response for Example 1 71
9o2 C Code for Parsing Input Shown in Figure 9o1 72
9o3 LAN mark Response for Example 2 0 0 0 0 0 0 0 73
9.4 C Code for Parsing Input Shown in Figure 903 74
9o5 IB Response for Example 3 •••••••• 0 •• 75
906 C Code for Parsing Input Shown in Figure 905 76

viii

Chapter I

An Introduction to the Problem

With the advent of large computer networks comes the need to manage these networks.

Network management involves both maintaining adequate data transmission capabilities in

the face of growing and changing needs and keeping the network operating smoothly and/or

restoring it to operation quickly in the event of hardware and software failures.

There are two major aspects of network management: Local Area Network (LAN) man

agement and LAN interconnection management. LAN management focuses on individual

Local Area Networks, while LAN interconnection management involves only the portion of

the network that ties LANs together into a larger network. For example, monitoring indi

vidual packets on a LAN to isolate a protocol bug is a LAN management function, while

monitoring the utilization of a serial link between a campus and a regional network in order

to ensure that the link has sufficient capacity is a LAN interconnection function. In this

paper I will address only LAN interconnection management.

The reader of this paper is presumed to be familiar with computer science and networking

concepts. The first chapter of (Tan88] is a good introduction to networking.

A large portion of the interconnection management problem involves knowing what is

going on at those points where LANs are interconnected and controlling the configuration

and state of the various classes of devices that interconnect these LANs. These devices,

which I shall call Interconnection Nodes (INs), can be categorized into a small number of

major classes, depending on the layer of the ISO reference model1 into which they naturally

fit. For example, repeaters operate at the physical layer, bridges at the link layer, and

gateways and routers at the network layer.

In general, the higher up the ISO reference model an IN belongs, the more configuration

and state information there is to maintain and monitor. A repeater could count how many

1The International Organization for Standardization (ISO) Reference Model of Open Systems Intercon
nection is 7-layer conceptual model for communications protocols. See [Com88, Chapter 10] for a discussion
of protocol layering, including the ISO model.

1

packets it has transferred in each direction over each interface and (in the case of Ethernet)

how many collisions it has detected, but since it operates at the physical layer, it could

do little else. There are also few if any conceivable options for configuring an IN at this

level. A bridge, operating at the link layer, could keep track of how many of its received

packets were forwarded, filtered, and ignored, how many of each major (link-layer) type

of packet have been processed in each of these categories, over which interface each host

address is reachable (using link-layer addresses),.how many packets were sent to or received

from each host, etc. Configuration information might consist of custom packet filters, the

number of active interfaces, or interface types and speeds. A gateway or router might

maintain packet counts broken down by major and minor protocol type, protocol error

counts, routing failures, and so forth. The configuration of an IN at this level involves

such things as maintaining routing tables and distance metrics, alternative routes, choice of

dynamic route computation protocols, and much more.

Though INs within a particular class (e.g., bridges) may be designed by different vendors

and may perform somewhat differently depending on their specific intended application, they

tend to have a high degree of commonality among themselves as to the types of configuration

options and monitoring information needed to manage them. Even between classes of INs,

there is significant overlap. For instance, the number and types of interfaces, interface

speeds, and per-interface packet counts might apply to all classes.

Until recently, each vendor has provided its own set of data structures for management

related configuration, state, and history information, and has assigned its own semantics

to these data structures. Often these structures vary from model to model and from revi

sion to revision, even among products from the same vendor. Each vendor also supplies its

own command language for retrieving management information and setting configuration

parameters, and again this often varies from model to model and revision to revision. Some

of these command languages are human-oriented, while others are computer-oriented. Fig

ure 1.1 shows how to get link level statistics from a LAN mark Ethernet bridge. Figure 1.2

shows how to get the same type of information from a 3Com IB/1 bridge.

Finally, the underlying protocols and physical media over which management functions

are performed vary greatly. Some INs can only be managed via out-of-band, low-speed

serial ports. Some (e.g. bridges) can be managed in-band, but since they operate below the

network level, they do not necessarily use the same transport protocols as higher level INs

2

SELECT COMMAND => dgn
DIAGNOSTIC NAME or? or Return=END => lndg
TEST NUMBER or ? . => 3
SPECIFY PORT# or Lor P or? => 320
SPECIFY CURRENT STATISTICS TYPE or R = RETRIEVE SAVED STAT or ?
*** LAYER STATISTICS DIU5 08/25/89

PORT 320 LN 0

transmitted received
PACKETS: 45515205 54556166
BROADCAST PACKETS: 931364 11256085
VIRTUAL CHN DATA: 0 0
VIRTUAL CHN PROTOCOL: 0 0
PACKETS DISCARDED: 161 51984
ELAPSED TIME: 022.00:22:34

CLEAR STATISTICS? Y =YES, N =NO N =>@

SELECT COMMAND =>

=> 1
09:28:40

Figure 1.1: Getting Link-Level Statistics from an IBX LAN mark BI"idge

show netstatistics 0
Network 0 Statistics

RcvPackets RcvBytes MCPkt BCPkt Crc Frame Long LostP

1356334 103941443 19282 29529 0 0 0 0
XmtPackets XmtBytes MCPkt BCPkt Defer 1Coll MColl LColl EColl NetErr

502272 54303486 39 41377 387 15 9 0 0 0
show netstatistics 1

Network 1 Statistics
Rev Packets Rev Bytes MCPkt BCPkt Crc Frame Long LostP

---------- ---------- ----- ----- -----
4230131 487520021 64843 64897 1450 1529 0 0
XmtPackets XmtBytes MCPkt BCPkt Defer 1Coll MColl LColl EColl NetErr

830216

62838838 11403 10125 13590 2666 1121 0 0 0

Figure 1.2: Getting Link-Level Statistics from a 3Com IB/1 Bridge

3

on the same network are able to route. (For example, a bridge might use Xerox Network

Services (XNS) for network management, while the larger network may be connected via

Internet Protocol (IP) routers.)

In some cases these differences are essential, but in other cases they are accidental. Acci

dental differences in management mechanisms unnecessarily complicate the management of

large computer networks, particularly networks that involve many different classes, models,

and revisions ofiN s from various vendors. Even if management mechanisms were common to

all the INs within each administrative domain, differences in mechanisms between domains

limits management tool sharing across domains.

These problems have been recognized by the Internet2 and ISO communities, and net

work management standards are emerging to address them. There are, however, large

networks already in place utilizing many INs that do not now and will never support the

emerging network management standards. Furthermore, much of this equipment has a long

lifetime and will be in use for many years to come. This thesis addresses the problem of

integrating such existing INs into network management systems utilizing the new standards.

The software developed for this project provides a mechanism for accessing INs that do not

support standard management protocols.

First, an overview of this paper is in order. This chapter introduces the problem to be

solved. Chapter 2 discusses what is above the access mechanisms developed for this project,

i.e., the network management tools that will use this software to gain access to INs in the

network. Chapter 3 describes the target network below this software, the North Carolina

Data Network (NCDN) and the INs that tie it together. Chapter 4 outlines the constraints

on the design of this project imposed by the desired tools and the target network. Chapter 5

discusses the standards environment in which we are operating. Chapter 6 gives an overview

of the design of the project, while Chapters 7 through 10 detail the design of the individual

components. Chapter 11 evaluates the resulting system to see how well it conforms to its

requirements and gives suggestions for improvements. Chapter 12 discusses potential future

projects and applications. Finally, the appendix contains the source code. The reader can

gain a good overview of this project by reading chapters 1 through 6, 11, and 12. Chapters

7 through 10 and the appendices are essential reading for a maintainer of the software,

particularly if the reader will be adding device drivers.

2 For an introduction to the Internet, see [Com88, Chapter 1].

4

Chapter II

An Overview of IN Management Tools

This chapter puts the project into perspective by giving an overview of the types of tools

that are necessary to properly manage LAN interconnections, and the capabilities we require

of a network management system supporting these tool types.

2.1 Classes of Tools

The types of tools necessary for managing INs can be grouped into five major classes, as

follows:

1. Display Only tools are able to obtain information from an IN or a set of INs and

display this information, but are not able to change the configuration or state of an

IN.

2. Display and Control tools have the same capabilities as Display Only tools, but in

addition are capable of changing the configuration of an IN (e.g., its routing tables)

or its state (e.g., by rebooting).

3. Monitoring and Alerting tools monitor a set of INs, detect abnormal situations,

and alert the appropriate operations personnel when necessary. They might also be

able to take corrective action on their own.

4. Statistical tools collect information from INs and store it into a database for later

perusal or report generation.

5. Direct Interaction tools provide an escape hatch for situations where the set of

available tools falling into the above classes do not cover all possible information

gathering and control functions. They allow direct interaction with an IN via its

proprietary command language.

5

INs

• •
•

Tools User Interfaces

Figure 2.1: An Overview of Network Management Tools

Note that the boundaries between these tool types are flexible. For example, one might

imagine a Statistical tool that also detects abnormalities and functions as a 111onitoring and

Alerting tool as well, or a Display and Control tool that incorporates a Direcf Interaction

feature.

We will now take a more detailed look at each of the above-mentioned tool types. Refer

to Figure 2.1 throughout this discussion.

6

2.2 Display Only Tools

There is a wide variety of potential Display Only tools. The form a given tool might take

would depend on the intended users of the tool, the types of INs being monitored, the

number of INs being monitored simultaneously, the type of information to be displayed, and

the capabilities of the available display hardware.

Users of a distributed computing system may wish to know the overall status of a network

so that they can determine which resources are currently available to them and which are

unavailable due to network failure. They also may wish to know how fast data is flowing at

various points in the network, to help them decide which of a set of redundant resources can

be accessed most efficiently. This suggests graphical tools that display the overall network

or a portion of it in logical or geographical form, with reachability and data flow rate

information encoded using colors, line styles, and gauges.

Of course, the more reliably the network satisfies the user's needs, the less the user will

want to use such a tool. Thus, the availability to network management personnel of good

network management tools may obviate the need for such tools by the user. (Who but the

telephone company has a need to monitor the telephone network?) One can hope that these

tools will become unnecessary within a short time. Then the users can forget about the

network and concentrate on their work (using the network).

In addition to the capabilities required of user-oriented displays, network operations

personnel will need tools which are capable of displaying much more information, such as the

details of the configuration and state of particular INs, link utilization graphed dynamically

over a period of time, error counts on particular ·interfaces, and so forth. They may also

wish to trap and display individual packets or events for diagnostic purposes.

Some displays, such as network maps, might be able to treat all INs alike. Others

will need to distinguish between different classes of INs, so that the various types of data

structures can be displayed appropriately. For example, bridge displays might present link

level routing tables, while gateway displays might present network-level routing tables. Some

displays will be oriented toward the network as a whole or a portion of it, while others will

focus on one IN at a time.

The capabilities of the display hardware will greatly affect the form taken by a particular

display tool. At the low end, line oriented tools can be envisioned for simple queries or

reports, such as the value of a particular counter in a particular IN. These could run on

7

devices as simple as hardcopy consoles or even printers. Full screen oriented displays can

be imagined for displaying limited amounts of information at a time about a single IN or

a small set of INs. Figure 2.2 shows an example of such a tool. These tools might be

useful to network operations personnel working from home, where more elaborate display

hardware is not available. Finally, more sophisticated tools are possible where window

oriented bitmapped displays with mouse and keyboard interaction are available.

Once access to IN information is widely available, there is much room for brainstorming

and experimentation with different methods of displaying this information. As we shall soon

see, the types of anticipated display applications affect the design of the underlying access

mechanisms.

2.3 Display and Control Tools

Display and Control tools would be used by network engineers and operations personnel

to monitor the network, diagnose and fix problems, and change the configuration of the

network. They would have all the capabilities of Display Only tools, but would additionally

be able to change IN configurations and states. Most likely, these tools would present

different capabilities to different classes of users depending on. how much control of the

network each class of users is allowed. For example, operators may be allowed to reboot INs

but not change their configuration, while engineers may be able to do both.

Configuration changes would involve items such as configuring the IN software to matcl1

its intended use (e.g., indicating the types and number of interfaces a particular IN has),

manually maintaining certain routing table entries, modifying bridge filters, changing pass

words, etc. State changes might involve rebooting an IN, temporarily disabling a link, or

clearing its event counters.

It is important that all INs within an administrative domain be easily accessible to the

appropriate maintenance personnel from at least one central location. Access from all points

on the network is preferable if this can be done without posing a security threat. Performing

similar actions on different types of INs should be possible using similar mechanisms, to

reduce the training requirements and frustration of operations personnel. For example, in a

graphlcal tool, selecting a REBOOT menu item and then clicking on a box representing a

particular IN and confirming the choice in a dialogue box might be the method of rebooting

8

Bridge Status/Traffic Monitor

Bridge Interface Bridge Input Output
Name/Address Number Status Pkts/Sec Err/Sec Pkts/Sec Err/Sec

compcenter 0 Up 359 0 129 0
08000200A165 1 199 1 124 0

biomedical 0 Up 189 0 63 0
080002008935 1 301 1 47 0

chemistry 0 Up 49 0 65 0
08000200AF21 1 175 0 49 0

compsci 0 Up 109 0 87 0
08000200A608 1 262 1 51 0

physics 0 Up 4 0 36 0
""08000200016C 1 130 0 4 0

geography 0 Dolin
08000200D17B 1

history 0 Up 145 4 99 0
080002000130 1 284 0 74 0

medschool 0 Up 16 0 87 0
080002010829 1 258 6 16 0

radiology 0 Up 351 4 68 0
080002010F56 1 292 1 79 0

Figure 2.2: A Simple Full Screen Display Only Tool

9

an IN, regardless of type This is illustrated in Figure 2.3.

Elaborate tools using bitmapped displays and mouse and keyboard input certainly have

great value in simplifying the management of a large network. In most environments today,

however, it is also necessary to have tools with the same basic capabilities as these full-blown

management tools, but that have significantly reduced hardware requirements. Parallel tools

must therefore be available for managing the network via, e.g., ASCII terminals over low

speed telephone lines. These would be used by operations personnel at remote locations

if, for example, they are replacing some broken hardware at an arbitrary location in the

network, or are working from home outside normal working hours.

2.4 Monitoring and Alerting Tools

Many networks are large enough to require sophisticated network management tools but not

large enough to justify employing network operations personnel to do nothing but monitor

the network looking for problems. Thus, tools that monitor the network automatically

and alert the appropriate personnel when some abnormal situation arises can be important

in maintaining the reliability of a network. The goal is to have tools that reliably detect

network problems as soon as the users do, if not before. In some cases, problems can be

resolved before users are aware that there was a problem. This capability can be extremely

valuable, both to the users of a network and to those charged with its maintenance.

Tools in this class can vary greatly in sophistication. Very simple tools that poll INs

to see if they are up and send a message to an operator's screen or even an electronic mail

message to his mailbox when one goes down can have dramatic effects on the reliability

of a network. Much more sophisticated tools are easily imagined. The sophistication of

such a tool is a function of what is being monitored, how intelligent the problem detection,

analysis, and recovery methods are, and how appropriate personnel are notified when this

is necessary.

What is monitored will ultimately place an upper limit on what problems can be detected,

how much analysis can be performed, and what aCtions can be taken when a problem is

detected. A simple monitor might just poll each IN in an administrative domain periodically

using a simple query. The information collected will only indicate which INs are up (and

healthy enough to answer the query) and which are down (determined by timing out waiting

10

Configure II Monitor II Interact

Do you rea~1y want to
reboot the Physics
bridge?

0 Yes 0 No

'
···<::::~~~~~~~:::)

Legend:

············· Down

Up

l2$j Selected

Figure 2.3: A Simple Display and Control Tool for a Bitmapped Display

11

for a response). This is enough to show which areas of the network are reachable. At first

glance, it appears that this mechanism would only check reachability of the portion of the

network between LANs, not LANs at the edge of the network. However, as we shall see, host

computers that are not INs can be queried using the same network management tools as are

used for INs, so information regarding the reachability of any portion of the network can be~

obtained using this simple mechanism. More reliable and informative results can be obtained

by querying each IN to determine if it thinks it and its interfaces are up. (An IN may be

able to answer simple queries, but may know its interfaces are down.) If packet counts

are monitored, such anomalies as zero packets being transferred over a supposedly active

interface, or abnormally high traffic rates, can be detected. If error counts are monitored,

network degradation can be detected as well as network failure. Finally, if configuration

parameters are monitored, changes in the configuration of an IN can be detected and logged.

If the IN itself is capable of detecting problems, it can notify a network management tool

without waiting to be polled. ~(Such a notification is called a trap.) To be entirely sure of

the network status, however, some polling is necessary. This is because an IN may be too

sick to know that it is sick and to be able to tell somebody.

Problem detection can be as simple as noticing when the status of an IN goes from up

to down, or receiving an IN's alert that it has problems. More elaborate problem detection

mechanisms usually involve maintaining some idea of what is normal and comparing collected

information against this idea of normalcy. When certain predefined thresholds are exceeded,

a flag goes up saying something is wrong. For example, if error and packet counts are

retrieved periodically, the monitor can detect when the ratio of errors to packets processed

is too high. The monitor's idea of normalcy and appropriate thresholds would typically be

determined by network engineers and stored in a database, but one can imagine a monitor

that determines normalcy automatically by observing the network in action. One example

of the utility of this type of monitor is· if one wishes to detect when one type of packet

abruptly dominates a portion of the network for an extended period of time. This situation

can signal a host gone haywire or an ill-conceived configuration change.

Once it has been determined that something is wrong with the network, the network

management system has the option of simply reporting the symp~om(s) (there may be more

than one detected symptom of a single problem), or attempting to analyze the symptoms

to determine their cause. This analysis can be passive or active. Passive analysis seeks

12

to determine what is wrong based solely on symptoms reported by the detection phase of

the normal monitoring process. A network management system employing active analysis,

on the other hand, is capable of requesting additional information from the INs when a

symptom is detected, and using this information to further aid its analysis. In either case,

the purpose of such analysis is to give operations personnel a clearer idea of what is wrong

than is otherwise possible. As an example of when this might be useful, consider a tree

structured network with a monitoring agent at the root. If an IN midway between the root

and the leaves of the network goes down, the symptoms of this failure are that ail the INs

from the failed IN toward the leaves wiii be detected as being down, as they are unreachable.

Without analysis, this single failure would be reported as a multitude of individual failures,

and it would be left to the operator to figure out the relationship between the INs that are

. reported as being down. On the other hand, if the analysis portion of the monitoring agent

knows the structure of the network, it can perform this analysis and simply report the single

failed node as being down. This type of analysis can greatly simplify network management

and speed recovery. It can, however, be extremely difficult to design effective analysis

logic for ail but the most simple failure modes. It should also be noted that drawing false

conclusions can be worse than not attempting to analyze the symptoms in the first place.

Once an a monitoring agent has determined what it thinks is wrong, it can simply re-

_._port its findings to an operator, or it can attempt to resolve the problem on its own. Such

automatic recovery efforts are most likely to be used as a temporary measure to keep a

network going in the presence of certain intermittent problems with simple recovery proce

dures, until the source of the problem can be isolated and the problem can be fixed. For

example, if a particular model of IN is known to have a software bug that causes INs of

this type to occasionally stop forwarding packets, it may be possible to reboot an IN in this

state to recover the network. This action could be taken automatically and immediately,

rather than awaiting human interaction (which could. come hours or even days later, if the

problem occurs at night or on a weekend). But care must be taken not to go overboard with

automatic recovery procedures, as they can easily cause more problems than they solve. Ail

recovery procedures undertaken should be reported to an operator, or at least logged so that

an operator can later determine what actions have been taken.

Finally, when a problem occurs, it is often necessary to alert the appropriate personnel

so that the problem can be resolved by human interaction. Before alerting takes place, it

13

must be determined who should be alerted, and by what method they are to be notified.

Determining who should be alerted can involve some analysis of the problem, and will likely

involve the use of a database. For example, the alerting system may need to determine

in which of several administrative domains an IN belongs, and then which personnel are

responsible for this administrative domain. Or, it may use its analysis of the seriousness of

a problem to decide what level of expertise is required of the operations personnel it must

alert. In any case, once it has determined whom to alert, the monitoring agent will need

to determine which of several methods of notification it should use. Possible notification

methods include:

1. Making some visual change in a computer display. For example, on a graphical display,

one might turn a box representing an IN from green to red.

2. Sounding an audible alarm, such as the bell on a terminal or workstation. This might

be done in conjunction with the above-mentioned visual change.

3. Sending a message to a terminal or workstation window where the appropriate person

is logged in. One may first need to find out where he is logged in, or one might assume

some standard location.

4. Sending electronic mail. This is likely to be slower in reaching the target person, but

might be more reliable in the sense that it gets a message to the one place he is certain

to check within a reasonable period of time.

5. Calling via telephone. Systems now exist that will allow a person to be called on the

telephone and given an arbitrary spoken message describing the network problem.

The first two methods are oriented toward notifying personnel whose job it is to be moni

toring continual displays of network status, and requires them to be near the display station.

The last three are methods used to track down operations personnel who are not likely to

be near such a display station at all times. Method 5 has some important advantages. It

is a good method for reaching people off-hours, when they are not likely to be near any

terminal or workstation, much less the management display station. Of course, some limits

may need to be placed on when the alerting system is allowed to call, perh~ps as a function

of the urgency of the problem. Even during normal working hours, telephone notification

has several advantages. First, it allows the alerting system to easily gain immediate feedback

14

as to whether or not the intended target was reached. The telephone-calling system may

require the entry of an identifying code via telephone buttons before a message is delivered.

If the line is busy, the phone is not answered, or the identifying code is not entered, it may

attempt to call another person to deliver the message. Secondly, it uses an indep,endent net

work (the public telephone system) for notification, which may be important in the presence

of a network failure that prevents the delivery of the message announcing the failure.

2.5 Statistical Tools

Statistical network management tools gather information from INs on a periodic basis and

store this information in a database, where it can later be accessed by report generation

programs and perused by management personnel using a database query language. The

data collected would typically include uptime information and traffic statistics broken down

various ways (e.g. by protocol and by interface). It might also include relatively stable

configuration information, stored in the form of a single snapshot (typically the current con

figuration) and configuration change information from which a history of IN configurations

can be constructed.

This type of tool is useful for long-range planning and detecting changes in usage patterns

over time. The data collected can help in the decision processes leading to configuration

changes and equipment purchases and can help justify proposed changes to higher-level

management.

2.6 Direct Interaction Tools

In some situations, the available general-purpose Display and Control tools available do

not cover the whole ground when it comes to information gathering and configuration and

state control capabilities. Vendors often supply some means of direct control of an IN via a

command language. In some cases, this access is obtained using a fairly standard mechanism,

such as telnet. In other cases, a proprietary protocol is used. Sometimes such direct access

can only be obtained via out-of-band serial lines, while at other times access can be obtained

through the IN's normal data interfaces. While such Direct Interaction tools do not lend

themselves to management mechanisms that are common among INs of different types and

from different vendors, access to these interactive interfaces is often required. This class of

1.5

tools could be considered a special case of the Display and Control class, but because of its

lack of generality I list it separately.

2.7 Summary

As can be seen from the above discussion, there are many different network management

tools that might be useful in managing a large computer network. These tools can vary

widely with respect to intended users, functionality and sophistication, but they can be

classified into a relatively small number of types. As we shall see in Chapter 4, this clas

sification can help us to assess the demands such tools might make on the underlying IN

access mechanisms. In Chapter 5 we will see that a rather simple access mechanism can be

the foundation upon which a wide range of tools and tool systems a~e built. But first, let

us take a look at the network on which these tools will be used.

16

Chapter III

The North Carolina Data Network

The North Carolina Data Network (NCDN) is a Wide Area Network (WAN) that links

together Local Area Networks (LANs) across the state of North Carolina. It is part of

the Southeastern Universities' Research Association Network (SURAnet), which, in turn, is

part of the Internet. The participating institutions are primarily universities and research

institutions.

This network provides a vital data communications mechanism to the participating insti

tutions. It binds the participating institutions together with each other and with institutions

around the country and the world via electronic mail, distributed file systems and database

systems, file transfer capabilities, and much more. It allows researchers to share software,

collaborate on research, publish results, share solutions, debate issues, etc. In short, it

enables them to work together efficiently.

Fifteen major geographically separated locations across the state are connected via mi

crowave or leased land lines, at data rates from 56 Kbps to 3.088 Mbps. Buildings on

institutional campuses are typically connected via INs linked by broadband or fiber, and

LANs within a single building are usually connected using local INs. Data rates through

INs range between 1 and 10 Mbps in both cases. Various transmission protocols are used

on the NCDN, including TCP /IP, DECnet, XNS, and AppleTalk. TCP /IP dominates, as it

is available for most operating systems. It is also the only transport protocol that is routed

between the NCDN and the SURAnet and Internet.

The Microelectronics Center of North Carolina (MCNC) owns, operates, and maintains

a large portion of this network, especially the inter-institutional network. The MCNC

owned portion of the NCDN is called CONCERT (COmmunications for North Carolina

Education, Research, and Technonogy). Figure 3.1 gives an overview of the CONCERT

network, and Figure 3.2 gives more detail about the particular LANs and INs and how they

are interconnected. The work described in this thesis was supported by MCNC for their

17

.....
00

Figure 3.1: Overview of the CONCERT Portion of the NCDN

CoNCert (EINl Network 17 M/\ Y 90

[INTERNET~:-::~:

0

0

IP sub/network

Address

Local Orid9e

:, ____________ ·············-----·-········

;m:r·

10 !!I
jii
!!I

TUCCIECS

wssu

UNCA

it' J!j
i'' i!!
[li

j[l
II\

r;;;-..{]·;·'ir Q ',, . !'

i
@fl'

DUKEHAD e-s···

·-·----- ·-···

----~

-@

Q JCOH Rcmolc Drldgc

n JCOH n,..molc UrldiJ<J I /CATV/

I

·-·- ·- -·--··- -- l
RTI ee-a J ... ' - ·-· . _____ ···· ·-:::

@'§
@ @
BGSH WFU

Figure 3.2 CONCERT Network Detail

["a n•[

El

HCNC

If' flouter

Vltull••k fh•m<tl•• nrt<IQ•·

Ethernet

V.35 Serial Link

Hr.:lr--.
~

GLAXO

''B@
EPA

~
t:L:'ll~

~wcw

~
L":::J 8 CENT

use at the hub of the network, located on their premises. It is also being made available to

all the participating institutions for use from within their administrative domains.

LAN interconnections in the NCDN are made using a variety of IN types from various

vendors. At present, there are about 135 INs, broken down as follows:

1 Protean 4200 Router (Gateway to the SURAnet and Internet)

21 Cisco Routers

11 Kinetics AppleTalk/Ethernet Gateways

6 UNIX hosts operating as IP Gateways

28 3Com IB/1 Bridges (Ethernet to Broadband)

4 3Com IB/2 Bridges (Ethernet to Ethernet)

7 3Com IB/3 Bridges (Ethernet to High Speed Serial)

11 VitaLink TransLAN Bridges

7 Intecom IBX LAN mark Bridges

17 IBM PC-compatibles running Novell Netware Gateway software

9 Digital LANbridge 100s

4 Gator box AppleTalk/Ethernet Gateways

4 Retix Ethernet Bridges

1 AT&T Commview Gateway

1 Digital Decnet/SN A Gateway

1 Cabletron NB20E Ethernet Bridge

1 Synoptics 3323 Bridge

1 Network Systems Corporation EN643 Router

Of these IN types, only the Protean and Cisco routers support any standard network

management protocol as they come from the vendor. They both support the Internet stan

dard, called the Simple Network Management Protocol (SNMP) [CFSD88]. (SNMP and

other standards will be discussed in Chapter 5.) SNMP support is also available from third

parties for the Kinetics gateways and UNIX1 hosts. The other INs support various pro

prietary network management protocols. Thus, ignoring the work described in tllis thesis,

only about 29% of the INs in the NCDN can support a standard management protocol.

This percentage is sure to grow, however, as newer INs are installed that support SNMP (or

1 UNIX is a trademark of Bell Laboratories

20

another standard) 2•

Work already completed on this project extends SNMP support to all the 3Com, Vi

taLink, and LAN mark bridges, bringing the SNMP-supporting fraction to about 71%.

Drivers can easily be added to obtain support for most of the remaining IN types.

Many different operating systems are used in the NCDN, including UNIX, VMS, VM,

DOS, OS/2, etc. Network management software might be run under any of these operating

systems, but if one needs to be chosen based on widest use, UNIX is the most likely candidate.

Although the NCDN is vital to the work of the participating institutions, and is in use

24 hours a day, 7 days a week, the network is not yet large enough to justify constant human

surveillance even during normal working hours. Without automatic monitoring systems, a

problem in the network often exists for hours before someone who can do something becomes

aware of it. Even when an appropriate person is aware of a problem, network management

tools currently in widespread use are extremely primitive, causing diagnosis to be slow and

painful in many cases. Network failures are frequent, and users are all too aware of the

possibility of the network being down when they want to use it. W/e must move toward a

network that, like telephone and electrical service, has few enough outages that users are

surprised when something does not work. A good network management system can help us

approach this goal.

2Since the time this information was compiled (Summer 1989) vendors have provided SNMP support
for many more of the above types. In most cases, however, SNMP support requires a hardware upgrade to
existing INs.

21

Chapter IV

Design Constraints

In this chapter we will take a look at the design constraints on this project that are imposed

by the desired tools and the target network discussed in the previous two chapters. First,

we will take a look at hO\v the various tool types discussed in Chapter 2 affect the design

of a network management system. Then we will see what demands the target network and

the INs that link it together (described in Chapter 3) make on the design.

Many of the numerical goals derived in this chapter are based on arbitrarily chosen usage

patterns and acceptable levels of performance. I have used the experienced gained during

several years of network management to arrive at these figures, but others might easily have

drawn somewhat different conclusions. I believe meeting the requirements I set forth in this

chapter will result in a good management .system for most existing networks.

4.1 Requirements Imposed by Desired Tools

In Chapter 2 I identified five classes of network management tools. Let us take a look at

each tool class in turn, identifying the requirements each imposes on our system.

4.1.1 Display Only Tools

In the discussion of Display Only tools, I mentioned that general users of the computing

system who are making non-trivial use of the network (a large and growing proportion

of all users) might want to be able to run tools that display the status of the network,

including reachability information and some measure of the busyness of various portions of

the network. One possibility mentioned is a graphical display with a logical or geographical

view of the network, indicating reachable and unreachable portions of the network by color

or drawing style, and some sort of meter indicating how busy each portion of the network is.

This type of tool alone places a great burden on the network management system. At times

22

when some major portion of the network is down, there might be literally hundreds of users

running such a tool to find out what is wrong. A poorly designed network management

system might make matters worse by increasing network traffic and the processing burden

of the INs all over the network whenever some portion of the network experiences a failure

or degradation in performance.

Such a tool imposes three requirements on a network management system:

1. Caching. Users must not be allowed to access INs directly, or the load imposed by

these tools will increase linearly with the number of users using the tool at any given

moment. There mut be an intermediate agent that collects information from the INs

at a reasonable rate, caches this information, and hands it off to user tools on request.

2. Distribution of Caching Agents. Even if there is a single caching agent that insu

lates INs from excessive requests, traffic to and from this caching agent can overload

INs; Thus, caching agents must be distributable. Caching agents should be able to

share information with each other, so that only the caching agents within a particular

administrative domain are querying the INs within that domain.

3. Standard Access to Caching Agents. The transport protocols used to access the

caching agents must be available on a wide variety of operating systems, so as to allow

widespread use of Display Only tools.

How often might one need to query each IN for such an application? A user who has just

lost a connection to a remote machine is likely to pull up a network display immediately. If

the display does not reflect the problem within 10 to 15 seconds, the user is likely to start

using other methods to figure out what is wrong. Querying 10 INs in a 10 second period

would require 1 query per second (per user). An indication of when the network is back up

is less critical. Perhaps 1 or 2 minutes would suffice for this.

The information requirements of a user-oriented display are minimal. Normally, opera

tional status and per-interface packet counts are sufficient. The display portions of Display

and Control tools for the use of network operators have greater requirements. These will be

discussed in the next section.

23

4.1.2 Display and Control Tools

Network operations and engineering personnel have a need to monitor and control INs at

every level of detail. They also need to manage different types of INs from different vendors.

They must be alerted when things go wrong, and must be able to request detailed information

when diagnosing a problem. Once the cause is found, they should be able to control the INs

as well, in order to fix the problem. These needs suggest the following management system

characteristics:

1. Full Capabilities. Standard network management tools should have every manage

ment capability the vendor provides through any other mechanism, so that the operator

does not have to use one mechanism to gain one capability and another mechanism to

gain another.

2. Commonality. INs that have a common capability (e.g., rebooting) should be con

trolled in an identical manner. Tool writing can be facilitated by achieving this com

monality below the tool level.

3. Security. The need for full remote control of an IN makes good security mechanisms

necessary, to avoid unauthorized access to INs.

A good diagnostic system will need to be able to access a few INs at a time at a relatively

high query rate. A particular piece of information may need to be retrieved from several

INs once per second or so. If several items of information are needed each second, this may

involve several queries of an IN per second while such diagnosis is going on. Thus, query

turnaround times should typically be less than one second.

4.1.3 Monitoring and Alerting Tools

Ideally, a Monitoring and Alerting tool should be able to alert a continuous display within

10 to 15 seconds of a network failure, so that operations personnel watching for a problem

are notified promptly and can take action immediately. It might even be possible to fix

some problems before connections time out, if a fix is known, fast, and non-destructive of

connections. It is also advantageous for operators to know about a problem by the time a

user calls to report it. This gives the users confidence that things are being taken care of,

and makes them less likely to call and bother operations personnel who are trying to figure

out what is wrong.

24

Such speedy notification can place a heavy, steady demand on both the INs themselves

and on the LANs carrying management information to and from INs. If the INs themselves

are capable of alerting a monitoring tool when certain problems arise, this can reduce the

need for frequent polling. Some forethought, knowledge of the network topology, and added

complexity in the monitoring agent can also help. For example, it may not be necessary to

poll every IN for operational status. If those at the far reaches of the network are polled

successfully, the INs in-between must be working. As a last resort, it may also be necessary

to trade away some alerting promptness in order to keep network congestion low.

Monitoring for operational status should be frequent, but monitoring for system degra

dation and long-term problems can be less so. Looking for increased error counts or excessive

traffic might require only one or two polls per IN per hour.

The information requirements of Monitoring and Alerting tools are typically very small.

Operational status and packet and error counts are all that are required in most cases.

Occasional dumping of configuration information may also be useful. An intelligent analysis

capability might require more information, but still less than a Display and Control tool

would need.

4.1.4 Statistical Tools

Statistical tools can have large information requirements, but typically have low polling rate

and turnaround time requirements. One might occasionally wish to gather statistics every 10

minutes or so for about a week, to analyze how the network changes throughout a day or

a week. Normally, however, daily statistics are more than sufficient for planning, analyzing

trends, and detecting slowly degrading components. This daily poll may, however, dump

large portions of the state of each IN on the network, in order to do configuration change

detection and logging.

4.1.5 Direct Interaction Tools

Direct interaction tools impose a different sort of burden on the network management system.

They require some common mechanism for gaining interactive access to a wide variety of

IN types using varying physical media and transport protocols. Some means of bridging the

gap between these proprietary interaction mechanisms and a common user interface using

a ubiquitous transmission protocol is required.

25

4.1.6 Tool Complexity

While we are talking about tools, it should be noted that network management tools can

be complicated, and therefore time-consuming and expensive to design, code, debug, and

maintain. If we use standards wherever possible, tllis burden can be greatly diminished

by sharing tools. A very large community of potential tool writers and users exists on the

Internet. It should be a requirement of our system that we use the same standards as this

community, so that we can use their tools and they can use ours.

4.2 Requirements Imposed by the Target Network

The target network itself imposes a number of requirements on our network management

system, because of its topology, administrative organization, and component IN types.

The topology of the NCDN has little redundancy at present. Thus, unless there is some

back-door for gaining management access, tools using the network itself to gain access will

only be able to tell how the network looks from the perspective of the point in the network

where information is gathered and cached. It might be useful for such caching agents to

be able to exchange information via the public telephone network or some other alternate

network. Access to the caching agents themselves may be a problem. There should at least

be one within each administrative domain, so that operators in each domain will be able to

see what is going on.

As noted in Chapter 3, those INs in the NCDN that support any non-proprietary network

management protocol at all, support SNMP. This is also the Internet standard. SNMP, then,

is the obvious choice for a standard protocol. (Standards will be further discussed in the

next chapter.) We need a system that will allow those devices that do not support SNMP

to look as if they do. I also noted in Chapter 3 that there are many different types of INs

that do not support SNMP. Our design must make it easy to add new types of devices to

bring them into the SNMP fold.

Finally, the INs in the network must not be overburdened by a network management

system. While network management is important, and some network resources will need

to be spent on providing good management capabilities, we must place some upper limits

on how much of our network resources we will allow network management to consume.

These upper limits will have to be determined empirically after the management system is

26

in place, but we need initial approximations to guide our design. Intuitively, a proportion of

any resource higher than about 5% dedicated to network management seems excessive under

normal circumstances. During diagnosis, a proportion higher than about 15% might under

some circumstances skew our results too much to allow us to understand what is going on

while the system is operating normally. Querying a particular IN more than a few times a

second also.seems both unnecessary and unacceptable.

4.3 Summary

Before moving on, let us summarize the conclusions drawn in this chapter. Listed below

are the demands that tools and the target network make on our management system. For

clarity, they are reorganized and restated from the discussion above.

1. Caching agents must be used to collect information from INs, cache it, and deliver it

to tools.

2. Caching agents must be fast enough to handle about one hundred requests per second.

3. Caching agents must be distributable among administrative domains, and should share

information with each other. It should also be possible for them to communicate with

each other using a second, independent network.

4. Communication with caching agents must be done over standard transport protocols,

to facilitate wide distribution of tools.

5. It should be possible to use standard management tools to perform any management

task on an IN that can be performed via another means.

6. The management protocol should mask accidental differences in the way identical

management functions are performed on different IN types, below the tool level.

7. The management protocol should have authorization mechanisms capable of prevent

ing unauthorized IN access.

8. The network management system should allow INs to be managed using imported

tools that conform to current Internet standards.

27

9. The network management system must not use more than about 5% of any particular

network resource (LAN or IN) under normal circumstances, and not more than about

15% while diagnosis is taking place. No IN should be queried more than a few times

per second in any case.

10. Round-trip time for a query of an IN must be less than one second.

11. Operational status queries (queries for up or down status) must be particularly unde

manding on INs and LANs, as they are executed frequently.

12. Interactive access to INs is required, and should use a common interface at the user

level and standard transport protocols at the tool/network interface.

13. Our system must make it as easy as possible to add drivers that will give us access to

more IN types.

Now that we know the requirements for our network management system, we can take

a look at some standard solutions that will help us meet our requirements. We will do so in

the next chapter.

28

Chapter V

Network Management Standards

In the previous chapter we established the need to use network management standards.

There are two reasons why this is important:

1. Newly purchased INs are likely to support a standard network management system.

When they do, and when the standard they support is the one (or one of the ones)

we are already using, these new INs fit trivially into our overall network management

system.

2. Tool writing is time-consuming and expensive. If we follow standards, we are more

likely to be able to share tools and thereby decrease tool writing costs.

In this chapter, we will take a look at what standards are now available and which are on the

horizon. I will then discuss how to fit om network management system into the standards

environment in which we operate.

5.1 ISO Standards

The International Organization for Standardization (ISO), in an effort to promote inter

operability among various types of computing systems, is developing standards for network

protocols. As a part of this effort, the ISO is developing a network management system stan

dard called Common Management Information Services (Cl'v!IS) [IS090b]. CMIS defines the

management capabilities of network elements and the management objects (counters, tables,

etc.) needed to support these capabilities. It defines which management objects are to be

maintained for the network entity as a whole and for each protocol layer. It also specifies

the internal interfaces with the various layers that the management system uses to gain

access to these objects, and the external interface to managing entities. The external inter

face standard is called the Common l\!anagement Information Protocol (CMIP) [IS090a],

29

the protocol to be used for communicating management information between the managed

and managing entities. CMIP is intended to run on top of ISO transport protocols. CMIS

supports both simple objects such as counters and addresses, and aggregate objects such

as sequences and tables. Management object values are encoded using Abstract Syntax

Notation One (ASN.1) [IS090c], an ISO encoding standard.

CMIS is expected to become the Internet network management standard in the long run,

but at present it is still under development and unavailable for use.

5.2 Internet Standards

The Internet currently uses the Internet Protocol (IP) as its underlying transport protocol,

with datagram and session services built on top of IP. The datagram service is called the

User Datagram Protocol (UDP), and the session service is called the Transmission Control

Protocol (TCP). The Internet Activities Board (IAB) has stated that it intends to convert to

the ISO protocols when they are well defined and stable. This includes transport protocols

to replace UDP, TCP, and IP, as well as higher-level protocols to perform such functions as

file and mail transfer, interactive sessions, etc. CMIS/CMIP will also become the network

management standard for the Internet [Cer88].

In the mean time, however, since CMIS/CMIP is unavailable, the Iilternet has had to

define its own intermediate standard for network management to fill the gap in time. This

intermediate standard is the Simple Network Management Protocol (SNMP). The SNMP

standard was published in August 1988, and was essentially an improved (but not upwardly

compatible) version of the previous standard, the Simple Gateway Management Protocol

(SGMP), which was published in November 1987. SNMP will be discussed in greater detail

in the following sections.

The IAB is also working on a transition plan for converting to CMIS/CMIP. One of

the results of this effort is called CMOT, which stands for CMIP Over TCP /IP [WB89].

CMOT is intended to ease the transition to ISO standards by making it possible to access

the CMIS network management system running on a network entity supporting TCP /IP

(and possibly ISO) transport protocols, using TCP /IP as a transport mechanism. It works

by injecting a Lightweight Presentation Protocol (LPP) between CMIS and TCP /IP on

the managed and managing entities, to allow the CMIS management agent and managing

30

client to use the standard ISO presentation service interface and have calls to this interface

mapped into calls to the TCP layer for actual delivery.

Another part of the transition plan is to separate the management protocoL and object

definitions from object type definitions, the encoding method for object instance values, and

the object naming scheme. The Structure of Management Information (SMI) [RM88] thus

defines object types, how they are to be encoded, and how they are to be organized into a

naming plan. The hope is that the SMI will remain relatively stable, as the objects man

aged and the management protocol change to follow protocol migration to ISO standards .
•

The Management Information Base (MIB) [MR88] defines the objects to be supported by

TCP /IF-based network entities. An overview of the SMI and MIB are given in the next two

sections, to lay the groundwork for the subsequent discussion of SNMP.

5.3 The Structure of Management Information (SMI)

The Structure of Management Information (SMI) specifies the types of objects that are

used for network management, how objects of each of these types are to be represented

when transmitted between managed and managing entities, and the overall naming system

used to identify specific object instances.

A few of the basic object types defined in the current SMI are listed below, as examples:

• IpAddress. - A four-byte Internet Protocol address.

• Counter. - A non-negative integer that monotonically increases until it reaches some

maximum value, after which it wraps around to zero. This might be used for packet

counts.

o Gauge. - A non-negative integer that may increase or decrease. This might be used

to count active sessions or indicate queue lengths.

• TimeTicks. - A non-negative integer that represents absolute time.

Aggregate object types are also included in the SMI, for representing lists and tables com

posed of the basic types.

The values of object instances of these types are to be encoded using ASN.l when

transmitted between managed and managing entities. ASN.l is the ISO standard encoding

31

scheme mentioned above; it will also be used to encode object instance values in CMIP.

Associated with each of the object types is a particular ASN.1 type (such as INTEGER).

A network management system refers to objects by name. The name of an object is called

its object identifier. The name space of all object identifiers forms a tree, as illustrated in

Figure 5.1. An object identifier is a sequence of integer node numbers, starting one level

below the root (which is implied), and specifying which node at each successive level leads

to the leaf representing an object instance. Each object identifier also has associated with

it an ASCII name, with mnemonic strings representing the integer node numbers at each ,
level, separated by delimiters. I will use "." as a delimiter in this paper.

The SMI also defines the top levels of the name tree. (Lower levels are defined by indi

vidual MIBs.) At the top level, ISO has been assigned a node named "iso" (node #1). Other

organizations also have top-level nodes. The ISO has designated one of its subtrees for other

national or international organizations, and calls it "org" (3). One of these organizations is

the U.S. Department of Defense, which is assigned node "dod" (6). The Internet Activities

Board (IAB) administers a subnode of the dod node, named "internet" (1). Thus, all object

identifiers with which we are concerned will begin with "iso.org.dod.internet" (1.3.6.1). Four

nodes· are currently defined by the IAB to reside under this node:

• directory (1)- For future OSI directory use.

• mgmt (2) -For objects defined in lAB-approved documents (MIBs). The first pub

lished MIB revision has been assigned a subnode, number 1. Subsequent revisions

will be given sequentially higher subnode numbers. The current MIB will always have

subnode name "mib."

o experimental (3) -For Internet experiments.

• enterprises (4) - For objects defined unilaterally. A subnode of this node, "private"

(1) is used for objects that are specific to a single vendor's equipment. Each vendor

would have a subnode of the "private" node, under which it is free to define its own

MIB.

Thus, all of the object names with which we will be dealing will reside in one

of two subtrees, "iso.org.dod.internet.mgmt.mib" (1.3.6.1.2.1, under MIB revision 1), or

"iso.org.dod.internet.enterprises.private" (1.3.6.1.4). The former subtree is for objects de

fined across vendor boundaries, and the latter for objects defined by specific vendors.

32

~
iso (1) root

org(3)

dod(6)

• • •

object identifier
object instance

object instance value

enterprises{4)

0
:g
;;;

Figure 5.1: An Abbreviated View of the Current lAB MIB

33

5.4 Management Information Bases (MIBs)

A Management Information Base defines those objects that must be supported by a partic

ular type of IN, along with the names and types (and resultant encodings) of these objects.

Note that a particular instance of an object is identified by an (object name, instance) pair,

so an object name may refer to more than one object. (How object instances are identified is

a function of the management protocol. I will discuss how SNMP identifies object instances

in the next section.) For example, a particular IN might have two interfaces. Assume an

object of name X of type counter that is defined to be the number of input packets seen on

a particular interface since boot time (or counter rollover). Assume also that the interfaces

are numbered "1" and "2." The object name X is shared by two object instances, or vari

ables, which we may denote by the ordered pairs (X, 1) and (X, 2). Each of these variables

identifies the input packet counter on its respective interface.

I will not attempt to define all the object names in the current IAB MIB, but will

describe the top-level subnodes of the MIB and a few objects so that the reader can get a

feel for what types of objects might be used for network management, how these objects are

organized, and what objects must be supported by which types of IN.

The current Mill (revision 1) is divided into eight subtrees. They are defined as follows:

• system (1) - System-wide variables, such as a textual description of the the system,

and how long it has been since the system was last rebooted.

• interfaces (2) -Interface-specific objects, such as the operational status of an interface

and non-protocol-specific packet counts.

• at (3) -Objects comprising a translation table mapping network addresses into physical

addresses.

• ip (4) -Objects pertaining to the Internet Protocol (IP), such as counters indicating

how many IP packets were discarded due to various errors or were delivered success

fully, and the IP routing table.

• icmp (5)- Objects pertaining to the Internet Control Message Protocol (ICMP), such

as counters for various types of ICMP packets.

• tcp (6) - Objects pertaining to the Transmission Control Protocol (TCP), such as

objects that give information about current TCP connections.

34

• udp (7) - Objects pertaining to the User Datagram Protocol (UDP), such as UDP

packet and error counters.

• egp (8) - Objects pertaining to the Exterior Gateway Protocol (EGP). (EGP is a

routing table maintenance protocol by which gateways inform each other of routing

changes.) These include objects that define a table of EGP-speaking neighbor gate

ways.

Which objects must be supported by a given IN type? The rule is that if a particular

top-level subhee of the MIB is applicable to an IN, then it must include all the objects

defined in that subtree of the MIB. The first two subtrees, "system" and "interfaces," are

applicable to all IN types, so all objects under these subtrees must be supported by all INs.

The "ip" subtree, on the other hand, would only be supported by gateways and routers that

route IP packets. Nate that although bridges and repeaters also forward IP packets, they do

not distinguish between IP and other protocols, and therefore do not have the information

necessary to support the objects in the "ip" subtree.

It will be instructive to look at some of the objects in one of the subtrees, to get an idea of

how the MIB is organized. The "interfaces" subtree contains one object of which there is only

one instance, " ... interfaces.ifNumber." This is an integer indicating the number of interfaces

the IN supports, and this determines how many instances there are of the per-interface

objects. The per-interface object names all begin with " ... interfaces.iiTable.ifEntry." A

few of them are listed below, with brief descriptions.

• ifDescr - type Octet String - A string of text containing information about the in

terface, such as the name of the manufacturer, the product name, and the hardware

version.

• iiType - type Integer- An integer indicating to which of a predefined set of interface

types (e.g. Ethernet) an interface belongs. The set of possible types is defined in the

MIB, and includes an "other" option for types not listed.

• ifSpeed - type Gauge- The interface's bandwidth in bits per second.

• ifPhysAddress- type Octet String- The physical address (e.g., Ethernet address) of

the interface.

• ifOperStatus - type Integer- The operational status (up or down) of the interface.

35

o ifinOctets - type Counter- The number of bytes received on this interface.

o ifinErrors - type Counter- The number of times an error was detected while receiving

a packet on this interface.

o ifOutOctets - type Counter- The number of bytes sent over this interface.

o ifOutErrors- type Counter- The number of times an error was detected while sending

a packet over this interface.

Now that we have an idea of what the SMI and JVIIB are, it is time to take a look at the

SNMP management protocol itself, which uses the Sl'vii and MIB.

5.5 The Simple Network Management Protocol (SNMP)

As stated earlier, the Simple Network Management Protocol (SNMP) is the network man

agement protocol intended to fill the need for network management on the Internet until

such time as the Internet converts to the ISO CMIS/CMIP network management system

and protocol. SNMP is designed to be what its name implies, simple. Particular emphasis

is given to ensuring that as little logic as possible resides in the INs themselves. This is

for two reasons. First, if SNMP is to be widely (and quickly) implemented by vendors, the

demands it imposes on INs must be minimal. Secondly, a simple, basic object-manipulation

capability in INs frees up those who write management tools to write tools as simple or as

elaborate as they wish, without having the structure or complexity of their tools dictated

by the management structure of the INs they are managing.

One consequence of the requirement that SNMP be simple is that SNMP only under

stands basic object types (such as Integer or String), and, unlike the SMI it uses, is not

capable of handling aggregate data types such as sequences or tables. Each object must be

retrieved or modified individually. This means, for example, that a row of a table can neither

be read nor modified as a unit. While this contributes to IN simplicity, it causes functional

difficulties that are difficult if not impossible to resolve at the tool level. For example, how

would one add an entry (a whole row, that is) to a routing table? Also, would it not be more

efficient to request a whole table at a time, or at least a whole row at a time, rather than

requesting the object at each (row, column) element of a table individually, and would not

the results have more integrity in the face of changing tables? It is this author's opinion that

36

SNMP has some serious deficiencies in this area. But CMIP does handle aggregate objects,

and perhaps SNMP is good enough for the interim. In fact, its simplicity may well be what

has made it possible for SNMP to be widely deployed soon enough to be an effective interim

solution.

As I mentioned in the previous section, it is the job of the management protocol to

specify how object instances are delineated. SNMP specifies an object instance via a simple

extension of the SMI's object naming convention. An object instance is denoted by an

object name concatenated with an instance qualifier. For example, if the object name is

" ... interfaces.iiTable.ifEntry.ifDescr ," the object that contains the textual description of the

second interface would be named " ... interfaces.iiTable.ifEntry.ifDescr.2." Since all instance

specifications are numeric (though they need not consist of a single integer, as in the example

above), the underlying node numbers are obtained trivially from the instance name. Thus,

the above-mentioned variable would be specified numerically as (1.3.6.1.2.1.2.2.1.2.2). The

last node number, a "2," indicates the interface number. Objects names that may only have

one associated instance are given instance number "0," so " .. .interfaces.ifNumber" would be

specified numeri~ally as (1.3.6.1.2.1.2.1.0).

SNMP provides for two methods of obtaining information from an IN. An IN can alert

a management tool of a reboot or link status change (from up to down, or vice-versa) or

other critical event asynchronously, using a trap message. Alternatively, a management tool

can send a get message to an IN, indicating the variables for which values are requested,

and the IN will reply with a response message containing both the variable names requested

and the values of the associated variables. SNMP also gives a tool the capability of sending

a set message to an IN to change the values of variables. The IN changes the value of the

each variable and then returns a response message showing the new values of the changed

variables. Of course replies may also include error indications if the requested action cannot

be performed. I will not go into the detail of SNMP message contents or formats in this

paper See [CFSD88) for details.

There are two types of SNMP Get messages. A simple get message specifies explicitly

which object instances are being requested. If a requested instance does not exist, an error

indicator is returned. A variation of the get message, the getnext message, specifies partial

or complete object or instance names. The IN returns, for each of these names, the fully

qualified name of the next object instance that it supports (in lexicographic order by the

37

numeric version of the object instance name), along with its value. This makes it easier to

traverse tables, or get all the values of all the instances associated with an object name. It

also eases the management of INs of different types or supporting different MIB revisions,

which may not all support the same objects.

Each SNMP get or set message contains a community ID that indicates what set of

capabilities the tool user claims. Each IN maintains a set of communities and an associated

set of capabilities. A capability set indicates, for each object, whether a given community

has read-only, write-only, or read-write permission with respect to that object (or none of

the above). Write-only access deserves some explanation. While the current MIB does

not list any such objects, the Slv!I allows the definition of objects that cause an action

to be performed when set. For example, there might be a reboot object that, when set,

reboots the IN. There would be no point in reading such an object. Such objects are not

yet defined because the security mechanisms of SNMP are not yet very good, and providing

such capabilities might be dangerous.

SN!v!P provides hooks for implementing authentication procedures to ensure that a tool

user actually belongs to the claimed community. For example, the message formats contain

an authentication section for authentication information. However, no particular authen

tication mechanism is a part of the SNMP standard, and most ·vendors have implemented

null authentication procedures. This means that if a user knows a community name he can

do whatever that community is allowed to do with a particular IN. Keep in mind that the

community name is part of the message transmitted over the network, and it would be easy

to obtain such community names by snooping somewhere along the network between the

IN and the management tool. For this reason, most IN vendors allow their INs to be set up

to specify that certain community names (those with dangerous powers) may only be used

from hosts with specified IP addresses. This at least makes it harder to gain unauthorized

access to an IN.

Current implementations of SNMP are built on top of UDP, though other transport

protocols may be used. One consequence of building on top of UDP is that message delivery

is not guaranteed. This, once again, simplifies IN management code, as message acknowl

edgements and retries do not have to be implemented. (In fact, an IN may ignore a request

it considers unimportant, if it is too busy to answer it.) It does, however, complicate tool

writing, as timeouts and retries must be implemented there. Each SNMP message contains

38

a unique ID (specified by the initiating process, which is the tool except in the case of traps),

and matching responses contain this same ID, so a tool can send out multiple requests to

the same IN and can sort out the responses even if some are missing or responses do not

arrive in the same order as the corresponding requests were sent.

It should be noted that, while SN~·IP's primary purpose is to manage INs, there is

nothing about SNMP that restricts its use to interconnection nodes. Any network node has

at least one network interface. Computers attached to a network usually also support some

higher-level protocols like IP, TCP, and UDP. So do many terminal servers, printers, and

other special purpose nodes. Thus, both the MIB and SNMP are applicable to any network

node to some degree. SNMP, then, could potentially be used to manage all the nodes on a

network.

5.6 Conclusion

In this chapter I have discussed the various current and upcoming network management

standards for the Internet, SNMP is the method of choice for this project because it is

currently available, and newer INs in the NCDN come with SNMP support.

Thus far in this paper I have discussed various introductory topics. I have described the

problem that needs solving, i.e., the provision of common access mechanisms to dissimilar

network interconnection nodes. I have also given an overview of network management tools

and their requirements, and have taken a look at the target network and how it affects the

design. Finally, I have reviewed the standards environment within which we must work.

The remainder of this paper discusses how I have gone about solving the stated prob

lem. In the next chapter, I give an overview of the solution. Following that, are detailed

descriptions of the various components of this solution. Finally, I will evaluate the solution

by comparing it to the stated requirements, and will give suggestions for improvements and

future developments.

39

Chapter VI

Design Overview

In this chapter I will give an overview of my solution to the problem of providing common

access mechanisms to dissimilar network interconnection nodes. In the process, I will give

particular attention to the identification of, and justification of, the major design decisions

affecting the result.

6.1 Build, Buy, or Wait?

The first question that needs to be addressed is whether to build our own management

system, buy (or acquire) what someone else has built, or wait for someone else to do it

for us. We did some of each. Choosing an established network management standard

enabled us to purchase or acquire all our network management tools and to make use of new

ones as they become available. During the time that the work described in this paper was

underway, upgrades for SNMP support became available for some of the IN types already

in use. Unfortunately, most of these upgrades involved replacing hardware components

(e.g., adding memory or upgrading CPU speed), a much more expensive solution than the

one described in this paper. Other IN types already in use will never support a network

management standard. \Ve needed access mechanisms for those IN types to make our

network management system as complete as possible. Thus, we purchase and acquire where

possible and economically feasible, build to fill in the gaps, and wait for native management

support for some of the devices to which we have temporarily gained access with our own

system.

6.2 Protocol, Operating System, and Language Choices

I chose a transport protocol, operating system, and programming language for implementing

my software based on the single criterion of facilitating as widespread use of it as possible

40

within the NCDN. I chose TCP /IP as the transport protocol for inter-process communication

because of its ubiquitous nature among the different operating systems in the network.

TCP /IP is so widely available that it is unlikely that any other transport mechanism will

be added to the system. The choice of operating system is less obvious, but still rather easy.

UNIX predominates, especially among those hosts likely to be running network management

tools. This choice is also less critical than the others, as my choice of language makes it

easy to port the software to other operating systems. My language of choice is C. Because

of its widespread availability among operating systems, this greatly aids portability over ,
other choices. A close second would have been something like C++, whose object-oriented

programming support would have made implementation easier, but whose relative lack of

availability would have hindered portability somewhat.

6.3 Defining the Access Mechanisms

Specifically what access mechanisms are we attempting to provide to all INs, and just how

common are they? In order to answer these questions, we must look back to the requirements

we identified in chapter 4. Briefly, the two relevant requirements are:

1. A single protocol for monitoring and controlling INs, having the characteristic that if

we want to perform an identical function on two different INs (regardless of type, as

long as the function is applicable to both), we use identical methods on both.

2. Some back-door method of accessing INs interactively, wherever the manufacturer

provides such a capability.

Refer to Figure 6.1 during the following discussion.

The first requirement can be met by somehow providing a mapping between the SNMP

protocol and various proprietary access mechanisms provided by the vendors, whenever an

IN doesn't support SNMP directly. I will call a process performing this function an SNMP

Proxy Agent, because of its role of providing SNMP access by proxy. (My justification for

choosing SNMP as a management protocol was discussed in the previous chapter.)

The second requirement can be met by a process that maps proprietary interactive ac

cess mechanisms (usually the same mechanisms mapped into SNMP by the proxy agent)

into TCP, so that all INs can be accessed interactively via the TCP protocol. Some com

monality is lost here. Most vendors who supply interactive access to their INs over TCP

41

Tools

__. SNMl?

UDI?""

Interconnection
Nodes that
support SNMP
directly

Proprietary__.....

Interconnection
Nodes that don't
suport SNMP
directly

Figure 6.1: SN!v!P and QUIP Overview

42

do so via telnet, a TCP /IP virtual terminal service. Implementing full telnet service by

proxy for INs not supporting telnet would have been more work than it was worth, since

we hope to eventually make interactive access obsolete by providing the same capabilities

via SNMP. Instead, I implemented a simpler mapping process for mapping between the

various proprietary interactive mechanisms and TCP. This mapping is restricted to simple

query /response interactions, and has thus been dubbed "Query Using Internet Protocol"

(QUIP). Besides the telnet/QUIP difference, the interactive command language itself will

vary among different vendors and IN types, but there is nothing we can do about that.

QUIP is implemented by two processes. One is a server named quipd ,(for QUIP Dae

mon). This process repeatedly accepts a query encoded in a QUIP message over a TCP

connection, retrieves the requested information from the indicated IN, and returns the result

over the TCP connection, in another QUIP message. The other process is a user interface,

simply called quip. It reads a command from its standard input (frequently the keyboard),

encodes it in a QUIP message, sends this message to the appropriate quipd server, waits

for the response, and writes the result on its standard output (frequently a terminal screen

or window).

6.4 Query Using Internet Protocol (QUIP)

There may of necessity, or for redundancy, be multiple quipd servers. For example, if a

particular IN type can be accessed only via a serial line, and there are INs of this type

scattered throughout the network with their serial lines attached to various host computers,

there will need to be a quipd server running on each of these host computers to gain access

to each of the INs. Even in the situation where INs of a given type can be accessed from

any host in the network (using some protocol other than IP), redundant quipd servers may

be desirable (e.g., one in each administrative domain) so that a network failure does not

preclude access to INs on the near side of the failure.

Interactive quip programs may, of course, be run from anywhere on the network, and

there can be as many quip programs running concurrently as operating system limits (such

as the maximum number of TCP connections to a given QUIP server) allow. All events are

interleaved within the quipd server, so that a delay in getting a response from one IN will

not slow down a quip process requesting information from a different IN.

43

Quip needn't be run interactively. Since it uses the standard UNIX input/output

streams, scripts can be written to run quip automatically. The scripts can read commands

from a file or generate them itself, and the output can be stored in a file or piped to another

process (e.g., for filtering or formatting of the results).

TCP (a connection oriented protocol), rather than UDP (a connectionless protocol), is

used as the transport protocol between the quip process and the quipd server. I chose

the connection oriented protocol because most of the proprietary protocols quipd uses

to communicate with particular INs are connection oriented. It would be quite difficult
' .

to maintain the integrity of the connection between quipd and an IN, if the connection

between quip and quipd were unreliable. Lost requests cannot simply be repeated, as the

lost request may (or may not) have already changed the state of the IN connection. In other

words, the quipfquipd connection would have to be made reliable, and we might just as

well have started with a reliable transport service.

QUIP's usefulness is not limited to accessing INs. It is a simple way to make any

command interface available via TCP. Often there are command interfaces to systems that

are accessible only via serial-lines (such as an on-line library catalog system). One might

want to be able to access this system from any host computer on the network. If the interface

fits QUIP's query/response paradigm, a driver can easily be wriften for the QUIP server to

solve this problem. I have used QUIP to provide an interface to the Intecom IBX telephone

switch database. (We also access the LAN mark bridges through this same interface.)

6.5 The SNMP Proxy Agent

As stated earlier, an SNMP Proxy Agent maps SNMP requests (normally received via a

UDP /IP from a management tool) into the proprietary protocols, command languages, and

physical access media provided by an IN vendor, obtains a response from the IN, and returns

the result in an SNMP response message. My SNMP proxy agent is called snmp_proxyd,

for SNMP Proxy Daemon. Much of the work that the snmp_proxyd needs to do is already

done by the quipd process. Thus, the task of the snmp_proxyd can be reduced to that

of performing the mapping between the SNMP protocol on one side and the proprietary

command languages on the other. Like the interactive quip program, snmp_proxyd uses

the QUIP protocol to communicate with INs via the quipd process. Thus, as far as the

44

snmp_proxyd process is concerned, all INs communicate via TCP, and it only needs to

handle the varying command languages themselves. This has two major advantages. First,

it simplifies the proxy agent by eliminating duplication between it and the QUIP server.

Secondly, it makes it unnecessary to run a proxy server wherever direct IN access is needed

(e.g., via serial line). The primary disadvantage of this approach is that it slows responses to

SNMP queries, as the path from management tool to IN involves hops through two servers,

or three network hops.

The proxy agent also serves as a caching agent. Each object instance value retrieved is ,
given a lifetime attribute. If the same management tool requests the same object instance

value twice in a row, the lifetime attribute is ignored, and the object instance's value is

retrieved again, so that the same value is not returned twice without consulting the IN.

On the other hand, if two different management tools request the value of the same object

instance within the lifetime of that value, the proxy agent simply returns the cached value to

the second requester. Thus, if many management tools are asking for the same information

at nearly the same time, the INs being monitored will not be queried more often than if

only one management tool is requesting the information. Traffic between the management

tools and the proxy agent may be high, but not between the proxy agent and the INs.

Parsing IN responses to commands is, in general, a nontrivial task. The command

languages provided by vendors are typically intended to be human interfaces, the results

being prettily formatted so that they are easy to read by humans operators. It can be

difficult, however, to write a computer program to parse such human-oriented displays and

turn them back into a format easily manipulated by a computer, so that they can be mapped

into SNMP response messages. Performing this rather tedious and error prone task for every

type and model ofiN (and every version of its command language) can make adding a new

IN type rather unpleasant and time consuming. To ease this task, I have implemented a

parser that allows a programmer to specify, using a simple grammar, what information in a

human-oriented display is of interest. This specification is then passed to a library routine,

along with the command response from an IN, and it returns a C structure containing the

results in a form that is easily manipulated by a C program. This parser is called the Human

Interface Parser (HIP).

Note that there is no particular reason that the proxy agent must use QUIP to commu

nicate with all the INs it serves. Any protocol an IN supports that is written on top ofTCP

45

or UDP would fit nicely into the design. Two obvious possibilities are telnet and SNMP

itself. In the case of telnet, communicating with an IN directly would save the extra hop

through quipd. This would probably be worth the effort, even though a telnet driver for

the proxy agent would be a bit more difficult to write than a QUIP driver. An SNMP driver

would be particularly useful, as it would enable a proxy agent to serve as a caching agent

for all INs, not just those that don't support SNMP directly.

6.6 General Design Considerations

At this point it is helpful to identify a few general design considerations that are applicable

to all of the above-mentioned components of the solution. Briefly, these considerations are:

1. Design for Speed. In order to meet our rather tight SNMP turnaround time require

ments in the face of the obligatory multiple network hops and unfortunate conversions

of information from computer-readable to human-readable and back again, we must

perform our computational tasks as quickly as possible. We must also perform in

terleaving of actions wherever possible, to keep one request from delaying another

unrelated request.

2. Design for Simple Drivers. Quipd, quip, and snmp_proxyd all have a certain

amount of code that differs among the various IN types. This type-specific code

for a particular IN type is called a driver. Whenever a new IN type is added to the

system, a new set of drivers must be written. Our components must be designed in

such a manner that drivers are as small and simple as possible.

3. Design for Portability. We require that our software be widely distributable. The proxy

servers must run in each administrative domain. The QUIP server must run wherever

access to an IN is available. The interactive QUIP program and other management

tools must run nearly everywhere. The software must not make any more operating

system or hardware specific assumptions than are strictly necessary.

I will keep these considerations in mind as I discuss each of the components in detail in

the next four chapters.

46

6.7 Summary

In this chapter I have identified and justified the major design decisions made during the

course of this project. I have also identified four major components of my design:

1. The QUIP server, quipd, which brings access to all INs up to the TCP level,

2. The QUIP interactive interface, quip, which provides an interactive interface over

TCP to INs not providing such an interface,

3. The SNMP Proxy Agent, snmp_proxyd, which provides a mapping between SNMP

and proprietary command languages, and

4. The Human Interface Parser (HIP), used by snmp-proxyd drivers to convert human

oriented displays into computer manipulable form.

In the following four chapters I will consider the design and implementation of each of

these components in greater detail.

47

Chapter VII

The QUIP Server

In this chapter we will take a closer look at the design and implementation of the QUIP

server, quipd. First I will describe QUIP messages and the QUIP library, a set of C

routines used for sending these messages between the QUIP server and its clients, quip and

snmp_proxyd. Then I will discuss the design and implementation of the main body of the

QUIP server. Finally, I will describe the QUIP driver interface, and drivers for specific IN

types.

7.1 QUIP Messages and the QUIP Library

QUIP messages are sent between Berkeley UNIX sockets using a stream protocol (over TCP).

Since stream protocols do not have message boundaries, QUIP messages must contain some

indication of how long each message is. For that reason, QUIP messages are sent in two

portions. First a header is sent, containing, among other things, the length of the text of

the message to be sent. The text itself is sent immediately after the header. See Figure 7.1

for a diagram of typical quip query and response messages.

The QUIP message header is a C structure containing the following members:

• address - A 32-byte field containing a null-terminated ASCII string, left-justified

in the field, that identifies a particular IN. This address must be unique within a

particular IN type. The Ethernet address of the IN is often used here.

• id - A 4-byte unique identifier for this message. On a query, this should be a unique

bit pattern not used in any other message in this session (or at least not recently). On

the response to a query, the same id is used as was in the query.

• options - A 32-bit flag word for setting various options. Currently the only option

is a flag indicating whether the connection between quipd and the IN should be

48

Query

address 0800200D13D\O

id 658001

options (none)

nodetype NT IB

timeout 5

errors (none)

datalen 10

data showdate\0

Response

address 0800200D13D\O

id 658001

options (none)

nodetype NT IB

timeout 5

errors (none)

data~en 25

data Sat Jul 28 05:34:21 1990\0

Figure 7.1: A Sample QUIP Query and Response

49

connection-oriented (i.e., left open between messages) or not (closed or reset to an

initial state between queries).

• nodetype- A 4-byte IN type indicator. The current types are:

- NT JB - 3Com IB Bridge

- NTJBX- Intecom IBX Switch (and LANmark Bridges)

- NT_TRANSLAN- VitaLink TransLAN Bridge

These node types only need to distinguish between IN types well enough to allow the

QUIP server to know what particular driver it needs to invoke to cc;>mmunicate with

the IN. The NT JB type, for instance, says to use the IB driver, which can be used

for all types of IB bridges. The IB driver can communicate with any IB using an

XNS protocol, even though the command languages used by the various IB models

and revisions vary a great deal.

• timeout - A 4-byte integer specifying the number of seconds to wait for a response

from an IN. If this timeout is exceeded, the QUIP server is to discard the request and

report a timeout error in a response message.

• errors -A 32-bit flag word in which errors are flagged in a response message. All bits

are zero if a query succeeded. The error flags are as follows:

- ER...BADQUERY- Improperly formulated query.

- ER_UNKNOWN- Unknown node type or address.

- ER...NORESPONSE - No response from IN. Set when the timeout expires

before receiving any response from the target IN.

- ERJNCOMPLETE- Incomplete response from IN. Set when part of an IN

response is lost or only a partial response is received before timeout expiration.

- ER_CONNECT - Cannot connect to IN.

- ER...FAIL - Query failed for some other reason (e.g., the QUIP server ran out of

resources).

• datalen- A 4-byte integer specifying length of the message to follow, in bytes, includ

ing the terminating null byte.

50

All integers and flag words in the message header (id, options, nodetype, timeout,

errors, and datalen) must be transmitted in network byte order.

The message portion itself is always a null-terminated ASCII string. All messages must

have a length of at least one, even response messages with an error flag but no relevant text

portion. There is normally a one-to-one matching between a query message to the QUIP

server (containing a command), and a corresponding response message, containing either an

error flag and an empty (null byte only) text string, or no error flag and the response to the

command in the text portion.

The QUIP library contains three subroutines that facilitate communication between the

QUIP server and its clients. Briefly, they are:

o send...quip(sock, msg, header) -Send message msg with the header specified by the

header parameter, over socket sock.

o send...quip_error(sock, error, header) - Send an error response to the query speci

fied by the header parameter, over socket sock. The error parameter specifies which

error(s) to report.

• recv...quip(sock, msg, header)- Read a QUIP message from socket sock. The header

parameter specifies where to put the header of the received message, and the msg

parameter specifies where to put the message itself.

The sock parameters of all routines are integer socket file descriptors. These three library

routines and their other parameters are described in more detail in the following paragraphs.

The send ...quip routine is used to send both queries and responses. The msg parameter

is a pointer to the null-terminated string to be sent. The header parameter is a pointer

to an instance of the QUIP header structure defined above. All header fields except the

datalen field must be filled in before send...quip is called. (In the case where send_quip is

being used to reply to a query, a pointer to the header received with the query is passed to

send...quip, as it already has all the fields except the datalen field filled in properly). If the

id field is zero, a unique integer will be filled in automatically. This is the easiest way to

get a unique id for sending a query. The send_quip subroutine automatically calculates the

value of the datalen field, from the msg parameter length. After these changes are made to

the structure pointed to by the header parameter, a copy of that structure is made, and all

integers and flag words in this copy are converted to network byte order. Then this copy of

51

the header and the message are sent over the sock socket. If an error occurs while sending

the message, send_quip returns a -1, otherwise it returns zero.

The send_quip_error routine is a shorthand way of sending an error response to a

query. The error parameter is a flag word indicating which errors are to be reported. The

header parameter is a pointer to the header structure from recv _quip associated with the

query to which we are responding. The send_quip_error routine fills in the error field and

calls send_quip with an empty string as its msg parameter. If errors occur while sending

the message, send_quip_error returns -1, otherwise it returns zero.

The recv _quip routine is used to read both query and response messages. Its msg

parameter is a pointer to a variable of type char * where a pointer to the received message

string is to be placed. The header parameter is a pointer to the QUIP structnre where

the received message header is to be placed. All integers and flag words in the header are

converted to host byte order before recv _quip returns. If the stream connection associated

with sock is closed on the other end (e.g., the client process has terminated), the character

pointer pointed to by the msg parameter is set to NULL. If an error occurs while reading

the message, recv_quip returns -1, otherwise it returns zero.

7.2 The Main Body of the QUIP Server

After initialization (which includes opening a socket on which quipd listens for TCP con

nections), the QUIP server goes into an event loop where it waits for an event, processes

pending events, does a bit of housekeeping, and then waits for the next event. There are

fonr types of events that may occur:

1. Some timeout expires. This can happen either if the timeout specified in a query

has expired without a response having been received from the target IN, or if some

housekeeping chore needs to be done at this time.

2. A new connection with the QUIP server (from quip or snmp_proxyd) is requested.

If so, the connection is accepted and initialized.

3. A QUIP query message has arrived for servicing. If so, the query is read and forwarded

to the appropriate IN (or queued for forwarding later, if the IN already has a query

pending).

52

4. Part of a response (or a complete response) has arrived from an IN. If so, the response

fragment is read and appended to the fragments that arrived previously (if any). If the

response is not yet complete (and no errors have been detected), no further action is

taken. Otherwise, a response (or error response) is sent to the querying client process.

Then, if there is another pending query for the same IN, it is initiated.

The above event types are listed in increasing order of priority. That is, all pending IN input

arrivals are handled before all pending quip message arrivals, which are handled before all

pending connection requests, which are in turn handled before all timeouts expirations. The

purpose of this priority scheme is twofold .. First, it ensures that queries already in progress

are handled as soon as possible. Secondly (and more importantly) it keeps the QUIP server

from getting bogged down accepting connection requests and new queries, should the server

not be able to keep up with requests (e.g., if some client program goes haywire, sending

queries in rapid-fire succession). This makes sure some queries are handled, at the expense

of delaying (and possibly rejecting) new queries and connections.

For the sake of clarity, the above description of events and associated actions is oversim

plified. Now let us take a more accurate and detailed look at each event type and how it is

handled.

7.2.1 Timeouts and Housekeeping Chores

Timeouts are used to signal two different types of events in the QUIP server. First, each

query has associated with it a timeout that specifies how long the server should wait for

a response from an IN before it gives up and terminates the query. Secondly, there are

certain per-IN resources (associated with open connections to INs) that it is most efficient

to set up once and leave set up for a while, since more queries are expected to arrive soon

for this particular IN. But there are not enough of these resources available for every IN in

the network. Thus, after a certain amount of time passes with no queries for a particular

IN, its resources are returned to the pool for use in handling requests to other INs (and the

corresponding IN connection is closed). The close routine of the driver is used to close the

connection itself.

Just before the server determines that it has no more to do at present and is getting

ready to put itself to sleep until the next event occurs, it checks to see when the next timeout

should occur. It then sets an alarm to make sure that it will wake up to handle the next

53

timeout promptly, in case no other events arrive to wake it up before that time. If an event

or a set of events does occur before the timeout expires, these events are handled first, and

then if any timeouts have expired by that time, they are handled before the server prepares

to sleep again.

7.2.2 Connection Requests

Each time a client process wishes to begin communicating with the QUIP server, the client

process requests a TCP connection to the server. When such a request is received, the server

simply accepts the request (if it has enough resources to allow it to do so) and initializes

data structures associated with the connection.

7.2.3 QUIP Query Arrivals

Whenever a QUIP query message arrives it is read ih and timestamped. Then a check is

made to see if a connection to the target IN is already open that can be used to answer the

query. If the QO_CONNECTION flag is set in the message, a dedicated connection is

required between the server and the IN for this client. In this case, we check to see if this

connection has already been established for this client and IN. If so, this pre-established,

dedicated connection is used to answer the new query. If the QO_CONNECTION flag

is not set in the incoming message, we look instead to see if a connection to the target

IN has been established for non-connection-oriented queries. In either case, if there is no

appropriate connection already available, one is set established. This involves calling the

open routine of the appropriate driver, determined by the nodetype field of the message.

Once a file descriptor and associated data structures have been found or established

to answer the query, the query is put into a queue associated with the appropriate file

descriptor. If there was not already a query in this queue, the first portion of the query

(typically one command) is sent to the IN via the file descriptor. (A particular query may

involve multiple IN commands, in which case the commands are sent to the IN one at a

time, and the IN's responses to all of the commands are concatenated together and returned

as if they were the response to a single command.) This command is sent using the send

routine of the appropriate driver. At this point, we are finished handling the query arrival

event.

A special case of the query arrival event occurs when a client closes the connection to

54

the QUIP server (or the operating system drops the connection due to some error). \Vhen

this happens, the recv...quip routine sets the msg pointer to NULL to notify the server that

the connection has been dropped. At this point, a search must be made through all open IN

connections to ensure that any queries queued for this client are dequeued and discarded,

and that any connection oriented IN sessions for this client are closed. The close routine of

the driver is used to close such a connection. It may be that dequeuing a query will bring

another query to the top of the queue. \Vhen that happens, the first command of the next

query in the queue is sent to the IN at this time, using the driver's send routine.

7.2.4 ~ Input Arrivals

When input arrives on a file descriptor associated with an IN connection, it is read by the

QUIP server and then handed off to the receive routine of the appropriate driver. The

block of data that has been received from the IN may be a simple ASCII response (as in

the case where the IN is accessed via a serial line), or it may be a packet containing the

response, perhaps in some encoded form. The receive routine of the driver extracts the

response and does any post-processing that is necessary, returning the result. It also checks

to see whether or not the response to the current command is complete (by checking some

end-of-message indicator in the packet, or looking for a prompt); and whether or not there

was some kind of error (such as a lost packet, determined by monitoring packet sequence

numbers). It returns such status information in a flag word parameter.

If an error flag is returned, the remainder of this query is dequeued and an error message

is sent back to the appropriate client. If the response to the current command is complete,

the current query is checked to see if there are more commands left in the query. If so, the

next one is sent on to the IN via the send routine of the driver. Otherwise, the query is

dequeued and the complete response is sent to the client. In any case, if the current query

is dequeued and there is another one in the queue, the first command of this next query is

sent to the IN via the driver's send routine.

Normally, all IN connections will be closed by the QUIP server. If for some reason an IN

connection is closed by the IN itself or (in the case of some error) by the operating system,

the attempt to read data from the associated file descriptor will fail, and an indication will be

given that the connection has been closed. In this case, error messages are sent to the client

processes that initiated the queries associated with the dropped connection, the associated

55

-~-

query queue entries are removed, and the file descriptor and associated data structures are

deallocated.

7.3 The QUIP Daemon Driver Interface

In the previous section, I made frequent references to the driver routines that handle low

level communication with particular IN types. There is a set of driver routines for each

major type of IN supported. Each set has four routines, namely open, send, receive, and

close. Let us look at the parameters and functions of each of these routines:

• open(address, connection)- Open a connection with the IN specified by the address

parameter. The address parameter is a null-terminated character string, as received

in the query message. The connection parameter is a boolean indicating whether the

connection is to be dedicated to one client session (with the state of the IN connec

tion maintained between commands) or whether it is sharable by various clients, the

connection being reset to some initial state between queries. If successful, the open

routine returns a the file descriptor associated with the connection it has established.

Otherwise it returns -1.

• send(fd, cmd, request) - Send the command cmd to the IN connected to the file

descriptor fd. The cmd parameter is a null-terminated character string representing

a single IN command. The r·equest parameter is a pointer to a structure containing

all the information pertaining to the active query. Some elements of this structure

must be used in the send and receive routines, e.g., to keep track of packet sequence

numbers. The request structure is described below1
. The send routine returns zero if

successful, -1 otherwise.

• receive(buffer, bufien, response, flags, request) - Perform any post-processing on the

data read from the IN, which is referenced by the character pointer buffer. The number

of characters read is indicated by the integer bufien parameter. The request parameter

points to the data structure associated with the current query. The resulting response

is to be placed in a null-terminated string, and a pointer to this string is to be copied

1 It is probably bad practice to make this whole structure available to the driver. Some information
hiding would be appropriate here.

56

into the char * variable pointed to by the response parameter. The flags parameter

is a pointer to a flag word where status indications are to be placed. Possible status

indications are:

- RC_COMPLETE- The end of the response to the current command has been

read. This can be determined by looking for some sort of end-of-message indicator

in a packet, or by looking for a prompt from the IN.

- RCJNCOMPLETE - Some data has been lost, and the response cannot be

completed. This might be flagged when a missing packet sequence number is

detected.

- RC_FAIL - Some other error has been detected (such as a protocol error in a

response packet).

The flag word is initialized to zero before the receive routine is called. If the flag word

is zero upon the return of the receive routine, the response data has been processed

but the end of the response has not yet been read. The receive routine returns zero

if successful, -1 otherwise. Note that "successful" in this case means that no system

error has occurred. Returning RCJNCOMPLETE or RC_FAIL in the flag word is

not considered a failure of this routine, so a zero would be returned from the receive

routine in these cases2 •

• close(fcl) - Close the connection indicated by file descriptor fd. This routine usually

just calls the UNIX close system call on the file descriptor, but it may be necessary

in some cases (e.g., when accessing an IN via a serial line) to restore the connection

to some initial state first.

The request structure contains all the information that the QUIP server maintains about

a given query. It may be used by the send and receive driver routines. The members of this

structure that may be useful to these driver routines are described briefly below. At present,

these members are used only by driver routines that are managing datagram oriented IN

connections.

• id - A 4-byte integer unique to this query, used to match response packets with the

corresponding command packets.

2 Also note the lack of symmetry between scud, which actually writes to the file descriptor, and receive,
which does not read directly from the file descriptor. This lack of symmetry should be eliminated.

57

o cmdno - The serial number of the current command in the sequence of commands

associated with the current query. This is also used to match response packets with

the corresponding command packets.

o seq - The sequence number expected in the next response packet. This is used to

ensure that no packets of a response are lost.

7.4 IN Drivers

Now that I have discussed the driver interface in general, I will briefly review the three IN

drivers that have been written to date. These are:

• IB - The 3Com IB driver.

• TransLAN -The VitaLink TransLAN driver.

o IBX - The lntecom IBX Man-Machine Interface (MMI) driver.

7.4.1 The IB Driver

Access to the 3Com IB bridges is available via two methods. One can either connect to an

asynchronous serial port on the bridge, or one can use a datagram oriented protocol through

the regular data interfaces of the bridge (in-band). Since the in-band approach makes it

easier to get to all the bridges on the network, I wrote a driver for this access method. The

datagram protocol is built on top of the XNS Internetwork Datagram Protocol (IDP), and

is intended to be used by management programs running on a special management station

provided by the vendor. I wrote a driver that uses the XNS IDP protocol on a VAX running

4.3bsd UNIX (the only UNIX version available to me that supports XNS) to communicate

with the bridges.

Since no state information about queries is kept in the IB (queries are handled in their

entirety each time a datagram is received), all communication with the IBs is non-connection

oriented. Theoretically, when one is using a datagram protocol, one UNIX socket should be

able to be used to communicate with all IB bridges. In fact, this is not the case for sockets

using the 4.3bsd XNS protocol implementation. Once a socket is used for communicating

with one IB, it cannot be used to communicate with another IB. So each time information

is needed from an IB for which we do not have a socket already set up, the IB open

58

routine is called. This routine obtains an XNS datagram socket, initializes several socket

options, and associates the socket with the address of the particular IB with which we wish

to communicate. The socket options initialized are the IDP packet header to be sent with

every outgoing packet and the number of receive buffers to be allocated by the operating

system for response packets from this particular IB (the default is too small, causing packets

to be lost). Note that the open routine does not send any packets to the IB itself. It only

sets up a socket for later use.

The send routine puts a unique integer, a concatenation of the id and cmdno fields of

the request structure, into a field of the packet header intended for just such an identifying

integer. It then sets up several other packet header fields, copies the command into the

appropriate place in the packet, and sends the packet to the IB.

The receive routine checks packet header fields to ensure that the packet received cor

responds to the current command, and that the sequence number in the received packet

is correct. (Though each command will fit in one packet, a response may be long enough

to fill many packets.) If a packet is lost, the RC...INCOMPLETE flag is set in the flag

parameter word, and the receive routine returns. Otherwise, the response data is extracted

from the packet. This response data contains an enwded ASCII string. The encoding com

pacts spaces by representing a string of spaces as a byte with the· high-order bit on, and the

low-order seven bits representing the number of spaces. It also represents newlines with a

null byte. The receive routine converts this response into its full ASCII representation, and

returns this null-terminated string via the response parameter. Finally, a bit in the packet

header is checked to see if this is the last packet of the response corresponding to the current

command. If so, the RC_COMPLETE flag is set in the flag word parameter.

The close routine is trivial. It simply closes the file descriptor passed as argument fd.

7.4.2 The TransLAN Driver

Like the IB, the VitaLink TransLAN provides access via a direct serial port or in-band via

a data interface. I wrote a driver for the in-band interface. The protocol used is the XNS

Sequential Packet Protocol (SPP). This is a reliable, connection oriented protocol.

The open routine sets up an XNS SPP socket. It then connects to the bridge using the

UNIX connect system call. This actually causes the transfer of packets between the bridge

and the UNIX operating system to establish a connection. Then several initial packets are

59

exchanged with the bridge (from the driver), completing the connection setup.

The send routine sends the characters of the command, one at a time (one per packet) to

the bridge. It should be possible to send the whole command at once, but I could not discover

how to make that work. Perhaps this feature is not supported, as the bridge expects to be

communicating with a human typing at a keyboard, and the bridge echos each character as

it is typed.

The receive routine examines the string read from the socket, looking for a prompt at

the end. If one of several possible prompts is identified, the RC_COMPLETE flag is set.

Then the routine returns. No packets have to be dealt with, as the SPP protocol returns

only the ASCII response when a read operation is performed on the socket. No conversion

of the response is necessary in this case.

The close routine is trivial, closing the file descriptor.

7.4.3 The IBX Driver

The IBX driver is a bit different from the other two, in two ways. First, we are accessing a

telephone switch database interface (called the Man-Machine Interface, or MMI), through

which access to a number of bridges is obtained. Secondly, the only available access is via

one of several asynchronous serial ports.

We have connected several serial MMI ports from the IBX switch to serial ports on a

UNIX host. One of these is used for non-connection-oriented requests (e.g., SNMP requests),

and the others are used for connection oriented sessions (e.g., using the quip program for

interactive access). The open routine opens one of these ports, depending on the value of

the connection parameter. The address parameter is ignored, as the identifying address of

a particular bridge (in this case, a telephone switch port number) must be sent along with

commands to the MMI interface to indicate which bridge is to be accessed. After the serial

port is opened, port options are set (e.g., parity) and the fact that this port is in use is

recorded. Then the file descriptor is returned.

The send routine translates the command to upper case (as required by the MMI inter

face) and then sends the characters of the command to the serial port, one character at a

time, with a small delay between characters. This delay is required because the MMI ports

are not full duplex and tend to lose characters if they are sent too fast.

The receive routine removes null bytes from the characters read from the serial port

60

(which are sent as padding by the MMI interface), and checks for a prompt. If a prompt is

found, the RC_COMPLETE flag is set. Then the routine returns.

The close routine closes the serial port and records the fact that it is free to be used

again.

7.5 Summary

In this chapter we have looked at the detail of the QUIP Server design and implementation,

including the QUIP message interface, the internal workings of the server, the driver inter

face, and the drivers that have been implemented thus far. In the next chapter, we will take

a look at the interactive quip program in detail.

61

Chapter VIII

The QUIP Interactive Program

The QUIP interactive program, quip, is a rather simple program that provides an interactive

query/response interface to INs that do not provide telnet or some other such interface. In

this chapter we will look at the design and implementation of the quip program. But first,

I will need to describe the database that quip and snmp_proxyd use to map IN names to

their addresses, types, and other attributes.

8.1 The QUIP Database

The QUIP database, named quiptab, is a file containing one line of information per IN, in

fields separated by white space (tabs or spaces). Access to information about a particular IN

can be obtained via the get..quiptab_entry library routine, a routine in the quip library.

(Other routines in this library were described in section 7.1.)

The get..quiptab_entry routine takes two parameters. The first, name, is a null

terminated string containing the name of the IN for which we are requesting the database

entry. The second parameter, database, also a null-terminated string, is the name of the

database file to search. If the database file name is NULL, a default file name is tried,

"/etcjquiptab." If the database entry for the specified name is not found, this routine

returns a NULL pointer. Otherwise it returns a pointer to a C structure containing the in

formation in the database corresponding to the name parameter. The fields in the database

are described below, using the names in the C structure returned by geLquiptab_entry,

and the order in which the fields are represented in the database file. (In the database file,

anything between a'#' character and the end of the current line is considered a comment.)

1. name - The name of the IN, as an ASCII string.

2. major_type - The major type of the IN. In the database file, this is a ASCII string

(currently ib, translan, or ibx). The geLquiptab_entry routine maps this string

62

to an integer corresponding to the NT node type C macros that identify a particular

major node type and its associated driver (currently NTJB, NT_TRANSLAN, or

NTJBX).

3. minor_type - An integer that differentiates between different command languages

used by the various INs of the same major type.

4. address - An ASCII string representing the address of the IN (unique within major

IN type). In most cases this ethernet address of the device. In the case of IBX bridges,

this is the IBX switch port number associated with the bridge.

5. server - The host name of the quip server to be used to contact this IN, as an ASCII

string.

Several example database entries are listed below:

uncch-cs ib 0 08000200AF08 astro.mcnc.org

uncch-campus ib 1 08000201CODE astro.mcnc.org

tucc translan 0 08007C00010A astro.mcnc.org

uncch-cs-sll ibx 0 304 mercury.cs.unc.edu

8.2 The QUIP Program

The quip program is invoked in one of the following two ways:

• quip node...name

• quip -t database.file node_name

In the first case the default database file is used, and in the second the database file is

explicitly specified. In either case, the name of the IN to be queried is specified on the

command line.

The quip program first obtains the database entry for the specified IN. Then it sets up a

connection with the QUIP server indicated by the database entry. Next a trivial command

is sent to the IN to ensure that it is reachable and up, and to obtain an initial prompt to

display to the user. This trivial command is usually just a newline character of some sort.

The response to this command is received and displayed on the standard output. Then

the program goes into a loop accepting a command from the standard input, packaging it

63

up in a QUIP message, sending this message to the QUIP server, retrieving the response,

and displaying it to the standard output. When an end-of-file indication is received on the

standard input, the program closes its QUIP server connection and exits.

Since quip reads from the standard input and writes to the standard output, its input

and output can be redirected from or to a file or process, as with most UNIX commands.

This means that quip need not be run interactively. It can accept commands from a file or

process, and write the responses to a file or process. It can also be run from a shell script.

For example, one might put the following shell command in a shell script:

echo 'sh ss' I quip uncch-cs I a11k -f formatter

This command executes the 'sh ss' command on the uncch-cs IB bridge, and formats the

result using an awk script.

To facilitate running quip from a shell script, it is possible to combine multiple IN

commands on a single line, separating them with a semicolon. For example, one might put

the following command in a shell script:

echo 'sh ss; sh ns 0; sh ns 1' I quip uncch-cs

This shell command executes three commands on the specified IN. Semicolons are converted

to newlines, and the entire string of commands is sent to the QUIP server in one message.

The QUIP server will return the responses to all the commands, concatenated together into

one response message.

The quip program has to be aware of the major type of the IN with which it is com

municating. This is because the interactive access mechanisms provided by the various

vendors have differences that show up at the user interface to quip. For example, some

vendor supplied interfaces (connection oriented ones) provide prompts, while others (data

gram oriented ones) do not. In the latter case, quip needs to provide a prompt of its own.

In addition, some interfaces end certain commands with a character other than the newline

character, such as an ESC (escape) character. \Nhen this is the case, quip must be prepared

to terminate an input line with either a newline or an ESC'.

1There is no driver interface to quip that enables these differences to be well isolated from the rest of
the quip .code. The major type of the IN is, however, only tested in two sections of the code, before and
after the main loop. Variables set in the first of these two sections determine the decisions made in the loop
without the need to consult- the IN type again.

The quip program also tests to see if it is being run interactively or not. It uses this

information to modify its behavior slightly depending on how it is being run. For example,

it will not supply prompts if it is not being run interactively (and if the IN does not do so

itself).

Timeouts in the query messages sent to the QUIP server are set as a function of the

number of commands in the query, and whether the IN interface is connection or datagram

oriented. Currently, the timeout is very high (one hour) for connection oriented sessions, as

certain IN commands (to the IBX MMI interface, in particular) can take a very long time to

complete. For datagram oriented interfaces, The timeout is currently five seconds times the

number of IN commands in the query. The quip program is capable of re-sending queries

to INs with datagram oriented interfaces, should a query time out or suffer lost packets on

the response. If a timeout occurs with no response at all, the query is retried once. If only a

partial response is received (a packet is lost), the query is retried nine times. This is because

packets are often lost on queries with long responses from datagram oriented interfaces.

(This packet loss is caused by bridges with inadequate buffering capacity, and is unrelated

to the implementation of my software).

8.3 Conclusion

In this chapter I have described the implementation of the quip program. In the process,

I have described the QUIP database and the retrieval procedure used to obtain informa

tion from this database (get..quiptab_entry). This database is used by both quip and

snmp_proxyd to obtain information about particular INs.

In the next chapter, I will describe the Human Interface Parser (HIP), used by my SNMP

ProXY Agent to pick relevant information out of an IN response. Then, in the following

chapter, I will take a detailed look at the proxy agent itself.

6.5

Chapter IX

The Human Interface Parser (HIP)

The Human Interface Parser (HIP) was designed to ease the implementation of SNMP Proxy

Agent drivers by facilitating the parsing and decoding of IN command responses. The HIP

parser is capable of picking the specified information out of a response that is formatted to

be read by a person, rather than a computer. It converts the information it has found into

a format that is easily manipulated by a computer, storing the results in a C structure. In

the following sections I will describe how to use the parser and, briefly, how the parser is

implemented. We will then take a look at a few examples of parser use.

9.1 How to Use HIP

In this section I will describe how to use the HIP parser to select information from an IN

response and store the selected information in a C structure.

9.1.1 The HIP Library Routines

Two library routines implement the HIP parser. I describe each of these briefly below:

• hip_parse(specification, input, output) -Parses and converts the input specified by the

input parameter (a pointer to a pointer to a null-terminated ASCII string) according

to the specification given by the specification parameter (a pointer to a null-terminated

ASCII string). The char * pointer referenced by the input parameter will be updated

to point to the character in the input stream just after the last object parsed, to

allow the programmer to parse an input string using more than one call to hip_parse.

Memory is allocated to store the resulting C structure, and a pointer to this structure

is copied to the structure pointer variable referenced by the output parameter. The

first member of this structure must be a char ** pointer. After the call, this will

point to a NULL-terminated array of pointers to memory blocks allocated during this

66

invocation of hip_parse. It is used by hip ..free to free all memory allocated by this

invocation. This routine returns zero if successful, -1 otherwise.

o hip..free(structure) - Frees the memory allocated by a previous invocation of the

hip_parse routine. The structure parameter is a pointer to the C structure that was

the result of a previous call to hip_parse. This routine returns no value.

9.1.2 The Parsing Specification

The specification parameter of hip_parse specifies what information is to be extracted

from the input string, and how it is to be encoded in the resulting C structure. This

specification string consists of a sequence of object specifications, separated by spaces. An

object specification has the following three components:

1. Count - The number of instances of the specified object type to be found. This

component can be one of the following four types:

o Empty, which specifies a single instance.

o A non-negative integer, which explicitly specifies the number of instances.

o *, which specifies zero or more instances.

o +, which specifies one or more instances.

2. Object Type - Either a mnemonic name that indicates the type of information to

be extracted and how it is to be encoded, or a .left (open) grouping symbol specifying

one of several types of object grouping. The various object types are described below.

3. Argument - If the object type is not a grouping symbol an argument string may be

specified, separated from the object type by a colon character. If there is no argument,

the colon must be omitted. If the object type is a grouping symbol, all characters

following the left (open) grouping symbol up to but not including a matching right

(close) grouping symbol are considered the argument.

The non-grouping object types currently available are listed below. More types may be

added rather easily, by following the example of how similar types are implemented1• No

argument may be specified to these object types unless otherwise noted.

1No claim is made that the set of object types below is complete in any sense. This set of object types
was sufficient to implement the existing drivers. It is likely that ne·w object types will have to be defined to
accomodate new drivers.

67

• int- The next integer in the input string is to be found and converted to a long integer

representation and stored in the next word of the C structure. Negative integers are

not recognized as such; the encoded integer is always the absolute value of the integer

that was found2 •

• inttok- This is the same as int, except that an argument is specified that lists one or

more non-digit characters, a sequence of which may be found instead of the sequence

of digits comprising an integer. If an integer is found, it is stored in the C structure as

with int. If instead a sequence of the argument characters is found, the first three of

the characters in this sequence are used to compose a negative integer that is stored

in the C structure in place of the positive integer normally saved there. The function

producing this negative integer is accessible to the program calling the parser routine,

and returns a number that is unique and deterministic for a sequence of any three

characters. The purpose of inttok is to efficiently represent a field value that is

nearly always an integer, but which has a small set of other potential values (such as

"undefined" or "infinite").

• str - The next string of non-whitespace characters is to be found and converted to a

null-terminated string. A pointer to this string is to be stored in the next member

of the C structure. Whitespace is defined to be any sequence of characters composed

of space, tab, carriage return, newline, vertical tab, or formfeed characters. If an

argument string is specified, any character in that string can terminate the string

being parsed, in addition to any whitcspace character or the end of the input string.

• hexint- The next hexidecimal integer in the input string is to be found and converted

to a long integer representation and stored in the next member of the C structure.

• hexstr - The next hexidecimal string in the input string is to be found and converted

to a null-terminated string. A pointer to this string is to be stored in the next member

of the C structure.

• keystr - This is the same as the str type, except that a table of string values matched

by the keystr object type is maintained. If any given string value matched by keystr

2There should be some way to parse all integers, regardless of sign. Existing drivers did not need to
parse negative integers, and the present behavior allows negative integers to be used by inttok.

68

is found more than once within the same invocation of hip-parse, all pointers to this

string value will be to the same string instance. This can save a lot of memory space

when parsing a large table where the values in some of the fields of the table are strings

that occur frequently. For example, if we are parsing a large table that contains a field

whose values can only be the strings "on" or "off," only two memory allocations will

have to be made for these field values, instead of one per table entry.

• ethadr - The next ethernet address in the input string is to be found and converted

to a six byte representation and stored in the next six bytes of the C structure.

Note that whenever the parser is searching for an object of a given type, the search begins

immediately after the last object that was found. Any number of characters may be skipped

over before the object in question is found. Thus, if we are looking for an integer and then an

ethernet address, we will skip all non-digit characters, parse an integer, and then, beginning

immediately after the last digit in the integer, will skip all characters until a sequence of six

consecutive hexidecimal bytes (encoded in ASCII) are found.

There are four sets of grouping characters, with the following meanings:

• " - Matching single quotes delimit a literal string to be found in the input string.

• () - Simple grouping characters, used to apply a repetition count to a sequence of

object specifications.

• {} - Grouping characters that indicate that all objects within the group must be found

within a single line.

• [] - Grouping characters that indicate that all objects within the group must be found

within a single line, with the additional restriction that all the objects found corre

sponding to this specification (some number of instances of this sequence of objects,

the number specified by the count component) must be found in a set of consecutive

lines. This is useful for parsing tables.

9.2 Parser Implementation

The hip_parse parser is implemented as a loop that matches one object specification on

each iteration. Each object specification is first broken down into its count, object type,

69

•

and argument components. Then a table lookup is done to determine which subroutine

is associated with the given object type, and this subroutine is called count times, with

the argument component as a parameter. Each of the object type subroutines returns

an indication as to whether or not the object in question has been found. If the count

component indicates a specific number of instances, the failure of such a subroutine to

find what it is looking for means that the innermost grouping invocation has failed. If

the count component is a *, such a failure terminates the parsing of the current object

specification (always successfully). If the count component is a +, such a failure also

terminates the object specification, unsuccessfully if no instances have been found, but

successfully otherwise.

All grouping object types except the single quote (literal) type call the main parser

routine recursively to parse the objects specified by their argument. The {} and [] grouping

types, since they require all the objects within the group to be found within a single line,

cause a boolean parameter called inaline to be set to true on all sub-invocations of object

parsing subroutines (this parameter is otherwise false). When the inaline parameter is true,

the parsing subroutines will not look beyond the current line for the object for which they are

searching. The parsing routine for the {} grouping symbols will find the next line matching

the contained object specifications, while the parsing routine for the [] grouping symbols

will not look beyond the current and next lines. The parsing routine for the () grouping

symbols simply calls the main parsing routine recursively. This pair of grouping symbols is

useful only because it allows a count to be specified for a sequence of object specifications.

The literal object type parser simply matches characters in the input string. It does not put

anything into the resulting C structure.

A simple sequence of object types with definite instance counts will simply fill in succes

sive members of the resultant C structu,re as indicated in the corresponding object type

descriptions above. Indefinite counts (using * or +) must be handled differently. Since the

number of instances is unknown by the routine invoking the parser, space cannot be allo

cated directly in the C structure for the instance values. Instead, a long integer indicating

the number of instances found is inserted into the structure, followed by a pointer to an

array of object instances, each of which is a structure filled in in the same manner as the

main structure. Whenever the object type is not a (non-literal) grouping type, this structure

is trivial, containing only one member.

70

SELECT COMMAND => dgn
DIAGNOSTIC NAME or? or Return=END => lndg
TEST NUMBER or ? . => 3
SPECIFY PORT# or Lor P or? => 320
SPECIFY CURRENT STATISTICS TYPE or R = RETRIEVE SAVED STAT or ?

*** LAYER STATISTICS DIU5 08/25/89
PORT 320 LN 0

transmitted received
PACKETS: 45515205 54556166
BROADCAST PACKETS: 931364 11256085
VIRTUAL CHN DATA: 0 0
VIRTUAL CHN PROTOCOL: 0 0
PACKETS DISCARDED: 161 51984
ELAPSED TIME: 022.00:22:34

CLEAR STATISTICS? Y =YES, N =NO N =>@

SELECT COMMAND =>

Figure 9.1: IBX LAN mark Bridge Response for Example 1

=> 1
09:28:40

Pointers to memory blocks allocated anywhere in the parser (excepting the allocation

of the main structure) are put into an array of pointers so that these memory blocks can

be freed by hip_parse. A pointer to this array is stored in the first member of the main

structure that is returned by hip_parse. Memory blocks are allocated for strings and for the

arrays of structures that hold instances corresponding to object specifications with indefinite

counts.

9.3 Examples

A few examples will clarify the use of the hip-parse and hip ..free routines.

9.3.1 Example 1: A Simple Example

Suppose we are retrieving data from an IBX LAN marl> bridge, and the response from the

bridge, which is the input to the parser, is as shown in Figure 9.1. We wish to extract the

port number and the ten counters in the table of transmitted and received packet counters.

Since ·there are integers in this input string other than the ones we want, we will have to

71

struct lanmark_packets {
char **memoryblocks;
long port;

};

long xmt_pkts, rcv_pkts;
long xmt_bcast_pkts, rcv_bcast_pkts;
long xmt_vchan_data, rcv_vchan_data;
long xmt_vchan_proto, rcv_vchan_proto;
long xmt_discards, rcv_discards;

struct lanmark_packets *lp;
I

char *lp_spec = "'LAYER STATISTICS' 'PORT' int 'PACKETS:' 10int";
char *lp_response = "SELECT COMMAND => dgn\nDIAGNOSTIC NAME or ? or
char *lpr;

lpr = lp_response;
if (hip_parse(lp_spec, &lpr, &lp)) error("Can't parse lp_spec");
else {

}

process_lp_data(lp);
hip_free(lp);

Figure 9.2: C Code for Parsing Input Shown in Figure 9.1

" . • • • J

~ use literal strings in the parsing specification to ensure that we get the right values. Our

specification string for parsing this input is as follows:

'"LAYER STATISTICS' 'PORT' int 'PACKETS:' 10int"

This specification indicates that we are to find the string 'LAYER STATISTICS', and then

the string 'PORT'. Next we are to parse the next integer (the port number). Finally, we are

to find the string 'PACKETS:', and parse the next 10 integers.

The C structure into which the resulting integers are to be stored is shown in Figure 9.2

This figure also shows the declarations of the pointer to the C structure and the specification

and input strings that are used in the invocation of hip _parse and hip _free. Finally, it

demonstrates how these routines might be invoked. Note the required memoryblocks

member, which is used by hip_free to free up all memory blocks allocated by hip_parse.

In this case, since there are no strings or indefinite counts in the specification, there will

be no such memory blocks to be freed, other than that allocated for the C structure itself

(which is not listed in the memoryblocks list, but is freed by hip_free). Note also that

72

SELECT COMMAND => dgn
DIAGNOSTIC NAME or? or Return=END => lndg
TEST NUMBER or ? . => 3
SPECIFY PORT# or Lor P or? => 320

SPECIFY CURRENT STATISTICS TYPE or R = RETRIEVE SAVED STAT or ? => 2
SPECIFY APPLICATION STATISTICS NUMBER 1 => 2
**** DIU5 LANmark INTERFACE 08/25/89 11:12:42

PORT 320 LN 0

ELAPSED TIME 022.01:24:38

TRANSMITTED INTO LANmark 45606774
BROADCAST PACKETS TRANSMITTED 16083

ETHERNET SRC ETHERNET DEST
DEST DOB ADDR UNKNOWN 33775 08 00 20 00 80 E8 08 00 20 06 47 32
MULTICAST ETHERNET FRAMES 47829 08 00 20 01 28 79 FF FF FF FF FF FF
NEW DEVICES ON COAX CABLE 15 08 00 2B 11 12 CA

RECEIVED FROM LANmark 46355
BROADCAST PACKETS RECEIVED 48626

LANmark SRC ETHERNET DEST
NONMULTICAST ENET FRAMES 1517 00 09 01 00 00 00 08 00 02 00 00 00
MULTICAST ENET FRAMES 47109 00 09 01 00 00 00 01 80 C2 00 00 00

CLEAR STATISTICS? Y =YES, N =NO N =>@

SELECT COMMAND =>

Figure 9.3: LAN mark Response for Example 2

the pointer lpr is initialized to the value of lp..response, and that a pointer to lpr is passed

to hip-parse. The lpr pointer will be updated to the character following the last object

successfully parsed in the input string (the integer 51984, in this case).

9.3.2 Example 2: A More Complex Example

My second example involves a two more object types and simple grouping. The LAN mark

response string for this example is shown in Figure 9.3. \Ve wish to extract the elapsed

time (as a string), and all counters and ethernet addresses in the response string. Our

specification and C structure are shown in Figure 9.4.

73

struct lanmark_stats {
char **memoryblocks;
char •elapsed;

};

long xmt, xmt_bcast;
long addr_unknoYn;
u_char au_src[6], au_dst[6];
long xmt_mcast;
u_char xmc_src[6], xmc_dst[6];
long neY_device;
u_char nd_addr[6];
long rev, rcv_bcast;
long rcv_nmcast;
u_char rnmc_src[6], rnmc_dst[6];
long rcv_mcast;
u_char rmc_src[6], rmc_dst[6];

char •ls_spec =
'"ELAPSED TIME' str 2int 2(int 2ethadr) int ethadr 2int 2(int 2ethadr)";

Figure 9.4: C Code for Parsing Input Shown in Figure 9.3

9.3.3 Example 3: Parsing Large Tables

In this final example, I will demonstrate the use of a specification ·with an indefinite instance

count, and the aU-in-consecutive-lines grouping symbols ([]). I will also make use of a few

more object types. An abbreviated display of the response string is shown in Figure 9.5.

This response string contains two bridge learning tables, one for each of the two interfaces

of an IB bridge. We wish to parse these tables separately. We do not need to extract the

No. field, as this is implicitly obtained by the array index. We do have to extract the other

fields, even the Network field, because of the infrequent non-integer values of this field (Ib,

Disable, and N etsAndlb), even though without these special string values we could have

deduced the network number from the order of the tables. Since the first three characters of

each of these values are unique, we can use the inttok object type instead of the str type,

and thus save space. We will also use the keystr object type to parse the Age field, since

there are only four possible string values in this field (User, Young, Middle, and Old).

We must use the aU-in-consecutive-lines grouping symbols ([]) to enable us to determine

where the first table ends. (Alternatively, we could have run both tables together and used

the Network field to sort out which entry belonged to which interface, by using the all-

74

No. Station Address Network Depth Age

--------------- --------- ------
1 'l,08000200AF08 Ib 0 User
2 'l,080089D01117 Disable 0 User
3 Y.FFFFFFFFFFFF NetsAndib 0 User
4 'l.080089A04115 0 0 Young
5 'l.080089A04732 0 0 Young
6 'l,080089A03792 0 1 Young
7 'l,080089A03610 0 0 Young
8 l:08002BOEF925 0 0 Middle
9 'l.08002000380F 0 1 Middle

10 'l,08002000AA9F 0 0 Old

total number of entries = 83

No. Station Address Network Depth Age

--------------- --------- ------
1 'l,08000200AF08 Ib 0 User
2 'l.080089D01117 Disable 0 User
3 'l.FFFFFFFFFFFF NetsAndib 0 User
4 %080002010440 1 0 Young
5 'l,08000200CE3B 1 1 Young
6 Y.08000200E355 1 0 Young
7 %080069020294 1 0 Middle
8 'l.08002000952A 1 0 Middle
9 'l.08002B020267 1 1 Middle

10 'l.AA000400B09C 1 0 Young

total number of entries = 268

Figure 9.5: IB Response for Example 3

75

struct ib_learntab_entry { u_char address[6] long netYork; long depth;
char *age; };

struct ib_learntab { long nentries; struct ib_learntab_entry *entry;
};

struct ib_learntabs { char **memoryblocks; struct ib_learntab
learntab [2] ; } ;

struct ib_learntabs *ib_lt;

,
char *ib_spec = "2(*['%' ethadr inttok int keystr])"

Figure 9.6: C Code for Parsing Input Shown in Figure 9.5

in-a-line ({}) grouping symbols.) Our C structures and parsing specification are shown in

Figure 9.6. Note that the address of the ib...lt pointer variable (&ib...lt) is passed as the

output parameter to hip_parse.

9.4 Conclusion

In this chapter I have described the design, implementation, and use of the Human Interface

Parser (HIP). This parser was designed to facilitate the parsing and decoding ofiN command

response strings intended to be read by humans. The HIP parser greatly simplifies coding of

the routines in the SNMP Proxy Agent that must extract data from the command responses

received from INs, thus making it much easier to write proxy agent drivers for new IN types.

Now that I have completed the description of the design of the QUIP server and QUIP

and HIP libraries (including the geLquiptab_entry, send_quip, recv_quip, hip_parse,

and hip ..free routines used by the proxy agent), I am ready to describe the proxy agent

itself in detail. This I will do in the next chapter.

76

Chapter X

The SNMP Proxy Agent

I am now ready to describe the detailed design and implementation of the SNMP Proxy

Agent, snmp_proxyd. This is the server process that implements the mapping between

the SNMP protocol and the proprietary command languages of INs that do not support

SNMP directly.

The proxy agent is composed of a common section of code and a set of drivers, one for

each IN type. I will first describe the common code, and then the driver interface.

10.1 The Main Body of the Proxy Agent

The main body of the proxy agent begins by initializing global data structures and setting

up a UDP socket on which it will listen for SNMP request packets. The data structures ini

tialized include a tree structured mapping between the ASCII-mnemonic and numeric forms

of SNMP object names, as shown in Figure 5.1, a list of structures containing information

about each IN including its variable cache, an array for information about each QUIP server

connection, a list if structures containing information about each outstanding QUIP query,

and a list of all outstanding SNMP requests, which is used to facilitate the discarding of old

unanswered requests.

The setup of the tree used to map between ASCII-mnemonic and numeric forms of object

names requires a bit more explanation. A file called /etc/snmp.variables contains the

mnemonic and numeric versions of each object name. This file is read, and a corresponding

mapping tree constructed, during the initialization of the server. Each line of this file

contains one object name in ASCII and its corresponding numeric form, as indicated by the

following examples:

77

iso 1 org 3 dod 6 internet 1 mgmt 2 mib 1 system 1 sysDescr 1

iso 1 org 3 dod 6 internet 1 mgmt 2 mib 1 system 1 sysObjectiD 2

iso 1 org 3 dod 6 internet 1 mgmt 2 mib 1 system 1 sysUpTime 3

This file must be updated, and the server re-started, whenever a new MIB is published or

variables in the private portion of the object name tree are changed.

After initialization of these data structures and the UDP socket for SNMP requests is

complete, the program enters an event loop where it accepts accepts SNMP requests and

QUIP responses one at a time, performs the appropriate action for each event, deletes any

old SNMP requests that have not been answered, and returns to the top of the loop. I will

discuss each of the two event types in detail in the following sections.

10.1.1 SNMP Packet Arrival Events

When an SNMP packet is received, it is first parsed to extract such information as the

community name, IN name, type of request (set, get, or getnext) and a list of object

names (and values, if it is a set request). Note that, wllile the SNMP packet format

contains provision for proxy information such as the specification of the IN to be accessed,

most existing management tools do not support the proxy feature, and therefore cannot fill

in this portion of the SNMP packet. Thus, an alternate mechanism for specifying the IN to

be accessed is required. In order to allow existing tools to work with our system, we have

adopted the convention of encoding the IN identification along with the community name.

Thus, if a community named "public" is to be used on an access to the IN named "uncch-cs,"

one would specify a community name of "public.uncch-cs" to the tool. The proxy agent

separates the real community name and the IN name portions of this "community name"

when the packet is parsed. Unfortunately, some tools only allow for rather short community

names (as few as 15 characters), so community na.mes and IN names must be kept short.

Since the "public" community is currently the only one commonly in use, I have allowed a

null community portion to represent the "public" community. Thus, ".uncch-cs" means the

same thing as "public.uncch-cs" to the current server implementation.

The parsing of the SNMP packet is done using public domain library routines written by

Steve Waldbusser at Carnegie Mellon University (CMU). The CMU library has a routine that

will parse an SNMP packet and return two data structures, one containing the variables and

their values, and another containing other information about the request. A different routine

78

takes these same structures and builds an SNMP response packet. Of course, decoding the

community ID as described above is done by our agent, not the CMU library.

Once the SNMP packet has been parsed, geLquiptab_entry is called to get information

about the target IN. Then all the information about the request is put into a request data

structure, which is added to two lists. One of these, a global request list, is used simply to

gain quick access to "old" requests that have not been filled (e.g. if the IN is down) so that

they can be discarded. (Note that, unlike the QUIP server, the proxy agent does not need

to send a timeout response to the management tool. The management tool will time out

the request itself.) The other list to which the request is added is part of the data structure

containing IN-specific information about the target IN. (If tllis is the first SNMP request

for this particular IN, this data structure is first created as described below.) The request

is also timestamped as it is queued to enable the agent to determine when it is old.

Once the request has been queued, an attempt is made to fill the request. (The process

of filling a request will be described in detail later.) If this attempt is successful (e.g., if

it is a get or getnext request and the values of the the requested variables are all in the

cache), the SNMP response packet is generated and sent to the appropriate management

tool, and the request is dequeued. Otherwise, the process of trying to fill the request will

initiate requests to the target IN to obtain the desired information or perform the desired

functions, and the request will be left in the list to await the results of these actions.

If this was the first SNMP request for a particular IN, the process of queuing the request

will fail to find a data structure for the target IN in the global list of such structures. When

this happens, a structure for this IN is created, initialized, and added to the global list. The

initialization process includes calling the build..node driver routine, which initializes the

cache for this particular IN in an IN-type specific manner. (This cache initialization will be

discussed in more detail momentarily.) In addition, if this is the first IN associated with a

particular QUIP server, a connection is also set up with this server at this time.

The build..node driver routinejs called to initialize the cache structure for a particular

IN. The cache structure is a tree that takes the same form as the object name mapping tree

described earlier, except that it contains only those branches relevant to the IN-type with

which it is associated. It also will grow to include object instances and their values as such

values are requested and obtained from an IN. The cacl1e initialization driver routine builds

a stump of this cache tree. It does this by specifying which major branches of the tree are to

79

be supported by this IN type, and associates a retrieval procedure and a lifetime with each

of these branches. Each retrieval procedure is a driver routine that will be called to initiate

queries of an IN to obtain the objects contained in the associated branch of the tree and

their values. The lifetime associated with a branch of the tree indicates how long the cached

structure of this branch of the tree will remain sufficiently current to be used as a basis for

filling requests. (The structure of the branch determines which object instances exist in this

branch at any given time.) Note that the structure of a branch can change, e.g., when table

entries are added or deleted. There is also a separate lifetime associated with each object

instance. This will be discussed further as I describe the filling of requests in the following

paragraphs.

Filling an SNMP request is a rather complicated process. We will begin by assuming

the request is a get request, and will later point out how a getnext request differs1
.

An SNMP get request contains a list of variables for which current values are sought.

Filling such a request involves obtaining the value of each variable. If the value of every

variable in the request can be obtained (all at the same time), the request is considered filled

and a response packet can then be generated and sent. If it is determined that a particular

requested object does not currently exist, an error response is generated indicating which

object did not exist. If obtaining the value of some variable requires that the cache for some

branch of the tree be updated, an IN query is ini.tiated to obtain the necessary information

to update the cache (unless the required query has already been initiated and a response is

pending) 2• If obtaining one variable's value requires a cache update, this does not stop the

proxy agent from attempting to obtain the other requested variable values. This is because

all necessary IN queries for this request should be initiated as soon as possible. However,

any values obtained from the cache for this request will be freshly obtained when another

attempt is made to fill the request. This ensures that all values returned are current as of

the time the request is successfully filled.

Let us look in more detail at how one variable value is obtained. Suppose the ASCII

representation of the variable name is

iso.org.dod.internet.mgmt.mib.interfaces.iiTable.ifEntry.iflnOctets.l

1 1 will not discuss the filling of set requests here, as they have not yet been implemented. Note also that
community IDs and other protection mechanisms have also not been implemented and will therefore not. be
discussed here. (See Chapter 12 for suggested improvements.)

2 Currently the only means of querying INs is via QUIP.

80

which has the numeric representation (1.3.6.1.2.1.2.2.1.10.1). The variable name is repre

sented in numeric form in the SN!v!P request packet. A traversal of the cache tree associated

with the target IN is made, using the node numbers to determine which of the current parent

node's children is to be selected at each step. This traversal proceeds uneventfully through

iso.org.dod.internet.mgmt.mib (1.3.6.1.2.1).

When the "interfaces (2)" node is reached, a pointer to a retrieval procedure is found

in the node. This indicates that the full extent of this branch of the tree stump originally

produced by the build..node driver routine has been reached. (Whether or not the tree

extends further depends on whether or not the variables in this branch have been previously

obtained.) Now the expiration attribute of this node is checked to see if the structure beyond

this point in the branch exists and is sufficiently current to warrant further traversal without

first reguiring an update of this branch of the tree. (This expiration attribute is computed

from the current time and the lifetime attribute of the node whenever the branch structure

is updated.) If not, we next check the retrieva/_pending flag in this node to see if the the

retrieval procedure has already been called and we are waiting for the response. If this is

the case, we are finished with this attempt to obtain the value of tllis variable. Otherwise

the retrieval procedure at this node is called, specifying the target IN data structure as an

. argument, and we set the retrievaLpending flag. The retrieval procedure sends a QUIP query

to the specified, IN. This query includes all the IN commands necessary to retrieve all the

variables in this branch of the tree. Note that it would be both inefficient and inadequate to

obtain each variable individually. It would be inefficient because most single IN command

responses contain information from which the values of multiple variables can be extracted or

computed. There is no sense in throwing away the extra information once we have received

it, since the major time delay is in obtaining a response, not extracting the information from

that response. It would also be inadequate, as it is the structure of the branch (i.e., what

variables are present in the branch) that needs updating at this point, not (yet) the value

of the variable for which we are searclling. (This distinction is not really important for get

requests, but it is for getnext requests, discussed later.) In addition to sending a QUIP

query to the target IN, the retrieval procedure adds an element to a global list that matches

the unique id in the QUIP message to various information about this query (a pointer to the

target IN data structure, the node in the cache tree that contained the retrieval procedure

pointer, and a pointer to the driver procedure that will parse the response to the query and

81

update the cache). Since the retrieval procedure only initiates the query, and the response

will take some time to arrive, we are now finished with this attempt to obtain the value of

this variable. We will need to try again after the response has arrived. This will be discussed

in the next section, on QUIP response events.

Now let us back up a minute and suppose that when we reach the "interfaces" node

in our tree traversal, we find that the expiration attribute of this node indicates that the

cached structure of this branch of the tree is sufficiently current. In this case, we continue

our traversal of the tree through nodes "ifTable.iJEntry.iflnOctets.i" (2.1.10.1) to the end

of the variable name. If at any point (before or after reaching the node with the retrieval

procedure) we find that the next node in the object name sequence does not exist, our

attempt to obtain this variable has failed and we will return an SNMP error packet flagging

this variable. In this case, no attempt will be made to obtain the values of any other

variables. If we reach the end of the variable name successfully (and this is a get request),

we must also find that the last node encountered is a leaf of the cache tree, or we will

handle this erroneous situation similarly. Next, we check the expiration attribute of the leaf

node, to see if the value of this variable is current enough to be used. If not, we call the

retrieval procedure as described above (which we have remembered since passing the node

where we found its pointer), and we are done for now. If the expiration attribute indicates

that the value is current, we must still check a list of tools that have received this value

of the variable. There is such a list associated with each variable in the cache tree, and it

represents a tool by the Internet number and port number of the client that sent the SNMP

request. If we determine that the current value of this variable has already been sent to

the tool that initiated the current request, we must call the retrieval procedure as described

above to obtain a new value. Otherwise, we have found the variable we wanted, and there

will be a pointer in the leaf node to the value of this variable. We copy tllis value into the

request structure, add our current tool to the list of recipients of this value, and move on to

the next variable.

Now let us suppose that the SNMP request is a getnext request. As you will recall from

the description of SNMP in Chapter 5, the get request specifies a specific object instance,

while the getnext request may specify either a specific object instance or a partial object

name. When a getnext request is received, the tree is traversed exactly as with the get

request, until the end of the specified object name is reached (potentially calling a retrieval

82

procedure or detecting an error along the way). When the end of the object name is reached,

whether we are at a leaf of the cache tree or not, we switch to a different traversal method,

wherein we perform a depth first traversal of the tree in increasing node number order

(possibly backing up when we reach a dead end), until we find the next object instance in

the tree. In this case, the name of the instance found as well as its value are copied into the

request structure. Note that the only ways a getnext request can fail with a "nonexistent

instance" error are if the first part of the specified object name matches the full name of an

existing variable but has additional nodes specified, or if there is no variable in the tree with

a name that comes after the specified name in the order in which we are traversing tl)e tree.

Note also that there may be a retrieval procedure called in the first portion of the traversal

(the portion like get), and again in the second portion, where we are looking for the "next"

instance. In this (rare) case, two IN queries are required, which will delay the response to

the SNMP request.

We have now concluded our analysis of the handling of SNMP packet arrival events. In

the next section I will discuss what happens when QUIP responses are received.

10.1.2 QUIP Response Arrival Events

·.Whenever we send a query to a QUIP server, we are guaranteed that we will eventually get

..•• some sort of response (unless the QUIP server hangs or has a bug). Possible responses are:

1. A QUIP message indicating failure to process the query (e.g., if the timeout expires

or the server receives an incomplete response).

2. A QUIP message containing the desired response.

3. The QUIP connection is dropped. (This is not really a response, but it does cause a

QUIP response arrival event.)

Let us consider each of these possible responses.

If we receive a QUIP message at all (cases 1 and 2), recall that there is a unique message

ID in the response message that is identical to the message ID in the corresponding query

message. We use this ID to find an entry containing information about this query in our

list of pending QUIP requests, and remove this entry from the list. If the response is an

error response (case 1), we simply clear the retrieval..pending flag in the node of the cache

tree that contained the pointer to the retrieval procedure that initiated this query, so that

83

the next time that node is traversed we will call the retrieval procedure again. We do not

retry the query, and we do not send an SNMP error to the management tool that sent the

request. The tool will time out the request and may re-send it. \Ve do not even dequeue

the request, since there may be multiple requests waiting on this response. The proxy agent

will remove old requests after a while to keep things tidy.

Before we describe what happens in the normal cas.e when we receive a valid response

from QUIP, let us consider what happens if the QUIP connection is dropped. Certainly we

will wish to close the file descriptor and go through the list containing information about

pending QUIP requests, removing all those that correspond to the ,dropped connection.

Beyond that, we could simply set a flag in a table of QUIP servers to indicate that the

connection must be reestablished next time an SNMP request comes in for an IN being

served by this server. However, since the information cached for these INs will quickly

become out of date anyway, I have taken a more drastic approach, preferring to remove the

entries corresponding to all these INs from the list of IN data structures, discarding the

cache trees, request lists and any other information we have about these INs. This has the

advantage that the quiptab table will be re-consulted each time an SNMP request arrives

for one of these INs, until a successful connection is made with the specified QUIP server.

This allows a network operator to change the quip tab table to route requests for these INs

to another server.

Now consider what happens when we receive a valid QUIP response. First, we use

the unique ID in the message header to find the appropriate entry in the list of pending

QUIP queries, and we remove this entry from the list. Then we call the parser driver

routine indicated in the entry, passing as a parameter the pointer to the IN data structure

associated with the query, also found in the entry. The parser routine will be described in

detail in the next section. Briefly, it parses the IN response and calculates and inserts into

the cache tree the values of all the variables determinable from the response string, along

with a new expiration value for each. Note that the variables inserted do not all have to

reside under the node where we originally found the retrieval procedure. It may be that

certain variable values are found in the responses to different commands, and we may as

well update them whenever we receive a new value, even ifit has not been obtained using

the retrieval procedure that would be used if the value of that variable had been requested

directly. After the parser routine has completed its task, we calculate a new expiration

value for the node containing the retrieval procedure pointer and clear the retrievaLpending

flag of the this node. Finally, we go through the list of pending requests associated with

this IN and attempt to fill all the requests in the list. If any is filled, the SNMP response is

generated and sent back to the tool, and the request is dequeued.

I have now finished describing tl>e handling of QUIP response arrival events. In the next

section I will describe the driver routines that must be implemented for each IN type.

10.2 The Proxy Agent Driver Interface

The driver for a particular IN type consists of a build....node routine and a pair of routines

for each node of the cache tree with which the buildnode routine has associated a retrieval

procedure. This pair of routines consists of the retrieval procedure itself, which sends com

mands to an IN requesting the information required to fill in the cache tree below this node,

and a corresponding parsing routine that parses the resulting IN response and inserts the

new values of the variables determinable from this response into the cache tree. Note that

this set of variables must at least include all variables under the node of the tree associated

with the corresponding retrieval procedure, but is not limited to those variables. A brief

overview of each of these routines and their parameters follows:

• build....node(cache_tree) - Build the stump of a cache tree by inserting branches that

cover all supported variables in the tree. The cache..iree parameter is a pointer to an

empty cache tree to which the branches are added. A branch is added by calling the

routine

cache_branch(cache..iree, name, procedure, lifetime)

where name is the ASCII representation of the object name prefix corresponding to

the node, procedure is a pointer to the retrieval procedure, and lifetime is the number

of seconds that the structure of this branch will remain current, which is used in

computing the structure expimtion value for the node at the root of the branch.

• retrieve(IN ...struct, cache..node) - Retrieve information from an IN. The IN ...struct

parameter is a pointer to the data structure containing information about the target

IN. It is used to obtain the IN type and address to put into the QUIP message. The

cache_node parameter is a pointer to the node of the cache where the pointer to this

85

retrieval procedure was found. Once the QUIP message is built and sent, an entry for

this message is added to the list of pending QUIP messages, using the routine

queue...quip(message_id, parse_routine, IN ..struct, cache_node).

1
The parame~ers of this routine become the values of the members of the new list entry

structure. The message_id parameter is the unique message ID in the QUIP message,

which will be used to find this list entry when the response message arrives. The

parse_routine parameter is a pointer to the parse driver routine (described below)

that will parse the results and insert the new variable values into the cache tree.

• parse(response, IN ..struct) - Parse an IN response and insert all the variables that can

be computed from this response into the cache tree (part of the IN_struct parameter).

The response is parsed using the hip-parse routine described in the previous chapter,

and variables are inserted using the routine

variable.Jnsert(name, instance, type, value, size, IN..struct).

The name parameter is the name of the variable to be inserted, excluding the instance

specification. The instance parameter is the instance portion of the variable name. (It

is a separate parameter to facilitate the insertion of variables for a number of instances

using a loop.) The type parameter indicates the data type of the variable. The value

parameter is a pointer to the new variable value, and the size parameter indicates its

size in bytes. The IN ..struct parameter a pointer to the IN data structure containing

the cache tree into which the variables are to be inserted.

To date, drivers have been written for the IB, TransLAN, and LAN mark bridges. These

drivers currently implement the "system" and "interfaces" branches of the current MIB.

10.3 Conclusion

In this chapter I have given a detailed description of the SNMP Proxy Agent, which is

the heart of this project. This agent, supported by the software described in detail in the

preceding three chapters, makes it possible to access any IN in the network for which drivers

have been written, using the standard SNl\IP network management protocol.

86

This chapter completes the detailed description of the design and implementation of the

software for this project. In the remaining two chapters, I will evaluate the software with

respect to the requirements presented in Chapter 4 (suggesting improvements to the existing

system in the process), and will list projects that might be attempted in the future to build

on the work accomplished here.

87

Chapter XI

An Evaluation of the Resulting System

In this chapter I will summarize the fruits of m;y efforts by comparing the resulting software

system to the requirements specified in Chapter 4, suggesting improvements that will correct

any deficiencies seen at this point in time.

11.1 Requirements vs. Results

In the final section of Chapter 4, I presented a requirements list for the system. I repeat

that list here, along with an analysis of how successful the current system is in meeting

each. Wherever the system falls short of a requirement, I have suggested improvements for

correcting the situation.

Requirement 1 Caching agents must be used to collect information from INs, cache it,

and deliver it to tools.

This requirement has been met by the SNMP Proxy Agent described in Chapter 10.

Requirement 2 Caching agents must be fast enough to handle about one hundred requests

per second.

Experimental results show that the Proxy agent is able to handle about 115 simple

SNMP requests per second, when running on a Sun 3/60. These results are for tests where

the cache hit ratio is high, which is normally the case when there is a high rate of requests.

Requirement 3 Caching agents must be dist6butable among administrative domains, and

should share information with each other. It should also be possible for them to communicate

with each other using a second, independent network.

88

The proxy agent is widely distributable, as I have taken care to use a public domain

SNMP library, and the code has also been placed in the public domain. It is also easily

portable to any UNIX platform. However, agents are not yet able to communicate with

each other. It would be a simple matter to modify the code to allow drivers using access

mechanisms other than QUIP to get information from INs, and then to write an SNMP

driver for the proxy agent. This would allow us to assign certain INs to certain proxy agents

to decrease or eliminate the incidence of multiple proxy agents qnerying the same INs for the

same information. From that point, it would be a fairly easy task to implement transmission

of these SNMP packets over an independent network. Dialup lines would be inadequate

for continual use, but would be useful during network failure diagnosis. A separate serial

network from some central point to a point within each administrative domain might be

advantageous.

Requirement 4 Communication with caching agents must be done over standard transport

protocols, to facilitate wide distribution of tools.

The proxy agent uses UDP for transporting SN!VIP packets. This fully fulfills this re

quirement.

Requirement 5 It should be possible to use standard management tools to perform any

management task on an IN that can be performed via another means.

The proxy agent has a number of deficiencies in this regard. There is still a lot of

information that can be obtained only via interactive sessions. Tltis problem can be solved

by adding objects to the private branch of the MIB and upgrading the SNMP drivers to

include these variables. I have obtained a subtree in the private branch for this purpose,

which I call "mcnc'' (48). Next, we need to implement the SNMP set request in the proxy

agent and upgrade the private branch and drivers to include as many of the setting actions

available on our INs as possible. I have found that some of the setting operations available

via direct serial lines to some of our IN types do not work via the in-band mechanism (i.e.,

we cannot even perform these operations via QUIP). These operations are generally those

that are most destructive, such as rebooting. vVe do not yet know if there are ways around

these restrictions.

Requirement 6 The management protocol should mask accidental differences in the way

identical management functions are performed on different IN types, below the tool level.

89

SNMP itself provides a common mechanism for performing common actions. Since

our proxy agent brings all INs to the SNMP level, we only need to make sure that we

implement the same variables to perform the corresponding actions for various IN types.

This requirement has been met for all currently implemented variables.

Requirement 7 The management protocol should have authorization mechanisms capable

of preventing unauthorized IN access.

Much work needs to be done in this area. We could easily integrate a server-based

authentication system such as Kerberos[SNS88] with our software, which would enable us to

reliably identify tool users (and servers) in a secure fashion. This authentication capability

could then become the basis for restricting the set of IN commands that the QUIP server

would issue, or the SNMP requests that the SNMP proxy server would honor, from a given

user. We may also wish to further restrict certain classes of requests by IP source address.

Requirement 8 The network management system should allow INs to be managed using

imported tools that conform to current Internet standards.

I have been largely successful in meeting this goal. I have been able to get all the

applicable client programs that I have imported from other sites to work with the system,

most without source code changes. This is primarily due to the convention of allowing the IN

name to be specified along with the community name. Some client programs must be source

code modified because they use what they consider the IN IP address (and we consider the

IP address of the proxy agent) to uniquely identify a particular IN, whereas we must use

this IP address in combination with the name or address ofthe IN itself (if this IN is being

accessed by proxy).

Requirement 9 The network management system must not use more .than about 5% of

any particular network resource {LAN or IN) under normal circumstances, and not more

than about 15% while diagnosis is taking place. No IN should be queried more than a few

times per second in any case.

Network utilization is easy to calculate based on the sizes of network management pack

ets, their frequency, and network bandwidth. IN utilization can only be calculated by the

IN itself. Fortunately, the IB bridges give us such information, and we will assume the other

90

IN types experience similar loading for similar management requests. The last requirement,

that an IN not be queried more than a few times a second, is met by the tools themselves,

which normally will not query an IN more than once a second, and the cache of the proxy

agent, which keeps multiple tools from making multiple redundant requests of an IN.

Experiments indicate that querying an IB bridge for a small amount of information once

per second uses about 1.5% of the IB's CPU, while large queries at the same rate take about

16%.

The effective bandwidth of a 10Mbps Ethernet is about 400KBps, including all packet

headers. A large SNMP query once per second to a proxy agent takes two packets of

about 512 bytes each, using approximately 0.25% of the bandwidth of an Ethernet. Similar

calculations show that refreshing the cache entries for a single IN (say, once per second

maximum, regardless of the number of tools running), about 0.38% of the network bandwidth

is used sending messages between the proxy daemon and the quip daemon, and 0.51%

sending messages between the quip daemon and the IN. For small queries, the numbers are

0.06%, 0.16%, and 0.06%, respectively. Actual network (and IN) utilization will depend

on the network hardware and configuration, the configuration of the network management

system, and the number. and type of tools active at any given moment. For example, if all

components are on the same network, and a single tool is sending large SNMP requests to

2 INs once per second, we would expect the network utilization to be about (0.25 + 0.38

+ 0.51) * 2) = 2.03%. Similarly, if 50 tools are sending small SNMP requests to 10 INs

once every 10 seconds, utilization will be about (0.06 * 10 *50+ (0.16 + 0.06) * 10)/10 =

3.22%. These numbers are well within our range of acceptability.

Requirement 10 Round-trip time for a query of an IN must be less than one second.

Very large SNMP queries (20 variables) have a round-trip time of about 0.6 seconds,

with the tool and proxy daemon running on a Sun 3/60 and the quip daemon running on a

VAX 11/750.

Requirement 11 Operational status queries (queries for up or down status) must be par

ticularly undemanding on INs and LANs, as they are executed frequently.

I have already presented experimental results for large and small queries in the discussion

of Requirement 9. Small queries are considerably more efficient than large ones, and they

do not place a high demand on IN or network resources.

91

Requirement 12 Interactive access to INs is required, and should use a common interface

at the user level and standard transport protocols at the tool/network interface.

This requirement is fully met by the quip program, which uses TCP to communicate

with the QUIP server.

Requirement 13 Our system must make it as easy as possible to add drivers that will give

us access to more IN types.

My experience indicates that it takes about one day for someone experienced with writing

these drivers to write a new one for either the QUIP Server or the SNMP Proxy Agent.

The existing QUIP Server drivers average 210 lines per driver, and this is by far the most

difficult of the drivers to implement. The hardest part of this task is usually figuring out

the manufacturer's proprietary protocol. The SNMP Proxy Agent drivers average 285 lines

each, but most of this code is routine and repetitive. Much time can be saved in writing

future drivers by following the examples set by existing ones. We feel this level of ease of

driver implementation is entirely adequate. Modifications to the quip program are usually

trivial.

The experience of having written a few drivers has, however suggested that the driver

·interfaces could use some improvement to increase their consistency and provide for better

information hiding. These improvements were mentioned. briefly in previous chapters.

11.2 Conclusion

In summary, I conclude that the system has met most of its requirements. The major

shortcomings are listed below:

• QUIP needs an authentication system to keep IN configurations from being changed

by unauthorized users.

• SNMP needs to be upgraded to handle SNMP set requests.

• When SNMP set requests are implemented, the proxy agent will need an authentica

tion mechanism.

• The SNMP Proxy Agent needs an SNMP driver so that it can cache results from INs

that support SNMP directly. This mechanism can also be used for communication of

IN information between proxy agents.

92

• Existing SNMP drivers need to have more variables implemented, especially in the

"private.mcnc" branch.

• QUIP Server and SNMP Proxy Agent drivers need to be implemented for more IN

types.

I claim that the basic design of the system will make it easy to implement the above

mentioned improvements, as the system was designed with these capabilities in mind.

93

Chapter XII

Future Projects

The software described in this paper provides a foundation upon which a network manage

ment system can J::e built, as it provides the access to network management Interconnection

Nodes that is required by a good network management system. Where do we go from here?

What do we need to build on top of the foundation? Some good answers to these questions

have already been discussed in Chapter 2, where I discussed network management tools per

taining to the management of INs. In this chapter we broaden our scope to include tools for

managing local area networks as well, and give some specific suggestions for future projects.

Generally speaking, what we now need is tools. Tools may be either imported or written

locally, and we will need to do both. Most of the tools we acquire or write will need to

be public domain or cheap, as they will need to be widely distributed among the various

institutions participating in the NCDN.

A few SNMP-based network management tools (from NYSERNet, CMU, MIT, the Uni

versity of Tennessee, and a few others) are available free or for purchase. Our experience

indicates that these tools are still rather immature. Some more mature LAN management

tools are available, such as etherfind, tcpdump, and NNStat. These should be imported

and distributed as widely as possible.

Below are listed some suggestions for SNMP-based tools that might be written locally.

1. A graphical network display tool for users. A simple tool might display a static,

logical map of the entire network or a portion of it. A more ambitious project might

use geographically oriented maps with zooming capabilities.

2. A graphical network display and control tool for network operators (using either logical

or geographical maps). This tool should be extensible, enabling the network operator

to set up his own key bindings and buttons, and associated actions based on SNMP

variables and their corresponding values. Generalized plotting facilities should also be

9-1

available in such a tool, and it should also provide interactive access to INs.

3. A monitoring and alerting tool should be developed that uses a database specifying

what is to be monitored (in terms of SNMP variables), threshold values for alerts,

whom to notify of various detected anomalies, and the procedures used to notify these

people. Various alerting mechanisms should be available, such as visual and audible

signals, electronic mail, and telephone messages.

4. A tool for gathering statistics and placing them into a database. What statistics are to

be gathered (in terms ofSNMP variables), and how often, should be specifiable in the

database itself. Report generation tools should be written to summarize the collected

data.

Below are listed a couple of LAN management tools that might be written locally.

1. It would be quite useful to have a graphical network monitor (especially for Ethernet)

similar to the Excelan LANalyzer or Network Systems Sniffer, that will work under X

windows and run on a Sun using its Network Interface Tap (or some similar facility

on another type of workstation). I am not aware of the existence of such a tool at

present, though something similar is being worked on by Russ Taylor at the University

of North Carolina Department of Computer Science.

2. A tool that would run on a host computer and analyze network traffic, looking for

abnormal or interesting events. Such a tool could be integrated with the SNMP-based

monitoring and alerting tool. It also might be able to detect new computers being

added to the network and to generate tables of such new computers for administrative

purposes. Substantial work has been done in this area by Randy Buckland at North

Carolina State University.

In addition to tool writing itself, a very useful project would be to use the above

mentioned tools to do a thorough study of the NCDN, including the configuration of the

network, protocol descriptions and characteristics, network utilization and traffic flow at

various points in the network broken down by protocol type, and so forth.

In summary, I believe the NCDN is fertile ground for interesting and practical network

management research and development efforts that will be of great benefit to the North

95

Carolina and Internet communities in the exciting years ahead. I hope my contribution will

stimulate and facilitate these efforts.

96

BIBLIOGRAPHY

[Cer88] V. Cerf. IAB Recommendations for the Development of Internet Network Man
agement Standards. RFC 1052, Internet Activities Board, April 1988.

[CFSD88] J. Case, M. Fedor, M Schoffstall, and J. Davin. The Simple Network Manage
ment Protocol. RFC 1067, University of Tennessee at Knoxville, NYSERNet,
Rensellaer Polytechnic, Protean, January 1988.

[Com88] Douglas Comer. lnternetworking with TCP /IP: Principles, Protocols, and Ar
chitecture. Prentice Hall, 1988.

[IS090a] Common Management Information Protocol Specification. International Stan
dard 9596, International Organization for Standardization/International Elec
trotechnical Commission, 1990. Information Technology - Open Systems Inter
connection.

[IS090b] Common Management Information Service Definition. International Standard
9595, International Organization for Standardization/International Electrotech
nical Commission, 1990. Information Technology c Open Systems Interconnec
tion.

[IS090c] Specification of Abstract Syntax Notation One (ASN.1). International Standard
8824, International Organization for Standardization/International Electrotech
nical Commission, 1990. Information Processing- Open Systems Interconnection.

[MR88] K. McCloghrie and M. Rose. Management Information Base for Network Man
agement of TCP /IP-based internets. RFC 1066, Internet Activities Board, Au
gust 1988.

[RM88] M. Rose and K. McCloghrie. Structure and Identification of Management In
formation for TCP /IP-based Internets. RFC 1065, Internet Activities Board,
August 1988.

[SNS88] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schlller. Kerberos: An Au
thentication Service for Open Network Systems. MIT Project Athena, March
1988.

[Tan88] AndrewS. Tanenbaum. Computer Networks. Prentice Hall, 1988.

[WB89] U. Warrier and L. Besaw. Common Management Information Services and Pro
tocol over TCP /IP (CMOT). RFC 1095, Unisys Corporation, Hewlett-Packard,
April1989.

97

Appendix A

Source Code

The following pages contain the source code for this project, in the following order:

• The QUIP interactive program,

• The QUIP daemon,

• The QUIP and HIP libraries,

• The SNMP Proxy Daemon, and

• Additional library routines used by multiple programs.

MCNC is the copyright holder for all of the code in this appendix.

98

I* quip.c - QUIP interactive program. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
* * Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

#include <stdio.h>
#include <strings.h>
#include <sgtty.h>
#include <ctype.h>
#include <signal.h>

#include "types.h"
#include <netdb.h>
#include <netinetlin.h>
#include <syslsocket.h>
#include <sysltime.h>

#include "verify.h"
#include "quiplib.h"

#define RETRY INCOMPLETE 9
#define RETRY NORESPONSE 1

#define QUIP_PORT 802

#define interactive (isatty(O) && isatty(l))

I* Return a socket connected to the specified service
* on the specified host.
*I

int connect tcp(host, service)
char *host;

{
char *service;

vsn ("connect tcp") ;
int sock; -
struct sockaddr in sockaddr;
struct hostent *hostent;
struct servent *servent;

99

)

vn(sock ~ socket(PF INET, SOCK STREAM, 0));
sockaddr.sin family-= AF INET;-
vt(hostent =-gethostbyname(host));

bcopy(hostent->h addr, &(sockaddr.sin addr.s addr),
hostent->h-length); - -

servent = getserVbyname(service, "tcp");
if (servent) sockaddr.sin_port = servent->s_port;
else sockaddr.sin_port = htons(QUIP_PORT);
vn(connect(sock, &sockaddr, sizeof(sockaddr)));

return (sock);

/* Inform user of usage of QUIP program. */
usage()
{

)

fprintf (stderr, "usage: %s: [-t quiptab] node\n",
command_name);

exit (1);

/* QUIP interactive program main routine. */
int main(argc, argv)

{

int argc;
char *argv[];

char *quiptab_file = NULL;
char *node-;
char query[1024], *response, *p;
char prompt[64];
struct quipmsg msgout, msgin;
int sock, i;
int count incomplete, count noresponse;
int connection = 1, node echos = 0;
int subcommands; -
struct quiptab entry *entry;
struct tchars tchars;
char t_brkc_save;

command_name = "quip";
if (argc > 0) command_name = argv[O];

for (i = 1; i < argc && argv[i] [0] == '-'; i++)
{

)

switch (argv[i] [1])
{
case't':

if (i > argc- 2) usage();
quiptab_file argv[++i];
break;

default:
usage () ;

)

100

if (i !~ argc- 1) usage();
node ~ argv [i];

if (!(entry~ get_quiptab_entry(node, quiptab_file)))
{

}

fprintf(stderr, "Unknown node: (%s). \n", node);
exit(l);

if ((sock~ connect_tcp(entry->server, "quip")) < 0)
{

}

fprintf(stderr, "Cannot connect to quip server (%s) .\n",
entry->server);

exit(l);

strcpy (prompt, '"');
msgout.options ~ 0;
if (entry->major_type NT_IB)

{
connection ~ 0;
sprintf(prompt, "%s ib# ", node};

}
else if (entry->major_type ~~ NT_IBX)

{
if (interactive) node_echos ~ 1;

}
else if (entry->major_type

{
NT_TRANSLAN)

}

if (interactive)
{

}

ioctl(O, TIOCGETC, &tchars);
t brkc save ~ tchars.t brkc;
tchars~t brkc ~ '\033'T
ioctl(O,-TIOCSETC, &tchars);

if (connection) msgout.options 1~ QO_CONNECTION;
msgout.nodetype ~ entry->major_type;
strcpy(msgout.address, entry->address);

signal(SIGPIPE, SIG_IGN);

101

if (entry->major type~~ NT IBX) strcpy(query, "@\n");
else strcpy(query, "\n"); -
while (1)

{
for (p ~ query, subcommands ~ 0; *p; p++)

{
if (*p ~~ ';' II *p ~~ '\n')

{

}

}

*p = '\n';
subcommands++;

if (entry->major type
*p ~ '\r'; -

60 * 60;

NT TRANSLAN && *p

if (connection)
msgout.timeout

else
msgout.timeout 5 * subcommands;

102

'\n')

count_incomplete 0;
count_noresponse 0;
do

{
msgoutoid ~ 0;
if ((send quip(sock, query, &msgout))

I I recv quip(sock, &response, &msgin)
I I !response)

{
fprintf(stderr,

"Connection with quip server (%s) \
dropped o \n",

}

entry->server);
exit (1);

if (msginoerrors & ER INCOMPLETE) count incomplete++;
else if (msginoerrors-& ER NORESPONSE) -

count noresponse++;
} while (!connection

&& (msginoerrors ER INCOMPLETE
I I msginoerrors ~~ ER_NORESPONSE)

&& count_incomplete < RETRY INCOMPLETE + 1
&& count noresponse <RETRY NORESPONSE + 1);

if (msginoerrors & ER INCOMPLETE)
fprintf(stderr, -

"Error: Incomplete response receivedo\n");
else if (msginoerrors & ER NORESPONSE)

fprintf(stderr, "Error: No response\n");
else if (msginoerrors & ER CONNECT)

{ -
fprintf(stderr, "Error: Cannot connect to node \

(%s). \n",

}

node);
goto done;

else if (msginoerrors)
fprintf(stderr, "Error: Request failedo\n");

if (msginoerrors & !interactive) exit(l);
if (!msgin o errors)

{

}

if (node echos && (p
else p ~-response;
printf("%s", p);
free(response);

index(response, '\n'))) p++;

if (interactive) printf("%s", prompt);
fflush (stdout);

103

}

} ;

done:

for (p = query;
(int) (*p = fgetc (stdin)) != EOF
&& *p != '\n'
&& (tchars.t_brkc == (char) '\377'

I I *p != tchars.t_brkc);
p++);

* (++p) = ' \ 0' ;
if (feof (stdin) I I ferrer (stdin)) break;

if (entry->major type
{ -

NT_TRANSLAN)

if (interactive)
{

tchars.t brkc = t brkc save;
ioctl(O,-TIOCSETC~ &tchars);

}
}

if (ferror(stdin)) exit(l);
else exit(O);

104

I* quipd.h - QUIP Daemon data structures and definitions *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting docurneritation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

finclude "quiplib.h"
finclude "bufferlib.h"
finclude "drivertab.h"
tinclude <sysltime.h>
finclude <netinetlin.h>

struct request
(

int fd;
struct quipmsg *msg;
struct buffer *in, *out;
u_short id;
u_short cmdno;
u short seq;
long timeout;
struct request *prev, *next;

) ;

struct client
(

struct sockaddr in address;
) ;

struct proc
(

u char nodetype;
u-char flags;
int connect fd;
char address[MAX ADDR LEN];
long lastuse; -
long timeout;
struct request *requests;

) ;

105

struct fdtab
{

u char type;
union

struct client client;
struct proc proc;

} state;
} ;

I* FD types *I
tdefine FD LISTEN
tdefine FD CLIENT
Jfdefine FD'NODE
tdefine FD-AVAIL

I* Driver Routine
tdefine DR OPEN
Jfdefine DR_SEND
tdefine DR_RECV
Jfdefine DR_CLOSE

0
1
2
255

Indexes *I
0
1
2
3

I* Proc flags *I
Jfdefine PF_CONNECTION (1 « 0)

I* Receive flags *I
tdefine RC COMPLETE
Jfdefine RC-INCOMPLETE
tdefine RC=FAIL

(1 << 0)
(1 « 1)
(1 << 2)

I* Global Data Structures *I
extern int dumping;

I* Help routines for drivers. *I
extern int dump () ;

106

I* quipd.c - QUIP Daemon. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

#include <sysltypes.h>
#include <syslsocket.h>
#include <sysltime.h>

#include <stdio.h>
#include <netdb.h>
#include <strings.h>
#include <signal.h>
#include <errno.h>

#include "quipd.h"
#include "verify.h"

#define BLOCKSIZE 512
#define DEFAULT TIMEOUT 5
#define CLOSE TIMEOUT 60
#define DUMPFILE "quipdump"

I* Data Structures *I

int nfds;
long unique id;
fd set fdset in;
struct fdtab-*fdtab = NULL;
FILE *dumpfile = NULL;

int listen_input (), client_input (), node_input ();

int (*input []) ()
{

} ;

listen_ input,
client input,
node_input,

I* Utilities *1.

107

/* Get a socket connected to the named TCP service. */
static int tcp service(name)

{

)

char *nam€;

vsn ("tcp service");
int sock;
struct servent *servent;
struct sockaddr in sockaddr_in;

vn(sock = socket(AF_INET, SOCK_STREAM, 0));

vt(servent = getservbyname(name, "tcp"));

sockaddr in.sin family = AF INET;
sockaddr-in.sin-addr.s addr-= INADDR ANY;
sockaddr=in.sin~ort =-servent->s_port;
vf(bind(sock, (struct sockaddr *) &sockaddr in,

sizeof(sockaddr in))); -
listen(sock, 5); -

return (sock);

/* Get the next fd set in bitmask. */
static int nextfd(fdset) /* Inefficient */

fd set *fdset;

)

int i;

for (i = 0; i < nfds; i++)
if (FD_ISSET(i, fdset)}

{
FD_CLR(i, fdset};
return(i);

)
return(-1};

/* Functions to be called for each major fd type */

/* Accept a connection. */
static int listen input(listen fd}

{
int listen_fd; -

int fd;
struct sockaddr in from addr;
int addrlen = sizeof(from_addr};

108

fd = accept(listen fd, &from addr, &addrlen);
if (fd < 0) perror("accept")7
else

{

fdtab[fd] .type= FD CLIENT;
FD_SET(fd, &fdset_in);

r
return(O);

I* Get the next line from a command buffer. *I
static char *next_line(buf)

struct buffer *buf;

vsp("next_line", char *);
char *p, *q;
int len;

if ((p
else p

index(buf->current, '\n'))) p++;
buf->end;

len = p - buf->current;
vt(q = (char*) malloc(len + l));

bcopy(buf->current, q, len);
q[len]='\0';
buf->current = p;

return (q);

I* Send a command to an IN. *I
static int send command(fd)

int fd; -
{

vsn("send command");
char *p; -
struct proc *proc;
struct request *request;

proc = &(fdtab[fd] .state.proc);
request = proc->requests->next;

vt(p = next_line(request->in));
request->cmdno++;

vf((*drivertab[proc->nodetype] [DR SEND]) (fd, p, request));
free(p); -

return(O);

109

/* Close fd associated with an IN. */;
static int close node fd(node fd)

}

int node_fd; - -

vsn("close node fd");
struct proc *proc;

proc ~ &(fdtab[node fd] .state.proc);
vf((*drivertab[proc=>nodetype] [DR_CLOSE]) (node fd));
while (proc->requests->next !~ proc->requests)

request_dequeue(node_fd, proc->requests->next);

free(proc->requests);
FD CLR(node fd, &fdset in);
fdtab[node_fd] .type FD_AVAIL;

return (0);

/* Close a connection to a client. */
static int close client(client fd)

{
int client_fd; -

vsn("close client");
int i; -
struct request *requests, *first, *r;.
struct proc *proc;

for (i ~ 0; i < nfds; i++)
{

}

if (fdtab[i] .type ~~ FD_NODE)
{

}

proc ~ &(fdtab[i] .state.proc);
if ((proc->flags & PF_CONNECTION)

&& proc->connect_fd client_fd)
vf(close node fd(i));

else - -
{

}

requests proc->requests;
first ~ requests->next;
for (r ~ first; r !~ requests; r ~ r->next)

if (r->fd ~~ client_fd)
{

}

r = r->prev;
request_dequeue(i, r->next);

if (requests->next !~ first
&& requests->next !~ requests)

vf(send_command(i));

FD CLR(client fd, &fdset_in);
close(client_fd);

110

return(O);

/*Return an initialized quip request. */
static struct request *new request(client fd, msg, query)

int client_fd; - -

{

)

struct quipmsg *msg;
char *query;

vsp("new_request", struct request *);
struct request *request;
struct timeval now;

vt(request = (struct request *)
malloc(sizeof(struct request)));

req'uest->fd = client_fd;
request->msg = msg;
request->in =buffer new string(query);
request->in->end--; - -
request->out =buffer new(l);
request->id = unique Ict++;
request->cmdno = 0; -
request->seq = 0;
gettimeofday(&now, NULL);
if (msg->timeout)

request->timeout = now.tv sec + msg->timeout;
else request->timeout now~tv sec + DEFAULT_TIMEOUT;
request->prev NULL;
request->next = NULL;

return(request);

/* Initialize a new IN connection. */
static int node_fd_init(fd, request)

int fd;
struct request *request;

vsn ("node_fd_init ");
struct request *requests;
struct proc *proc;
struct quipmsg *msg;

111

}

msg ~ request->msg;
fdtab[fd] .type ~ FD NODE;
proc ~ &(fdtab[fd] .state.proc);
proc->nodetype ~ msg->nodetype;
strcpy(proc->address, msg->address);
proc->flags ~ 0;
if (msg->options & QO_CONNECTION)

{

}

proc->flags 1~ PF CONNECTION;
proc->connect_fd ~ request->fd;

else proc->connect fd ~ -1;
vt(requests ~ (struct request *)

malloc(sizeof(struct request)));
requests->prev ~ requests->next ~ requests;
proc->requests ~ requests;
proc->timeout ~ 0;
FD_SET(fd, &fdset_in);

return(O);

/* Find appropriate socket to IN for a new request. */
static int node_fd_find(request)

struct request *request;

vsn("node fd find");
int fd; - -
struct proc *proc;
struct quipmsg *msg;

msg ~ request->msg;
if (msg->nodetype > NDRIVERS) return(-1};
for (fd ~ 0; fd < nfds; fd++)

if (fdtab[fd] .type~~ FD NODE)
{ -

}

proc ~ &(fdtab[fd] .state.proc);
if (proc->nodetype ~~ msg->nodetype

&& !strcmp(proc->address, msg->address)
&& (! (msg->options & QO CONNECTION)

~~ ! (proc->flags & PF CONNECTION)))
if (msg->options & QO CONNECTION)

if (proc->connect_fd ~~ request->fd) break;
else;

else break;

if (fd >~ nfds)
{

}

fd ~ (*drivertab[msg->nodetype] [DR OPEN])
(msg->address, ! ! (msg->options &-QO CONNECTION));

if (fd < 0) return(-1); -
vf(node_fd_init(fd, request));

112

return (fd) ;

I* Enqueue a new request. *I
static int request enqueue(fd, request)

int fd; -

{

}

struct request *request;

struct request *requests;
struct proc *proc;

proc ~ &(fdtab[fd] .state.proc);
requests ~ proc->requests;
request->prev ~ requests->prev;
request->next ~ requests;
requests->prev->next ~ request;
requests->prev ~ request;
if (!proc->timeout I I proc->timeout > request->timeout)

proc->timeout ~ request->timeout;

return(O);

I* Discard a QUIP request. *I
static void request free(request)

struct request -*request;
{

}

free(request->msg);
buffer free(request->in);
buffer=free(request->out);
free (request);

I* Handle a client QUIP request arrival event. *I
static int client input(client fd)

int client_fd; -
{

vsn (11 client input 11
} ;

struct quipmsg *msg;
struct request *request;
char *query;
int rc, node_fd;

vt(msg ~ (struct quipmsg *) malloc(sizeof(struct quipmsg)));
rc ~ recv quip(client fd, &query, msg);
if (rc < 0 II !query)-

{
free(msg);
vf(close client(client fd));
return(O); -

113

vt(request ~new request(client fd, msg, query));
if ((node_fd ~ node_fd_find(request)) < 0)

{
request_free(request);
if (send_quip_error(request->fd, ER_CONNECT, msg))

fprintf(stderr, "send_quip_error() failed\n");

}

}
else

{
request enqueue(node fd, request);
if (fdtab[node fd] .state.proc.requests->next

if (send comffiand(node fd))
fprintf(stderr, "send_command() failed");

return(O);

I* Dequeue a QUIP request. */
int request dequeue(fd, request)

int fd;
struct request *request;

struct request *requests, *r;
long rtimeout, timeout;
struct timeval now;

rtimeout ~ request->timeout;

request->prev->next ~ request->next;
request->next->prev ~ request->prev;
request_free(request);

114

request)

}

requests - fdtab[fd] .state.proc.requests;
timeout- fdtab[fd] .state.proc.timeout;
if (timeout -- rtimeout)

{

if (requests->next -- requests)
{

if (fdtab[fd] .state.proc.flags & PF_CONNECTION)
timeout - 0;

else
{

gettimeofday(&now, NULL);
timeout - now.tv sec + CLOSE_TIMEOUT;

}

}
else

{

}

timeout - requests->next->timeout;
for (r - requests->next->next;

r != requests;
r - r->next)

if (r->timeout < timeout) timeout
}

fdtab[fd] .state.proc.timeout- timeout;

return(O);

r->timeout;

I* Handle an IN response arrival event. */
static int node input(fd)

int fd; -

vsn (11 node input 11
);

struct proc *proc;
struct request *requests, *request;
char buffer[BLOCKSIZE];
char *response;
int flags;
int rc;
struct quipmsg msg;

proc- &(fdtab[fd] .state.proc);
requests - proc->requests;
request - requests->next;

115

if ((rc ~ read(fd, buffer, sizeof(buffer}}} < 0}
{

}

perror("node input read"};
vf(close node fd(fd}};
return(O); -

if (rc ~~ 0}
{

}

fprintf(stderr, "EOF on read, fd %d, address %s\n",
fd, proc->address};

vf(close node fd(fd}};
return(O); -

if (request~~ requests} return(O};

if ((*drivertab[proc->nodetype] [DR RECV]}
(request, buffer, rc, &response, &flags}}

{

}

fprintf(stderr, "Call to recv procedure %d failed.\n",
proc->nodetype};

vf(close node fd(fd}};
return (0); -

request->seq++;

if (flags & RC_INCOMPLETE}
{

if (send_quip_error(request->fd,
ER_INCOMPLETE, request->msg}}

{
vf(close client(request->fd)};
fprintf (stderr, "send quip error(} failed\n"};
free(response}; - -
return(O};

}
request_dequeue(fd, request};

}
else if (flags & RC FAIL}

{ -

}
else

{

if (send quip error(request->fd, ER_FAIL, request->msg}}
{ - -

vf(close client(request->fd}};
fprintf (stderr, "send quip error(} failed\n"} ;
free(response}; - -
return(O};

request_dequeue(fd, request};

buffer append string(request->out, response};
free (response);

116

}

if (flags & RC COMPLETE
&& request~>in->current >= request->in->end)
{

msg = *(request->msg);
msg.options = msg.timeout = msg.errors = 0;
if (send_quip(request->fd, request->out->start, &msg))

{
vf(close client(request->fd));
fprintf (stderr, "send quip () failed\n") ;
return(O); -

}
request_dequeue(fd, request);

if (flags && requests->next != requests)
if (send_command(fd))

{

}

fprintf(stderr, "send_command() failed\n");
return (0);

return(O);

I* Major routines *I

static 'int exitint ()
{

exit(l);
}

I* Initialize QUIP daemon. *I
static int initialize()
{

}

vsn(''initialize'');
int fd;
int i;
struct timeval timeval;

command name = "quipd";
signal(SIGPIPE, SIG IGN);
vn(fd = tcp service("quip"));
FD ZERO(&fdset in);
nfds = getdtablesize();
vt(fdtab = (struct fdtab *)

malloc(sizeof(struct fdtab) * nfds));
for (i = 0; i < nfds; i++) fdtab[i] .type
fdtab[fd] .type= FD LISTEN;
FD SET(fd, &fdset in);
vf(gettimeofday(&timeval, NULL));
unique_id = timeval.tv_usec;

signal(SIGHUP, exitint);

return(O);

117

FD_AVAIL;

I* Handle a timeout associated with specified fd. *I
int timeout_fd(fd, now)

{

int fd;.
long now;

vsn("timeout_fd");
struct request *requests, *first, *r;
long rtimeout;

requests ~ fdtab[fd] .state.proc.requests;

if (! (fdtab[fd] .state.proc.flags & PF CONNECTION)
&& requests~~ requests->next) vf(close_node_fd(fd));

else
{

first ~ requests->next;
for (r ~ first; r !~ requests; r

if (r->timeout <~ now)
r->next)

{

}

if (r->out->start ~~ r->out->current)
if (send_quip_error(r->fd, ER_NORESPONSE, r->msg))

fprintf(stderr, "send quip error() failed\n");
else; - -

else
if (send_quip_error(r->fd, ER_INCOMPLETE, r->msg))

fprintf (stderr, "send_quip_error () failed\n");
r ~ r->prev;
request_dequeue(fd, r->next);

if (requests->next !~ first && requests~>next !~ requests)
vf(send_command(fd));

}

return(O);

I* Find the next pending timeout. *I
static struct timeval *next timeout()
{ -

vsp("next_timeout", struct timeval *);
int fd;
struct timeval now;
static struct timeval next;
long timeout 0;

next.tv usee 0;
next.tv-sec ~ 0;
gettimeofday(&now, NULL);

118

for (fd = 0: fd < nfds; fd++)
{

}

if (fdtab[fd) .type == FD NODE
&& fdtab[fd) .state.proc.timeout)

if (fdtab[fd) .state.proc.timeout <= now.tv_sec)
vf(timeout fd(fd, now.tv sec));

else - -
{

timeout fdtab[fd) .state.proc.timeout - now.tv sec;
if (!next.tv_sec I I timeout < next.tv_sec) -

next.tv sec = timeout;

if (!next.tv_sec) return(NULL);
else return(&next);

I* QUIP daemon main loop. *I
static int mainloop()
{

vsn ("mainloop") ;
struct timeval *timeout;
int fd, rc;
fd_set readfds, readyfds;

while (1)
{

}

timeout= next timeout();
FD COPY(&readfds, &fdset in);
vt((rc = select(nfds, &readfds, NULL, NULL, timeout)) >= 0

I I errno == EINTR);
if (! rc I I (rc < 0 && err no == EINTR)) continue;
FD_COPY(&readyfds, &readfds);
while ((fd = nextfd(&readyfds)) >= 0)

if (fdtab[fd) .type == FD NODE)
vf ((*input [fdtab [fd). type)) (fd));

FD COPY(&readyfds, &readfds);
while ((fd = nextfd(&readyfds)) >= 0)

if (fdtab[fd) .type== FD CLIENT)
vf ((*input [fdtab [fd). type)) (fd));

FD COPY(&readyfds, &readfds);
while ((fd = nextfd(&readyfds)) >= 0)

if (fdtab[fd) .type== FD LISTEN)
vf ((*input [fdtab [fd). type)) (fd));

}

I* QUIP daemon main routine. _*I
int main(argc, argv)

int argc;
char *argv[);

{

119

vf(initialize());
vf(mainloop());
vm("Exited (this should never happen)\n");

120

/* drivertab.h - Include file for QUIP daemon driver table. */

/*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

tdefine NDRIVERS 3

extern int (*drivertab[NDRIVERS] [4]) ();

int ib open(), ib send(), ib recv(), ib close();
int ibx open(), ibx send(), ibx recv(),-ibx close();
int translan_open()~ translan_send(), transian_recv(),

translan_close();

121

/* drivertab.c - QUIP daemon driver table. */

/*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
* * Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purppse.
* It is provided "as is" without express or implied warranty.
*I

#include <stdio.h>
#include "drivertab.h"

int (* (drivertab [] [4])) ()
{
#ifdef IB

{ib open, ib_send, ib_recv, ib_close},
#else-IB

{NULL, NULL, NULL, NULL},
#endif IB
#ifdef IBX

{ibx open, ibx_send, ibx_recv, ibx_close},
#else IBX

{NULL, NULL, NULL, NULL},
#endif IBX
#ifdef TRANSLAN

{translan open, trans1an_send, translan_recv, translan_close},
#else TRANSLAN

{NULL, NULL, NULL, NULL},
#endif TRANSLAN
} ;

122

I* ib driver.c - QUIP daemon IB driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
* * Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

ififndef vax
ifundef IB
ifendif

Hfdef IB

#include <sysltypes.h>

#include <syslsocket.h>
#include <netnslns.h>
#include <netnslidp.h>

#include <stdio.h>
#include <ctype.h>
#include <strings.h>

#include "verify.h"
#include "quipd.h"

I* System buffers for response datagrams *I
#define XNS BUFS 100

I* Max datagram size *I
#define MAX PKT SIZE 512

I* IB protocol number *I
#define IB PROTO Ox25

I* XNS net address used by IBs *I
#define IB NETWORK "00. 00.00. 00"

I* XNS port address used by IBs *I
#define IB PORT "00. 4b"

#define HEADER_LENGTHS \
(sizeof(struct idp) + sizeof(struct ib_header))

#define MAX_DATA_SIZE (MAX_PKT_SIZE - HEADER_LENGTHS)

123

*define SEQ(control)
*define MORE(control)

(ntohs(control) >> 4)
(ntohs(control) & Ox2)

struct ib header
{

u short id;
u short cmdno;
u short control;

} ;

struct ib_packet
{

struct ib_header header;
u char data[MAX_DATA_SIZE];

} ;

stru.ct idp_packet
{

struct idp header;
struct ib_packet ib_packet;

} ;

I* Returns a pointer to a sockaddr_ns struct if bridge_addr \
legal,
* else NULL *I

static struct sockaddr ns *xns_address(ib_addr)
char *ib_addr;

{
vsp("xns address", struct sockaddr ns *);
I* Matches bridge address.

* %c makes sure there's nothing left over. *I
char *pat ~

''%2x%*[:.]%2x%*[:.]%2x%*[:.]%2x%*[:.]%2x%*[:.]%2x%c'';
int nbytes;
int bl, b2, b3, b4, b5, b6, c;
I* oo.oo.oo.oo*08.00.02.00.00.00*00.4b *I
static char address[12 + 18 + 6);
struct ns addr ns addr();
struct sockaddr_ns *sockaddr;

vt ((nbytes ~
sscanf(ib addr, pat, &bl, &b2, &b3, &b4, &b5, &b6, &c)) \

~~ 6); -

sprintf(address, "%s#%02x.%02x.%02x.%02x.%02x.%02x#%s",
IB_NETWORK, bl, b2, b3, b4, b5, b6, IB_PORT);

vt(sockaddr ~ (struct sockaddr ns *)
malloc(sizeof(struct sockaddr ns)));

sockaddr->sns family ~ AF NS; -
sockaddr->sns=addr ns_addr(address);

return(sockaddr);

124

int ib open(address, connection)
char *address;
int connection;

vsn (11 ib open");
int sock;
struct idp header;
int rcvbuf ~ XNS BUFS * MAX_PKT_SIZE;
char on ~ 1, off-~ 0;
struct sockaddr_ns local_sockaddr, *remote_sockaddr;

vn(sock ~ socket(PF NS, SOCK DGRAM, 0));
header.idp_pt ~ IB_PROTO; -

vf(setsockopt(sock, NSPROTO_PE, SO DEFAULT HEADERS,
(char*) &header, sizeof(header)));

vf(setsockopt(sock, NSPROTO PE, SO HEADERS ON INPUT,
(char*) &on,-sizeof(on)));- -

vf(setsockopt(sock, SOL SOCKET, SO RCVBUF,
(char*) &rcvbuf, sizeof(rcvbuf)));

local sockaddr.sns family ~ AF NS;
bzero(&local sockaddr.sns addr--; sizeof(struct ns addr));
vf(bind(sock--; &local_sockaddr, sizeof(struct sockaddr_ns)));

vt(remote sockaddr ~ xns address(address));
vf(connect(sock, -

remote sockaddr, sizeof(struct sockaddr_ns)));
free(remote_sockaddr);

return (sock);

int ib_send(fd, cmd, request)
int fd;
char *cmd;
struct request *request;

vsn("send command");
struct ib~acket to_pkt;
int cmd_len, pkt_size;

to pkt.header.id ~ htons(request->id);
to~kt.header.cmdno ~ htons(request->cmdno);
to_pkt.header.control ~ htons(O);
request->seq ~ 0;

cmd len~ strlen(cmd);
if (cmd[cmd len] ~~ '\n') cmd len--;
bcopy(cmd, to_pkt.data, cmd_len);
pkt_size ~ sizeof(struct ib_header) + cmd_len;

vt (send(fd, (char *) &to_pkt, pkt_size, 0) ~~ pkt size);

return(O);

125

static char *response_format(data, datalen)
char *data;

{

}

int datalen;

vsp("response format 11
, char*);

char *response, *p, *q, *r;
int response_len, i;

I* Remove extra trailing nulls
* IB bug puts them there on long queries *I

for (p = data + datalen;
p >=data+ 2 && !*(p- 1) && !*(p- 2);
p--);

I* Allocate response string *I
for (q = data, response_len = 1; q < p; q++)

if (!isascii(*q)) response len+= toascii(*q);
else response_len++; -

vt(response = (char*) malloc(response_len));

I* Convert response to string *I
for (q = data, r = response; q < p; q++)

if (!isascii(*q))
for (i = toascii(*q); i; i--) *(r++)

else if (!*q) *(r++) = '\n';
else *(r++) = *q;

*r = '\0';

return(response);

' ' 0 '

int ib_recv(request, buffer, buflen, response, flags)
struct request *request;
char *buffer;
int buflen;
char **response;
int *flags;

vsn (I' ib recv"} ;
struct Tdp_packet *idp_packet;
struct ib_packet *ib_packet;
int packet_id;

idp_packet = (struct idp_packet *) buffer;
vt(idp_packet->header.idp_pt == IB_PROTO);
ib_packet = &idp_packet->ib_packet;

vt(*response = (char*) malloc(l)); I* In case of error *I
strcpy(*response, ""};
*flags = 0;

packet id = ntohs(ib packet->header.id);
if (request->id != packet_id) return(O);

vt(ntohs(ib_packet->header.cmdno) == request->cmdno);

126

}

if (SEQ(ib_packet->header.control) !~ request->seq)
{

*flags I~ .RC INCOMPLETE;
return(O); -

free(*response);
vt(*response ~

response_format(ib_packet->data,
ntohs(idp_packet->header.idp_len)
-HEADER LENGTHS));

if (!MORE(ib_packet->header~control)) *flags 1~ RC_COMPLETE;

return(O);

ib close(fd)
- int fd;

close(fd);
}

!fendif IB

127

I* ibx driver.c - QUIP daemon IBX driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
*is by permission of,MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

ilifdef IBX

ilinclude <syslfile.h>

ilinclude <ctype.h>
ilinclude <stdio.h>
ilinclude <sgtty.h>
ilinclude <strings.h>

ilinclude "verify.h"
ilinclude "quipd.h"

ildefine MMICONNECT "ldevlmmi?"
ildefine MAXMMIS 10

I* useconds to pause between chars sent *I
ildefine IF CHAR DELAY 4

I* useconds to pause after prompt *I
ildefine IF_PROMPT_PAUSE 125000

ildefine PROMPT " => "

I* MMI file name pattern for connections *I
static char *mmi connect = MMICONNECT;

I* fd associated with an open mmi *I
static int mmi_fd[MAXMMIS];

I* Is mmi fd initialized ? *I
static int initialized = 0;

128

int ibx open(address, connection)
char *address;

{
int connection;

vsn ("ibx open 11
);

int fd; -
struct sgttyb sgttyb;
int i;
char *p;

#ifdef lint
address = address;

#endif lint

if (!initialized) {
for (i = 0; i < MAXMMIS; i++) mrni_fd[i] -1;
initialized = 1;

}
p &mmi connect[strlen(mmi connect) - 1];
for (i =-0; i < MAXMMIS; i++)

{

}

if (mmi_fd[i] < 0)
{

}

*p = '0' + i;
if ((fd = open(mrni_connect, O_RDWR)) >= 0)

{

}

mrni fd[i] = fd;
break;

if (i >= MAXMMIS) return(-1);
vf(ioctl(fd, TIOCGETP, &sgttyb));
sgttyb.sg_flags &= -(ODDPIECHOICRMODIRAW);
sgttyb.sg flags I= (EVENPITANDEMICBREAK);
vf(ioctl(fd, TIOCSETP, &sgttyb));

return (fd);

static char *cmdtranslate(string)
char *string;

{
vsp ("cmdtranslate", char *);
char *result, *p, *q;

vt(result = (char*) malloc(strlen(.string) + 1));

for (p = string, q = result; *p; p++, q++)
if (islower(*p)) *q = toupper(*p);
else if (*p == '\n') *q = '\r';
else *q = *p;

*q = *p;

return (result);

129

int ibx send(fd, str, request)
int fd;

{

char *str;
struct request *request;

vsn ("ibx send n) ;
char *cmdstr~, *p;

hfdef lint
request = request;

#endif lint

vt(cmdstr = cmdtranslate(str));
for (p = cmdstr; *p; p++)

{

}

vt(write(fd, p, 1) == 1);
usleep(IF_CHAR_DELAY);

free(cmdstr);
return(O);

/* get rid of nulls in string, and null terminate */
static char *denull(string, length)

{

}

char *string;
int length;

vsp("denull", char *);
char *result, *p, *q;

vt(result = (char*) malloc(length + 1));

for (p = string, q result; length > 0; p++, length--)
if (*p) * (q++) *p;

*q = '\0';

return (result);

static int prompt(line)
char *line;

{
if (strlen(line) >= strlen(PROMPT)

&& !strcmp(line + strlen(line) - strlen(PROMPT), PROMPT})
return(1);

return(O);

130

int ibx_recv(request, buffer, buflen, response, flags}
struct request *request;
char *buffer;
int buflen;
char **response;
int *flags;

vsn("ibx recv 11
);

static struct buffer *lastline
char *newline;

#ifdef lint
request = request;

#endif lint

if (!last line}
{

NULL;

vt(lastline = (struct buffer *}
malloc(sizeof(struct buffer}});

vt(lastline->current = lastline->start
(char*} malloc(1});

lastline->end = lastline->start + 1;
)

*flags = 0;

vt(*response = denull(buffer, buflen}};
if (newline= rindex(*response, '\n'}}

{

}

lastline->current = lastline->start;
buffer_append_string(lastline, newline+ 1};

else buffer_append_string(lastline, *response};

if (prompt(lastline->start}}
{

)

*flags I= RC COMPLETE;
usleep(IF_PROMPT_PAUSE};

return(O};

ibx close(fd}
- int fd;

int i;

close (fd};
for (i = 0; i < MAXMMIS; i++}

if (mmi_fd[i] == fd} mmi_fd[i] -1;

return(O};
)

#endif IBX

131

I* translan_driver.c - QUIP daemon Translan driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC}

* * Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or impiied warranty.
*I

#ifdef TRANSLAN

#include "types.h"

#include <syslsocket.h>
#include <sysltime.h>
#include <netnslns.h>
#include <netnslidp.h>
#include <netnslsp.h>
#include <netnslspidp.h>

#include <stdio.h>
#include <ctype.h>
#include <strings.h>
#include <signal.h>

#include "verify.h"
#include "quipd.h"

I* Maximum size of entire SPP datagram
* including IDP and SPP headers *I

#define MAX_DGRAM_SIZE 576

I* Maximum size of datagram without idp header
* bytes read and written *I

#define MAX_PKT_SIZE (MAX_DGRAM_SIZE- sizeof(struct idp}}

I* Maximum size of data portion of packet *I
#define MAX DATA SIZE (MAX_PKT_SIZE- sizeof(struct spidp}}

I* Seconds to wait for open to finish *I
#define OPEN TIMEOUT 4

I* XNS net address used by translans *I
#define XNS NETWORK "00.00.00.00"

132

I* Translan SPP service port *I
#define XNS PORT "00.05"

struct packet
{

struct sphdr sphdr;
char buf[MAX_DATA_SIZE];

} ;

static int sigalrm()
{

return(O);
}

I* Returns a pointer to a sockaddr_ns struct if bridge_addr \
legal,

else NULL *I
static struct sockaddr ns *xns_address(addr)

char *addr;

vsp("xns address", struct sockaddr ns *);
I* Matches bridge address.

* %c makes sure there's nothing left over. *I
char *pat ~

"%2x%* [:.] %2x%* [:.] %2x%* [:.] %2x%* [:.] %2x%* [:.] %2x%c";
int nbytes;
int bl, b2, b3, b4, b5, b6, c;
I* oo.oo.oo.00#08.00.02.00.00.00#00.00 *I
static char address[l2 + 18 + 6];
struct ns_addr ns_addr();
struct sockaddr_ns *sockaddr;

vt((nbytes ~ sscanf(addr, pat, &bl, &b2, &b3, &b4, &b5, \
&b6, &c))

~~ 6);

sprintf(address, "%s#%02x.%02x.%02x.%02x.%02x.%02x#%s",
XNS_NETWORK, bl, b2, b3, b4, b5, b6, XNS_PORT);

vt(sockaddr ~ (struct sockaddr ns *)
malloc(sizeof(struct sockaddr ns)));

sockaddr->sns family ~ AF NS; -
sockaddr->sns-addr ns_addr(address);

return(sockaddr);
}

static void hexcode(buf, str)
char *buf;

{
char *str;

char hexbyte;
int ls, lb, is, ib;
int rc;

133

}

ls strlen(str);
lb ls/2;

for (is ~ 0, ib ~ 0; is < ls; is++, ib++)
{

if (str [is] >~ '0' && str [is] <~ '9')
buf[ib] ~ (str[is] - '0') * 16;

else buf[ib] ~ (10 + str[is] - 'A') * 16;
is++;
if (str[is] >~ '0' && str[is] <~ '9') buf[ib] +~ \

str[is] - '0';
else buf[ib] +~ 10 + str[is] - 'A';

}

Jtdefine MAGIC1 "00030003"
Jfdefine MAGIC2 "000000000000\
000300020002000BFFFFFFFFFFFFFFFF\
0001000000000000FFFF000100010000\
000500000000000000010080FFFF0001\
0000"

int translan_open(address, connection)
char *address;

{
int connection;

vsn("translan open");
int sock; -
struct sockaddr ns local sockaddr, *remote sockaddr;
struct packet packet; -
static struct itimerval open timeout ~

{ { 0' 0}, {OPEN TIMEOUT' 0} T;
static struct itimerval disable timeout {{0, 0}, {0, 0}};
fd set fdmask;

vn(sock ~ socket(PF_NS, SOCK_SEQPACKET, 0));

local sockaddr.sns family ~ AF NS;
bzero(&local sockaddr.sns addr~ sizeof(struct ns addr));
vf(bind(sock~ &local_sockaddr, sizeof(struct sockaddr_ns)));

vt(remote_sockaddr ~ xns_address(address));

vn(signal(SIGALRM, sigalrm));
vf(setitimer(ITIMER REAL, &open timeout));
if (connect(sock, remote sockaddr, sizeof(struct sockaddr_ns))

< 0) -
goto abort;

vf(setitimer(ITIMER_REAL, &disable_timeout));

packet.sphdr.sp_cc 1;
packet.sphdr.sp_dt O;

134

hexcode(packet.buf, MAGICl);
if (write(sock, &packet, sizeof(packet.sphdr) + \

strlen(MAGICl)/2)
< 0)

goto abort;

hexcode(packet.buf, MAGIC2);
if (write(sock, &packet, sizeof(packet.sphdr) + \

strlen(MAGIC2)/2)
< 0)

goto abort;

FD ZERO(&fdmask);
FD=SET(sock, &fdmask);

if (select(sock + 1, &fdmask, NULL, NULL, \
&open timeout.it value)

<= 0) -
goto abort;

if (read(sock, &packet, MAX_PKT_SIZE) <= 0) goto abort;

if (select(sock + 1, &fdmask, NULL, NULL, \
&open timeout.it value)

<= 0) -
goto abort;

if (read(sock, &packet, MAX_PKT_SIZE) <= 0) goto abort;

if (select(sock + 1, &fdmask, NULL, NULL, \
&open timeout.it value)

<= 0) -
goto abort;

if (read(sock, &packet, MAX_PKT_SIZE) <= 0) goto abort;

return(sock);

abort:

free(remote_sockaddr);
close(sock);
return(-1);

int translan_send(fd, str, request)
int fd;
char *str;
struct request *request;

vsn("send_comrnand"};
struct packet packet;
char *p;

packet.sphdr.sp_cc 0;
packet.sphdr.sp_dt 192;

135

}

for (p ~ str; *p; p++)
{

*(packet.buf) ~ *p;
vn(write(fd, &packet, sizeof(packet.sphdr) + 1));

)

return(O);

int translan recv(request, buffer, buflen, response, flags)
struct request *request;

{

char *buffer;
int buflen;
char **response;
int *flags;

vsn(11 translan recv 11
);

struct packet-*packet;
char *p;
int len;

packet ~ (struct packet *) buffer;

len~ buflen- sizeof(struct sphdr);
vt(*response ~ (char*) malloc(len + 1}};
strncpy(*response, packet->buf, len};
(*response} [len] ~ '\0';

p ~ *response + len - 2;
if (! strcmp (p, "> "} I I ! strcmp (p, "· "}}

*flags ~ RC COMPLETE;
else *flags ~-0;

return(O};

translan close(fd}
int-fd;

close(fd};
}

Jlendif TRANSLAN

136

I* quiplib.h - Data structures and definitions
* for QUIP library. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notic~ be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

#include "types.h"

#define MAX ADDR LEN 32

I* Query Options *I

I* Connection oriented, keep state *I
#define QO_CONNECTION (1 << 0)

I* Node types *I
#define NT IB 0
#define NT IBX 1
#define NT TRANSLAN 2

I* Error flags on response *I

I* Improperly formulated query *I
#define ER_BADQUERY (1 << 0)

I* Unknown node type or address *I
#define ER UNKNOWN (1 << 1)

I* No response from node */
#define ER NORESPONSE (1 << 2)

I* Incomplete response from node *I
#define ER INCOMPLETE (1 << 3)

/* Can't connect to node *I
#define ER CONNECT (1 << 4)

I* Failed for other reason *I
#define ER FAIL (1 << 5)

137

I* Structure for holding quip table entry *I
struct quiptab_entry
{

} ;

int major_type;
int minor_type;
char *name;
char *address;
char *server;

I* Structure for passing queries and responses
* over a TCPIIP link *I

struct quipmsg
{

} ;

I* E.g., ethernet address or LANmark port* *I
char address[MAX_ADDR_LEN];

I* Message identification *I
long id;

I* E.g., save state for next query *I
long options;

I* IB, Vitalink, LANmark, etc. *I
long nodetype;

I* Seconds to wait for response *I
long timeout;

I* Error flags, e.g., no response *I
long errors;

I* Length of data string to follow *I
long datalen;

extern struct quiptab entry *get_quiptab_entry();
extern int send_quip();
extern int recv_quip();
extern int send quip error();
extern int parse_quip();

138

I* quiplib.c - QUIP message library and HIP parser. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

tinclude <sysltime.h>

tinclude <stdio.h>
tinclude <strings.h>
tinclude <ctype.h>

tinclude "quiplib.h"
tinclude "bufferlib.h"
tinclude "verify.h"

tinclude "memorylib.h"

tdefine
tdefine
tdefine

DFLT_QUIP_TAB
MAX TAB ENTRY

"letclquiptab"
31 - -

MAX TAB LINE 256

static long unique_id 0;

struct node_type_table
{

char *name;
int number;

} ;

struct node_type_table node_type_table[l
{

} ;

{"ib",
{"ibx",
{"translan",

NT_IB},
NT IBX},
NT=TRANSLAN}

I* Returns numeric node type encoding of specified type. *I
static int get_node_type(type)

char *type;
{

int i;

139

)

for (i = 0;
i < sizeof(node_type_table)/sizeof(*node_type_table);
i++)

if (!strcmp(type, node type table[i) .name))
return(node type table[i)~number);

return(-1); - -

/* Gets quiptab entry for specified IN. */
struct quiptab entry *get quiptab entry(nameoraddr, filename)

char *nameoraddr, *filename;- ·
{

vsp ("get .quip table", struct quiptab entry *);
FILE *quipfile =NULL, *fopen(); -
char *p;
char line[MAX TAB LINE+ 1);
char name[MAX-TAB-ENTRY + 1);
char major_type[MAX_TAB_ENTRY + 1);
char minor type[MAX TAB ENTRY+ 1);
char address[MAX TAB ENTRY+ 1);
char server[MAX TAB ENTRY+ 1);
int rc; - -
int nodetype;
struct quiptab entry *entry NULL;
int found= 0;-

if (!filename) filename= DFLT QUIP TAB;
quipfile = fopen(filename, "r");
if (!quipfile)

{ .

)

fprintf(stderr, "Can't open quip table (%s) .\n",
filename);

goto abort;

while (!ferror(quipfile) && !feof(quipfile) && !found)
{

fgets(line, sizeof(line), quipfile);
line[MAX TAB LINE) = '\0';
if (p = index (line, '#')) *p = '\0';
rc = sscanf(line, " %31s %31s %3ls %31s %31s",

name, major type, minor type,
address, server); -

if (rc != 5) continue;
if (!strcmp(nameoraddr, name) I I !strcmp(nameoraddr, \

address))
found = 1;

)

140

if (!found)
{

if (ferror(quipfile)) perror(filename);
goto abort;

}
if ((nodetype =get node type(major type)) < 0)

{ - - -
fprintf(stderr, "Quip table unknown node type (%s) :\n%s",

major type, line) ;
goto abort; -

}

vt(entry = (struct quiptab entry*)
'malloc(sizeof(struct quiptab_entry)));

vt(entry->name = (char*) malloc(strlen(name) + 1));
strcpy(entry->name, name);
entry->major type = nodetype;
entry->minor=type = atoi(minor_type);
vt(entry->address = (char*) ma1loc(strlen(address) + 1));
strcpy(entry->address, address);
vt(entry->server = (char*) malloc(str1en(server) + 1));
strcpy(entry->server, server);

abort:

if (quipfile) fclose(quipfile);
return(entry);

/* Send a QUIP message. */
I* I copy the data to avoid two writes.

This saves about 170ms of waiting time on the receive\
side. */

int send quip(sock, msg, header)
int-sock;
char *msg;
struct quipmsg *header;

vsn ("send quip") ;
struct timeval timeval;
struct quipmsg *outmsg;
char *buffer;
int length;

if (! unique id)
{ -

vf(gettimeofday(&timeval, NULL));
unique_id = timeval.tv_usec;

}

141

}

if (!header->id) header->id ~ unique_id++;
header->datalen ~ strlen(msg) + 1;
length~ header->datalen + sizeof(struct quipmsg);
vt(buffer ~ (char*) malloc(length));
bcopy(header, buffer, sizeof(struct quipmsg));
outmsg ~ (struct quipmsg *) buffer;
outmsg->id ~ htonl(outmsg->id);
outmsg->options ~ htonl(outmsg~>options);
outmsg->nodetype ~ htonl(outmsg->nodetype);
outmsg->timeout ~ htonl(outmsg->timeout);
outmsg->errors ~ htonl(outmsg->errors);
outmsg->datalen = htonl(outmsg->datalen);
bcopy(msg, buffer+ sizeof(struct quipmsg), header->datalen);

vt(write(sock, buffer, length));
free(buffer);

return(O);

I* Receive a QUIP message. */
int recv quip(sock, msg, header)

int-sock;
char **msg;
struct quipmsg *header;

vsn ("recv _quip");
char *p;
int rc;
int index;

*msg ~ NULL;
header->errors ~ 0;
vt(! (rc ~ read(sock, header, sizeof(struct quipmsg)))

I I rc == sizeof(struct quipmsg));

if (!rc) return(O);

header->id = ntohl(header->id);
header->options = ntohl(header->options);
header->nodetype = ntohl(header->nodetype);
header->timeout = ntohl(header->timeout);
header->errors = ntohl(header->errors);
header->datalen = ntohl(header->datalen);

vt(*msg = (char *)
, malloc(header->datalen? header->datalen 1));
if (! header->datalen) **msg = '\0';

for (p = *msg; p - *msg < header->datalen; p += rc)
vn(rc = read(sock, p, header->datalen- (p- *msg)));

return(O);

142

I* Send a QUIP error message. *I
int send quip error(sock, error, header)

int-sock-; error;
struct quipmsg *header;

vsn ("send_ quip_ error");
struct quipmsg outmsg;

outmsg ~ *header;
outmsg.options ~ outmsg.timeout 0;
outmsg.errors ~ error;
vf (send_ quip (sock, '"', &outmsg)) ;

return(O);

I* Discard quiptab entry. *I
void free quiptab entry(quiptab entry)

struct quiptab_entry *quiptab_entry;
{

}

free(quiptab entry->name);
free(quiptab-entry->address);
free(quiptab entry->server);
free(quiptab=entry);

I* HIP parser portion *I

fdefine OPENPARENS
fdefine CLOSEPARENS
fdefine REPEATS
fdefine ZEROPLUS
fdefine ONEPLUS
fdefine ETHADRSEP
fdefine BLOCKSIZE

"('{[<"
II) I}_]>"

struct quip structure
{

char **pointers;
} ;

"*+"
(-'*')
(-'+')
II • . If

2048

typedef int (*intfunct) ();

struct parsetab
{

char *name;
intfunct funct;

} ;

static int parse_paren(), parse_line(), parse_line_consec();
static int parse lit(), parse int(), parse str();
static int parse-inttok(), parse hexint(),-parse hexstr();
static int parse=keystr(), parse=ethadr(); -

143

static struct parsetab parsetab[]
{

} ;

{"(",
{"{",
{"[",
{"'",
{II int II 1

{"str~~',

{ "inttok",
{-"hexint",
{ "hexstr",
{ "keystr",
{ ~'~ethadr",

parse_paren},
parse_line},
parse line consec},
parse=lit }-;
parse_int},
parse str},
parse-inttok},
parse=hexint},
parse hexstr},
parse=keystr},
parse_ethadr}

static char **keystr;
static int nkeystrs = 0, keystrsize = 0;

/* Find matching grouping character. */
static char *balance(p)

{

}

char *p;

int depth = 0;
char *q = p;

if (lindex(OPENPARENS, *p)) return(NULL);
do

{
if (*q == '\\')

if (l *(++q)) return(NULL);
else q++;

if (l *q) return(NULL);
if (index(OPENPARENS, *q)) depth++;
else if (index(CLOSEPARENS, *q)) depth--;
q++;

} while (depth);
if (index(OPENPARENS, *p) - OPENPARENS

l= index(CLOSEPARENS, *(q- l)) - CLOSEPARENS)
return(NULL);

return(q);

I* Make a new copy of a string */
static char *strcopy(l, r)

char *1, *r;

char *s;

s = (char*) malloc(r- l + 1);
if (ls) return(NULL);
strncpy(s, l, r- 1);
s[r-l]='\0';
return(s);

144

/* Skip to a character from the character set. */
static char *skipto(s, charset)

)

char *s, *charset;

while (*s && !index(charset, *s)) s++;
return(s);

/* Parse a parenthesized expression. */
static int parse_paren(arguments, in, out, inaline, pointers)

char *arguments;

{

)

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

return(parse2(arguments, in, out, inaline, pointers));

/* Parse stuff that must all be in one line. */
static int parse_line(arguments, in, out, inaline, pointers)

char *arguments;

{

)

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

int rc;
struct buffer newin, newout;

newin = *in;
newout = *out;

do
{

rc ~ parse2(arguments, &newin, &newout, 1, pointers);
if (rc)

{

)

newin.current ~ skipto(newin.current, "\n");
if (*newin.current) newin.current++;

while (rc && *newin.current);

*in = newin;
*out ~ newout;
return(rc);

/* Parse stuff that must all be in this line or next one. */
static int parse line consec(arguments, in, out,

- - inaline, pointers)

{

char *arguments;
struct buffer *in, *out;
int inaline;
struct buffer *pointers;

int rc;
struct buffer newin, newout;

145

newin = *in;
newout ~ *out;

do
{

rc = parse2(arguments, &newin, &newout, 1, pointers);
if (rc)

{

)

newin.current = skipto(newin.current, "\n");
if (*newin.current) newin.current++;
rc ~ parse2(arguments, &newin, &newout, 1, pointers);
if (rc) return(-1);

) while (rc && *newin.current);

*in = newin;
*out = newout;
return(rc);

/* Parse a literal string. */
static int parse_lit(arguments, in, out, inaline, pointers)

char *arguments;

)

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

struct buffer newin, newout;

newin = *in;
newout = *out;

if (!strlen(arguments)) return(O);
while (*newin.current)

{

)

for (;
*newin.current
&& ! (inaline && *newin.current ~~ '\n')
&& *newin.current !~ arguments[O];
newin.current++);

if (*newin.current !~ arguments[O]) return(-1);
if (!strncmp(newin.current, arguments, strlen(arguments)))

{

)

newin.current +~ strlen(arguments);
*in = newin;
*out ~ newout;
return(O);

else newin.current++;

return(-1);

146

I* Parse a positive integer. *I
static int parse_int(argurnents, in, out, inaline, pointers)

char *arguments;

}

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

long i;
struct buffer newin, newout;

newin = *in;
newout = *out;

for (;
*newin.curre,nt && ! (inaline && *newin.current
&& !isdigit(*newin.current);
newin.current++);

if (!isdigit(*newin.current)) return(-1);
i = *newin.current - '0';
for (newin.current++;

isdigit(*newin.current);
newin.current++)

i = i * 10 + *newin.current '0';

buffer_append_long(&newout, i);

*in = newin;
*out = newout;
return(O);

'\n')

I* Parse a whitespace terminated string. *I
static int parse_str(arguments, in, out, inaline, pointers)

char *arguments;

{

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

struct buffer newin, newout;
char *p, *s;

newin = *in;
newout = *out;

for (;
*newin.current && isspace(*newin.current)
&& ! (inaline && *newin.current == '\n');
newin.current++);

if (!*newin.current I I isspace(*newin.current)) return(-1);

for (p = newin.current;
*p && !isspace(*p) && !index(arguments, *p);
p++);

s = strcopy(newin.current, p);
if (!s) return(-1);
newin.current = p;

147

}

buffer_append_pointer(&newout, s);
buffer_append_pointer(pointers, s);

*in = newin;
*out = newout;
return(O);

/* Parse an integer or token. */
static int parse inttok(arguments, in, out, inaline, pointers)

char *arguments;

(

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

long t;
int i;
struct buffer newin, newout;

newin = *in;
newout = *out;

for (;
*newin.current && ! (inaline && *newin.current
&& ! (isalnum (*newin. current)

I I index (arguments, *newin. current)) ;
newin.current++);

if (!*newin.current
I I ! (isalnum(*newin.current)

II index(arguments, *newin.current).))
return(-1);

if (isdigit(*newin.current))
{

*in = newin;
return(parse_int(arguments, in, out, inaline));

for (i ~ 0, t = 0;
i < sizeof(long) - 1 && *newin.current
&& (isalnum(*newin.current)

I I index(arguments, *newin.current));
i++, newin.current++)

t = (t << 8) I *new in. current;
t -t;

for (;
*newin.current
&& (isalnum(*newin.current)

I I index(arguments, *newin.current));
newin.current++);

buffer_append_long(&newout, t);

148

'\n')

*in = newin;
*out = newout;
return (0);

I* Parse a hexidecimal digit. *I
static int hexdigit(c)

char c; c

{
return(isalpha(c) ?

(isupper(c) ? tolower(c)
)

I* Parse a hexidecimal integer. *I

c) - 'a' + 10 c-'0');

static int parse hexint(arguments, in, out, inaline, pointers)
char *arguments;

)

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

long i;
struct buffer newin, newout;

newin = *in;
newout = *out;

for (;
*newin.current && ! (inaline && *newin.current
&& !isxdigit(*newin.current);
newin.current++);

if (!isxdigit(*newin.current)) return(-1);
i = hexdigit(*newin.current);

for (newin.current++;
isxdigit(*newin.current);
newin.current++)

i = i * 16 + hexdigit(*newin.cllrrent);

buffer_append_long(&newout, i);

*in = newin;
*out = newout;
return(O);

I* Parse a hexidecimal string. *I

'\n')

static int parse_hexstr(arguments, in, out, inaline, pointers)
char *arguments;
struct buffer *in, *out;
int inaline;
struct buffer *pointers;

struct buffer newin, newout, subout;

newin = *in;
newout = *out;

149

for (;
*newin.current && *(newin.current + 1)
&& ! (ina1ine && *newin.current ~~ '\n')
&& ! (isxdigit(*newin.current)

&& isxdigit(*(newin.current + 1)));
newin.current++);

if (!*newin.current
I I ! (isxdigit(*newin.current)

&& isxdigit(*(newin.current + 1))))
return(-1);

subout.start ~ (char*) malloc(BLOCKSIZE);
if (!subout.start) return(-1);
subout.current ~ subout.start;
subout.end ~ subout.start + BLOCKSIZE;

while (*newin.current
&& isxdigit(*(newin.current))
&& isxdigit(*(newin.current + 1))
&& subout.current < subout.end)

{
(subout.current) ~ hexdigit((newin.current++)) << 4;
* (subout. current++) I~ hexdigi t (* (new in. current++)) ;

)
if (subout.current >~ subout.end) return(-1);
buffer_append_long(&newout,

(long) (subout. current - subout. start)) ;
if (! (subout.start ~ (char*) '

realloc(subout.start, subout.current- subout.start)))
return(-1);

buffer_append_pointer(&newout, subout.start);

*in = newin;
*out = newout;
return(O);

I* Parse a string, folding equal strings. */
static int parse keystr(arguments, in, out, inaline, pointers)

char *arguments;
struct buffer *in, *out;
int inaline;
struct buffer *pointers;

struct buffer newin, newout;
char *p, *s;
int i;

newin = *in;
newout = *out;

150

}

for (;
*newin.current && isspace(*newin.current)
&& ! (inaline && *newin.current == '\n');
newin.current++);

if (!*newin.current I I isspace(*newin.current)) return(-1);

for (p = newin.current; *p && !isspace(*p); p++);
s = strcopy(newin.current, p);
if (!s) return(-1);
newin.current p;

for (i = 0; i < nkeystrs; i++)
if (!strcrnp(s, keystr[i]))

{

} ;

free(s);
s = keystr [i];
break;

if (i >= nkeystrs)
{

*)) ;

}

if (nkeystrs == 0)
{

}

keystrsize = 128;
keystr = (char **)

rnalloc(keystrsize * sizeof(char *));
if (!keystr) return(-1);

else if (nkeystrs >= keystrsize)
{

}

keystrsize *= 2;
keystr = (char **)

realloc((char *) keystr, keystrsize * sizeof(char \

if (!keystr) return(-1);

keystr[nkeystrs++] = s;

buffer_append_pointer(&newout, s);
buffer_append_pointer(pointers, s);

*in = newin;
*out = newout;
return (0);

/* Parse an Ethernet address. */
static int parse_ethadr(argurnents, in, out, inaline, pointers)

char *arguments;

{

struct buffer *in, *out;
int inaline;
struct buffer *pointers;

struct buffer newin, newout;
u char address[6];
ifit i;

151

newin = *in;
newout = *out;

do
{

for (;
*newin.current
&& ! (inaline && *newin.current '\n')
&& !isxdigit(*newin.current);
newin.current++);

if (!isxdigit(*newin.current)) return(-1);

for (i = 0; i < 6 && isxdigit(*newin.current); i++)
{

}

if (isxdigit(*(newin.current + 1)))
{

}

address[i] =
(hexdigit(*newin.current) << 4)

I hexdigit(*(newin.current + 1));
newin.current += 2;

else address[i] = hexdigit(*(newin.current++));
if (*newin.current

&& index(ETHADRSEP, *newin.current))
newin.current++;

} while (i < 6);

if (newout.end- newout.current < 6) return(-1);
bcopy(address, newout.current, 6);
newout.current += 6;

*in = newin;
*out = newout;
return(O);

I* Find the parse routine associated with an operator. *I
static intfunct parse routi'ne (type)

char *type; -

int i;

for (i = 0; i < sizeof(parsetab)lsizeof(*parsetab); i++)
if (!strcmp(type, parsetab[i] .name))

return(parsetab[i] .funct);
return(NULL);

I* Break down the next operand specification. *I
static int get_command(grammar, repeats, type, arguments)

char **grammar, **type, **arguments;
int *repeats;

char *p;

152

if (index(REPEATS, **grammar)) *repeats
else if (isdigit(**grammar))

{
*repeats = **grammar- '0';
while (isdigit(*(++(*grammar))))

-(*((*grammar)++));

*repeats = *repeats * 10 + **grammar - '0';
}

else *repeats ~ 1;

if (!**grammar) *type~ strcopy(*grammar, *grammar);
else if (index(OPENPARENS, **grammar))

{
*type~ strcopy(*grammar, *grammar+ 1);
if (!*type) return(-1);

}
else

{
p ~ skipto (*grammar, ": ") ;
*type~ strcopy(*grammar, p);
if (!*type) return(-1);
*grammar ~ p;

if (!**grammar) *arguments~ strcopy(*grammar, *grammar);
else if (index(OPENPARENS, **grammar))

{
p ~ balance(*grammar);
if (!p) return(-1);
*arguments~ strcopy(*grammar + 1, p- 1);
*grammar = p;

}
else

{
if (**grammar ~~ ':') (*grammar)++;
p ~ skipto(*grammar, "");
*arguments~ strcopy(*grammar, p);
*grammar ~ p;

while (**grammar && **grammar ' ') (*grammar)++;

return(O);

/* Low-level parse routine. */
static int parse2(grammar, in, out, inaline, pointers)

char *grammar;
struct buffer *in, *out;
int inaline;
struct buffer *pointers;

int repeats, count, i;
char *type, *arguments;
intfunct pr;
struct buffer newin, newout;
struct buffer *subout;

153

}

newin = *in;
newout = *out;

while (*grammar)
{

}

if (get_cornmand(&grammar, &repeats, &type, &arguments))
return(-1);

pr =parse routine(type);
if (!pr) return(-1);

if (repeats == ZEROPLUS I I repeats
{

subout = buffer_new(l);

for (count = 0;
! (*pr) (arguments, &newin,

ONEPLUS)

subout, inaline, pointers);
count++);

)
else

if (repeats == ONEPLUS && count 0)
{

buffer_free(subout);
return(-1);

buffer_fit(subout);

buffer append long(&newout, count);
buffer=append~ointer(&newout, subout->start);
buffer_append_pointer(pointers, subout->start);
free(subout);

for (i = 0; i < repeats; i++)
if ((*pr) (arguments, &newin,

&newout, inaline, pointers)) return(-1);

free(type);
free (arguments);

*in newin;
*out = newout;
return (0);

I* Free structure built by HIP parser. */
void hip free (.structure)

struct quip_structure *structure;

char **p;

154

}

for (p = structure->pointers; *p; p++) free(*p);
free(structure->pointers);
free(structure);

I* Main HIP parser routine. */
int parse quip(grammar, input, output)

char-*grammar, **input, **output;
{

struct buffer in, out;
int rc;
struct buffer *pointers;

in.start = *input;
in.current = *input;
in.end =*input+ strlen(*input);

pointers= buffer_new(1);

out.start = (char*) malloc(BLOCKSIZE);
if (!out.start) return(-1);
out.current = out.start;
out.end = out.start + BLOCKSIZE;

'buffer_append_pointer (&out, NULL);
rc = parse2(grammar, &in, &out, 0, pointers);
buffer_append_pointer(pointers, NULL);
buffer fit(pointers);
((struct quip structure*) out.start)->pointers

pointers->start;
if (rc)

{

}
else

hip_free(out.start);
out.start =NULL;
if (rc) return(-1);

if (! (out. start = (char *)

(char **)

real1oc(out.start, out.current- out.start)))
return(-1);

*output = out.start;
*input = in.current;
return(O);

155

I* snmp_proxyd.h - Data structure definitions for SNMP
* proxy daemon.
*I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC}

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I .

#define SECOND 1
#define MINUTE 60
#define HOUR (MINUTE * 60}
#define DAY (HOUR * 24}
#define MONTH (DAY * 31}
#define YEAR (MONTH * 12}

#define REQUEST_TIMEOUT 60 I* Forget un-filled requests after
this many seconds *I

struct request
{

struct snmp info snmp info;
struct variable snmp vars[NUMVARS];
struct sockaddr in from addr;
long timestamp;- -
struct request *prev, *next;
struct request *global_prev, *global_next;

} ;

struct varnode
{

int num;
int (*retrieve} (};
long lifetime;
long deadline;
int pending;
struct variable *variable;
struct varnode *child, *sibling;
struct sockaddr in *receivers;
int nreceivers;-
int receiverlistsize;

} ;

156

struct node
{

struct quiptab entry *quiptab entry;
int quip fd; - -

} ;

struct request *requestlist;
struct varnode *vartree;
struct node *prev, *next;

struct quip_queue
{

long id;
int (*parse)();
struct node *node;
struct quip_queue *next, *prev;

} ;

extern struct node *nodelist;
extern struct quip_queue *quip_queue;

int cache_branch();
int queue_quip();
int variable_insert();

157

I* snmp_proxyd.c - SNMP Proxy Daemon. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this soft~are for any purpose.
* It is provided "as is" without express or implied warranty.
*I

#include "types.h"

#include <syslsocket.h>
#include <netinetlin.h>
#include <sysltime.h>

#include <stdio.h>
#include <errno.h>
#include <netdb.h>
#include <ctype.h>
#include <signal.h>
#include <strings.h>

#include <snmp.h>
#include <snmp impl.h>
#include <snmp-client.h>
#include <asnl~h>

#include "verify.h"
#include "quiplib.h"
#include "snmp_proxyd.h"

#define MAXPKTSIZE
#define MAXLINESIZE
#define MIB

2048

#define VARIABLE FILE

struct varmap
{

char *sym;
u char num;

512
".iso.org.dod.internet.mgmt.mib."
"letclsnmp.variables"

struct varmap *child, *sibling;
} ;

158

int dump packet = 0;
int terminate_flag = 0;
int nfds, snmp fd;
fd set fdset in;
struct node *nodelist;
struct varmap *varmap;
struct quip queue *quip queue;
struct request *global requests;
int pid; -

ilifdef IB
int build_var tree ib();
#endif IB
#ifdef IBX
int build var tree ibx();
#endif IBX - -
#ifdef TRANSLAN
int build_var_tree_translan();
#endif TRANSLAN

int (*build var_tree[]) ()
{

#ifdef IB
build_var tree_ib,

#else IB
NULL,

#endif IB
#ifdef IBX

build var_tree_ibx,
#else IBX

NULL,
#endif IBX
ilifdef TRANSLAN

build var tree translan - -
#else TRANSLAN

NULL
#endif TRANSLAN
} ;

I* Get next fd set in bitmask. */
static int nextfd(fdset) /* Inefficient */

fd_set *fdset;
{

}

int i;

for (i = 0; i < nfds; i++)
if (FD ISSET (i, fdset))

{ -
FD CLR(i, fdset);
return(i);

}
return (-1);

159

/* Get socket "connected" to named UDP service. */
int udp_service(name)

{

}

char *name;

vsn ("udp-service 11) ;

int sock;
struct servent *servent;
struct sockaddr_in sockaddr_in;

vn(sock = socket(AF INET, SOCK DGRAM, 0));
vt (servent = getservbyname (name, "udp"));

sockaddr in.sin family = AF INET;
sockaddr-in.sin-addr.s addr-= INADDR ANY;
sockaddr=in.sin~ort =-servent->s_port;
vf(bind(sock,

(struct sockaddr *) &sockaddr_in, \
sizeof(sockaddr_in)));

ret urn (sock) ;

/* Get socket connected to named TCP service. */
int connect tcp(host, service)

char *host;

{

}

char *service;

vsn("connect tcp");
int sock; -
struct sockaddr in sockaddr;
struct hostent *hostent;
struct servent *servent;

vn(sock = socket(PF INET, SOCK STREAM, 0));
sockaddr.sin family-= AF INET;
vt(hostent =-gethostbyname(host)};

bcopy(hostent->h addr, &(sockaddr.sin addr.s addr),
hostent->h-length); -

vt(servent = getservbyname(service, "tcp"));
sockaddr.sin_port = servent->s_port;
if (connect(sock, &sockaddr, sizeof(sockaddr)) < 0)

{

}

close(sock};
return(-1);

else return(sock);

160

/* Queue information about a pending quip request. */
int queue_quip(msgid, parse, node)

{

long msgid;
int (*parse) ();
struct node *node;

vsn ("queue quip");
struct quip_queue *quipnode;

vt(quipnode ~ (struct quip_queue *)
malloc(sizeof(struct quip queue)));

quipnode->id ~ msgid; -
quipnode->parse ~ parse;
quipnode->node node;
quipnode->next ~ quip queue;
quipnode-~prev ~ quip-queue->prev;
quip queue->prev->next = quipnode;
quip=queue->prev = quipnode;

return (0) ;

/* Insert a variable in the variable translation map. */
int varmap_insert(varmap, def)

struct varmap *varmap;
char *def;

vsn ("varmap_insert 11
);

struct varmap *v, *newv;
char *p;
u_char num;
char *newsym;

if (! *def) return(O);

vt(p = index(def, ' '));
*p = '\ 0' ;
num = atoi(p + 1);

for (v = varmap->child; v; v
if (v->num == num) break;

if (! v)
{

v->sibling)

vt(newv = (struct varmap *)
malloc(sizeof(struct varmap)));

vt(newsym = (char*) malloc(strlen(def) + 1));
strcpy(newsym, def);
newv->sym = newsym;
newv->num = num;
newv->child = NULL;
newv->sibling = NULL;

161

if (varmap->child)
{

for (v ~ varmap->child; v->sibling; v
v->sibling ~ newv;

}
else varmap->child ~ newv;
v = newv;

vt(p ~ index(p + 1, ' '));
while (*(p + 1) && *(p + 1) == ,

return(varmap_insert(v, p + 1));

') p++;

/~ Get variables from MIB definition file. */
int get variables(variable file)
{ - -

vsn("get variables");
FILE *file, *fopen();
char buffer[MAXLINESIZE];

v->sibling) ;

vt(varmap ~ (struct varmap *) malloc(sizeof(struct varmap)));
varmap->sym ~ NULL;

}

varmap->num ~ 0;
varmap->child ~ NULL;
varmap->sibling ~ NULL;

vt(file ~ fopen(variable file, "r"));
while (fgets(buffer, sizeof(buffer), file))

{
buffer[strlen(buffer) - 1] ~ ' '.;
vf(varmap_insert(varmap, buffer));

}
fclose(variable_file);

return(O);

/* Initialize proxy daemon */
static int initialize()
{

vsn(''initialize'');

command_name = "snmp_proxyd";

pid ~ getpid();

nfds ~ getdtablesize();
FD_ZERO(&fdset_in);

vn(snmp fd ~ udp service("snmp"));.
FD_SET(snmp_fd, &fdset_in);

vt(nodelist ~ (struct node*) malloc(sizeof(struct node)));
nodelist->prev ~ nodelist->next ~ nodelist;

162

}

vf(get_variables(VARIABLE_FILE));

vt(quip queue~ (struct quip queue *)
malloc(sizeof(struct quip=queue)));

quip queue->id ~ 0;
quip-queue->parse ~ NULL;
quip=queue->next ~ quip_queue->prev quip_queue;

global requests ~ (struct request *)
Malloc(sizeof(struct request));

global requests->global next global requests;
global=requests->global~rev global=requests;

return(O);

/* Split community name into community and node name \
portions. */

int split community node(request, community, node)
struct snmp info *request;
char **commUnity, **node;

vsn ("split community node");
int i; - -

for (i ~ 0;
i < request->clen && request->community[i) !~ '.';
i++);

vt(*community ~ (char*) malloc(i + 1));
strncpy(*community, request->community, i);
(*community) [i) ~ '\0';
if (i ~~ request->clen)

{
vt(*node ~ (char*) malloc(1));
strcpy (*node, "") ;

}
else

{
vt(*node ~ (char*) malloc(request->clen- i));
strncpy(*node, request->community + i + 1,

request->clen- i- 1);
(*node) [request->clen - i - 1) ~ '\0';

}
return(O);

I* Convert symbolic variable name to numeric form. */
int syrntonum(varmap, varname, varnum, varnumlen)

struct varmap *varmap;
char *varname;
u char *varnum;
int varnumlen;

vsn ("symtonurn") ;
struct varmap *v;
char *p, *q;

163

if (varnumlen ~~ 0) return (.0) ;

p = index{varname + 1, '.');
if (!p) p ~ varname + strlen(varname);

for (v ~ varmap; v; v ~ v->sibling)
if (!strncmp(varname + l, v->sym, p- varname- l)

&& !v->sym[p- varname- 1])
break;

if (! v)
{

}
else

{

}

for (; varnumlen; varnumlen--)
{

}

for (q ~ varnarne + 1; q < p; q++)
if (!isdigit(*q)) break;

vt(q ~~ p);
*varnurn ~ atoi(varname + 1);
varnum++;
varname = p;
p = index(varname + 1, '.');
if (!p) p ~ varname + strlen(varnarne);

vf (varnurnlen) ;
return(O);

*varnum = v->num;
return(symtonum(v->child, p, varnurn + 1, varnurnlen- 1));

/* Insert a variable into the cache (low-level routine). *I
struct variable *variable_inserter(vartree, varnum, varnumlen,

asntype, value, length, \

{

lifetime)
struct varnode *vartree;
u_char *varnum;
int varnurnlen;
int asntype;
char *value;
int length;
int lifetime;

vsp("variable inserter", struct variable*);
struct varnocte *v, *newv;
struct timeval timeval;

if (vartree->retrieve)
{

gettimeofday(&timeval, NULL);

}

vartree->deadline ~ timeval.tv sec + vartree->lifetime;
vartree->pending ~ 0;

164

if (varnumlen ~~ 0)
{

if (vartree->variable) free(vartree->variable);
vt(vartree->variable ~

(struct variable*) malloc(sizeof(struct variable)));
vartree->variable->type ~ asntype;
vartree->variable->val len ~ length;
bcopy(value, &(vartree=>variable->val), length);
gettimeofday(&timeval, NULL);
vartree->deadline ~ timeval.tv sec + lifetime;
vartree->pending ~ 0; -
vartree->nreceivers ~ 0;
return(vartree->variable);

for (v ~ vartree->child; v; v ~ v->sibling)
if (v->num ~~ *varnurn) break;

if (! v)
{

vt(newv ~ (struct varnode *)
calloc(l, sizeof(struct varnode)));

newv->num = *varnum;

if (vartree->child)
{

}

for (v ~ vartree->child; v->sibling; v
v->sibling ~ newv;

else vartree->child ~ newv;
v = newv;

v->sibling) ;

return(variable_inserter(v, varnum + 1, varnumlen - 1,
asntype, value, length, lifetime));

/* Insert a variable into the cache (high-level routine). *I
int variable_insert(varname, instance, asntype,

value, length, lifetime, node)
char *varname;
int instance;
int asntype;
char *value;
int length;
int lifetime;
struct node *node;

vsn ("variable insert") ;
u char *varnuffi;
ifit varnumlen;
char *p;
char *fullvarname;
char cinstance[4];
struct variable *v;

165

if (instance) sprintf(cinstance, ".%d", instance);
else strcpy(cinstance, "");
vt(fullvarname ~

(char *) malloc(strlen(MIB) + strlen(varname)
+ strlen(cinstance) + 3));

strcpy(fullvarname, MIB);
strcat(fullvarname, varname);
strcat(fullvarname, cinstance);
strcat(fullvarname, ".0");

for (p ~ fullvarname, varnumlen ~ 0; *p; p++)
if (*p ~~ '.') varnumlen++;

vt(varnum ~ (u_char *) malloc(varnumlen));

vf(symtonum(varmap->child, fullvarname, varnum, varnumlen));
vt(v ~variable inserter(node->vartree, varnum, varnumlen,

- asntype, value, length, lifetime));
bcopy(varnum, v->name, varnumlen);
v->length ~ varnumlen;
free(fullvarname);
free(varnum);
return(O);

I* Insert a branch into a variable tree stump (low-level \
routine). *I

int varnode inserter(vartree, varnum,
- varnumlen, retrieve, lifetime)

struct varnode *vartree;
u char *varnurn;
illt varnumlen;
int (*retrieve) ();
long lifetime;

vsn("varnode inserter");
struct varnode *v, *newv;

if (varnumlen ~~ 0)
{

vartree->retrieve
vartree->lifetime
return(O);

retrieve;
lifetime;

}

for (v ~ vartree->child; v; v ~ v->sibling)
if (v->num ~~ *varnum) break;

if (! v)
{

vt(newv ~ (struct varnode *)
calloc(l, sizeof(struct varnode)));

newv->nurn = *varnum;

166

}

if (vartree->child)
{

}

for (v ~ vartree->child; v->sibling; v
v->sibling = newv;

else vartree->child = newv;
v = newv;

v->sibling);

return(varnode_inserter(v, varnum + 1, varnumlen- 1, \
retrieve,

lifetime));

I* Insert a branch into a variable tree stump (high-level \
routine}. *I

int cache branch(vartree, varname, retrieve, lifetime)
struCt varnode *vartree;

}

char *varname;
int (*retrieve) (};
long lifetime;

vsn ("cache_branch"};
u char *varnum;
int varnumlen;
char *p;
char *fullvarname;

vt(fullvarname ~ (char *)
malloc (str len (MIB) + str len (varname) + 1 }.) ;

strcpy(fullvarname, MIB);
strcat(fullvarname, varname};

for (p ~ fullvarname, varnumlen ~ 0; *p; p++)
if (*p ~~ '.') varnumlen++;

vt(varnum ~ (u_char *) malloc(varnumlen});

vf(symtonum(varmap->child, fullvarname, varnum, varnumlen)};
free(fullvarname);
vf(varnode_inserter(vartree,

varnum, varnumlen, retrieve, lifetime});
free (varnum) ;

return(O};

I* Set up data structure for a new IN. *I
struct node *build node struct(quiptab entry)

struct quiptab_entry *quiptab_entry;

vsp("build node struct", struct node*);
struct node *n,-*n2;

vt(n ~ (struct node*) malloc(sizeof(struct node)));
n->quiptab_entry ~ quiptab_entry;

167

}

vt(n->requestlist ~ (struct request *)
malloc(sizeof(struct request)));

n->requestlist->prev ~ n->requestlist->next

vt(n->vartree ~ (struct varnode *)
calloc(l, sizeof(struct varnode)));

n->requestlist;

for (n2 ~ nodelist->next; n2 !~ nodelist; n2 n2->next)
if (!strcmp(quiptab entry->server, \

n2->quiptab entry->server))
break;

if (n2 !~ nodelist) n->quip_fd n2->quip_fd;
else

{
if ((n->quip_fd connect_tcp(quiptab_entry->server, \

"quip"))

}

< 0)
I* free things here *I

ret urn (NULL) ;
FD_SET(n->quip_fd, &fdset_in);

n->next ~ nodelist;
n->prev ~ nodelist->prev;
nodelist->prev->next ~ n;
nodelist->prev ~ n;

if (build var tree[quiptab entry->major type])
vf((*(build-var tree[quiptab entry->major type]))

(n->vartree) }; - -

return(n);

I* Throw away an SNMP request. *I
int dequeue_request(request)

struct request *request;

request->prev->next ~ request->next;
request->next->prev ~ request->prev;
request->global_prev->global_next request->global_next;
request->global_next->global_prev ~ request->global_prev;
free(request);

return (0);

I* See if receiver has received specified var.iable value. *I
static int find_receiver(receiver, varnode)

struct sockaddr_in *receiver;
struct varnode *varnode;

int i;

168

}

return .Q;
for (i ~ 0; i < varnode->nreceivers; i++}

if (!bcmp (receiver, &varnode->receivers [i],
sizeof(struct sockaddr_in}}}

return 1;
return 0;

I* Record the fact that receiver has received
current value of this variable. *I

static int put receiver(receiver, varnode}
struct sockaddr in *receiver;

{

}

struct varnode *varnode;

if (varnode->nreceivers =~ varnode->receiverlistsize}
if (varnode->receiverlistsize}

vp(varnode->receivers ~ (struct sockaddr in *}
realloc(varnode->receivers, -

(varnode->receiverlistsize *= 2}
* sizeof(struct sockaddr in}}};

else vp(varnode->receivers ~ (struct sockaddr in *}
malloc((varnode->receiverlistsize ~ 1)

* sizeof(struct sockaddr in}}};
varnode->receivers[varnode->nreceivers++]-= *receiver;
return(O};

I* Find variable in cache (low-level routine} .. *I
int get_var2(variable, receiver, depth,

{

vartree, status, retrieve)
struct variable *variable;
struct sockaddr in *receiver;
int depth; -
struct varnode *vartree;
int *status;
int (**retrieve} (};

vsn ("get_var2"};
struct varnode *v;
struct timeval timeval;
int i;

169

}

if (depth ~~ variable->length)
{

if (vartree->variable ~~ NULL) *status 2;
else

{

}

gettimeofday(&timeval, NULL);
if (timeval.tv sec > vartree->deadline

else
{

}

I I find_receiver(receiver, vartree)) *status 1;

*status ~ 0;
variab1e->type ~ vartree->variable->type;
bcopy(&vartree->variable->val, &(variable->val),

vartree->variable->val_len);
variab1e->val len ~ vartree->variable->val len;
vf(put_receiver(receiver, vartree)); -

return(O);

for (v ~ vartree->child; v; v ~ v->sibling)
if (v->num ~~ variab1e->name[depth]) break;

if (v)
{

}

if (v->retrieve)
{

}

*retrieve = v->retrieve;
gettimeofday(&timeval, NULL);
if (timeval.tv sec > v->deadline)

{ -

)

if (v->pending) *retrieve ~ NULL;
*status ~ 1;

else return(get var2(variable, receiver,
- depth+ 1, v, status, retrieve));

else return(get var2(variable, receiver, depth + 1, v,
- status, retrieve));

else *status 2;
return(O);

I* Find variable in cache (high-level routine). *I
int get_var(variable, receiver, node, status)

struct variable *variable;
struct sockaddr in *receiver;
struct node *node;
int *status;

vsn ("get var"};
int (*retrieve) () NULL;

170

vf(get var2(variable, receiver, 0,
- node->vartree, status, &retrieve));

if (*status ~~ 1 && *retrieve) (*retrieve) (node);
return(O);

I* Find next variable in cache (low-level routine). *I
int getnext_var2(variable, receiver, depth,

{

vartree, status, retrieve, next)
struct variable *variable;
struct sockaddr in *receiver;
int depth; -
struct varnode *vartree;
int *status;
int (**retrieve) ();
int *next;

vsn("getnext_var2");
struct varnode *v;
struct timeval timeval;

171

if (*next && vartree->variable)
{

}

gettimeofday(&timeval, NULL);
if (timeval.tv_sec > vartree->deadline

I I find receiver(receiver, vartree)) *status 1;
else -

{
*status ~ 0;
variable->type ~ vartree->variable->type;
bcopy(vartree->variable->name, variable->name,

vartree->variable->length);
variable->length ~ vartree->variable->length;
bcopy(&vartree->variable->val, &(variable->val),

vartree->variable->val_len);
variable->val len ~ vartree->variable->val len;
put receiver(receiver, vartree); -
return(O);

if (depth
if (*next)
else

variable->length) *next
v ~ vartree->child;

1;

{

}

for (v ~ vartree->child; v; v ~ v->sibling}
if (v->num >~ variable->name[depth)) break;

for (; v; v ~ v->sibling}
{

}

if (v->retrieve)
{

}

*retrieve = v->retrieve;
gettimeofday(&timeval, NULL};
if (timeval.tv sec > v->deadline}

{ - .

if (v->pending} *retrieve ~ NULL;
*status ~ 1;
return(O};

vf(getnext_var2(variable, receiver, depth+ 1,
v, status, retrieve, next)};

if (*status ~~ 0 I I *status ~~ 1} break;

if (! v}
{

*status ~ 2;
*next ~ 1;

}
return(O};

172

/* Find riext variable in cache (high-level routine). *I
int getnext_var(variable, receiver, node, status)

struct variable *variable;

{

}

struct sockaddr in *receiver;
struct node *node;
int *status;

vsn ("getnext var") ;
int (*retrieve)() = NULL;
int next = 0;

vf(getnext_var2(variable, receiver, 0,
node->vartree, status, &retrieve, &next));

if (*status == 1 && *retrieve) (*retrieve) (node);
return(O);

/* Fill a request from the cache if possible. */
int fill request(request, node)

struct request *request;
struct node *node;

vsn("fill_request");

int status;
u char packet[MAXPKTSIZE];
int pktlen = sizeof(packet);
int fromlen = sizeof(struct sockaddr_in);
int i, j;
struct variable var;
struct timeval now;

173

}

gettimeofday(&now, NULL);
if (! (request->snmp info.command ==GET REQ MSG

11 request->snmp info.command == GETNEXT REQ MSG)

{
1 I request->timestamp <= now.tv_sec - REQUEST=TIMEOUT)

vf(dequeue request(request));
ret urn (0) ; -

}
status
for (i

{

0;
0; i < request->snmp_info.vars; i++)

var = request->snmp vars[i];
if (var.name[var.length- 1])

{

}

var.name[var.length] = 0;
var.length++;

if (request->snmp info.command == GET REQ MSG)
vf(get var(&var; &(request->from addr),-node, &status));

else vf(getnext_var(&var, &(request->from_addr),
node, &status));

if (status== 1) return(O); /*wait for some variable */
if (status == 2) { /* non-existent variable */

}

request->snmp info.errstat = SNMP ERR NOSUCHNAME;
request->snmp-info.errindex = i +-1; -
break; -

if (request->snmp info.command == GET REQ MSG)
{ - - -

}
else

bcopy(&(var.val), &(request->snmp vars[i] .val),
sizeof(var.val)); -

request->snmp vars[i) .val len= var.val len;
request->snmp=vars[i).type = var-.type; -

bcopy(&var, &(request->snmp_vars[i)), sizeof(var));

request->snmp info.command = GET RSP MSG;
vf(snmp build(packet, &pktlen, - -

- &(request->snmp info), request->snmp vars));
vt(sendto(snmp fd, packet, pktlen, -

0, &(request->from_addr), fromlen));

vf(dequeue_request(request));

return(O);

174

}

I* Enqueue a new SNMP request. *I
int queue request(request, node)

struct request *request;
char *node;

{
vsn ("queue_request");
struct node *n;
struct tirneval now;
struct request *r;
struct quiptab entry *quiptab_entry;

for (n ~ nodelist->next; n !~ nodelist; n ~ n->next)
if (!strcrnp(n->quiptab entry->narne, node))

break; -
if (n ~~ nodelist)

{

}

quiptab entry~ get quiptab entry(node, NULL);
if (!quiptab entry)-return(O);
if (quiptab entry->rnajor type

>~ sizeof(build var tree)lsizeof(build var tree[O])
I I !build var tree[quiptab entry->rnajor type])

return(O); - - - -

if (! (n ~ build_node_struct(quiptab_entry))) return(O);

gettirneofday(&now, NULL);

request->tirnestarnp ~ now.tv_sec;

request->next ~ n->requestlist;
request->prev ~ n->requestlist->prev;
n->requestlist->prev->next ~ request;
n->requestlist->prev request;

request->global_next global_requests;
request->global_prev global_requests->global_prev;
global_requests->global_prev->global_next ~ request;
global_requests->global_prev ~ request;

vf(fill_request(request, n));

return(O);

I* Handle SNMP request event. *I
int snrnp input ()
{ -

vsn("snmp_input");

175

)

struct sockaddr in from addr;
int from_len = sizeof(struct sockaddr_in);
int inbytes;
u char inbuffer[MAXPKTSIZE];
struct snmp info snmp info;
struct variable snmp_vars[NUMVARS];
char *community, *node;
struct request *request;
int i;

vn(inbytes = recvfrom(snmp fd, inbuffer, MAXPKTSIZE,
0, &from_addr, &from_len));

snmp info.maxvars = NUMVARS;
snmp-info.clen = SID MAX LEN;
vf(snmp_parse(inbuffer, Inbytes, &snmp_info, snmp_vars));
vf(split_community_node(&snmp_info, &community, &node));
free(community);
if (!*node)

{

)

free(node);
return(O);

vt(request = (struct request *)
malloc(sizeof(struct request}}};

request->snmp_info = snmp_info;

bcopy((char *) snmp vars, (char*} request->snmp_vars,
sizeof (snmp vars}};

request->from_addr = from_addr;

vf(queue request(request, node));
free (node} ;

return(O);

/* Free a variable tree */
static free vartree(varnode}

struct-varnode *varnode;
{

)

struct varnode· *v, *vnext;

for (v = varnode->child; v; v
{

)

vnext = v->sibling;
free_vartree(v);

vnext)

if (varnode->variable} free(varnode->variable};
free(varnode);

176

I* Free data structure associated with an IN. *I
static void free_node(node)

{
struct node *node;

struct request *request;
struct quip_queue *q;

free_quiptab_entry(node->quiptab_entry);

for (request = node->requestlist; request->next != request;)
dequeue_request(request->next);

free(request);

free_vartree(node->vartree);

for (q = quip queue->next; q != quip_queue; q
if (q->node-== node)

{

}

q->prev->next
q->next->prev
q = q->prev;
free(q);

free(node);

q->next;
q->prev;

I* Close connection to a QUIP daemon. *I
static int close quip fd(fd)

int fd; - -
{

vsn("close quip fd");
struct node *n,-*n_old;

close (fd) ;
FD CLR(fd, &fdset in);

q->next)

for (n = nodelist~>next; n != nodelist; n
if (n->quip_fd == fd)

n->next)

{
n->prev->next
n->next->prev
n_old = n;

n->next;
n->prev;

n = n->prev;
free_node(n_old);

return(O);

177

I* Handle a QUIP message arrival event. *I
static int quip_input(fd)

{
int fd;

vsn ("quip_ input n) ;
char *response;
struct quipmsg msgin;
struct quip_queue *q;

vf(recv quip(fd, &response, &msgin));
if (!response) return(-1);

for (q = quip queue->next; q != quip_queue; q
if (q->id =~ msgin.id) break;

if (q != quip queue)
{ -

q->prev->next = q->next;
q->next->prev = q->prev;

q->next)

if (!msgin.errors) vf((*(q->parse)) (response, q->node));
free (q);

}
free(response);

return(O);

I* Delete unanswered SNMP requests. *I
static void delete_old_requests()
{

}

struct timeval deadline;

gettimeofday(&deadline, NULL);
deadline.tv_sec -= REQUEST_TIMEOUT;

while (global requests->global next != global requests
&& global requests->global next->timestamp
< deadline.tv sec) -

dequeue_request.(global_requests->global_next);

I* Main event loop of SNMP proxy daemon *I
static int mainloop()
{

vsn("mainloop");
int fd, afd, rc;
fd set readfds, readyfds;
struct sockaddr in sockaddr;
int sockaddrsize = sizeof(struct sockaddr_in);

while (1)
{

FD COPY(&readfds, &fdset in);
vt((rc = select(nfds, &readfds, NULL, NULL, NULL)) >= 0

I I errno == EINTR);
if (terminate flag) exit(1);
if (rc < 0 &&-errno == EINTR) continue;

178

}

FD COPY(&readyfds, &readfds);
while ((fd = nextfd(&readyfds)) >= 0)

if (fd != snmp_fd)
{

}

if (quip input(fd))
{ -

}

fprintf (stderr, "quip input() failed\n");
close_quip_fd(fd); -

if (FD_ISSET(snmp_fd, &readfds)) vf(snmp_input());

delete_old_requests();

/* Set terminate flag so proxy daemon will quit when safe. */
int terminate ()
{

terminate_flag = 1;
}

I* Main routine for SNMP proxy daemon. */
int main(argc, argv)

{

}

int argc;
char *argv[];

vsn (11 rnain n) ;

signal(SIGTERM, terminate);
vf(initialize(argc, argv));
vf(main1oop());
vm("Exited (this should never happen)\n");

179

I* ib driver.c - SNMP Proxy Daemon IB driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

llifdef IB

Jlinclude <sysltypes.h>
Jlinclude <stdio.h>
Jlinclude <strings.h>
Jlinclude <syslsocket.h>
Jlinclude <netinetlin.h>

Jlinclude <snrnp.h>
llinclude <snrnp impl.h>
Jlinclude <snrnp=client.h>
Jlinclude <asn1.h>

Jlinclude "verify.h"
Jlinclude "quiplib.h"
Jlinclude "snrnp_proxyd.h"

I* Parse system part of MIB. *I
int parse ib system(response, node)

char-*response;
struct node *node;

vsn("parse ib system");
char *headgramrnar ~

"[str:, ',booted'] ['PROMS:' str:- '-' *str]";
struct

{
char **pointers;
char *sysname;
char *boardname;
int nrevtoks;
char **revtok;

) *headstruct;
char *resp;
char *sysdescr;
int i, 1;
struct request *r;

180

resp = response;
if (parse quip(headgrammar, &resp, (char**} &headstruct}}

return (0);

l strlen("Bridge Communications " }
+ strlen(headstruct->boardname} + 1;

for (i = 0; i < headstruct->nrevtoks; i++}
l += strlen(headstruct->revtok[i]} + 1;

vt(sysdescr = (char*} malloc(l}};
strcpy(sysdescr, "Bridge Communications"};
strcat(sysdescr, headstruct->boardname};
for (i = 0; i < headstruct->nrevtoks; i++}

{
strcat(sysdescr, "");
strcat(sysdescr, headstruct->revtok[i]};

}
hip_free(headstruct);

vf(variable insert("system.sysDescr", 0,
- ASN_OCTET_STR, sysdescr,

strlen(sysdescr}, MINUTE, node}};

for (r node->requestlist->next;
r != node->requestlist;
r = r->next}

vf(fill_request(r, node}};

return(O};

181

I* Parse interfaces part of MIB. */
int parse ib interfaces(response, node}

char-*r6sponse;
struct node *node;

vsn("parse ib interfaces"};
char *headgraffimar =

"ethadr '\n' [str:, ',booted'] 'PROMS:' *[str:- '-' \
*str]";
char *statgrammar;
struct

{
char **pointers;
u char address[6];
char.*sysname;
int nboards;
struct

{
char *boardname;
int nrevtoks;
char **revtok;

} *board;
} *headstruct;

struct
{

char **pointers;
int rcvpkts, rcvbytes, rcvmcastpkts, rcvbcastpkts;
int ere, frameerr, toolong, lostpkts;
int xmtpkts, xmtbytes, xmtmcastpkts, xmtbcastpkts;
int deferred, singlecoll, multicoll;
int latecoll, excesscoll;
union {

struct
{

int neterr;
} typeO;

struct
{

int carrierlost, babble;
} typel;

} un;
} *statstruct[8];

char **boarddescr;
int i, j, l;
int intvalue;
struct request *r;
char varname[1024];
char *resp;
int minor type;
int ninterfaces, ifno;
int one = 1, zero = 0, intsz
int if type [8] ;

sizeof(int};

minor type = node->quiptab entry->minor type;
if (minor type< 0 I I minor type> 1) return(O); - -

182

resp ~ response;
if (parse_quip(headgrammar, &resp, (char**) &headstruct))

return (0);

vt(boarddescr ~ (char **)
malloc(sizeof(char *) * headstruct->nboards));

for (i ~ 0; i < headstruct->nboards; i++)
{

}

1 ~ strlen("Bridge Communications ")
+ strlen(headstruct->board[i] .boardname) + 1;

for (j ~ 0; j < headstruct->board[i] .nrevtoks; j++)
1 +~ strlen(headstruct->board[i] .revtok[j]) + 1;

vt(boarddescr[i] ~ (char*) malloc(l));
strcpy(boarddescr[i], "Bridge Communications");
strcat(boarddescr[i], headstruct->board[i] .boardname);
for (j ~ 0; j < headstruct->board[i] .nrevtoks; j++)

{

}

strcat(boarddescr[i], "");
strcat(boarddescr[i], headstruct->board[i] .revtok[j]);
if (!strncmp(headstruct->board[i] .revtok[j],

"IECM", 4))
iftype[i - 1] ~ 6;

else if (!strncrnp(headstruct->board[i] .revtok[j],
"IBCM", 4))

iftype[i - 1] ~ 1;
else if (!strncrnp(headstruct->board[i] .revtok[j],

"ITCM", 4))
iftype[i - 1] ~ 22;

free(boarddescr[O]);
ninterfaces headstruct->nboards - 1;
for (i ~ 0; i < ninterfaces; i++)

{

}

if (minor_type ~~ 0)
statgrarrunar = "'Network' 'Statistics' 8int '-' lOint";

else if (iftype[i] ~~ 22)
statgrammar ~"'Path' 'Statistics' 12int";

else
statgrammar ~ "'Path' 'Statistics' 19int";

if (parse_quip(statgramrnar, &resp,
(char**) &(statstruct[i])))

return (0);

vf(variable_insert("interfaces.ifNumber", 0,
ASN INTEGER, &ninterfaces,
intsz, SECOND* 5, node));

I* Kludge to make snmpxperfrnon work.
* Needs something after ip subtree */

intvalue ~ 0;
vf(variable_insert("icrnp.icmpinMsgs", 1,

ASN INTEGER, &intvalue, sizeof(int),
SECOND* 5, node));

183

for {i ~ 0; i < ninterfaces; i++)
{

ifno = i + 1;
vf{variable insert{"ip.ipAddrTable.ipAddrEntry.ipAdEnti \

findex.l.1.1", -
if no,
ASN INTEGER, &ifno, sizeof{int),
SECOND* 5, node));

vf{variable insert{"interfaces.ifTable.ifEntry.ifindex",
- ifno, ASN INTEGER, &ifno,

intsz, SECOND* 5, node));

vf{variable insert{"interfaces.ifTable.ifEntry.ifDescr",
- ifno, ASN OCTET STR, boarddescr[ifno],

strlen{boarddescr[ifno]), SECOND*\
5, node));

vf{variable insert{"interfaces.ifTable.ifEntry.ifType",
- ifno, ASN INTEGER, &{iftype[i]),

intsz, SECOND* 5, node));

intvalue ~ 1500;
vf{variable_insert{"interfaces.ifTable.ifEntry.ifMtu",

ifno, ASN INTEGER, &intvalue,
intsz, SECOND* 5, node));

if {iftype[i] ~~ 6)
intvalue ~ 10000000;

else if {iftype[i] ~~ 1)
intvalue ~ 5000000;

else intvalue ~ 0;
vf{variable_insert{"interfaces.ifTable.ifEntry.ifSpeed",

ifno, GAUGE, &intvalue,
intsz, SECOND* 5, node));

vf{variable_insert{"interfaces.ifTable.ifEntry.ifPhysAd \
dress",

headstruct->address,
ifno, ASN_OCTET_STR, \

6, SECOND* 5, node));

vf{variable_insert{"interfaces.ifTable.ifEntry.ifAdminS \
tatus 11

,

ifno, ASN INTEGER, &one,
intsz, SECOND* 5, node));

vf{variable_insert{"interfaces.ifTable.ifEntry.ifOperSt \
at us",

ts",

ifno, ASN INTEGER, &one,
intsz, SECOND* 5, node));

vf{variable_insert{"interfaces.ifTable.ifEntry.ifinOcte \

ifno, COUNTER, \
&{statstruct[i]->rcvbytes),

intsz, SECOND* 5, node));

184

intvalue- statstruct[i]->rcvpkts
- (statstruct[i]->rcvmcastpkts

+ statstruct[i]->rcvbcastpkts);
vf(variable_insert("interfaces.ifTable.ifEntry.ifinUcas \

tPkts",
ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

intvalue- statstruct[i]->rcvmcastpkts
~+ statstruct[i]->rcvbcastpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifinNUca \
stPkts",

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifinDisc \
ards",

rs",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

intvalue- statstruct[i]->crc + statstruct[i]->frameerr
+ statstruct[i]->toolong + statstruct[i]->lostpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifinErro \

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifinUnkn \
ownProtos",

ets",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

intvalue- statstruct[i]->xmtbytes;
vf(variable_insert("interfaces.ifTable.ifEntry.ifOutOct \

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

intvalue- statstruct[i]->xmtpkts
- (statstruct[i]->xmtmcastpkts

+ statstruct[i]->xmtbcastpkts);
vf(variable_insert("interfaces.ifTable.ifEntry.ifOutUca \

stPkts",
ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

intvalue- statstruct[i]->xmtmcastpkts
+ statstruct[i]->xmtbcastpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutNUc \
astPkts",

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

185

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutDis \
cards",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

if (node->quiptab entry->minor type == 0)
intvalue = statstruct[i)->un~typeO.neterr;

else
if (iftype[i) == 22) intvalue = 0;
else

intvalue = statstruct[i)->un.typel.carrierlost
+ statstruct[i)->un.typel.babble;

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutErr \
ors",

}

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable insert("interfaces.ifTable.ifEntry.ifOutQLen",
- ifno, GAUGE, &zero,

intsz, SECOND* 5, node));
hip free(statstruct[i));
free(boarddescr[ifno]);

hip free(headstruct);
free(boarddescr);
for (r = node->requestlist->next;

r != node->requestlist;
r = r->next)

vf(fill_request(r, node));

return(O);

/* Parse system part of MIB. */
int retrieve_ib_system(node)

struct node *node;

}

vsn ("retrieve ib system");
struct quipmsg msgout;
char *query;

msgout.options = 0;
msgout.nodetype = node->quiptab entry->major type;
msgout. id = 0; - -
strcpy(msgout.address, node->quiptab_entry->address);
query= "sh vers";
msgout.timeout = 20;
vf(send_quip(node->quip_fd, query, &msgout));
vf(queue_quip(msgout.id, parse_ib_system, node));

return(O);

186

I* Parse interfaces part of MIB. *I
int retrieve_ib_interfaces(node}

struct node *node;
{

vsn("retrieve ib interfaces");
struct quipmsg msgout;
char *query;

msgout.options ~ 0;
msgout.nodetype ~ node->quiptab entry->major type;
msgout.id ~ 0; - -
strcpy(msgout.address, node->quiptab_entry->address};
if (node->quiptab_entry->minor_type ~~ 0}

query
"sh addr\n sh vers\nsh ns 0\n sh ns 1\n sh ns 2\n sh ns \

31f;

else
query

"sh addr\n sh vers\nsh ps 0\n sh ps 1\n sh ps 2\n sh ps \
3";
msgout.timeout ~ 10;
vf(send quip(node->quip fd, query, &msgout}};
vf(queue_quip(msgout.id~ parse_ib_interfaces, node}};

return(O};

I* Build variable tree stump. *I
int build var tree ib(vartree}

struCt varnode *vartree;
{

vsn ("build_var_tree_ib"};

vf(cache_branch(vartree, "system.sysDescr",
retrieve ib system, MINUTE}};

vf(cache_branch(vartree,-"interfaces",
retrieve ib interfaces, SECOND* 5}};

vf(cache_branch(vartree,-"ip",
retrieve_ib_interfaces, DAY}};

return(O};

ifendif IB

187

I* ibx driver.c - SNMP Proxy Daemon IBX driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution '
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

!fifdef IBX

!finclude <sysltypes.h>
#include <stdio.h>
#include <strings.h>
#include <syslsocket.h>
#include <netinetlin.h>

#include <snrnp.h>
#include <snmp impl.h>
#include <snrnp-client.h>
#include <asnl~h>

#include "verify.h"
#include "quiplib.h"
#include "snrnp_proxyd.h"

I* Parse system part of MIB. *I
int parse ibx system(response, node)

char-*response;

{
struct node *node;

vsn("parse ibx system");
char *headgrarnffiar =

"'***CONFIGURATION' str 'PORT' str 'RELEASE:' str";
struct

{
char *type, *port, *release;

} *headstruct;
char *resp;
char *sysdescr;
struct request *r;
int 1;

188

}

resp = response;
if (parse quip(headgrammar, &resp, (char**) &headstruct))

return (0);
free(response);

l = strlen("Intecom IBX LANmark Port Release ") + l;
l += strlen(headstruct->type) + strlen(headstruct->port)

+ strlen(headstruct->release);
vt(sysdescr = (char*) malloc(l));
sprintf(sysdescr, "Intecom IBX LANmark %sPort %s Release %s",

headstruct->type, headstruct->port,
headstruct->release);

vf(variable_insert("system.sysDescr", 0,
ASN_OCTET_STR, sysdescr, strlen(sysdescr),
MINUTE, node));

for (r node->requestlist->next;
r != node->requestlist;
r = r->next)

vf(fill_request(r, node));

return(O);

189

I* Parse interfaces part of MIB. */
int parse_ibx_interfaces(response, node)

char *response;

{
struct node *node;

vsn("parse ibx interfaces");
char *headgrammar =

"ethadr '\n' [str:, ',booted'] 'PROMS:' *[str:- '-' \
*str]";
char *statgrammar;
struct

{
u char address[6];
char *sysname;
int nboards;
struct

{
char *boardname;
int nrevtoks;
char **revtok;

} *board;
*headstruct;

struct
{

int rcvpkts, rcvbytes, rcvmcastpkts, rcvbcastpkts;
int ere, frameerr, toolong, lostpkts;
int xmtpkts, xmtbytes, xmtmcastpkts, xmtbcastpkts;
int deferred, singlecoll, multicoll;
int latecoll, excesscoll;
union {

struct
{

int neterr;
} typeD;

struct
{

int carrierlost, babble;
} type1;

} un;
} *statstruct[8];

char **boarddescr;
~ int i, j, 1;
int intvalue;
struct request *r;
char varname[1024];
char *resp;
int minor type;
int ninterfaces, ifno;
int one = 1, zero = 0, intsz
int ift ype [8] ; ·

sizeof(int);

minor type = node->quiptab entry->minor type;
if (minor_type < 0 I I minor_type > 1) return(O);

190

resp = response;
if (parse quip(headgrammar, &resp, (char**) &headstruct))

return (0);

vt(boarddescr ~ (char **)
malloc(sizeof(char *) * headstruct->nboards));

for (i ~ 0; i < headstruct->nboards; i++)
{

}

1 ~ strlen("Bridge Communications ")
+ strlen(headstruct->board[i] .boardname) + 1;

for (j ~ 0; j < headstruct->board[i] .nrevtoks; j++)
1 +~ strlen(headstruct->board[i] .revtok[j]) + 1;

vt(boarddescr[i] ~ (char*) malloc(l));
strcpy(boarddescr[i], "Br1dge Communications");
strcat(boarddescr[i], headstruct->board[i] .boardname);
for (j ~ 0; j < headstruct->board[i] .nrevtoks; j++)

{

}

strcat(boarddescr[i], "");
strcat(boarddescr[i], headstruct->board[i] .revtok[j]);
if (!strncmp(headstruct->board[i] .revtok[j],

"IECM", 4))
iftype[i - 1] ~ 6;

else if (!strncmp(headstruct->board[i] .revtok[j],
"IBXCM", 4))

iftype[i - 1] ~ 1;
else if (!strncmp(headstruct->board[i] .revtok[j],

"ITCM", 4))
iftype[i - 1] ~ 22;

nint·erfaces
for (i ~ 0;

{

headstruct->nboards - 1;
i < ninterfaces; i++)

}

if (minor_type ~~ 0}
statgrammar ~ "'Network' 'Statistics' 8int '-' lOint";

else if (iftype[i] ~~ 22)
statgrammar "'Path' 'Statistics' 12int";

else
statgrammar "'Path' 'Statistics' 19int";

if (parse_quip(statgrammar, &resp,
(char**) &(statstruct[i])))

return(O);

free(response);

vf(variable_insert("interfaces.ifNumber", 0,
ASN INTEGER, &ninterfaces,
intsz, SECOND* 5, node));

for (i ~ 0; i < ninterfaces; i++)
{

ifno ~ i + 1;
vf(variable_insert("interfaces.ifTable.ifEntry.ifindex",

ifno, ASN INTEGER, &ifno,
intsz, SECOND* 5, node));

191

vf(variable insert("interfaces.ifTable.ifEntry.ifDescr",
- ifno, ASN OCTET STR, boarddescr[ifno],

strlen(boarddescr[ifno]), SECOND*\
5, node));

vf(variable insert("interfaces.ifTable.ifEntry.ifType",
- ifno, ASN INTEGER, &(iftype[i]),

intsz, SECOND* 5, node));

intvalue = 1500;
vf(variable insert("interfaces.ifTable.ifEntry.ifMtu",

- ifno, ASN_INTEGER, &intvalue,
intsz, SECOND* 5, node));

if (iftype[i] 6)
intvalue = 10000000;

else if (iftype[i] == l)
intvalue = 5000000;

else intvalue = 0;
vf(variable insert("interfaces.ifTable.ifEntry.ifSpeed",

- ifno, GAUGE, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifPhysAd \
dress 11

,

headstruct->address,
ifno, ASN_OCTET_STR, \

6, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifAclminS \
tat usn,

ifno, ASN INTEGER, &one,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifOperSt \
atus",

ts",

ifno, ASN INTEGER, &one,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifinOcte \

ifno, COUNTER, \
&(statstruct[i]->rcvbytes),

intsz, SECOND* 5, node));

intvalue = statstruct[i]->rcvpkts
- (statstruct[i]->rcvmcastpkts

+ statstruct[i]->rcvbcastpkts);
vf(variable insert("interfaces.ifTable.ifEntry.ifinUcas \

tPkts", -
ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

192

intvalue ~ statstruct[i]->rcvmcastpkts
+ statstruct[i]->rcvbcastpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifinNUca \
stPkts",

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifinDisc \
ards",

rs",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

intvalue ~ statstruct[i]->crc + statstruct[i]->frameerr
+ statstruct[i]->toolong + statstruct[i]->lostpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifinErro \

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifinUnkn \
ownProtos 11

,

ets",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

intvalue ~ statstruct[i]->xmtbytes;
vf(variable_insert("interfaces.ifTable.ifEntry.ifOutOct \

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

intvalue ~ statstruct[i]->xmtpkts
- (statstruct[i]->xmtmcastpkts

+ statstruct[i]->xmtbcastpkts);
vf(variable_insert("interfaces.ifTable.ifEntry.ifOutUca \

stPkts",
ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

intvalue ~ statstruct[i]->xmtmcastpkts
+ statstruct[i]->xmtbcastpkts;

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutNUc \
astPkts ",

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutDis \
cards",

ifno, COUNTER, &zero,
intsz, SECOND* 5, node));

193

ors ",

}

if (node->quiptab entry->minor type ~~ 0)
intvalue ~ statstruct[i]->un~typeO.neterr;

else
if (iftype[i] ~~ 22) intvalue ~ 0;
else

intvalue ~ statstruct[i]->un.type1.carrierlost
+ statstruct[i]->un.type1.babble;

vf(variable_insert("interfaces.ifTable.ifEntry.ifOutErr \

ifno, COUNTER, &intvalue,
intsz, SECOND* 5, node));

vf(variable insert("interfaces.ifTable.ifEntry.ifOutQLen",
- ifno, GAUGE, &zero,

intsz, SECOND* 5, node));

for (r ~ node->requestlist->next;
r !~ node->request1ist;
r = r->next)

vf(fill_request(r, node));

return(O);

/* Retrieve system part of MIB. */
int retrieve ibx system(node)

struct node-*node;

}

vsn("retrieve ibx system");
struct quipmsg msgout;
char *queryfmt, *query;

msgout.options ~ 0;
msgout.nodetype ~ node->quiptab entry->major type;
msgout.id ~ 0; - -
strcpy(msgout.address, "0");

queryfmt
~vt(query

"@\n@\ndgn1ndg\ndgn\nlndg\n3\n%s\n7\n@\n@\n";
(char *) malloc(strlen(queryfmt) - strlen("%s")

+ \
strlen(node->quiptab_entry->address)

+ 1)) ;
sprintf(query, queryfmt, node->quiptab_entry->address);
msgout.timeout ~ 20;

vf(send quip(node->quip fd, query, &msgout));
vf(queue_quip(msgout.id~ parse_ibx_system, node));

return(O);

194

/* Parse ip part of MIB */
int parse ibx ip(response, node)

char-*reSponse;
struct node *node;

vsn ("parse_ibx_ip");
struct request *r;
int intval;

intval ~ 1;
vf(variable_insert("ip.ipAddrTable.ipAddrEntry.ipAdEntifind \

ex. 1. 1 . 1",
1, ASN INTEGER, &intval,
sizeof(int), DAY, node));

intval ~ 2;
vf(variab1e_insert("ip.ipAddrTable.ipAddrEntry.ipAdEntifind \

ex.l.l.l",
2, ASN_INTEGER, &intval,
sizeof(int), DAY, node));

intval ~ 3;
vf(variab1e_insert("ip.ipAddrTable.ipAddrEntry.ipAdEntifind \

ex.l.l.l",
3, ASN_INTEGER, &intval,
sizeof(int), DAY, node));

intval ~ 4;
vf(variable_insert("ip.ipAddrTab1e.ipAddrEntry.ipAdEntifind \

ex.l.l.l",

}

4, ASN INTEGER, &intval,
sizeof(int), DAY, node));

for (r node->requestlist->next;
r !~ node->requestlist;
r ~ r->next)

vf(fill_request(r, node));

return(O);

I* Retrieve interfaces part of MIB. */
int retrieve_ibx_interfaces(node)

struct node *node;

vsn("retrieve_ibx_interfaces");
struct quipmsg msgout;
char *query;

195

)

}

msgout.options = 0;
msgout.nodetype = node->quiptab_entry->major_type;
msgout.id = 0;
strcpy(msgout.address, node->quiptab_entry->address);
if (node->quiptab_entry->minor_type == 0)

query
"sh addr\n sh vers\nsh ns 0\n sh ns 1\n sh ns 2\n sh ns \

3";
else

query
"sh addr\n sh vers\nsh ps 0\n sh ps 1\n sh ps 2\n sh ps \

3";
msgout.timeout = 10;
vf(send quip(node->quip fd, query, &msgout));
vf(queue_quip(msgout.id~ parse_ibx_interfaces, node));

return(O};

/* Retrieve ip part of MIB. */
int retrieve ibx ip(node)

struct node-*node;
{

}

vsn("retrieve ibx ip");
struct quipmsg msgout;
char *query;

msgout.options = O;
msgout.nodetype = node->quiptab entry->major type;
msgout.id = 0; - -
strcpy(msgout.address, node->quiptab_entry->address);
query = "sh da";
msgout.timeout = 10;
vf(send quip(node->quip fd, query, &msgout));
vf(queue_quip(msgout,id~ parse_ibx_ip, node));

return(O);

!* Build variable tree stump. *1
int build var tree ibx(vartree)

struct varnode *vartree;

vsn("build_var_tree_ibx");

vf(cache branch(vartree, "system.sysDescr",
- retrieve ibx system, MINUTE)};

vf (cache branch (vartree, ••Interfaces",
- retrieve ibx interfaces, SECOND* 5));

vf(cache branch(vartree, "ip",-
- retrieve_ibx_ip, DAY));

return(O);
}

#endif IBX

196

I* translan driver.c - SNMP Proxy Daemon Translan driver. *I

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

Jfifdef TRANSLAN

Jfinclude <sysltypes.h>
Jfinclude <stdio.h>
Jfinclude <strings.h>
Jfinclude <syslsocket.h>
Jfinclude <netinetlin.h>

Jfinclude <snmp.h>
Jfinclude <snmp impl.h>
Jfinclude <snmp-client.h>
Jfinclude <asn1~h>

Jfinclude "verify.h"
Jfinclude "quiplib.h"
Jfinclude "snmp_proxyd.h"

I* Parse interfaces part of MIB *I
int parse_translan_interfaces(response, node)

char *response;

{
struct node *node;

vsn ("parse translan interfaces"} ;
int i; - -
intone~ 1, zero~ 0, intsz ~ sizeof(int);
int intval;
struct request *r;

htt val ~ 5;
vf(variable_insert("interfaces.ifNumber", 0, ASN INTEGER,

&intval, intsz, SECOND* 5, node)};

for (i ~ 1; i <~ 5; i++)
{

vf(variable_insert("interfaces.ifTable.ifEntry.ifindex",
i, ASN INTEGER, &i,
intsz,-DAY, SECOND* 5, node));

197

vf(variable_insert("interfaces.ifTable.ifEntry.ifAdminS \
tat us",

i, ASN INTEGER, &one,
intsz,-SECOND * 5, node));

vf(variable_insert("interfaces.ifTable.ifEntry.ifOperSt \
atus 11

,

)

i, ASN INTEGER, &one,
intsz,-SECOND * 5, node));

for (r = node->requestlist->next;
r != node->requestlist;
r = r->next)

vf(fill_request(r, node));

return(O);

I* Retrieve system part of MIB. *I
int retrieve translan system(node)

struct node *node;
{

vsn("retrieve_translan_system");
char *sysdescr = "Vitalink Translan NP-III";
struct request *r;

vf(variable_insert("system.sysDescr", 0,
ASN OCTET STR, sysdescr,
strTen(sysdescr), MINUTE,. node));

for (r node->requestlist->next;
r != node->requestlist;
r = r->next)

vf(fill_request(r, node));

return(O);

I* Retrieve interfaces part of MIB. *I
int retrieve translan interfaces(node)

struct node *node;
{

vsn(11 retrieve translan interfaces"};
struct quipmsg msgout;-
char *query;

msgout.options = 0;
msgout.nodetype = node->quiptab entry->major type;
msgout. id = 0; - -
strcpy(msgout.address, node->quiptab_entry->address);
query = "\r";
msgout.timeout = 10;
vf(send_quip(node->quip_fd, query, &msgout));
vf(queue_quip(msgout.id, parse_translan_interfaces, node));

198

return (0);

/* Retrieve ip part of MIB */
int retrieve translan ip(node)

struct node *node;
{

vsn("retrieve_translan_ip");
struct request *r;
int intval;
int i;

for (i ~ 1; i <~ 5; i++)
vf(variable_insert("ip.ipAddrTable.ipAddrEntry.ipAdEntifi \

ndex.l.l.l",

)

i, ASN INTEGER, &i,
sizeof(int), DAY, node));

for (r node->requestlist->next;
r !~ node->requestlist;
r ~ r->next)

vf(fill_request(r, node));

return(O);

I* Build variable tree stump. */
int build var tree translan(vartree)

struct varnode *vartree;
{

vsn ("build_ var_tree_ translan") ;

vf(cache_branch(vartree, "system~sysDescr",
retrieve translan system, MINUTE));

vf(cache_branch(vartree, "interfaces",
retrieve translan interfaces, SECOND* 5));

vf(cache_branch(vartree, "ip", -
retrieve_translan_ip, DAY));

return(O);

#endif TRANSLAN

199

/* bufferlib.h - Support for buffer library. */

I*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without _fee is hereby
* granted, provided tha:t this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution o·f the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

struct buffer
{

char *start, *current, *end;
} ;

struct buffer *buffer new(), *buffer new string();
void buffer free(), buffer append(},-buffer fit(};
void buffer=append_string(), buffer_append_Fointer(},

buffer_append_long();

200

/* bufferlib.c - Buffer library - for character buffers. */

/*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

ifinclude "bufferlib.h"
ifdefine ML2
ifinclude "memorylib.h"

/* Get a new buffer of given size. */
ififdef MEMORYLOSS
struct buffer *MLbuffer new(nbytes, file, line)

int nbytes; -
char *file;
int line;

ifelse MEMORYLOSS
struct buffer *buffer new(nbytes)

int nbytes; -
ifendif MEMORYLOSS
{

}

struct buffer *b;

b = (struct buffer*) Malloc(sizeof(struct buffer));
b->start = (char *) Malloc(nbytes);
b~>current = b->start;
b->end = b->start + nbytes;
return(b);

I* Get a new buffer initialized to string. */
ififdef MEMORYLOSS
struct buffer *MLbuffer new string(string, file, line)

char *string; - -
char *file;
int line;

ifelse MEMORYLOSS
struct buffer *buffer_new_string(string)

char *string;
ifendif MEMORYLOSS
{

struct buffer *b;
int length= strlen(string) + 1;

201

)

b = (struct buffer*) Malloc(sizeof(struct buffer));
b->start = string;
b->current = b->start;
b->end = b->start + length;
return(b);

/* Free a buffer. */
void buffer free(buffer)

struct-buffer *buffer;
{

)

free (buffer->start) ;
free(buffer);

/* Append to a buffer; */
#ifdef MEMORYLOSS
void MLbuffer append(buffer, data, nbytes, file, line)

struct buffer *buffer;
char *data;
int nbytes;
char *file;
int line;

#else MEMORYLOSS
void buffer append(buffer, data, nbytes)

struct-buffer *buffer;
char *data;
int nbytes;

#endif MEMORYLOSS
{

int current;
int size;

if (buffer->end - buffer->current < nbytes)
{

)

current = buffer->current - buffer->start;
size = (current + nbytes) * 2;
buffer->start = Realloc(buffer->start, size);
buffer->end = buffer->start + size;
buffer->current = buffer->start + current;

bcopy(data, buffer->current, nbytes);
buffer->current += nbytes;

202

/* Append a string to a buffer. */
*ifdef MEMORYLOSS
void MLbuffer append string(buffer, string, file, line)

struct buffer *buffer; ·
char *string;
char *file;
int line;

*else MEMORYLOSS
void buffer append string(buffer, string)

struct-buffer-*buffer;
char *string;

*endif MEMORYLOSS
{

)

buffer append(buffer, string, strlen(string) + 1);
buffer=>current--;

/*Used for aligning data types. */
static struct alignstruct
{

long 11;
char c1;
long 12;
char *p1;
char c2;
char *p2
alignstruct;

*define ptr_align \
((char*) &alignstruct.p2- (char*) &alignstruct.p1- \

sizeof(char *))

!* Append a pointer to a buffer. */
*ifdef MEMORYLOSS
void MLbuffer append pointer(buffer, pointer, file, line)

struct buffer *buffer;
char *pointer;
char *file;
int line;

*else MEMORYLOSS
void buffer append pointer(buffer, pointer)

struct-buffer-*buffer;
char *pointer;

*endif MEMORYLOSS
{

)

int current_align, adjust;

current align =
(buffer->current - (char *) &alignstruct.p1) % ptr align;

adjust = (ptr_align - current_align) % ptr_align;

buffer->current += adjust;
buffer_append(buffer, &pointer, sizeof(char *));

203

*define long align \
((char*) &alignstruct.l2 \
- (char*) &alignstruct.ll - sizeof(long))

I* Append a long integer to a buffer. *I
*ifdef MEMORYLOSS
void MLbuffer append long(buffer, lng, file, line)

struct buffer *buffer;
char *lng;
char *file;
int line;

*else MEMORYLOSS
void buffer append long(buffer, lng)

struct-buffer-*buffer;
char *lng;

*endif MEMORYLOSS
{

int current_align, adjust;

current_align =
(buffer->current - (char *) &alignstruct.ll) % long align;

adjust = (long_align - current_align) % long_align; -

buffer->current += adjust;
buffer_append(buffer, &lng, sizeof(long));

I* Reduce buffer to minimum size. *I
*ifdef MEMORYLOSS
void MLbuffer_fit(buffer, file, line)

struct buffer *buffer;
char *file;
int line;

*else MEMORYLOSS
void buffer fit(buffer)

struct-buffer *buffer;
*endif MEMORYLOSS
{

int current;

current = buffer->current - buffer->start;
buffer->start = Realloc(buffer->start, current? current 1);
buffer->current = buffer->start + current;
buffer->end = buffer->current;

204

/* memorylib.h -Memory library definitions. */

tifndef MEMORYLOSS
char *Malloc(), *Realloc();
tendif MEMORYLO&S

205

I* memorylib.c
core dump

- Versions of memory allocation routines that \

* on error.
*I

#include <signal.h>

char *Malloc(nbytes)
int nbytes;

{

}

char *malloc(), *p;

if (! (p ~ malloc(nbytes)))
{

perror ("malloc");
kill(getpid(), SIGQUIT);

)
return(p);

char *Realloc(pointer, nbytes)
char *pointer;
int nbytes;

{
char *realloc(), *p;

if (! (p ~ realloc(pointer, nbytes)))
{

perror("realloc");
kill(getpid(), SIGQUIT);

}
return(p);

206

/* verify.h- Error handling setup macros.*/

/*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)

*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

I* verify setup */
#define vs(funct name, error funct, rtn val type, rtn_val) \

char* v funct-name = (funct name);\- -
V ERROR-FUNCT- v error funct = error funct;\

rtn_val_type _v=rtn_val-= (rtn_val)\-

I* verify setup, specified error function,
* standard natural number return */

#define vsfn(funct_name, error_funct) \
vs(funct_name, error_funct, int, -1)

I* verify setup, specified error function,
* standard non-null pointer return */

#define vsfp(funct name, error funct, rtn val type) \
vs(funct_name, error_funct, rtn_val_type, NULL)

I* verify setup, standard error function,
* standard natural number return */

#define ·vsn(funct_name) vsfn(funct_name, _v_stderr)

I* verify setup, standard error function,
*standard non-null pointer return */

#define vsp(funct_name, rtn_val_type) \
vsfp(funct_name, _v_stderr, rtn_val_type)

I* standard error function(s) defined in verify-lib.c */

extern int _v_stderr();

I* global variable(s) defined in verify-lib.c */

extern char* command_name;

I* global variable(s) defined elsewhere */

extern int errno;

207

I* typedef needed to get this to work with C++ *I

typedef int (*_V_ERROR_FUNCT) ();

208

/* verify.c - Error handling macro support. */

/*
* Copyright (c) 1989, 1990 by
* Microelectronics Center of North Carolina (MCNC)
*
* Permission to use, copy, modify, and distribute this
* software for any purpose and without fee is hereby
* granted, provided that this copyright and permission
* notice appear on all copies and supporting documentation,
* the name of MCNC not be used in advertising or publicity
* pertaining to distribution of the program without
* specific prior permission, and notice be given in
* supporting documentation that copying and distribution
* is by permission of MCNC. MCNC makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*I

#include <stdio.h>

extern int errno, sys nerr;
extern char *sys_errlist[];

char *conunand name= 11
";

I* Prints file and function name, line number, and failing \
expression. */

void v stderr(file name,
- - line-number,

funct name,
expression)

int en = errno;

errno = 0;
fprintf(stderr, "\n%s: %s():", command_name, funct_name);
if (en)

{
if (en < sys nerr)

fprintf(stderr, "\"%s\"", sys_errlist[en]);
else

fprintf(stderr, '' \''Errno %d\'''', en);

else fprintf(stderr, "\"Verification failure\"");
fprintf(stderr, ", %s, line %d:\n",

file name, line number, funct name);
fprintf(stderr, " [%s-]\n", expression);
fflush(stderr);

209

define(vt, 'if(errno~O, ($1));e1se \
return((* v error funct) (FILE __ , __ LINE __ ,_v_funct_name,"tr \

ans1it($1,"- -
,I)"), v rtn va1)')dnl
define(vm~'return((* v error funct) (FILE __ , __ LINE __ ,_v_func \
t name,$1), v rtn vai)')dn1-
define(vf, 'vt(! ($l))')dnl
define(vn, 'vt(($1) >~ O)')dnl
define(vp, 'vt(($1) > 0)')dn1
undefine('define')dn1
undefine('eval')dnl
undefine('incr')dn1
undefine('ife1se')dn1
undefine('unix')dnl
undefine('maketemp')dn1
undefine('divert')dn1
undefine('sinclude')dn1
undefine('divnum')dn1
undefine('syscmd')dn1
undefine('substr')dnl
undefine('undivert')dn1
undefine('errprint')dnl
undefine('ifdef')dn1
undefine('1en')dn1
undefine('index')dn1
undefine('inc1ude')dn1
undefine('dumpdef')dnl
undefine('shift')dn1
changequote(,)dnl
undefine(changequote)dnl

210

