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AbstractThis paper presents Proteus, an architecture-independent language suitable for prototyping paralleland distributed programs. Proteus is a high-level im-perative notation based on sets and sequences with asingle construct for the parallel composition of processes.Although a shared-memory model is the basis for com-munication between processes, this memory can be par-titioned into shared and private variables. Parallel pro-cesses operate on individual copies of private variables,which are independently updated and may be mergedinto the shared state at speci�able barrier synchroniza-tion points. Several examples are given to illustratehow the various parallel programming models, such assynchronous data-parallelism and asynchronous control-parallelism, can be expressed in terms of this founda-tion. This common foundation allows prototypes to betested, evolved and �nally implemented through re�ne-ment techniques targeting speci�c architectures.1. IntroductionPrototyping is an important technique in softwaredevelopment for early exploration and validation ofrequirements. When prototyping concurrent behav-ior, we face the problem of embracing a wide spec-trum of models used to construct parallel programs,reecting a variety of underlying architectures. Onesolution is an architecture-independent approach, inwhich prototypes may be experimentally implementedand then evolved into production versions through re-�nement techniques which can target speci�c classesof architectures. In this paper we describe Proteus, anarchitecture-independent language suitable for proto-typing algorithms and programs for parallel and dis-tributed systems. What we present here is very muchongoing work, one component of a DARPA-sponsoredprogram to develop a Common Prototyping Language(CPL) and Common Prototyping System (CPS).In its current incarnation, Proteus provides a high-level set-theoretic notation together with a sparse butpowerful set of mechanisms for controlling parallelexecution, relying fundamentally on an underlyingzThis work was supported under DARPA / ISTO contractN00014-90-K-0004 administered through ONR.

shared-variable model of concurrency. These mecha-nisms support diverse concurrent programming styleswithin a single logical framework. Such a commonfoundation for concurrency, when combined with re-�nement techniques, proves valuable for prototyping.1.1. PrototypingIn a recent assessment of the state of software de-velopment methodologies, Brooks [Bro87] concludedthat one of the most successful approaches to soft-ware development was an evolutionary model in whichsoftware is built incrementally with limited functionappearing very early on. This success was attributedin part to the feedback available from the working in-termediate products, which are in essence prototypes.These prototypes serve both to rapidly explore alter-natives when developing an idea of the system require-ments and to validate the requirements speci�cationsso developed. Another key aspect of the methodologyis that it evolves prototypes into products. These twofacets of prototyping can be supported by a exibleand expressive prototyping language and a re�nementsystem.It is particularly important to be able to handleconcurrency within a common prototyping language.The software development communityneeds to be ableto prototype inherently concurrent behavior, to ex-press algorithms and new concepts of parallel com-puting, and to evaluate the performance of concurrentsystems. We also need to be able to write programsfor new parallel machines, so as to use the prototypinglanguage as an exploratory vehicle for new technology.1.2. Varieties of concurrent programmingDevising a single framework for handling concur-rency is no easy task. Over the past twenty yearsa great variety of parallel machine architectures havebeen proposed or developed that are of importance.These machines range the gamut from synchronousto asynchronous execution, from shared to distributedaddress spaces [BST89], and from local to global con-trol. There have also been proposed a variety of ab-stract theoretical models of computation to expressand analyze algorithms for large classes of machines



(e.g., the PRAM [FW78]). Not surprisingly, many dif-ferent languages are currently used to construct par-allel programs, reecting this diversity of underlyingmachine models. Each of the speci�c language fea-tures for parallelism | for specifying parallel execu-tion and how parallel computations are mapped ontophysical processors, for synchronization, for communi-cation, and for exception handling | mirror to someextent the underlying organization of the machine.For example:� Distributed systems { Applications for loosely-coupled distributed systems, such as a collectionof workstations connected via an ethernet, are pro-grammed using the concepts of processes and block-ing communication by message-passing. Languagesfor these asynchronous distributed-state systems in-clude OCCAM (CSP) [INM87, Hoa85] and Strand[FT90]. Some languages commonly used for dis-tributed systems may assume a logical model whichdi�ers from the physical architecture. For example,Linda [CGL86] assumes a nondistributed state inthe form of a \distributed data structure", a tuplespace shared among processes.� Shared-memory multiprocessors { Applica-tions for shared-memory multiprocessors, like theBBN Buttery or the Sequent, are typically pro-grammed with languages that support shared vari-ables with access-exclusion and synchronizationmechanisms like monitors, such as found in Con-current Pascal, or with semaphores such as foundin Mach [BRS+85]. A theoretical model for theseasynchronous shared-memory machines is found inthe APRAM [CZ89].� Highly-parallel processors { Applications fordistributed-memory machines such as the CM-2 orthe NCube are programmed using data-parallel op-erations and barrier synchronization. Languagesused to program machine designs such as the CMand the UltraComputer include speci�c featuresthat reect the fundamental organization of the ma-chine. The PRAM model [FW78] presents a familyof abstract computational models, based on lock-step execution and synchronously updated sharedmemory, for this class of machines.1.3. Towards a common foundationThe proliferation of machines and programminglanguages for parallel computing creates a particu-larly strong need for a common prototyping languagein which parallel applications can initially be devel-oped independently of the target machines, and thenspecialized to run on particular target machines as de-sired.We have developed such a common foundation forthese various machinemodels. Our foundation is smalland spartan, yet allows for higher-level control ab-stractions to be built up using type abstraction andsyntax extension features. The spartan set of controlprimitives together with higher-level extensions allowsus to accommodate elements of each style. A common

foundation also facilitates the prototyping of heteroge-neous systems, such as a loosely coupled system con-taining Crays and Connection Machines linked over ahigh speed network, whose concurrent parts must cur-rently be programmed following di�erent models.1.4. Our approachOur language starts with rich data models and op-erators along the lines of SETL [SDDS86, BDL89] andREFINE [Ref88], which employ the high-level math-ematical notions of sets, tuples (or sequences), andmaps (or relations). We also incorporate metapro-gramming capabilities found in REFINE for syntacticlanguage extension and transformation.We then extend this base by allowing statements tobe �rst-class objects, that is, to be themselves valuesin the data model. This permits us to express manynotions of execution-control in terms of operators oversequences of statements. Constructs for alternative,repetitive, nondeterministic and probabilistic execu-tion may all be expressed in this fashion. Next weaugment this framework with a foundation for parallelprogramming that relies on a shared-memory logicalmodel.In a nutshell, our language supports parallelismwith one simple parallel composition operator, \k",which speci�es \cobegin/coend"-like parallelism un-constrained by any restrictions on atomicity or tem-poral order of component execution. Communicationbetween concurrent processes is through shared vari-ables. We augment this model by providing a small setof mechanisms which can partition the initial globalstate into shared and private variables, where eachprocess receives an independent copy of the privatestate. These private copies are independently up-dated, and may be \merged" back into the global stateat speci�able barrier synchronization points: at thosepoints a subset of the merged state may be reectedback into each private copy. We call this the barrier-merge model.In the rest of this paper we present the technicaldetails of our language. First we give a brief summaryof the data types and sequential control constructs.We then discuss our basic control constructs for paral-lelism. To demonstrate their broad expressive power,these constructs are used to specify the general formsof totally asynchronous Gauss-Seidel relaxation, andthe phased-synchronous Jacobi variant. Our languageis then used to express the Shiloach-Viskin algorithmfor deriving the connected components of a graph.This example serves well to show how we can cap-ture the CRCW model of PRAM. We conclude with adiscussion of re�nement strategies, related work, anddirections of ongoing research. A more detailed de-scription of Proteus can be found in [Nyl91].2. Basic features of ProteusThe core of our language is a conventional imper-ative notation to the degree that it is assignment-based and block-structured; program state is main-



� Statements: assignments, procedure calls� Guarded commands: <expr> ! <stmt>� Operators over statement sequences: Syntactic abbreviationSequence: seq [S1; : : : ; Sn] (S1; : : : ;Sn)Choice: alt [B1 ! S1; : : : ; Bn ! Sn] (B1 ! S1[] : : : []Bn ! Sn)Repetition: rep [B1 ! S1; : : : ; Bn ! Sn] (B1 ! S1[] : : : []Bn ! Sn)�Parallel Composition: par [P1; : : : ; Pn] (P1k : : : kPn)Figure 1: Control primitives in Proteustained in typed, lexically-scoped variables, and assign-ment statements or procedure calls modify this state.However, Proteus includes a number of high-level pre-de�ned data types such as sets and sequences.Sets and sequences may be constructed by enumera-tion or by generation based on another set or sequence.Generators are of the form:fx in set j pred(x) : expr(x)g (set)[x in sequence j pred(x) : expr(x)] (sequence)Note that, like UNITY, iterators are speci�ed �rst, fol-lowed by predicates and lastly expressions comprisingelements in the set or sequence. For example,fi in f0::5g j (i < 3) : i*ighas value f0; 1; 4g. Standard operations on sets andsequences are present, such as concatenation and in-dexing on sequences, and union and arbitrary choiceon sets. Also present is the APL-like reduction oper-ation f=S which applies a binary function f betweenthe elements of sequence S. For example, +=[1; 2; 3; 4]is (1+2+3+4) or 10. The scan operation f==S com-putes the sequence of reductions over all pre�xes of asequence. We note that these examples, and thosethat appear later, are expressed using a provisionalsyntax that is likely to change.Functions and statements are also values in Pro-teus. For example, the assignmentf := func(n) (return n+x);yields as a value for f the closure of the function inthe lexically-scoped environment. As a result, higher-order functions such as the reduction operation can bede�ned directly, as is the case in ISETL [BDL89].However, unlike SETL or ISETL, statement valuescan also be formed. This allows the expression offamiliar control constructs { such as sequential com-position { as operators over sequences of statements,yielding a exible and extensible control regime. Fig-ure 1 summarizes a number of control operators oversequences of statements and the familiar syntax thatmay be used when all of the statement values are ex-plicit rather than generated.The power of combining sequence generators withstatement values is illustrated by the following exam-ple, with performs a sort of the sequence s.

[i; j in [1::#s] j i < j :s(i) > s(j)! s(i); s(j) := s(j); s(i)]�Given an n element sequence s, the generator producesa sequence of n(n + 1)=2 guarded commands [Dij78],each of which can exchange a speci�c pair of out-of-order elements of s. This statement sequence has allguards false precisely when s is an ordered sequence.Hence execution of this statement sequence using therep operator | corresponding to Dijkstra's repetitiveconstruct [Dij78] which repeatedly executes one com-mand selected arbitrarily from those with true guards| will nondeterministically exchange out-of-order ele-ments of s and terminate when the sequence is sorted.An additional consequence of including statementsas values is that it permits a simple representation of aProteus program as a Proteus value. Hence, like PCN[CT90] and LISP, this permits metaprogramming.3. Constructs for concurrencyHaving presented some basic concepts of the lan-guage we now turn to features supporting the con-struction of parallel programs.3.1. Parallel compositionWe postulate only one notion of concurrent com-position. The statement (P1kP2) speci�es concurrentexecution of the two statements P1 and P2 which wecall processes. No assumptions about atomicity, in-terleaving, or relative rates of progress of P1 and P2are made. That is, in our model of execution each pro-cess is viewed as a collection of events that inspect andmodify a shared state, ordered by temporal constraintssuch as precedence or simultaneity. In the compo-sition (P1kP2) we place no additional constraints onthe temporal ordering of events that constitute theparallel execution of P1 and P2, beyond those impliedby explicit synchronization commands. This yields for(P1kP2) a partially ordered set of events from P1 andP2.This lack of constraint is very close in spirit to theparallel composition operator of PCN [CT90], whichalso makes no assumption about atomicity or inter-



� Shared Memory Model: communication through global state� Parallel Composition: par [ (private v1; : : : ; vk using f ; P1) ,: : : ,(private v1; : : : ; vk using f ; Pn) ]or (private v1; : : : ; vk using f in P1k : : : kPn)� Synchronization and await [B1 ! S1; : : : ; Bn ! Sn]Communication: merge vi0 ; : : : ; vk0Figure 2: Constructs for concurrencyleaving. To control interference in our model of un-constrained parallelism, Proteus relies on constructswhich manage isolation and sharing of state.3.2. Shared and private stateAccessibility of variables by P1 and P2, as well assynchronization, is speci�ed through syntactic mech-anisms independent of the \k" operator. We achievecontrolled access by modeling a division of state intodistributed and shared memory through the introduc-tion of private and shared variables. Our techniqueexploits the standard scope rules for block-structuredlanguages, where the set of variables in the state thatare accessible is determined statically, and local decla-rations mask surrounding declarations. Within a par-allel composition each process can reference any vari-able visible according to these scope rules; but noweach non-local variable is speci�ed to be in one of twodisjoint sets: private and shared variables. A sharedvariable is a single entry in the state, whereas a pri-vate variable has an entry in each process in the paral-lel construct which shadows the entry in the enclosingscope. The initial value of a private variable v is thesame in all processes in the construct and is the valueof v in the enclosing scope. Operations on shared vari-ables may interfere with each other since they all referto the same variable, but operations on private vari-ables can never interfere. This is in contrast to PCNwhich prevents interference by constraining updatableshared variables to be write-once (\permanents").Figure 3 illustrates how this concept of privatevariables naturally �ts with standard scoping rules.We assume that by default all non-local variables areshared, and hence the names of private variables mustbe declared in each process. In this example, theshared variable a is seen by both P1 and P2, but pri-vate copies of c are held by each. Finally, we also notethat these shared and private variables have visibilityanalogous to the \shared" and \value" declarations inOrca [BT88].3.3. Barrier synchronization andmerging private stateWhile we have discussed how we can initially dis-tribute information down from global state to private
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Figure 3: Private and shared variablescopies for each process, we have not yet given mech-anisms by which processes can communicate informa-tion from the private state into global, nor mecha-nisms by which they can access this new global statewhen it is shadowed by a private declaration. Themethod for doing this is a simple primitive combin-ing two-way communication and synchronization. Thebarrier-merge operationmerge vi0 ; : : : ; vk0may be invoked within the processes Pi, and delaysthe process containing the operation until all otherprocesses in the composition have reached a mergeoperation. This e�ects barrier synchronization.At this point, each private variable has its values inall processes combined under some speci�able mergingfunction (for example a function arb that arbitrarilychooses one value from among the processes), and theresult updates the value of the corresponding variablein the enclosing scope. This e�ects updating the globalstate from the private state by combining private val-ues using a speci�ed merge function. We then projecta portion of this merged state back down into each pri-vate state. The private variables vi0 ; : : : ; vk0 in eachprocess are updated with the value of the shadowedvariable in the enclosing scope. This e�ects reection



of global into private state. If the vi0 ; : : : ; vk0 speci�ca-tion is omitted, all private variables are updated fromthe enclosing environment. Furthermore, an implicitmerge operation occurs at the end of every parallelcomposition, so that the �nal state of a parallel com-position is determined by merging the �nal values ofits named private variables.The exact nature of the merge function f can beexplicitly speci�ed through the \private: : :using f"declaration. This speci�es that every merge oper-ation is to apply, for each private variable, the re-duction of the binary operation f across the orderedsequence of all processes' values, yielding the globalupdate. This is similar in spirit to other uses of com-bining functions to resolve conict in message colli-sions [Sab88].When combining a variable's value from each of theprocesses, a key consideration is whether the variablehas changed since the last merge operation. Conse-quently we de�ne the combining function to apply onlybetween the changed values. Formally, for the com-bining operation we augment the value domain with anew value ? (unde�ned), indicating unchanged vari-ables, which acts as an identity for every merge func-tion. For example, the programs := 5;(private s using arb in [x := 0 k s := 10])must yield 10 instead of 5, since s is not assigned in the�rst process. With this de�nition the arb combiningfunction models the arbitrary choice write semanticsof the CRCW PRAM. Since we are frequently con-cerned with PRAM algorithms, for the purposes ofthis paper arb is the default merge function.It is also interesting to note that our private stateand merge construct generalizes UNITY simultaneousassignment. The UNITY multiple assignmentx; y; z := p(x; y); q(x; y); r(x; y; z)indicates that the values for x, y, z are all fetched,after which the expressions p, q, r are evaluated, andthe result is stored. This is just a special case of ourarb parallelism with fully private state:(private x,y,z inx := p(x; y; z)ky := q(x; y; z)kz := r(x; y; z) )In particular, we can give a meaning to \x, x := 1,3", whereas UNITY requires that only identical valuescan be simultaneously assigned to the same variable.We de�ne our multiple assignment statement using theabove technique.Indeed, having all variables private (simultaneousassignment) or all variables shared (free parallel) rep-resent extrema on a spectrum of what variables areshared between the state. Since sometimes we maywant most variables private, it might be easier to nameshared exceptions, instead of assuming that all vari-ables are shared and namingprivate exceptions. Thisobservation leads to a more general technique for ex-ception naming:allsharedexcept v1; :::; vk

allprivateexcept v1; :::; vkwhich encompasses carving the state space from eitherend.3.4. Point synchronizationOur last control primitive for parallelism is a con-ditional await construct. The \point synchronization"operation:await [B1 ! S1, : : : , Bn ! Sn]waits for a true guard Bi and then executes the guardand statement Bi ! Si atomically. In other words,it delays the process containing the operation un-til a state is reached in which one of the predicatesBi holds, and then executes the corresponding Si inthat state while excluding all other processes. It cap-tures both the concepts of Hoare's conditional wait(\wait(B)") [Hoa74] and of selective communication[Hoa85]. Furthermore,await [true! S]is equivalent to atomic execution of S; as a shorthandwe write this as � S �. In combination with parallelcomposition, this can e�ect interleaving. For example:� a := a+ 1� k� a := a+ 4�has the meaning a := a + 5. This illustrates howProteus can readily capture the semantics of UNITY'sstatement-level atomicity.The barrier-merge primitives can also serve as afoundation for extensions to other models of concur-rency. A larger demonstration of their e�cacy is theirability to be extended to express message-passing, inthe simplest case the blocking communication of CSP.CSP primitives for reading and writing can be easilydeveloped by modeling the message queues for eachchannel as a shared sequence, and ensuring mutualexclusion with await. In a similar fashion we canbuild Linda using shared message queues and somepattern-matching capabilities of our language.4. Expressing synchronous andasynchronous parallelismWe now present a simple example to illustrate thediversity of parallel computations that can be accom-modated in Proteus. The problem considered is thecomputation of a �xed point for a vector valued func-tion f . What is required is to �nd a vector Y 2 Rn(for some arbitrary domain R) such that Y = f(Y ).This problem is characteristic of a wide range of sci-enti�c computations in the solution of linear systemsand di�erential equations.The technique used is �xed point iteration, i.e. the�xed point Y obtained through repetition of Y :=f(Y ). In the parallel computation of the �xed point,we distribute the computation using n functions fi,each of which updates Yi using Yi := fi(Y ). The�xed point of f is reached when all fi have reached



a �xed point. The parallel computation can be struc-tured synchronously (Jacobi iteration) in which allcomponents of Y are simultaneously updated, or asyn-chronously (Gauss-Seidel iteration) in which compo-nents are updated one at a time, and the most recentlycomputed values of other components are used.If we let f(i; Y ) represent the computation fi(Y ),then a totally asynchronous parallel version of thiscomputation can be expressed in Proteus as follows:par [ i in [1..n] : (true ! Y[i] := f(i,Y))*]where the vector Y is a shared variable. This corre-sponds to n processes which continuously and inde-pendently update their respective components of Y .Of course this computation does not terminatewhen the �xed point is reached. To do so it is nec-essary to detect the �xed point and this will involvesome synchronization. A great variety of terminationdetection approaches have been studied for problemsin this class (e.g. [DS80], [CM88]) and here we ex-press one such solution due to Dijkstra that admits arelatively large amount of concurrency in the compu-tation.s := false;E := [i in [1..n] : false];par (f i in [1..n] : Update(i)g with Detect())The computation consists of n Update processesand one Detect process. The process Update(i) isgiven by( not s ! var q,i,V;� D[i] := true �;seq [j in [1..n] : � V[j] := Y[j] �];q := f(i,V);q = V[i]! � E[i] := D[i]�;q 6= V[i]! (� Y[i] := q �;seq [ j in [1..n] :�D[j] := false�;�E[j] := false�;]))*and the Detect process is simply( not s ! � s := and / E �)*.In this solution q,i and vector V are local variables,and all remaining variables are shared. The state-ments that must be executed atomically by each Up-date process all involve simple references or assign-ments to the shared state, a condition that is usuallyassumed to be enforced in a shared-memory model.Hence the Update processes in this Proteus programmodel an interlock-free implementation on a shared-memory multiprocessor. The Detect process requiresexclusion on the evaluation of the reduction and / E.A synchronous determination of the �xed point canalso be expressed conveniently in Proteus. In the syn-chronous case we may think of the evaluation of thefi proceeding in \rounds". After each round, Y isupdated at every point. To express this case in the

program below we let Y and s be private variablesthat are merged after each iteration.s := false;par [ i in [1..n] :private s using and; private y using arb;(not s ! v := f(i,Y);s := ( v = Y[i]);Y[i] := v;merge;)*]The merge required of the private Y variables isthe PRAM merge to provide pointwise update of theshared Y (there is no collision, so combining is not anissue), while the merge required for s is to combineall values using logical \and" reduction. The mergedvalue of s controls termination.The examples above illustrate that both the syn-chronous and asynchronous formulations of this par-allel computation can readily be expressed in Proteus.5. An example: the Shiloach-VishkinalgorithmWe now give an application of our language in thespeci�cation of the Shiloach-Vishkin parallel connec-tivity algorithm presented in [SV82] using the CRCWPRAM execution model. The objective of the al-gorithm is to identify the connected components ofan undirected graph G with vertices V and edges E,speci�cally by assigning the same label to each ver-tex within a connected component while giving eachcomponent a unique label.Informally, the algorithm as described by Shiloachand Vishkin is as follows. We are given an undirectedgraph G with n vertices and m edges. We representthe vertices of the graph G as numbers in the range1..n, and the edges as a set E of pairs of vertex num-bers (both (v; w) and (w; v) are in E if (v; w) is anedge in G). To record the connected components, weuse an auxiliary map D which holds, for each vertex,a pointer to another vertex or to itself. D represents apointer graph G0 of edges (v ! D(v)) which, althoughchanging throughout execution, will always be a forestof rooted trees plus self-loops. By the end of the algo-rithm, for each vertex v, D(v) is constructed to pointto the smallest numbered vertex in its connected com-ponent in G, so that the vertices in each connectedcomponent form a rooted star in G0.The algorithm begins by implicitly allocating a pro-cessor to each vertex and to each edge. Each D(v) isinitialized to v, thus making each vertex in the pointergraph a root. The algorithm then repeats the follow-ing steps until D is stable:1. Shortcutting: paths in G0 are halved in lengthby pointer doubling at each vertex v: D(v) :=D(D(V )).2. Hooking trees onto neighbor's trees: Each root vin G0 (and each of its children v before short-cutting) tries to attach its tree to a neighboring



smaller-numbered component reached by someedge (v; w) in G. We \hook" by redirecting theroot pointer of the G0-tree to the neighbor w'ssmaller-numbered G0-parent.3. Hooking stagnant trees: For trees in G0 whoseroots are stagnant (nothing was just shortcut toit nor attached to it), we try hooking roots andchildren as above, except to any other di�erentcomponent, not just smaller-numbered.4. Shortcutting again.We faithfully express this algorithm in Proteus inFigure 4, capturing CRCW PRAM behavior by us-ing independent-state parallelism and explicit barriersynchronization to combine the independent states ateach step.In prototyping the above algorithmby transcriptioninto ISETL, it was discovered that although the algo-rithm correctly yielded connected components, it didnot meet the time complexity which was establishedfor it in [SV82]. Examination revealed an apparentprogram error due to subtleties in CRCW write se-mantics. Speci�cally, when hooking stagnant trees,even though D(v) may be attached to many vertices,only the actual vertex attached to (as determined bythe merge of D) should change its value of Q. In thealgorithm in Figure 4 we correct this by merging andtesting for successful update of D before updating Qin step 2.6. Execution of prototypesWhile programs in Proteus should be able to runon parallel platforms, it is not our intention thatany single program execute well on all parallel plat-forms. Early prototypes that explore speci�cations arelikely to be expressed independent of a speci�c classof platforms, and initially executed on sequential ma-chines. Prototypes can then evolve to use Proteus inmore restricted ways that are in close correspondencewith a particular architecture or programming model.In common with other architecture-independent lan-guages, re�nement can help achieve this architecturalspecialization.Re�nement and architectural specialization:Re�nement strategies whereby a program is special-ized to a particular subset of the language and mech-anisms for the translation of such a subset to run ona parallel platform are being developed in conjunctionwith our colleagues at the Kestrel Institute (the thirdmember of our CPL team), building on their envi-ronments for transformational program development.The KIDS system (Kestrel Interactive DevelopmentSystem) [Smi90] has been used to develop programsfrom speci�cations, and includes a number of algo-rithm design tactics and data re�nement transforma-tions [BG90].We are investigating new tactics to help make ex-plicit the parallelism implicit in high level programs.For example, a tactic to transform the implicit data-parallelism in set and sequence operations to a more

explicit form could help in the re�nement of such aprogram to run on a highly-parallel machine. Weare looking to data-re�nement techniques to e�ect thechange of notation required to yield programs suitablefor execution on particular parallel platforms.Targeting intermediate languages: Providingre�nement techniques to target many speci�c archi-tectures is likely to be prohibitive, hence our strat-egy is to re�ne to existing or proposed intermediatelanguages which permit execution on a broad class ofparallel platforms. For example, we intend intially toreduce data-parallelism to the set of parallel vectoroperations provided by the CVL library [Ble90], de-veloped by Guy Blelloch and colleagues at Carnegie-Mellon as a machine-independent library used in theinterpretation of the data-parallel intermediate codeVCODE [BC90]. Likewise, we intend to reduce pro-cess parallelism to the set of procedures provided withthe threads facility of Mach [BRS+85].7. Related workThere are a wide variety of programming languagesthat are cited as being useful for prototyping sequen-tial computations. These languages include APL,SETL, Prolog, and OPS-5, to name a few. Proteus fol-lows the approach typi�ed by SETL in which high-levelprede�ned data types supply the bulk of the expres-sive power. This approach is important for Proteus be-cause it is the fundamental source of data-parallelism.Early forms of these ideas appear in CSP [Hoa85] andare developed further in UNITY [CM88].For the prototyping of concurrent systems, thereare a plethora of candidate parallel languages, whichmight be roughly divided into the following classes.� Languages with widely translatable logical mod-els, such as Linda's distributed data structures[CGL86], the synchronization-variable methods ofStrand [FT90] and PCN [CT90], or the data-parallelabstraction of the Paralation model [Sab88].� Languages which incorporate a large variety of par-allel primitives, such as Ease [Zen90] and Alloy[MH90].� Wide-spectrum parallel languages that rely on re-�nement from architecture-independent speci�ca-tion. Notable wide-spectrum parallel languagee�orts include Crystal [Che86] and variants ofthe Bird-Meertens functional formalism [Ski90].UNITY, although not a wide-spectrum notation, is,as its name suggests, a particularly elegant nota-tion for describing a large range of parallel and dis-tributed computations.We see Proteus as falling into the last category. Allof these wide-spectrum languages support a methodol-ogy in which parallel speci�cations are re�ned to par-allel programs for a particular class of machine. Inthe case of Crystal, UNITY, and the Bird-Meertensformalism the re�nement steps are justi�ed formallythrough inference steps or algebraic transformations.



Algorithm (Shiloach+Vishkin):Let V = [1..n] be a set of vertex labels, andE = f (v,w) j v,w in V and 9 an edge from v to w in G gs,t := 1,1; | Iteration numberD := V; | Pointer graph: every node initially points to itselfDp := V; | Previous values of D in step s-1Q := [i in V : 0]; | Last step D(i) updated (not stagnant node if =s).( s=t !par [i in V : private D; | ShortcuttingDp[i],D[i] := D[i],D[D[i]];D[i]6=Dp[i]! Q[i] := s;];par [[v,w] in E : private D,Q; | Hook treesvar root,nbor := D[v],0;D[v]=Dp[v] and D[w]<D[v]! nbor,D[D[v]] := D[w],D[w];merge;D[root]=nbor ! Q[nbor] := s; | See if hook chosen in CRCWmerge; | Hook stagnant trees nextD[v]=D[D[v]] and Q[D[v]]<s and D[v]6=D[w]! D[D[v]] := D[w];];par [i in V : private D,t; | Shortcutting and detection of terminationD[i] := D[D[i]];Q[i]=s ! t := t+1];s := s+1;)* Figure 4: Shiloach-Vishkin parallel connected-components algorithmIn comparison with these languages Proteus sup-ports fundamental parallel abstractions at a higherlevel (e.g. barrier merge) than UNITY and at a lowerlevel than Crystal (where concurrency is implied byindependence in the equational speci�cation). As theprototyping process yields a procedural speci�cationrather than an equational or predicate logic speci�ca-tion, Proteus programs can refer to shared state explic-itly and must use the barrier-merge or the await syn-chronization primitives to control interference betweenparallel operations. Although UNITY programs alsomanipulate shared state, the control of interference isimplicit by constraining execution to statement-levelinterleaving.8. Summary and future workIn this paper we introduced Proteus, a prototypinglanguage whose constructs for expressing parallelismcan serve as a foundation for embracing many con-current programming models. Synchronous and asyn-chronous parallel programs may be expressed withbarrier and conditional synchronization, while dis-tributed and shared memory computation are ex-pressed with the designation of variables as private orshared across a parallel composition. With these facil-ities we are able to express such diverse concurrencymodels as PRAM and CSP within a single setting.Proteus thus provides a reasonable foundation for theconstruction of a wide spectrum of parallel programs,
when used in conjunction with re�nement techniquesfor architectural specialization. While we have pre-sented here only an informal semantics for Proteus, weare developing a formal operational semantics basedon the lambda calculus.Ongoing work in the area of the Proteus languagedesign is concentrated on two areas. First, we are areinvestigating the inclusion of higher-level features fordistributed programming, using the notion of concur-rent objects as the basis of an approach to controllingprocess parallelism [Agh90]. Second, we are investi-gating the modeling of time-constrained computationin the form of annotations for the relative executionrates of processes.Finally, we are currently involved in the implemen-tation of key features of the language and re�nementsystem to assess the suitability of the approach. Thelong-term goal of the work is to incorporate Proteusinto a prototyping system that links several prototyp-ing languages, targeting di�erent problem domains, toform an e�ective vehicle for the development and as-sessment of prototypes.AcknowledgementsThe authors would like to thank Mike Landis andDan Palmer for their constructive advice and com-ments.
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