
Incremental Volume Rendering Algorithm
for Interactive 3D Ultrasound Imaging

TR91-003
February, 1991

Ryutarou Ohbuchi
Henry Fuchs

Medical Image Display Group
Department of Computer Science
The University of North Carolina
Chapel Hill, NC 27599-3175

The research reported herein was carried out with the partial support of NIH grant
number P01CA47982.
To appear in Proceeding Information Processing in Medical Image {IPMI Xll), 1991.

UNC is an Equal Opportunity/Affirmative Action Institution.

Incremental Volume Rendering Algorithm
for Interactive 3D Ultrasound Imaging

Ryutarou Ohbuchi
Henry Fuchs

Department of Computer Science,
University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599,
U.S.A.

Thursday, February 7, 1991

Introduction

We have been working toward a medical 3D ultrasound scanner system that
will acquire and display a 3D volume in real-time. We call this system an
'ultimate' 3D echography (3DE) system. It will acquire, display, and
manipulate a 3D volume image in real-time. Such real-time-ness can be
crucial for an application such as cardiac diagnosis, where single time-slice
3D image or even a dynamic display of single image acquired over many
cardiac cycles by gated acquisition might miss certain kinetic features. The
'ultimate' system has two major components, the image acquisition part and
the image visualization part. We at UNC-Chapel Hill have been working on the
real-time 3D visualization part of the system, while Dr. Olaf von Ramm's group
at Duke University has been working on the real-time 3D image acquisition
part of the system.
~ To study various issues involved in 3D ultrasound image visualization
necessary for the 'ultimate' system before the real-time 3D ultrasound image
acquisition system becomes available, we have been developing an incremental,
interactive 3DE scanner system that will acquire and display the 3D image
incrementally at an interactive rate. The system will use a state-of-the-art
medical real-time 2D ultrasound echography scanner as an image input,
where a user guided scanhead is tracked with 3 degrees of freedom. Using the
geometric information acquired for each 2D image slice, the system
incrementally reconstructs the 3D array of sample points spaced regularly on
the Cartesian coordinate from a stream of 2D slices located and oriented
arbitrarily with 3 degrees of freedom. Reconstructed volume is then rendered,
again incrementally, to produce volume rendered 2D images. To offer high
degree of interactivity to the user, this visualization is done incrementally so
that every new 2D slice acquired affects the final image promptly.

We present here the brief introduction to the incremental, interactive 3DE
system, and the incremental volume rendering algorithm designed for high
degree of interactivity. First, we will briefly describe the 'ultimate' system, then
present a review of previous works on 3D ultrasound imaging. It is followed by

1

the sketch of the incremental acquisition and visualization system we have
been working on. We will then describe the incremental volume rendering
algorithm in detail. A new ray-clipping algorithm to make ray-sampling
faster, called D-buffer algorithm is presented, which is followed by a proposed
enhancement to the idea of ray-caching called hierarchical ray-caching for
faster compositing. Then, another algorithm is proposed which combines D
buffer with the hierarchical ray-caching to provide fast integrated rendering of
polygons, polyhedron defined volumes for cutaways, etc. to provide fast
interaction with the volume image.

The 'Ultimate' 3D Ultrasound Scanner

Among various medical imaging modalities, ultrasound echography is the
closest to achieving 3D real-time acquisition, even though other modalities
such as MRI is becoming faster than before. To acquire real-time 3DE image,
the 'ultimate' 3DE system will use a new scanner being developed by Dr. Olaf
von Ramm's group at Duke University [Shat84]. Due to the velocity of sound
limitation (about 1540m/s in water), scanning a 3D volume with reasonable
resolution (128x128x128 or more) in real-time (30 3D-frames/s) requires parallel
processing. The new scanner will use a single-transmit/multiple-receive
scheme called Explososcan to increase data acquisition bandwidth. The first
implementation will use a 16xl6 2D-array transducer along with 16x16x64
digital delay-lines implemented in VLSI chips for 3D beam steering and
focusing with 64-way multiple simultaneous reception.

Once the real-time 3DE data has been obtained, the remaining issue is the
visualization of such a data. We at UNC-Chapel Hill have been working on this
problem. One major effort is the display system based on the volume rendering
technique for visualization that will display 3DE data in real-time. Such a
display system has to cope with the challenge of very high data bandwidth. The
real-time 3DE scanner above will produce on the order of 2-4 Million points per
frame, or about 60-120 Million points per second. Visualizing a 3D volume data
of this bandwidth in real-time requires very large computational power, on the
order of Giga floating point operations per second, if straightforward algorithm
is used. We are approaching this issue through the parallelism, and algorithm
efficiency gained by exploiting various forms of coherences.

Effective visualization method is another major issue. It involves standard
problems associated with visualization of 3D data, such as obscuration. To look
at the inside of the left ventricle, images of fat tissue, part of myocardium, etc.,
in front must be removed to reveal the object behind. This usually requires
extensive manipulation of the 3D image data. On top of those are the additional
difficulties characteristic to the ultrasound data, e.g., speckle noise, gain
variation, shadowing, specular artifact, etc., that can hinder the visualization.
On this end of the problem, Wei-jyh Lin at UNC-Chapel Hill has been working
on the algorithm to estimate surfaces in 2D echography image under the
presence of speckle noise using multi-scale filtering technique. This surface
estimator will be joined as a front-end to the display system described above in
the future.

2

Previous Work in 3D Ultrasound Imaging

There have been many works that aimed at what can be termed as 3D
ultrasound echography. Most of the studies known to the author have tried to
reconstruct 3D data out of imaging primitive data of lesser dimension (usually
2D image), instead of more or less directly capturing 3D data. This is due to the
obvious lack of 3D scanner that can acquire 3DE image in a (real-time) scan.
Further, most of them used 2D echography image with uniform sampling
interval in Cartesian coordinate as their primitive for image acquisition; none
used OD or lD primitives.

The location and orientation of imaging primitives must be available to
reconstruct 3DE data. Coordinate values are either explicitly tracked, as in
[Brin78] [Ghos82] [Hott89] [Raic86] [McCa88] [Nikr84] [Stick84] [Mills90] using
mechanical, acoustic, optical tracking mechanisms, or it is controlled
implicitly at the time of acquisition [Lalo89] [Naka84] [Bill90]. One of the most
interesting recent work in 3D ultrasound echography acquisition is a near
real-time, automatic 3D scanner system [Bill90]. This system is the closest yet
to the real-time 3D ultrasound scanner, and is being developed at Phillips Paris
Research Lab., following the earlier work [Hott89] which was a manual guided
scanner with mechanical tracker as our research. This near-real-time 3D
scanhead is a 'double wobbler' mechanical sector scanner, where a
conventional wobbler 2D sector scanhead is rotated, or wobbled, in an
additional axis by a stepping motor to provide 3D scanning. In about 3 to 5
seconds period, about 50 to 100 slices of 2D sector scan image can be acquired.

For presenting the scanned result, there are two forms; non-visual, and
visual. The latter can be classified further by the rendering primitives, which
is either (geometric) graphic, or image. The majority of the earlier studies
[Brin78] [Ghos82] [Raic86] [Nikr84] [Stick84] had non-invasive estimation of the
volume of the heart chamber as their primary objective. Thus, often the
reconstruction is only geometric. A typical process involved a manual tracing
of the pictures of 2DE images taken from the video-taped images using a
digitizer. Since the visual presentation is a secondary matter, these studies use
simple rendering of the geometrical reconstruction result using wire frames or
a stack of contours.

More recent studies by [Naka84] [Lalo89] [McCa88] [Hott89] [Bill90] actually
reconstructed 3D grey level images, preserving the grey scale image, which
can be crucial to such purpose as a tissue characterization. [Lalo89] is a
mammogram study using a special 2DE scanner which can acquire and store
45 consecutive parallel slices with lmm interval. It is reconstructed by cubic
spline interpolation, and volume rendered. [McCa88] performed the gated
acquisition of a heart's image over a cardiac cycle. They used a video-tape to
store 2DE images and the volume rendering to generate images. Upon
reconstruction, 'repetitive low-pass filtering' is done on the 3D volume image to
suppress aliasing artifact by filling spaces between radial slices. [Bill90] uses
re-slicing of the volume data by an arbitrary plane as the primary display mode
for its interactive response on a current workstation (a SUN4). The system also
has volume rendering as an option, in which case manual segmentation of
image slices to expose volume of interest is often involved. The reconstruction
algorithm is a straightforward low-pass filtered reformatting of manually
selected slices.

3

Ultrasound 2DE

Conventional 2DE
video display

3DOF mechanical
motion tracker

Digitized image
-Sframes/s
256x400pixels)

Interaction

Disks
Ethernet

Figure 1. Incremental 30 volume data acquisition system using conventional 20 echography
scanner

Incremental, Interactive 3D Acquisition and Visualization

To study the issues of real-time ultrasound 3D echography visualization
before the real-time 3DE acquisition system becomes available, we have been
studying an incremental, interactive 3D echography (3DE) system. In this
system, a user-guided scanhead mounted on a 3 degree of freedom (3 DOF)
mechanical tracking apparatus will acquire a series of 2D image slices as well
as the corresponding goemetries, i.e., location and orientation, of each slice.
Using these geometries, a regular 3D volume data where sample points are at
uniform intervals in Cartesian coordinate is reconstructed from a series of 2D
images with irregular geometries. This reconstruction process and the
following volume rendering process take place incrementally, as each new 2D
image slice arrives. Each new 2D image will affect the final rendered image
promptly without waiting for the rest of the slices to arrive. (Since the scanning
may continue for an indefinite period of time, possibly sweeping the same
volume many times, waiting for the 'rest' loses its meaning.)

Figure 1 shows the image acquisition system for the incremental, interactive
ultrasound scanner system (See Figure 2 for the picture). The 2DE scanner
mounted on a mechanical tracking arm with 3 DOF acquires 2D images
frames at a maximum rate of around 30 frames/sec. Each 2DE image slice
from the ultrasound scanner is video-digitized in real-time by Matrox MVP-S
video digitizer board, and copied into SUN-4 workstation. This copying process

4

is rglatively slow, due to thg MVP-S's frame buffer design, and runs at
5 frames/s for 256x400 pixel images.

The potentiometers in the 3D tracking arm transduce the coordinate and
orientation (x, y location and angle e) of each of the image frames through Data

Figure 2. Scanning setup for the incremental, interactive 30 ultrasound scanner system.

Figure 38. (left) The doll phantom. The height is about 18 em.
Figure 3b. (Right) A 20 echography image of the leg seetion of the doll phantom.

5

Figure 4. Reconstructed and volume rendered image of the phantom.

Translation DT-1401 AID converter board. The tracking system has the
accuracy of about lmm in x-y position and the maximum sampling rate of
around 800 sample/s. The arm came from the previous generation 2D
echography scanner Rohe ROHNAR 5580. ROHNAR 5580 used the tracking to
generate 2D image from a lD scanhead. In our system, the tracking is used to
generate 3D volume from a state of the art 2D scanner.

Upon acquisition, to regulate the spatial sampling rate to some degree, the
acquisition of image and geometry can be made only if the change in geometry
exceeds certain preset threshold. Since the scanning of the 3D volume takes
some time, the object must be stable enough. Examples ·of the possible imaging
targets are a liver or women's breast with possible immobilization. Scanning a
moving target, such as a beating heart is not considered as an objective.

This acquisition setup is similar to the work at the Paris Phillips Research
Lab. by Francois Hottier et al [Hott89], which used a similar mechanical
tracking arm. In their work both scanned 2D image and the scanhead tracking
result are stored in VCR and in PC's disk, respectively, for later off-line
selection of the images and their matching with the geometry values. We have
used the real-time video digitizer and the tracking arm to acquire both image
and geometry at the same time.

Acquired 2DE image slices are incrementally reconstructed by local
interpolation into regularly sampled 3D volume data by merging the new data
with the existing volume data. As the slices accumulate into 3D volume, the
rendering takes place, which shows the build-up of 3D volume. We will
describe the details of the incremental volume rendering algorithm later in
this paper. One thing of note is that the volume can be scanned repeatedly, to
get better spatial sampling or to gain better acoustic window (e.g., to avoid
bones). The reconstruction algorithm takes these modes of use into
consideration, and provides reconstruction buffer update policy that includes
'complete replace' and 'replace by weighted average'.

6

Currently, images and coordinates are stored into disk of a file server
connected by Ethernet for later reconstruction and rendering experiments on
workstations such as DECStation 3100. In the 1991, we hope to demonstrate a
system that will use a powerful graphics multicomputer Pixel-Planes 5
[Fuch89] for parallel reconstruction and rendering. In this parallel system,
incremental visualization process is expected to take place at an interactive
rate of more than a frame per second without ever storing the image into the
disk. As mentioned, image read-out from the video digitizer is slow, and this
might limit the processing speed of the entire system to 5 frames/s acquisition
rate. Assuming 4mm elevation resolution of the scanner image slice, target
volume of 20 em thickness can be scanned as 100 slices of equally spaced
parallel planes if sampled at Nyquist sampling rate of 2 mm. Scanning the
volume with 50-100 slices will take 1.4-3 s assuming 30 2D-frames/s acquisition
rate, while 10-20 s assuming 5 2D-frames/s acquisition rate.

We have conducted a preliminary data acquisition and rendering
experiment, which is reported in [0hbu90]. We used ATL Mark-4 scanner with
3.5 MHz linear scanhead as the image input, and scanned a phantom (doll of a
baby, in Figure 3a) and a human forearm in a water bath. Figure 3b shows the
2D echigraphy image of the doll phantom. Figure 4 shows the reconstructed
and rendered image of the doll from 90 slices of roughly parallel, roughly 2mm
interval 2D image slices. It is incrementally reconstructed using forward
mapping octahedral kernel reconstruction algorithm, which will be explained
later.

Incremental Volume Visualization

In this section, algorithm for the incremental, interactive visualization of
3DE images from a sequence of 2DE slices is presented. The visualization
stages of the incremental, interactive 3DE system can be divided into two major
stages, reconstruction and rendering. The emphasis is on the incremental
volume rendering algorithm, for the reconstruction stage still requires much
work.

Figure 5 shows the pipeline of the incremental volume visualization. Video
digitized 2DE image slices from the scanner are incrementally reconstructed
into a 3D scalar field sampled at uniformly spaced 3D grid points on a
Cartesian coordinate system. Reconstruction is done into a reconstruction
buffer, which resides in the world coordinate. It is then rendered using a
modified front-to-hack image-order volume rendering algorithm as developed
by Levoy [Levo89]. Reconstructed 3D scalar field in the reconstruction buffer is
classified (non-binary classification) and shaded to result 3D shade buffer
which also sits in the world coordinate. Next steps are the ray-casting process,
where sample points in the world coordinate are transformed into 3D screen
coordinate and then composed into 2D screen coordinate to yield a volume
rendered image.

Incremental Volume Reconstruction

Several different approaches are possible to visualize irregularly sampled
volume data. Theoretically, a stream of 2D image slices with variable geometry
can be rendered directly by a certain rendering algorithm. Some of the

7

algorithms to directly render irregular data samples have appeared recently
[Garr90] [Wilh90] [Miya90] [Neem90] [Shir90].

We have chosen to reconstruct a regularly sampled 3D volume data in the
reconstruction buffer which is then rendered using more or less conventional
volume rendering algorithms that expect volume data sample at regular 3D
grid points. One reason for this is the speed of rendering. Once reconstructed,
the volume data sampled on regular 3D grid stored in 3D array with implicit
geometry and connectivity offers advantage in accessing the data. Another
reason is that we wanted to allow multiple scanning sweeps of the target
volume by the scanner which is merged into single image. Achieving this with
direct rendering requires storing large, unknown number of input image
slices as they are, and this is not memory efficient nor computationally
efficient.

In designing the visualization scheme, we assumed that the target scalar
field being sampled is continuous. Thus, if the target volume is sampled with
sufficient sampling rate by the 2D image slices, the resulting image of the
target volume generated from these 2D slices must be continuous. For
example, the resulting image should not look like a set of intersecting image
planes with empty spaces in between. This means that the reconstruction
requires some form of interpolated resampling. But we have to be careful about
interpolation. If the sampling rate is not sufficient, there is no way of
recovering the unsampled information. To not to 'lie' to the user by artificial

Irregular 3D object
coordinate

Regular 3D object
coordinate

Transform and merge
a new image plane at arbitrary angle &

location

Reconstructed 3D image data
Ray
com positing

3D screen
coordinate

3D Ray Cache

2D screen
coordinate

data

Figure 5. Incremental volume visualization processing stages. Irregular data slices are first
reconstructed into a regularly sampled 3D volume data. The volume data go through standard volume
rendering process, but the processing is limited to inside the slab formed by last two image slices.

8

data, the user should be notified by some means of the fact that it is
undersampled at acquisition.

We try to reconstruct a 3D array of sample points at regular intervals on
Cartesian coordinate from a series of 2D image slices with 3 DOF as the
imaging primitive. We assume that there is a rectangular volume in the real
world we are imaging which will be reconstructed to the 3D sample points
uniformly spaced on the 3D Cartesian coordinate. Sample points on 2D image
slices that are outside of this rectangular volume will be discarded.

Next question is the interpolation techniques to use. One important
characteristic of our visualization scheme is that each input image should
promptly be reflected in the final image. Thus, the interpolation method used
for reconstruction can not be what Franke [Fran82] call 'global' method of
interpolation where the interpolant is dependent on all data points. Both of the
two reconstruction methods we have implemented so far are 'local' kind.

Ideally, the interpolation function should depend on the imaging system.
We have discovered, from the images obtained by scanning 3D geometric
calibration phantom made of thin wires and beads, that the image slice is fairly
thick. A 2mm beads is visible on the screen after 4 to 5 mm translation of the
scanhead in elevation direction. This suggests much lower elevation resolution
than the range resolution. Also, as expected, the sampling function in the far
view is fuzzier and larger than the near view. Though this has not bee
quantitative, this gave us the feel of the shape of the sampling functions to
expect.

z

Age Buffer (20) Weight (20)

Buffer (30)

Forward mapping by a filter kernel

e Input image pixels

@ Grid points affected
by the input.

Backward mapping by linear interpolation

I
4

I

e Input image pixels

Intra-slice
0 interpolated points

@ lnt~r-slice interpolated
p01nts

Figure 6. Reconstruction buffer and two reconstruction algorithms implemented; forward mapping
using small filter kernel (above) and backward mapping algorithms.

9

We are still experimenting with the reconstruction algorithm. One of the
method we have tried is a forward mapping algorithm, where the input sample
points in the 2D image slices are distributed using a small spatial filter kernel,
to the reconstruction buffer grids around the input sample points (Figure 6).
The kernel is anisotropic, where its size is determined in the input parameter
file to the program. Mostly, we have used a filter kernel of octahedral shape in
3D with the long-axis of around 6 mm and two short-axes of around 3 mm,
which resembles the estimated shape of the ultrasound scanner system's
sampling function. This corresponds to 12.5 x 6.2 x 6.2 voxels in the
reconstruction buffer. Since the sampling function is attached to the image
slice's coordinate, the kernel rotates along with the input slice. For each
orientation of the slice, coefficients of the octahedral kernel are computed on
the fly on the discretized x-y grids of the voxels. The 2D weight buffer in the
diagram accumulates the weight of the kernel, for later normalization. The
age buffer records the 'staleness' of the image in the reconstruction buffer, to
help determine the weight to mix the value in the buffer with the new
contribution.

Another reconstruction algorithm is a backward mapping kind, where the
algorithm steps in the reconstruction buffer grid, while the nearby sample
values from the last two input image slices are linearly interpolated and
collected. This is only C0 continuous, and its C1 discontinuity tends to show up
in the image by gradient approximation operator. Though it is fast, this
algorithm does not produce as good a result as the one above.

We will continue to do more research in this area to find satisfactory
reconstruction with small enough computational cost for interactive
visualization.

Incremental Volume Rendering

Once the volume data with regular 3D sample points is reconstructed, it can
be rendered using a standard volume rendering algorithm as described in the
literatures [Upso88] [Sabe88] [Levo88]. As is known, volume rendering can be
computationally expensive. The cost of image generation from reconstructed
data must be made small enough to achieve the goal of interactive image
generation rate on a moderate scale hardware.

The incremental volume rendering algorithm tries to reduce computation by
taking advantage of three assumptions; 1) 2DE image slices are acquired
incrementally, 2) shading parameters will not change for every few frames, 3)
viewpoint will not change every few frames. If these conditions are met, an
incremental rendering can be done. By incrementally shading and ray
sampling per reconstructed slab, computation is limited to the 'slab' formed by
the last two inserted images, instead of the entire volume of the reconstruction
buffer. Under the assumption of fixed viewpoint, incremental ray-sampling is
realized by caching the tri-liniear interpolated ray samples from the previous
slabs in a 3D array in the 3D screen space called ray cache. This way,
expensive ray-sampling is decoupled from relatively inexpensive ray
compositing, which is performed essentially for its entire ray span inside the
reconstruction buffer for each frame.

Figure 5 shows the process of incremental volume rendering. After
reconstruction, classification is done by table look up, and then the shading
values, color and opacity, are computed. Shading takes place incrementally,

10

only inside the slab formed by the current and previous image slices.
Currently, two shading algorithms are implemented; 1) image value shading
which directly maps from input scalar value to the color value by table look up,
and 2) gradient-Phong shading which performs Phong shading with diffuse
and specular components, where surface normal is approximated by finite
difference. Shading method 2) can emulate 1) by setting the look-up table
appropriately, but it is included for its efficiency. Simple but fast X-ray like
projection which result from this, if combined with additive compositing, can
be quite useful in rotating the object to find best viewpoint. The shading result is
stored in the 3D shade buffer that resides in the world coordinate.

The ray-sampling stage performs actual ray-casting, where a ray is cast
from each pixel into 3D shade buffer, and the shading values are sampled at
uniform interval along the ray. We used the perspective projection in the hope
of giving better 3D perception. Perspective projection can have over and/or
under sampling problems in ray-casting, but no measure such as the one
found in [Novi90] is included in the current implementation. A ray sample is
the result of tri-linear interpolation from eight points surrounding the sample
point to minimize aliasing in the resulting images. This stage also works
incrementally, and only the same sub-volume processed in the shading stage is
sampled. To sample only inside the slab, rays are clipped to the slab by an
algorithm that clips a line to a convex polyhedron (Figure 7a). The slab, if it
happens to be concave (Figure 7b) is first decomposed into two convex
polyhedrons. To clip rays to the polyhedron(s), we developed an algorithm
which turned out to be essentially the same as the Cyrus-Beck clipping
algorithm [Cyru78].

Ray sample values are saved in a 3D array called ray-cache in 3D screen
space. This is a classic space-time trade off. Each pixel in the frame buffer is
associated with a linear array of ray samples along the .ray. As the new slab is
shaded and sampled, those samples are inserted to the appropriate locations
(depth) in the ray-cache, replacing the old value. All the other locations are not
sampled and their values stay the same. Current implementation has
multiplicative compositing as in [Levo88] as well as additive compositing for X
ray like image, and Maximum Intensity Projection which takes the maximum
sample value along the ray as a pixel value.

If multiplicative compositing is employed, the ray-compositing has to take
place from the start to the end of the ray-cache even though only a portion of it
has new values. (I ignore the adaptive ray termination here for simplicity,
though it is implemented.) Despite this, decoupling relatively expensive
interpolated ray-sampling from ray-compositing saves time. The span of the
ray to be composited, from the entry to the exit of the reconstruction buffer
bounding box, is computed by clipping the ray to the reconstruction buffer
bounding box.

There is a minor point to be said about the process above. If the shading and
sampling is actually performed on the very last slab reconstructed, there can be
an 'open end' effect, where the abrupt cut-off of the partially reconstructed
volume shows up in the shading result and in the final image. To avoid this,
the reconstruction stage and the later stages are offset by one slab; if a slab n is
reconstructed, slab n-1 is shaded, sampled, and composited.

Note that the arguments above about incremental volume rendering
assumed the fixed viewpoint as well as fixed shading parameters. If the
viewpoint is changed, the ray-sampling and compositing have to be done

11

...,.,..., Active segment
to be sampled

, , ,

Reconstruction
Buffer

..._ Active segment
to be coposited

'a) Clipping rays to the slab and reconstruction
buffer for sampling and compositing.

b) Concave slab with up to 4 intersections

1\

2

.........

c) Convex slab with up to 2 intersections

Figure 7a. (Left) A ray from a pixel is clipped to the reconstruction buffer bounding box, and to the
last slab for compositing and sampling, respectively.

Figure 7b. (Right Top) Slab can be concave, with up to 4 intersections, or

Figure 7c. (Right Bottom) convex with up to 2 intersections.

essentially on the entire data. Or, if the shading parameters are changed, the
shading has to be done in addition to ray-sampling and compositing. In such
cases, various forms of coherences, such as image coherence and object
coherence as well as temporal coherence can be used improve performance.
Current single processor implementation does not include these optimizations
for non-incremental cases.

Improving Rendering Performance

Our goal is to make this system as interactive as possible, running at the
slowest with the image generation speed (reconstruction and rendering
combined) of more than 1 frames per second on the proof-of-concept system
using the Pixel-Planes 5. We have to make the rendering and reconstruction as
fast as possible.

In the interactive, incremental 3DE system, the volume data set changes for
every image frame. Many of the optimization schemes that assumed multiple
image generation from single data set can not be applied. For example,
skipping empty space by hierarchical space enumeration using octree may not
be appropriate since octree is usually precomputed. Similar argument goes to

12

the precomputing gradient vectors or even complete shading (color and opacity)
values.

Also, use of incremental scheme tipped the scale in relative costs of various
stages of volume rendering. A good example is clipping the rays to the volume
of interest (i.e., rectangular data set). It was a minute part of the ray-casting
stage in the conventional ray-casting based volume rendering. In the
incremental algorithm, since the volume to be sampled is much smaller,
relative cost of ray-clipping has become a significant part of ray-casting
process. Shading (Phong shading) and ray-sampling still are major parts of
the rendering process, as well as the reconstruction depending on the
algorithm used.

Ray Clipping by Scan Conversion

In the ray-casting based incremental volume rendering algorithm, a slab of
volume data is incrementally added as the input image slice arrives. The
resultant volume data is then shaded, sampled, and composited. With the
introduction of ray-cache, sampling the unchanged part outside of the slab is
obviously wasteful. To sample rays only in the slab formed by latest two slices,
each ray from the pixel is clipped to the slab. As mentioned, I used an
algorithm similar to Cyrus-Beck [Cyru78] in the first implementation of
incremental volume renderer. As seen in the Table 1., clipping rays to the slab
has taken up large portion of rendering time. We needed a faster algorithm.
I have developed a new line-polyhedron intersection algorithm called D-buffer
algorithm for Distance Buffer. It is not as general as the Cyrus-Beck clipper.
But it is much more efficient if applied to computing intersections of non-trivial
number of rays from a screen with polygons. It takes advantage of the efficient
polygon scan conversion algorithm to compute intersection distances (see
Figure Sa). Following is the sketch of the D-buffer algorithm for ray-clipping.

{ This routine computes the intersection of all the rays from the screen pixels
with the slab defined by polygons, using modified Z-buffer algorithm. }
procedure RayClip(Slab)
begin
• Decompose slab into convex polyhedrons, if the slab is concave.
for each polyhedrons

end;

• Clip it to the reconstruction buffer bounding box. Clipped faces must be
'closed' by new polygons.
for each polygon that forms the polyhedron,

• Transform it into the canonical parallel projection view volume.
• Clip it to the canonical view volume
• Scan convert the polygon into D-buffer, using PixelUpdate() for
each pixel.

{ Polygon scan conversion routine calls PixelUpdate per scan converted pixel
(u, v, n), to update the D-buffer. (u,v) is the location of pixel on the screen
(integer) while n is the screen Z value (real) of the scan converted point.}
procedure PixelUpdate(u, v, n)
begin

13

• Compute the Euclidian distance from projected 2D point (u,v) in 3D screen
space, to its back-projected point in 3D screen coordinate (which is the
intersection).
• Insert the distance for pixel (u, v) to the corresponding entry of the distance
list, which is sorted by the distance.
end

In the PixelUpdate() routine, if the projection is orthogonal, scan converted
screen Z value is the Euclidian distance from the pixel to the 3D point projected
to that pixel. If the projection is perspective, the distance must be computed by
back-projecting the screen pixel and taking the square root.

Computed distances from the pixel to the intersections with the polygons are
kept in the distance list for each pixel (See Figure 8b). This list is kept in
ascending order as an intersection is inserted. A ray has either two or four
intersections with a slab, so our implementation has 4 position array for the
distances. After two or four intersection distances are obtained, we have to
determine the interval(s) where the ray is to be sampled. They are the distances
in 3D screen space from the screen pixel to the entry and exit intersections of
the slab. Here all the polyhedrons are convex, paring the intersections to
intervals by determining whether an intersection is entry or exit can be made
simply by the parity rule. This can be assured (in non-singular cases) by
making the polyhedron closed.

To be more robust and general, 'side' of the polygon can be determined by the
direction of polygon's surface normal. This is not necessary to clip rays to the
slab. But knowing the side of the polygon has its use later when rendering
polygonal objects using the D-buffer mechanism. Note that single check of
polygon's side per polygon is enough and it is not a costly.

y

30 screen
coordinate

Ray-cache

X

Figure 8.a Ray-polygon intersection can be computed efficiently by scan conversion.

Figure 8.b D-buffer has 1 D array for ray-cache, as well as distance list for four intersections possible
for the slab.

14

D-buffer structure has a few other fields per pixel, as seen in Figure 8b.
Obviously, there is the ray-cache, a 1D array that stores sampled ray values.
Interval of the ray distances to be composited are stored in be and bx pair,
which are the entry and exit to the reconstruction buffer bounding box. If the
ray from the pixel needs compositing is marked in field t. Numbers of
intersections are stored in n as polygons are scan converted to determine
number of sampling intervals.

The D-buffer algorithm above takes advantage of the geometric coherence in
the polygons that consists the polyhedron being intersected, through the use of
standard polygon scan conversion technique used in computer graphics
[Fole90]. Use of the polygon scan conversion means that only those rays that
actually intersect polygons require computation. This is in contrast to the
algorithm based on conventional ray-polygon intersection algorithm where all
the rays must be checked for intersection before they are rejected. Also, due to
its incremental nature, for a non-trivial number of intersections, cost per ray is
very small.

We have implemented the ray-clipping by D-buffer, as well as the Cyrus-Beck
algorithm. Table 1. compares the execution time of various visualization stages
per single image generation for three different algorithms; without ray
clipping, ray-clipping by Cyrus-Beck algorithm, and ray-clipping by D-buffer
algorithm. In all the cases, reconstruction (by forward-mapping algorithm)
and shading (Phong shading) are incremental. The forward mapping
reconstruction algorithm used is fast but not of high quality. It is very likely
that the computational complexity of the reconstruction will increase in the
future as reconstruction quality is improved. The program written in C
language is compiled with -0 option and executed on the DEC 5810 with
256MByte of memory which is running Ultrix operating system. As an input,
36 2D image slices of roughly 5 mm interval are read from a disk file along with
their geometries. 34 images of 256 x 256 pixels each (whose 34th image is
similar to Picture 2) are generated but not written to the disk to discount the
time to write images. Timing are measured by UNIX system call times () for
the program to generate 34 images, which is then divided by 34 to make them
average timing per image.

As seen in the table, limiting the sampling to inside the slab greatly reduced
the time for ray-sampling. Furthermore, ray-clipping by D-buffer virtually
removed the overhead of clipping rays to the slab. What is left in the sampling
stage is the tri-linear interpolated sampling. Reducing time for the ray
sampling further will need such optimizations as skipping empty spaces, or
adaptively reducing the number of rays cast. These optimization will be

Processing Stages No Clipping Cyrus-Beck D-buffer
Reconstruction 0.60s (0.3%) 0.60s (3.3%) 0.59s (5.9%)
Shading 2.87s (1.4%) 2.83s (15.4%) 2.81s (28.3%)
Ray-clipping O.OOs (0.0%) 8.40s (45.8%) 0.10s (1.0%)
Ray-sampling 185.56s (91.8%) 4.75s (25.9%) 4.67s (47.1%)
Ray-compositing 13.13s (6.5%) 1.77s (9.6%) 1.75s (17.6%)
Total time 202.18s 18.35s 9.92s

Table 1. Execution time of ray sampling and compositing for the no-clipping, clipping with Cyrus
Beck clipper, and clipping with D-buffer algorithm. Both reconstruction and shading stages are done
incrementally on all three cases. Numbers in parenthesis are the relative time spent in percent.

15

difficult to incorporate into the incremental volume rendering algorithm.
As mentioned above, the relative cost of the reconstruction may increase as

the reconstruction algorithm become sophisticated. The shading stage will be
more dominant with the real image taken from a human target than the doll
phantom image scanned in the water tank. This is so because the empty
volume where the shading computation can be abbreviated will be much less in
the image from human target. Time for the compositing stage is small because
only the rays with new samples, i.e., those that touch the slab, need
compositing, leaving majority of the pixel untouched.

Hierarchical Ray-Cache

Ray-cache introduced before was a simple lD array for each pixel, which
caches every sample taken along the ray at unit intervals. This has reduced the
time to re-generate image. Still, compositing stage has been wasting
computation, by repeatedly compositing entire span inside the reconstruction
buffer bounding box. This is especially so if the slab occupies only a small span
out of the entire span of the ray inside the reconstruction buffer bounding box,
as illustrated in Figure 7c. In this section, I introduce a new ray-cache
structure to improve ray-compositing speed, which is currently being
implemented along with the polygonal object rendering capability described in
the following sections.

Average ray-compositing time can be improved quite a bit by saving and
reusing the partially composed values in a tree structured hierarchical ray
cache (or HRC), instead of the linear ray cache (LRC) introduced before. It is
depicted in Figure 9 for 32 entry, 4-ary tree case, though it can have any arity
more than 1. This is another case of space-time trade off; HRC requires even
more memory than the LRC, but gains substantially in speed.

In HRC, the tree is maintained so that each node has the values of opacity

C Cached old sample values to be used to
compute final pixel value.

LeveiO

Level 1

Level2

Level3

e New ray sample values or those affected by
them.

Pixel alue
0

... 79

... c5C5"06
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 a> 21 22 23 28 2l 30 31

V$.':'::?·':'.»:0:
'*'"'''"" Unchanged

• • • • No need to sample/composite

- Sam le and com se

Figure 9. Hierarchical Ray Cache with 32 entries. Changes due to the insertion of a small span of
samples are propagated bottom up to the root, which is the pixel value. This takes much smaller
number of compositing than with the linear ray-cache.

16

and color that are the result of compositing those values in their child nodes
from left to right order of traversal. The leaves of the tree have the opacity and
color sample values as they are sampled along the ray. The root of the tree, if
the property above is maintained, has the values of opacity and color as the
result of correct compositing along entire ray samples, that is, the screen pixel.
As a set of new sample values is added to the leaves, updating process to
maintain the property takes place. The updating process of node values takes
place from bottom up. For each node, if value of any of its child nodes has
changed, a new pair of opacity and color values are computed by compositing.
The HRC for a pixel can be embedded in a linear array, and the tree traversal
can be done efficiently by index manipulations.

Assuming a binary tree, for a total ray span of zn samples, change in one
sample requires only n number of compositing to obtain the pixel value. This is
the most favorable case for the HRC and is the big improvement over zn-1
compositing necessary for the LRC. The worst case possible for the HRC is
when the entire span of the ray inside the reconstruction buffer must be
sampled anew. In that case, HRC needs the same zn-1 compositing as LRC,
while HRC needs more memory write, zn+L1, compared to zn-1 for the LRC.
For most of the cases where the slabs are oblique against the ray, and are thin
compared to the reconstruction buffer bounding box dimensions, HRC will be
much more efficient than the LRC.

Integrating Polygonal Objects

It is obviously advantageous to have geometric object rendered together with
the volume data in the same image. [Levo90b] presents two methods to achieve
this in the framework of front-to-hack image-order volume renderer. One is to
3D scan convert a polygon into the volume data, with appropriate filtering to
band-limit the image, and volume render as a volume image. The other
method, which he called a hybrid ray-tracer, is to combine ray-casting process
for the volume data with the ray-casting for the polygons.

In Levoy's hybrid ray-tracer, combining the scan converted polygons with
the volume image is done as the volume image is ray-traced in the world space.
In addition to the burden of interpolated sampling of rays, adding polygonal
objects interferes with such optimization as space-skipping by hierarchical
space enumeration using the octree data structure. For these reasons, hybrid
ray-tracer is not fast in his implementation.

In the following, I propose an algorithm that realizes very fast rendering of
polygonal objects, both opaque and transparent, cut-away of volume image
defined by polyhedrons, change of color or opacity of polyhedral volume for
highlighting, etc., in the volume rendered image with fixed viewpoint. The
efficiency (and limitation of fixed viewpoint) of this algorithm comes from the
fact that it works in 3D screen space, combining viewing transformed and
resampled volume data in the ray-cache with the polygonal and polyhedral
objects scan converted into the D-buffer.

My algorithm is in line with the Atherton's object buffer algorithm [Athe81].
He described an algorithm that saves a list of all the depth (z) values scan
converted, ordered by z and accompanied by each surface's attributes, in the
object buffer. As far as the viewpoint is fixed, object buffer allows, in addition to
standard hidden surface removal, such effects as cutaway viewing of the

17

Polygon cell

se, sx :distance from pixel to the entry of the span.

t: Type of the span (e.g. polygon, compositing, cut-away)

r, g, b, a: Color and opacity of the polygon

Figure 9. Structure of the D-buller with hierarchical ray cache. 16-entry 4-ary tree ray-cache is
embeded in a 1 D array of size 21.

objects, selecting surface color, and transparency or translucency of the
objects. Atherton also suggests the object buffer can also be object buffer matrix,
which is essentially a voxel array, as in Ray-Cache in our incremental volume
rendering algorithm. The paper suggests the application to the 3D
visualization of CT and seismic analysis. More recently, [Eber90] added volume
rendering capability on top of an A-buffer [Carp84] based polygon renderer. It is
to combine gaseous objects and solid textures to the mostly polygonal objects.
[Garr90] and [Miya90] combined volume renderer for an irregular geometry
volume data from such data source as Finite Element Mesh with the z-buffer
algorithm based polygon renderer.

Figure 9 shows the new frame buffer structure which combines HRC and D
buffer. D-buffer has a linked list of span-cells, where each span-cell has its type
associated. The type field tells if the interval is a sampled volume data to be
composited, a volume of interest to be rendered with modified color and/or
opacity, or a polygon with associated colors and opacity. HRC's tree structure is
embedded in a lD array as a heap for compact representation and ease of
traversal. Types of the span-cells are, for example,

1) Sample Span cell : Distances of the volume sample span to be composited,

2) Polygon cell : A polygon distance, color and opacity values.

3) Highlight span cell : Distance of the highlight span, with its color and
opacity modification values.

There is no cell type for cut-away span, since cut-away is done by not
compositing the cut-away span, through modification of the sample span cells.

18

Integrating Polygons

The incremental volume rendering algorithm keeps ray-samples in the ray
cache to reuse them. Thus, for a fixed viewpoint, adding and correctly
compositing a polygon to the volume image involves only; 1) scan converting the
polygon into the D-buffer, and 2) compositing the cached ray-samples with the
scan converted polygons. If the distance value of the scan converted polygon
falls inside one of the ray span, the span is split into two sections. The two
sections become two separate sample cells in D-buffer, and a new polygon cell
is inserted in between.

In this algorithm, there is no ray-sampling involved for image generation (of
fixed viewpoint) which makes this process efficient. Furthermore, with the
HRC, compositing a scan converted polygon amounts roughly to inserting a
sample slice of thickness 1 sample and then updating the hierarchical ray
cache.

The cost of polygon scan conversion depends on usual factors associated with
polygon scan conversion, e.g., the shading models used, and the cost of
inserting the polygon's cell into the D-buffer. The cost of D-buffer update will be
significant if the number of cells in the D-list is large, especially with linear list
structure. The cost of ray-compositing depends both on the number of rays, as
well as the cost of compositing a ray. The number of rays is proportional to the
area of polygons projected onto the screen. The cost of compositing a ray using
hierarchical ray-cache per polygon is proportional to the logarithm of the
number of ray-samples, as discussed in the preceding section.

In implementing the algorithm, there are two sources of aliasing to be taken
care of. One is the aliasing at the edge of the polygon. The second is familiar in
the Z-buffer algorithm, and amenable to such solutions as super sampling, or
A-buffer [Carp84], and not discussed here. The other is characteristic to the
volume rendering. To composite the polygon with the volume samples
correctly, the amount of volumes inside a unit sample grid that is in front and
back of the polygon should determine the amount of opacity contribution the
polygon makes. Determining these volumes correctly is somewhat costly, and I
have adopted a simpler but visually satisfactory solution as proposed in
[Levo90b]. It treats the polygon locally inside the ray-sample cube as a plane
perpendicular to the ray and placed at the ray-polygon intersection point. Then
the opacity of the unit sample cube is divided into front and back of the polygon,
Uf and ab respectively, in proportion to the thickness of partial cube in front and
back of the polygon. Uf and ab is computed as;

(•)/ (•)
Ut(u) = 1-(1-av(u))'i t,

and
(•)/ (•)

ab(u) = 1-(1-ay(u))'b 1•

where tr and tb are the thickness of the cube in front and back of the polygon,
while tv is the thickness of the unit sampling cube. av(u) is the opacity of the
entire cube, while Cv is the color of the entire cube. Compositing proceeds from
front to back, by compositing the portion in front using Cv and ar first, then the

19

polygon as an object ofO thickness but finite opacity ap and color Cp, and finally
the portion in the back of the polygon using ab.

Integrating Polyhedral Volume

Cutting away a section of the volume image is a very useful tool for
interaction with the image, to see objects obscured by an opaque surface, for
example. This may also be used for simulated surgery. Highlighting a volume,
through changing the color or opacity of a volume can be a useful tool to
highlight volume of interest. For example, in radiation treatment planning,
the traces of treatment beams can be highlighted while the others are kept dim
but visible enough to give anatomical reference.

With D-buffer and hierarchical ray-cache, removing cutaway volumes or
highlighting of volume by modified color and/or opacity is almost as simple as
scan converting the polygons which define the volume, and re-compositing.
Seen from the perspective of solid modeling, cut-away or highlighting of a
polyhedral volume of interest in the volume data is performing Boolean
operation among different (B-reps and cell enumeration) representations of
objects.

A volume of interest can be highlighted by increasing or decreasing the
opacity of the volume, and/or by changing the color of the volume. To do this,
the polyhedron defining the volume of interest is scan converted into the D
buffer. First, for a designates span(s) of a ray, opacity and/or color of the
defined volume is modified at the leaves of the hierarchical ray cache. This
does not have to literally modify the value stored in the leave cells of the HRC.
Just mapping the color by table, or multiplying the opacity modification factor
as the HRC is updated is enough. The HRC is updated from bottom to top as if
new samples are inserted to the span to be highlighted. Here, as noted in the
rendering of polygons, the compositing near boundary of the object must take
handle the partial volume of the unit sample cube, to correctly composite the
modified polygonal volume. The cost of highlighting a volume will be higher
than rendering polygons, since it tends to disturb more in the HRC, forcing
more update effort. ·

Cutting away a section of volume defined by polyhedron can be done in done
by the same mechanism as above, by simply making the opacity 0. But there is
somewhat better special case approach. Instead of modifying the individual
sample values, the D-buffer's span list is modified to remove the spans of the
sections to be cut-away. Then, simply composite the ray-cache according to the
resulting span list. The cost to cut-away a contiguous section on a ray is small;
it is the comparable to adding two polygons by scan conversion into D-buffer
minus shading calculations. Since actual compositing is avoided for the cut
away sections, total compositing time may even be less with volume cur-away.

I should re-iterate that the cut-away of volume and rendering of polygons
into a fixed viewpoint volume image is very fast with accurate volume
compositing using D-buffer and HRC. Even though highlighting volume of
interest by changing color or opacity is not quite as fast, it still avoids costly ray
sampling process entirely, which will provide quite responsive interaction with
the volume image. Please also note that this 'late-binding' technique of
integrating polygonal and polyhedral objects to the volume rendered image
using hierarchical ray-caching in 3D screen space is not limited to the

incremental volume rendering. It can be applied to other conventional volume
rendering algorithms based on ray-casting.

Limitation of this technique of quickly integrating the polygonal objects with
the volume image is the fixed viewpoint. Polygons, cut-away volumes or
highlighted volume of interest defined in the image can not be viewed from
different viewpoints easily, since it exists only in the image space. To view it
from different viewpoint, or to reconstruct the 'sculpting' done by polygonal
objects later as may be necessary in radiation treatment planning, geometric
information of these polygonal objects must be saved separately. In terms of
performance, large number of intersections with polygons per ray will degrade
the performance of hierarchical ray-cache, in addition to obvious overhead of
scan-converting many polygons. Also, as mentioned, the linear list structure
used in the D-buffer list will not be the most efficient for large number of
polygons.

Conclusion

In this paper, we have reported the overview of the incremental, interactive
3D ultrasound echography system, where 2D image slices are acquired along
with their locations and orientations to be reconstructed and volume rendered.
The system generates a new image as a new 2D slice is acquired, to maximize
interactivity. The visualization algorithm works in incremental manner,
limiting the computations to the volume where the new input has arrived.

We have established the basics of the efficient incremental volume rendering
algorithm, which takes advantage of the incremental nature of the input. We
have designed and implemented a faster ray clipping algorithm using polygon
scan conversion to clip rays to the slab where the ray should be sampled. The
new ray clipping algorithm showed marked improvement over the method we
have used before.

We have proposed a new ray-caching mechanism called hierarchical ray
cache to speed up the ray-compositing further. We have also proposed an
algorithm to render polygonal objects quickly in screen space composited
correctly with the volume image. With this proposed algorithm, various
operations on the volume image, such as cut-away of a polyhedral volume,
insertion of polygons, and highlighting polyhedral volumes will be possible at
an interactive rate.

Clearly, we need more work to get to our goal of interactive acquisition 3D
visualization system. First, economical reconstruction algorithms with good
reconstruction quality have to be developed to reconstruct irregular input
slices. Current bottlenecks, the shading stage and the ray-sampling stage have
rooms for performance improvements. Some variants of space skipping by
enumerating empty space to reduce number of sampling may be applicable to
the incremental volume rendering. At this stage, image adaptive ray-casting
such as the one in [Levo90a] seems hard to adapt to the incremental volume
rendering.

We are planning to parallelize the algorithm to be run on the graphics
oriented heterogeneous multicomputer Pixel-Planes 5. We have experimented
a distributed volume rendering algorithm on a set of workstations, which
showed promising result. It was parallelized in images space, and based
demand-paged distributed shared memory model, similar to [Bado90]. For the

21

incremental, interactive 3DE system on Pixel-Planes 5, I am planning to use
data parallelism in object space for the reconstruction and shading, and the
data parallelism in image space for the ray-sampling and compositing stages.
We expect to have proof of concept system with Pixel-Planes 5 running in 1991.

Acknowledgment

The authors would like to thank Vern Katz, M.D. for the use of the
ultrasound scanner, and Jeff Butterworth for developing the image acquisition
program. We also would like to thank the Wake Radiology Association for
donating ROHNAR 5580 to us. This research is supported by NSF grant
number CDR-86-22201.

Reference

[Athe81] Atherton, P.R. (1981). "A Method of Interactive Visualization of CAD
Surface Models on a Color Video Display." ACM Computer Graphics.
15(3): 279-287.

[Bado90] Badouel, D., Bouatouch, K., Priol, T.,. (1990). Ray Tracing on
Distributed Memory Parallel Computers : strategies for distributing
computation and data. Institut De Recherche en Informatique et
Systemes Aleatoires, Universitaire de Beaulieu, France, Technical
Report 508

[Bill90] Billion, A. C. (1990). Phillips Paris Research Lab. Personal
Communication.

[Brin78] Brinkley, J. F., Moritz, W.E., and Baker, D.W. (1978). "Ultrasonic
Three-Dimensional Imaging and Volume From a Series of Arbitrary
Sector Scans." Ultrasound in Med. & Biol. 4: 317-327.

[Carp84] Carpenter, L. (1984). "The A-buffer, an Antializsed Hidden Surface
Method." ACM Computer Graphics. 18(3): 103-108.

[Cyru78] Cyrus, M., and Beck, J. (1978). "Generalized Two- and Three
Dimensional Clipping." Computers and Graphics. 3(1): 23-28.

[Eber90] Ebert, S. D., and Parent, R.E. (1990). "Rendering and Animation of
Gaseous Phenomena by Combining Volume and Scanline A-buffer
Technique." ACM Computer Graphics. 24(4): 357-366.

[Fole90] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990).
Computer Graphics Principle and Practice. Addison-Wesley Systems
Programming Series. Addison-Wesley. 2'nd Edition,

[Fran82] Franke, R. (1982). "Scattered Data Interpolation : Tests of Some
Methods." Mathematics of Computation. 38(157): 181-200.

[Fuch89] Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J.,
Ellsworth, D., Molner, S., and Israel, L. (1989). "Pixel Planes 5: A
Heterogeneous Multiprocessor Graphics System Using Processor
Enhanced Memories." Computer Graphics. 23(3): 79-88.

[Garr90] Garrity, M. P. (1990). "Raytracing Irregular Volume Data." ACM
Computer Graphics. 24(5): 35-40.

[Ghos82] Ghosh, A., Nanda, C.N., and Maurer, G. (1982). "Three-Dimensional
Reconstruction of Echo-Cardiographies Images Using The Rotation
Method." Ultrasound in Med. & Biol. 8(6): 655-661.

22

[Hott89] Hottier, F. (1989). Phillips Paris Research Lab. Personal
Communication.

[Lalo89] Lalouche, R. C., Bickmore, D., Tessler, F., Mankovich, H.K., and
Kangaraloo, H. (1989). "Three-dimensional reconstruction of ultrasound
images." SPIE'89. Medical Imaging: 59-66.

[Levo88] Levoy, M. (1988). "Display of Surface from Volume Data." IEEE CG&A.
8(5): 29-37 0

[Levo89] Levoy, M. (1989). Display of Surfaces From Volume Data. Ph.D Thesis,
University of North Carolina at Chapel Hill, Computer Science
Department

[Levo90b] Levoy, M. (1990). "A Hybrid Ray Tracer for Rendering Polygon and
Volume Data." IEEE CG&A. 10(2): 33-40.

[Levo90a] Levoy, M. (1990). ''Volume rendering by adaptive refinement." Visual
Computer. 6: 2-7.

[McCa88] McCann, H. A., Sharp, J.S., Kinter, T.M., McEwan, C.N., Barillot,
C., and Greenleaf, J.F. (1988). "Multidimensional Ultrasonic Imaging
for Cardiology." Proc.IEEE. 76(9): 1063-1073.

[Mills90] Mills, P. H., and Fuchs, H. (1990). "3D Ultrasound Display Using
Optical Tracking." l'st Conference on Visualization for Biomedical
Computing. Atlanta, GA, 490-497.

[Miya90] Miyazawa, T. (1990). "A high-speed integrated rendering for
interpreting multiple variable 3D data." SPIE, To appear. :

[Naka84] Nakamura, S. (1984). "Three-Dimensional Digital Display of
Ultrasonograms." IEEE CG&A. 4(5): 36-45.

[Neem90] Neeman, H. (1990). "A Decomposition Algorithm for Visualizing
Irregular Grids." ACM Computer Graphics. 24(5): 49-56.

[Nikr84] Nikravesh, P. E., Skorton, D.J., Chandran, K.B., Attarwala, Y.M.,
Pandian, N., and Kerber, P.E. (1984). "Nikravesh, P.E., Skorton, D.J.,
Chandran, K.B., Attarwala, Y.M., Pandian, N., and Kerber, P.E."
Untrasonic Imaging. 6: 48-59.

[Novi90] Novins, K. L., Fran~ois, X. S. and Greenberg, D. P. (1990). "An
Efficient Method for Volume Rendering using Perspective Projection."
ACM Computer Graphics. 24(5): 95-102.

[0hbu90] Ohbuchi, R., and Fuchs, H. (1990). "Incremental 3D Ultrasound
Imaging from a 2D Scanner." First Conference on Visualization in
Biomedical Computing. Atlanta, GA, 360-367.

[Raic86] Raichelen, J. S., Trivedi, S.S., Herman, G,T., Sutton, M.G., and
Reichek, N. (1986). "Dynamic Three Dimensional Reconstruction of the
Left Ventricle From Two-Dimensional Echocardiograms." Journal.
Amer. Coli. of Cardiology. 8(2): 364-370.

[Sabe88] Sabella, P. (1988). "A Rendering Algorithm for Visualizing 3D Scalar
Fields." Computer Graphics. 22(4): 51-58.

[Shat84] Shattuck, D. P., Weishenker, M.D., Smith, S.W., and von Ramm, O.T.
(1984). "Explososcan: A Parallel Processing Technique for High Speed
Ultrasound Imaging with Linear Phased Arrays." JASA. 75(4): 1273-
1282.

[Shir90] Shirley, P., and Tuchman, A. (1990). "A polygonal approximation to
direct scalar volume rendering." ACM Computer Graphics. 24(5): 63-70.

[Stick84] Stickels, K. R., and Wann, L.S. (1984). "An Analysis of Three
Dimensional Reconstructive Echocardiography." Ultrasound in Med. &
Bioi. 10(5): 575-580.

23

[Upso88] Upson, C., and Keeler, M. (1988). "VBUFFER: Visible Volume
Rendering." ACM Computer Graphics. 22(4): 59-64.

[Wilh90] Wilhelms, J., Challinger, J., and Vaziri, A. (1990). "Direct Volume
Rendering of Curvilinear Volumes." ACM Computer Graphics. 24(5): 41-
47.

