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1. INTRODUCTION 

Given a well-behaved multivariable function F(~1 , ~2 , ... , ~k), whose 
values are given at the nodes of a cubic lattice 

L = {PI.U,P21!· ... ,pkJ.l I ('Vj ll 5, j 5, k) Pj E ~}. (1) 

where J.l is the lattice-constant of L and ::Z is the set of all (positive or 
negative) integers; we consider the problem of efficiently (i.e., with least 
effort) and effectively (i.e., with greatest accuracy) interpolating these 
values at any point (~1 , ~2• ... , ~k). 

Let us write 

W = max{q E ::zl q 5o z} and (z) = z-W (2) 

(so that W is what is usually called the floor function, or the integer part, 

of z, and ( z) is what is usually called the fractional part of z). Clearly, 

we have that 
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Now, let us define 

so that 

and 

Simplicial Interpolation 

O~(z)<l. 

(Vj II ~ j ~ k) 0 ~ xj < I 

(Vj II ~ j ~ k) ~j = (pj + x}J.L· 

(3) 

(4) 

(5) 

(6) 

We limit ourselves to the interpolation ofF at (~1 , ~2 , ... , ~k) as 
a multivariable linear function of x1, x2 , ... , xk, using only the values 

(7) 

where (Vj II ~ j ~ k) cj e {0, I}, (8) 

as coefficients. These are the known values ofF at the vertices of the lattice
cell enclosing the point (~1 , ~2' ... , ~k). 

The usual 'full' multivariable linear interpolation then takes the 
form 

(9) 

Thus, it involves a combination of 2k data for each interpolation. 

A k-dimensional simplex Tis defined by k + I vertices, 

T = 'IT'(P0, P1, P2, ... , Pk), (IO) 

where ('is I 0 ~ s ~ k) Ps = (a1s• ~s' · · · 'aks), (11) 
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Simpli~ial Xntorpolation 

('v's I 0 ~ s ~ k) 0 ~ A
8 
~ 1 

k 

1 = 2>s 
s=O 

k 

('v'j 11 ~ j ~ k) ~j = L aj8A8 

s=O 

(12) 

We now consider the possibility of obtaining an interpolated 
approximation to F(~1 , ~2 , ... , ~k) by a formula of the form 

k 

'f'x = 'f'(~1• ~2• · · ·' ~k) = L AJ(Ps), 
s=O 

where the P 8 are selected from the 2k lattice points 

( (p1 + c1)f.1, (p2 + c2)f.1, · · · • (pk + ck)f.l) 

defined as in (4)-(9) above. 

2. EXISTENCE 

(13) 

(14) 

Our first problem is to determine whether, indeed, given any point 
(~1 , ~2 , ..• , ~k), there always exists a simplex T, defined as in (10)-(12), 
whose vertices are a subset of the vertices of the lattice-cell enclosing the 
point (~1 , ~2 , ... , ~k), which contains the given point. Equivalently, we ask 

whether there is a subset of k + 1 of the 2k points c = (c1, c1, ... , ck) 
satisfying (8), which form the vertices of a simplex containing any given 
point (x1, x2, ... , xk) satisfying (5). 

We observe that, by (12), we require that there be A0, A1, ~ •... , Ak, 

such that('v's I 0 ~ s ~ k) 0 ~ A
8 
~ 1, and 
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Simplicial Xnt..rpolation 

k 
s=O 

(15) 

· ('<lj 11 ~ j ~ k) ~>jsAs = Xj 
s=O 

Dropping the conditions on the As, we see that this is equivalent to the 
matrix equation 

or 

1 1 1 
clO en c12 

C2o c21 c22 

ML =X. 

= (16a) 

(16b) 

THEOREM!. For any (x 1 ,x2 , ... ,xk)satisfying (5), there is a 
selection of values cjs (1 ~ j ~ k, 0 ~ s ~ k), such that (16) has a unique 

solution A0, At• ~ •... , Ak, and ('<Is I 0 ~ s $ k) 0 ~ As ~ 1. 

Proof. We can certainly put the xj e {0, 1) into non-increasing order: there 
is a permutation [r1, r2 , ... , rk] of[1, 2, ... , k], such that 

{r1, r2, . .. , rk) = {1, 2, ... , k), (17) 

and (18) 

Let us now define a corresponding permutation matrix 
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Simplicial Interpolation 

1 0 0 0 

P= (19) 

by (iJij = { 1 

0 

if { either i = ~ = 0 }} 
or 1 :s; J = ri . 

otherwise 

(20) 

As is easily verified (and well-known), 

pTp = ppT =I, (21a) 

where I is the identity matrix and P T denotes the transpose of P; so that 

p-1 =pT. (21b) 

Now, from (16), 

PML = PX, (22a) 

which, with a little thought, reduces to the form 

1 1 1 1 Ao 1 
CrlO Crll Crl2 Crlk Ar xrl 

cr20 cr21 cr22 cr2k ~ Xr2 

= (22b) 
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Simplicial Xntsrpolation 

Now let us construct the particular matrix 

PM= 

so that 

1 1 1 
0 1 1 
0 0 1 

0 0 0 

1 
1 
1 

1 

if "> ">1} J- l-

otherwise · 

(23a) 

(23b) 

It then follows from (22), by the usual process of Gaussian elimination, that 

Ao = 1-xrl 

~ = Xrl -Xr2 

~ = Xr2 -Xra 

Aa = xra -xr4 

Since, by (18), each of the above ).,
8 

e {0, 1}, our theorem follows. IGI 

(24) 

It should be observed that, not only have we proved the existence of a 
suitable simplex in every case, but the proof of the existence theorem shows 
how the simplex and the coefficients A.

8 
can be explicitly constructed. 

THEOREM 2. The k! simplices corresponding to the matrices (23) for 
all k! possible permutations P or m (i.e., i --7 ri) have no common interior 
points. 
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Simplicial Enterpolation 

Proof · Consider the simplex described in the proof of Theorem 1. Its 
vertices are the k + 1 points c8 = (c18, c28 , • •• , ck8 ), with s = 0, 1, 2, ... , k 
(i.e., the columns of M, below the first row), satisfying (23). Its interior 
consists of the points with coordinates satisfying 

1 > Xr > Xr > ... > Xr > 0, 
1 2 k 

(25) 

as is easily seen from the condition that all 0 < A.
8 

< 1, with (18) and (24). 

Now, it is clear that any point x with all its coordinates different can 
only satisfy an inequality (25) for just one permutation (11, given by (20). In 
other words, any x interior to one simplex can only be interior to that one 
simplex and cannot be in the boundary of any such simplex. This proves 

our theorem. G 

Thus we have demonstrated that the simplices defined above 
constitute a k/-fold dissection of the hypercube. 

3. THE INTERPOLATION 

The next question we consider is the accuracy of the simplicial 
interpolation (13), as compared with the full linear interpolation (9). 
We shall suppose that the function F(~1 , ~2 , •.. , ~k), and the derived 
function f(x 1 , x 2 , ... , xk) in the lattice cell enclosing the given point 

(~1 , ~2 , ... , ~k), have Taylor expansions of sufficient length: by (6) and (7), 

where fo = f(O, 0, · · · • 0) = F(plJl, P21l• · · · • PkJl). (27) 
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Simplicial linterpolation 

It follows that 

whence, the full interpolation (9) yields 

We are interested in calculating the error in this interpolation, 

A little algebraic manipulation shows that the first two terms (t = 0 and 
t = 1) vanish identically, and the remaining terms yield 
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Simplieial linterpolation 

(31) 

Here, we make the usual and justifiable assumption that the lattice 
constant f.! is small. 

Now, turning to the simplicial interpolation (13), in the particular 
case determined by (23) and (24), we see that (for s = 0, 1, 2, ... , k) P

8 
has 

components '1' in coordinates with indices rt (1 ::; t ::; s) and components 
'0' in all other coordinates [e.g., P0 = (0, 0, ... , 0); P 1 = (0, ... , 1, ... , 0), 
with the single '1' in position r1; P2 = (0, ... , 1, ... , 1, ... , 0), with the two 
'1' in positions r1 and r2; and Pk = (1, 1, ... , 1)]. Thus, by (28), 

k k 

'l'x = F(P0)+""' Xr [F(P8)-F(P8_1)] = fo+""' Xr lfc -fc ) £..J s £..J s s s-1 
s=l s=l 
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Simplicial Ent..rpolation 

Recalling that the rt form a permutation of (1, 2, o o o , k}-see (17)-we 
observe that, by (26), reordered as in (18), 

(33) 

where we note that, by (18), 

(W It < s) (34) 

Comparing (31) with (33), we see that the error produced by the 
simplicial interpolation is of the same order as that produced by the full 
interpolation on the lattice-cell, namely, 0(Jl2), and if we have a bound 

('Vi,j II ::; i ::; k, 1 ::; j ::; k ) < K, 

on the second derivatives ofF, then, by (31), since, as is easily verified, 

1 
maxo:sx:;l x(l - x) = 4 , 

-10-

(35) 

(36) 

(37) 
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Simplicial [nterpolation 

while, by (33), with (36), 

(38) 

Summing up our results in (31), (33), (37), and (38) we have: 

THEOREM 3. Applying the bounds (35), we have that 

(39) 

and 

(40) 

The conclusion is, therefore, that we will obtain comparable accuracy 
with the much quicker simplicial interpolation if we scale the lattice 

constant J.l by a factor ...fk: 

llLATI'ICE 
llSIMPLEX = ...Jk (41) 
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Simplicial Interpolation 

Of course, if this means actually computing kk12 times as many data, there 
is little advantage in the simplicial interpolation, but this is not always a 
requirement; it may be that already-assembled data suffice to yield the 
required accuracy, and then, as we shall see, the simplicial interpolation is 
faster to execute. 

4. TIMING EsTIMATES 

At this point, we assume that the values of the function F at the 
lattice points are already computed and given. The full interpolation (9) 
then takes three operations: 

(i) Determination of the Pj and xj, for j = 1, 2, ... , k, by ( 4); 
i.e., identification of the particular lattice cell in which 
the point (~1 , ~1 , ... , ~k) lies. 

(ii) Computation of the 2k coefficients 

k rr [c.fj + (1 - c}(l - x}]. 
j=1 

(42) 

as defined in (8) and (9). The factors are each either xj or 
1 - xj, taken in all combinations. 

(iii) Evaluation of the interpolated value t:Px from (9). 

Let a denotes the time required for an addition or subtraction, m 
denotes the time required for a multiplication or division, and t denotes the 
relatively short time required for a test, shift, store, or retrieve operation. 
Then the operation (i) requires, for each coordinate, two retrievals, one 
division, two split operations, and two storage operations (obtaining the 
integer and fractional parts), for a total time 

'JI'k.CUBE(i) = k(m + 6t). (43) 

To perform the operation (ii), we must, for greatest efficiency, proceed 
inductively. First, we retrieve and store x1, subtract it from 1 and store 
1 - x1 : this takes time a + 3t. If the total time for the operation (ii) for 

k = j -1 is 'JI'(i-1).CUBE(ii)• then we know that 'IT'1.cuBE(ii) = a+ 3t. Also, to 
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Simplicial lintsrpolation 

get 'll'j-CUBE(ii)• we must first retrieve xj, subtract it from 1, and, for each of 
the 2i-1 stored coefficients, multiply it by 1 - xj and store the result; this 

takes time. 2i-lm +a + (2i-1 + 1)t. Then we must retrieve xj again and 
repeat the multiplications by it, taking time 2i-1m + (2i-1 + 1)t more. Thus, 

'Jl'j-CUBE(ii) 

It follows that 

'll'l-CUBE(ii) = a+ 3t } 

= 'Jl'(j-1)-CUBE(ii) + 2im + a + (2i + 2)t . 

k 

'll'k-CUBE(ii) = L [2im +a+ <2i + 2)t] + a+ 3t 
j=2 

= (2k+l - 4)m + ka + (2k+l + 2k - 3)t 

- 2k+1(m + t). 

Finally, to perform the operation (iii) takes additional time 

'Jl'k-CUBE(iii) = 2k(m + t) + (2k -1)(2t +a) 

as is easily verified. Thus, the total time for full interpolation is 

'Jl' k-CUBE = 'Jl' k-CUBE(i) + 'Jl' k-CUBE(ii) + 'Jl' k-CUBE(iii) 

= 2k(3m + 5t) + k(m + a + St)- ( 4m + 3t) 

- 2k(3m + 5t). 

(44) 

(45) 

(46) 

(47) 

Turning to simplicial interpolation (13), we see that there are also 
three operations: 

(i) Determination of the Pj and xj> for j = 1, 2, ... , k, by ( 4), 
exactly as for full interpolation. 

(ii) Ordering of the coordinates xj, as indicated in (18). 

(iii) Evaluation of the interpolated value 'f'x from (13). 
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Simplicial Interpolation 

Proceeding as for full interpolation, we first see that 

'Jl' k-SIMPLEX(i) = k(m + 6t). (48) 

It is well-known that, if we use an efficient sorting method (e.g., heap-sort, 
merge-sort, or quick sort), we can achieve [see D. E. KNUTH, The Art of 
Computer Programming, Vol. 3, Sorting and Searching (Addison-Wesley, 
Reading, MA, 1973) p. 149] 

'Jl'k-SIMPLEX(ii) = (18logz'l + 38)k t. (49) 

Finally, the first line of (32) indicates that 

'Jl' k-SIMPLEX(iii) = k(m + 2a + 5t). (50) 

Thus, the total time for simplicial interpolation is 

'JI'k-SIMPLEX = 'JI'k-SIMPLEX(i) + 'JI'k-SIMPLEX(ii) + 'JI'k-SIMPLEX(iii) 

= 18k(log~ )t + k(2m + 2a + 49t) 

- 18k(log~)t. (51) 

Summing up these results, we have: 

THEOREM 4. With timing constants, t , a, and m, defined as above, 
we have that 

and 

'JI'k-CVBE = 2k(3m + 5t) + k(m +a+ 8t)- (4m + 3t) 

- 2k(3m + 5t) 

'JI'k-SIMPLEX = 18k(log~)t + k(2m + 2a + 49t) 

- 18k(log~)t. 

(52) 

(53) 

Evidently, for large values of k, the simplicial interpolation is far 
more efficient than the full lattice-cell interpolation. Some comparative 
examples, for somewhat typical timing constants t = 1, a = 8, and m = 24, 
and for dimensions k = 2, 3, 4, 6, 8, 16, 32, 128, 1024, are given below. 
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Simplicial interpolation 

k 'll'k-CUBE 'Jl' k-SIMPLEX RATIO 

2 289 262 0.907 
3 637 424.6 0.667 
4 1,293 596 0.461 
6 5,069 957.2 0.189 
8 19,933 1,336 0.067 

16 5,046,813 2,960 5.865 X lo-4 

32 3.307 x1011 6,496 1.964 X 10-8 

128 2.620 xlo40 30,592 1.168 X lo-36 

1024 1.384 X 10310 300,032 2.168 x 1 o...ao5 
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