
In: Proceedings of the 13th IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1992, pp. 89-99.

Scheduling Sporadic Tasks with Shared Resources in
Hard-Real-Time Systems

Kevin Jeffay*

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC 27599-3175
jeffay@cs.unc.edu

Abstract

The problem of scheduling a set of sporadic tasks that
share a set of serially reusable, single unit software re-
sources on a single processor is considered. The correctness
conditions are that (1) each invocation of each task com-
pletes execution at or before a well-defined deadline, and (2)
a resource is never accessed by more than one task simul-
taneously. We present an optimal on-line algorithm for
scheduling a set of sporadic tasks. The algorithm results
from the integration of a synchronization scheme for access
to shared resources with the earliest deadline first algo-
rithm. A set of relations on task parameters that are neces-
sary and sufficient for a set of tasks to be schedulable is
also derived. Our model for the analysis of processor
scheduling policies is novel in that it incorporates mini-
mum as well as maximum processing time requirements of
tasks. The scheduling algorithm and the sporadic tasking
model have been incorporated into an operating system
kernel and used to implement several real-time systems.

1 . Introduction

Hard-real-time systems are commonly structured as a set
of tasks that are invoked repetitively. Two frequently
studied classes of repetitive tasks are periodic tasks, i.e.,
tasks that are invoked at constant intervals [16], and
sporadic tasks, i.e., tasks that are invoked at random but
with a minimum inter-invocation interval [17]. In both
cases, each invocation of a task must complete execution
before a well-defined deadline. Our contribution to the
study of repetitive, real-time workloads is the consideration
of tasks that share a set of serially reusable resources. Our
notion of a resource is a software object, e.g., a data
structure, that is shared among a group of tasks and must
be accessed in a mutually exclusive manner. Operations on
a shared resource therefore constitute a critical section. For
example, within the context of a concurrent programming
language in which shared data is encapsulated within a
monitor [14], a resource would be an individual monitor.

We consider a characterization of a hard-real-time system
as a set of sporadic tasks that share a set of serially
reusable software resources. This paper examines the prob-

* Supported by a grant from the National Science Foundation
(number CCR-9110938).

lem of scheduling sporadic tasks that require exclusive ac-
cess to a set of software resources. The problem is to se-
quence a set of sporadic tasks on a uniprocessor such that
in all cases it is guaranteed that:
• each invocation of each task completes execution at or

before its deadline, and
• a resource is never accessed by more than one task

simultaneously.
Our work makes two contributions to the theory of real-

time scheduling and resource allocation. The first is the de-
velopment of an on-line algorithm for sequencing a set of
sporadic tasks on a uniprocessor such that the above crite-
ria are met. The algorithm results from the integration of a
synchronization scheme for access to shared resources with
the earliest deadline first algorithm of Liu and Layland; a
preemptive, priority-driven scheduling algorithm with dy-
namic priority assignment [16]. The algorithm is optimal
with respect to the class of scheduling policies that do not
use inserted idle time [6]. The algorithm is optimal in the
sense that it can schedule a set of tasks, without inserted
idle time, whenever it will be possible to do so. The sec-
ond contribution is a derivation of a set of relations on task
parameters that are necessary and sufficient for a set of
tasks to be schedulable. With these conditions one can effi-
ciently decide whether it will be possible to schedule a set
of tasks without executing or simulating the execution of
the tasks. Our model for the analysis of processor schedul-
ing policies is novel in that it incorporates minimum as
well as maximum processing time requirements of tasks.

This work is part of a larger design system for hard-real-
time systems. The on-line scheduling algorithm we
develop has been implemented in the YARTOS operating
system kernel [9,12] and the sporadic tasking model we
present has been used to implement and analyze several
fully functional real-time systems. These include a
workstation-based conferencing system using digital audio
and video [8], an interactive 3-dimensional graphics display
system used for research in virtual realities [5], and a
HiPPI data link controller [2].

Several approaches to scheduling real-time tasks that
share resources have been described in the literature
[3,4,10,15,17-21]. Most consider the case where tasks are
periodic and develop heuristic algorithms for scheduling the
tasks. The model we present is simpler than many pre-
viously considered, however, for this model we are able to

2

establish fundamental optimality and complexity proper-
ties. Moreover, our experience in applying the model to ac-
tual systems indicates that it is powerful enough to build
actual systems without undue effort [13]. We focus on the
study of sporadic tasks for two reasons. First, our experi-
ences indicate that in practice sporadic tasks more naturally
capture the real-rime behaviors of time constrained compu-
tational processes. Second, when tasks have preemption
constraints (i.e., share resources) scheduling problems for
periodic tasks are intractable. For example, Mok has
shown that the problem of deciding if it is possible to
schedule a set of periodic tasks that use semaphores to en-
force mutual exclusion is NP-hard [17]. The general prob-
lem of deciding if it is possible to schedule a set of peri-
odic tasks non-preemptively is NP-hard in the strong sense
[11]. Moreover, if an optimal non-preemptive scheduling
algorithm exists for periodic tasks, then P = NP.

The following section presents our model of a real-time
system in greater detail and defines the objective of our
study. Section 3 examines the problem of scheduling tasks
that use only a single resource. An optimal algorithm is
developed for this special case. Section 4 generalizes this
algorithm for tasks that share a set of resources. Section 5
discusses an implementation of the scheduling policy and
revisits the assumptions and restrictions in our model.

2 . System Model

We define a hard-real-time system as a set of sporadic
tasks that share a set of serially reusable, single unit soft-
ware resources. A sporadic task is a sequential program that
is invoked in response to the occurrence of an event. An
event is a stimulus that may be generated by processes ex-
ternal to the system (e.g., an interrupt from a device) or by
processes internal to the system (e.g., the arrival of a mes-
sage). We assume events are generated repeatedly with a
(non-zero) lower bound on the duration between consecu-
tive occurrences of the same event. Therefore, each sporadic
task will be invoked repeatedly with a lower bound on the
interval between consecutive invocations. Sporadic tasks
are well-suited for implementing computational processes
that are required to execute periodically (with a constant in-
terval between activations) or in response to recurring
asynchronous events (with a minimum inter-arrival time).
During the course of execution, a task may perform opera-
tions on shared data resources. Resources are serially
reusable and must be accessed in a mutually exclusive
manner. This model of software resources is motivated by
the use of shared memory for efficient communication and
synchronization between tasks.

Formally, a real-time system is a set of n sporadic tasks
{ T1, T2, ..., Tn} and a set of m serially reusable, single
unit resources {R1, R2, ..., Rm}. A task is described by a
3-tuple Ti = (si, {(cij , Cij , r ij) | 1 ≤ j ≤ ni}, pi) where:
si –– the release time of task Ti : the time of the first

invocation of task Ti,
{ (cij , Cij , rij) } –– a set of ni phases where for each phase:

cij the minimum computational cost: the minimum
amount of processor time required to execute the jth

phase of task Ti to completion on a dedicated
processor,

Cij the maximum computational cost: the maximum
amount of processor time required to execute the jth

phase of task Ti to completion on a dedicated
processor,

rij the resource requirement: the resource (if any) that is
required during the jth phase of task Ti, and

pi –– the period of the task: the minimum time interval
between invocations of task Ti.

The “period” of a sporadic task is simply the minimum
time between any two successive invocations of the task
[17]. In general an arbitrary amount of time may lapse be-
tween successive invocations of a task. Each task Ti is par-
titioned into a sequence of ni disjoint phases. A phase is a
contiguous sequence of statements that together require ex-
clusive access to a resource. A task may have multiple
phases that require the same resource. The resource required
by Ti during the jth phase of its computation is represented
by an integer r ij , 0 ≤ r ij ≤ m. If r ij = k, k ≠ 0, then the j th

phase of Ti’s computation requires exclusive access to re-
source Rk. For a given invocation of Ti, in the interval be-
tween the time phase j commences execution and the time
it completes execution, no other phase of a task that re-
quires resource Rk may execute. If r ij = 0, then the j th

phase of Ti ’s computation requires no resources. In this
case the j th phase of Ti imposes no mutual exclusion con-
straints on the execution of other tasks. Within the context
of a concurrent programming language with monitors, if
r ij ≠ 0, then the j th phase of Ti would consist of a call to
an entry procedure of a monitor that encapsulates resource
r ij . If r ij = 0, then the j th phase of Ti would consist of ei-
ther code in the main body of the task or reentrant proce-
dure code called by the main body of the task. Note that
since different tasks may perform different operations on a
resource (e.g., call different monitor entry procedures), it is
reasonable to assume that phases of tasks that access the
same resource have varying computational costs. If a phase
of a task requires a resource then the computational cost of
the phase represents only the cost of using the required re-
source and not the cost (if any) of acquiring or releasing the
resource. A minimum cost of zero indicates that a phase of
a task is optional. A fundamental restriction is that each
phase of each task will require access to at most one
resource at a time. Other paradigms of resource usage and
task decomposition will be discussed briefly in Section 5.

Throughout this paper we assume a discrete time model.
In this domain all task parameters as well as all values of
time are expressed as integer multiples of some indivisible
time unit. Without loss of generality, assume these
quantities are integers.

The behavior of a sporadic task is given by the follow-
ing rules. Let tk be the time of the kth invocation of Ti.

3

i) The initial invocation of Ti occurs at time t1 = si.
ii) If Ti has period pi, then for all k ≥ 1, the (k+1)st

invocation of Ti occurs at tk+1 ≥ tk + pi ≥ si + kpi.
iii) Each invocation of Ti consists of the execution of ni

phases in sequence. The execution of an invocation
of Ti commences in phase 1. The j th phase of each
execution of Ti does not commence until the (j – 1)st

phase has terminated.
iv) Execution of the j th phase of Ti requires at least cij

units of processor time and at most Cij units of
processor time, Cij ≥ cij ≥ 0.

v) The kth invocation of Ti must be completed no later
than time tk + pi. This time is commonly referred to
as the deadline of the kth invocation of Ti.

If the kth invocation of task Ti occurs at time t, then the
closed interval [t, t+pi] is called the kth invocation interval,
or simply an invocation interval, of task Ti. If task Ti is
invoked at time t and does not complete execution at or
before time t + pi, then we say that Ti has failed. A set of
sporadic tasks τ is said to be feasible on a uniprocessor if
it is possible to schedule τ on a uniprocessor such that:
• no task fails, i.e., every invocation of every task

completes execution at or before the end of its
invocation interval, and

• for each task Ti, and for all phases j, 1 ≤ j ≤ ni, if r ij
≠ 0, then the j th phase of each invocation of Ti has
exclusive access to the resource Rr ij

 from the time the

phase commences execution until the phase terminates
execution.
An algorithm succeeds in scheduling a set of tasks if it

can sequence the tasks such that both criteria above will be
met. A scheduling algorithm is said to be optimal if it can
succeed for any task set that is feasible. Our goal is to
develop an optimal uniprocessor scheduling algorithm. In
doing so, we assume that in principle tasks are
preemptable at arbitrary points. However, the requirement
of exclusive access to resources places two restrictions on
the preemption and execution of tasks. For all tasks i and
k, if r ij = rkl and r ij , rkl ≠ 0, then (1) the j th phase of task
Ti may neither preempt the l th phase of task Tk, nor (2)
execute while the lth phase of task Tk is preempted.

3 . Single Phase Task Systems

We first consider the problem of scheduling sporadic
tasks that consist of only a single phase. As will be shown
in Section 4, the general problem of scheduling tasks with
multiple phases can largely be reduced to the problem of
scheduling tasks with only a single phase. The following
sub-section establishes conditions that are necessary for a
set of single phase sporadic tasks to be feasible in the
absence of inserted idle time. Section 3.2 then develops an
algorithm for scheduling such tasks and demonstrates its
optimality.

3 . 1 Feasibility Conditions

Consider a set of single phase sporadic tasks {T1, ...,
Tn}, where Ti = (si, (ci, Ci, r i), pi),1 that share a set of m
serially reusable, single unit resources {R1, ..., Rm}. It
will be useful to refer to the period of the “shortest” task
that uses resource Ri. For resource Ri, let Pi represent this
period. That is, Pi = min

1≤ j ≤n
(pj |r j = i).

Our results rely on the fact that the feasibility of a set of
sporadic tasks is not a function of their release times. If a
set of sporadic tasks is feasible, then the tasks will be
feasible for any combination of release times. A proof of
the following can be found in [11].

Lemma 3.1: Let τ be a set of sporadic tasks. If τ is
feasible then the set of sporadic tasks τ′ obtained from τ
by replacing the release times of tasks with arbitrary values
will also be feasible.

The following theorem establishes necessary conditions
for feasibility.

Theorem 3.2: Let τ be a set of single phase sporadic
tasks {T1, T2, ..., Tn}, sorted in non-decreasing order by
period (for all pairs of tasks Ti and Tj, if i > j, then pi ≥
pj), that share a set of m serially reusable, single unit
resources {R1, R2, ..., Rm}. If τ can be scheduled on a
uniprocessor without inserted idle time, then:

1)
Ci

pi

≤ 1
i =1

n

∑

2) ∀i, 1< i ≤ n ∧ r i ≠ 0, ∀L, Pr i
< L < pi : L≥Ci + L −1

pj

Cj

j =1

i −1

∑

Condition (1) can be viewed as a requirement that the
processor not be overloaded (the cumulative processor
utilization cannot exceed unity). The right hand side of the
inequality in condition (2) is a least upper bound on the
processor demand that can be realized in an interval of
length L starting at the time an invocation of a resource
requesting task Ti is scheduled, and ending sometime
before the end of the invocation interval. For a set of tasks
to be feasible, the processor demand in this interval must
always be less than or equal to the length of the interval. If
this is not the case then a task can fail. Although condition
(2) is semantically similar to the requirement that the
processor not be over-utilized, we will demonstrate that
conditions (1) and (2) are in fact not related. The intuition
behind these conditions is developed further in the proof.

Proof: By Lemma 3.1, it suffices to show that there
exist release times for which conditions (1) and (2) are
necessary for τ to be feasible. We first show that (1) is
necessary. For a set of tasks τ, the achievable processor
demand in the time interval [a, b], written Da,b, is defined
as the maximum amount of processing time required by τ
in the interval [a, b] to complete all invocations of tasks
with deadlines in the interval [a, b]. That is, Da,b is the

1 Since tasks consist of only a single phase, the second
subscript on the parameters C, c, and r will be omitted.

4

T1

T2
 :
 :
Tk
 :

Ti–1
Ti

Ti+ 1
 :
 :

Tn

Time

...

...

0 1 Pr i
+1 L pi–1 pi

Figure 3.1

processing time required, in the worst case, by τ in the
interval [a, b] to ensure that no task fails in the interval [a,
b]. The worst case occurs when tasks are periodic from
point a onward. If a set of tasks τ is feasible, then for all a
and b, a < b, Da,b ≤ b – a.

For all i , 1 ≤ i ≤ n, let si = 0 and let t = p1p2…pn. In
the interval [0, t], tCi/pi is the maximum processor time
that must be allocated to Ti to ensure that Ti does not fail

in the interval [0, t], hence D0,t = t

pi

Ci
i =1

n

∑ = t
Ci

pii =1

n

∑ . If τ is

feasible then it must be the case that D0,t ≤ t, hence
condition (1) must hold.

For condition (2) choose a task Ti, 1 < i ≤ n, such that
r i ≠ 0 (i.e., Ti is a resource requesting task) and pi > Pr i

(i.e., the period of Ti is greater than that of the smallest
task that requests resource r i). Let si = 0 and sj = 1 for all
j, 1 ≤ j ≤ n, j ≠ i. This gives rise to the pattern of initial
task invocations shown in Figure 3.1. Initially only Ti is
eligible for execution. Since inserted idle time is not al-
lowed, Ti must execute in the interval [0,1]. For all L, L >
Pr i

, the interval [0, L] contains at least one invocation of

some task Tk with rk = r i. Since Tk shares a resource with
Ti and since this resource is in use by Ti at time 1, the ini-
tial invocation of Tk may not be scheduled until after the
invocation of Ti made at time 0 has completed execution.
Therefore, to ensure that the initial invocation of Tk does
not fail, the initial invocation of Ti must be completed be-
fore time pk + 1 ≤ Pr i

 + 1. Hence for this choice of release

times, for all L, Pr i
 < L < pi, in the interval [0, L] the

achievable processor demand is D0,L = Ci + L −1
pj

j =1

i −1

∑ Cj

The demand consists of the maximum cost of executing
the initial invocation of Ti plus the achievable processor
demand due to tasks 1 through i–1 in the interval [1, L].
(Note that tasks with periods greater than or equal to pi
have no invocation intervals contained in the interval [1,
L] and hence can not fail
in the interval [1, L] .
Therefore they do not
contribute to the achiev-
able processor demand in
the interval [1, L].) For τ
to be feasible it must be
the case that L ≥ D0,L,
hence condition (2) must
hold. ּ

The constructions in
the proof of Theorem 3.2
characterize the worst case
inter-leavings of task in-
vocations for a set of spo-
radic tasks. In essence, it
will be shown in Section

3.2 that if a set of tasks can be scheduled when invoked as
in Figure 3.1, then the tasks are feasible. The notion of a
worst case interleaving is important as Lemma 3.1 indi-
cates that such an interleaving can always occur during the
execution of any task set.

Some special cases of Theorem 3.2 are worth noting. A
set of single phase sporadic tasks τ where r i = 0, for 1 ≤ i
≤ n, corresponds to a set of tasks with no resources and
hence no mutual exclusion constraints. In such a system a
task would, in principle, be preemptable at any time during
its execution by any other task. In this case condition (2)
is void (the quantification of i is empty) and condition (1)
alone is necessary for feasibility. This agrees with results
reported for the preemptive scheduling of periodic tasks (a
special case of sporadic tasks) [16]. Similarly, if tasks
require resources but the resources are not shared (i.e., only
one task requires each resource) then condition (2) is again
void (the quantification of L is empty for all tasks). At the
other extreme, a set of single phase sporadic tasks in which
for all i, 1 ≤ i ≤ n, r i = k, for some k ≠ 0, corresponds to a
set of tasks that all share a single resource. Such single
phase tasks must be scheduled non-preemptively. In this
case condition (2) applies to all tasks and the feasibility
conditions agree with those reported in [11] for the non-
preemptive scheduling of sporadic tasks.

3 . 2 Scheduling Single Phase Task Systems

We seek an algorithm that will sequence a set of single
phase sporadic tasks on a single processor whenever it is
possible to do so. Such an algorithm must ensure that (1)
all task invocations complete execution before their dead-
line and that (2) the mutual exclusion constraints on the
execution of resource requesting tasks are respected. It is
the latter requirement that motivates the development of a
new scheduling policy. Our approach is to incorporate a
synchronization protocol for mutual exclusion into an ex-
isting real-time scheduling policy. The basis of our
scheduling policy is the preemptive earliest deadline first
(EDF) algorithm [16]. Our choice of an EDF policy is mo-
tivated by the fact that it is an optimal policy both when

tasks have no execution
constraints [16] and when
preemption is not allowed
[11]. The problem cur-
rently under consideration
lies between these two
extremes. We begin with
some definitions.

When a task is in-
voked, if the resource the
task requires is in use by
another task, then the re-
questing task is said to be
blocked; otherwise the
task is said to be ready.
When an invocation of a
task is executing on a

5

...

Time
0 1 2 4 6 8 10 123 5 7 9 11

T3

T2

T1

...

Time
0 1 2 4 6 8 10 123 5 7 9 11

T3

T2

T1

Figure 3.2

processor, the task is execut-
ing. If a task is preempted
while executing then it returns
to the ready state. After com-
pletion of an invocation, and
prior to the first invocation, a
task is terminated. The EDF
scheduling discipline dictates
that at all points in time, the
ready task with the nearest
deadline should be executing.
An EDF scheduler makes
scheduling decisions (dis-
patches tasks) whenever a task
is invoked or terminates. At each of these scheduling
points an EDF scheduler dispatches the ready task with the
nearest deadline; preempting the previously executing task
if necessary. Ties between tasks with identical deadlines are
broken arbitrarily. The EDF scheduling discipline can be
extended to ensure exclusive access to shared resources by
re-examining the concept of an execution deadline. If tasks
share resources then when a resource requesting task Ti is
invoked, it is no longer sufficient for the invocation to
complete execution within pi time units. It can be the case
that a resource requesting task must complete execution be-
fore the end of its current invocation interval. This situa-
tion can occur when an invocation of a task with a deadline
becomes blocked. For example, consider the problem of
scheduling the following task set according to a naive ap-
plication of the traditional preemptive EDF discipline:

τ = { T1 = (2, (1,1,1), 4), T2 = (1, (3,3,0), 10),
T3 = (0, (3,3,1), 20) }.

τ consists of three single phase tasks and one shared re-
source (R1). The initial interleaving of invocations of
these tasks is illustrated in Figure 3.2. Since inserted idle
time is not allowed, task T3 will be scheduled at time 0 as
shown at the top of Figure 3.2. At time 1, task T2 has a
nearer deadline than the executing task T3. Since r2 ≠ r3,
task T2 may preempt task T3 and hence an EDF scheduler
might preempt the execution of T3 at time 1 in favor of
task T2. At time 2 task T1 is invoked and has the nearest
deadline. However, since T1 requires the resource that is in
use by task T3, T1 is blocked by T3 and hence T2 contin-
ues execution at time 2. At time 3, task T2 completes exe-
cution and task T3 resumes execution (since task T1 is
stilled blocked by task T3). This scenario causes task T1 to
eventually fail at time 6. This failure is due to the fact that
at time 2, it is no longer sufficient for the invocation of
task T3 occurring at time 0 to be completed by its nominal
deadline at time 20. Since tasks T1 and T3 share a re-
source, when task T1 is invoked at time 2, the invocation
of task T3 occurring at time 0 must now be completed no
later than time 6; the initial deadline of task T1. (Of course
the initial invocation of task T3 must actually be com-
pleted by time 6 – C1 = 5. It will turn out, however, that
this is not a useful observation.)

The challenge is to quantify
precisely when a task invoca-
tion must be completed. We
claim that an invocation of a
resource requesting task should
have two notions of a deadline:
one for the initial acquisition
of the processor, and one for
subsequen t execu t ion .
Specifically, when a resource
requesting task Ti is invoked at
time tr, the invocation should
have an initial deadline equal to
tr + pi as in traditional EDF

scheduling. This deadline will be referred to as the initial or
contending deadline. Let ts be the time that the invocation
of task T i occurring at time tr is first scheduled
(commences execution). We claim that after time ts, the
invocation of task Ti should have a deadline at time MIN(tr
+ pi, (ts + 1) + Pr i

). Thus, when a scheduler first dispatch-

es an invocation of task Ti, the scheduler will potentially
assign Ti a nearer deadline. This deadline will be referred to
as the execution deadline. Since we assume a discrete time
domain, a resource requesting task Ti has a contending
deadline at all points in time in the closed interval [tr, ts]
and, assuming Ci > 1, has an execution deadline at all
points in the closed interval [ts+1, tc–1], where tc is the
time that the execution of the invocation terminates. (In
the interval between the completion of one invocation and
the start of the next, a task logically has a deadline of in-
finity.) This is illustrated in Figure 3.3 which plots the
deadline of an invocation of a task Ti that has an execution
deadline of (ts + 1) + Pr i

 as a function of time. If a re-

source consuming task has a maximum computational cost
of 1, then it will never have an execution deadline. Non-re-
source requesting tasks require no special treatment. If a
non-resource requesting task Tj is invoked at time tr, the
invocation will have a deadline at time tr + pj for the dura-
tion of its execution. We will refer to our scheme of dy-
namically altering the deadlines of resource requesting tasks
as the dynamic deadline modification (DDM) strategy.

The application of the dynamic deadline modification
strategy to the tasks in the previous example results in the
non-preemptive schedule illustrated at the bottom of Figure
3.2. Under this policy the initial invocation of task T3 has
a contending deadline at time 20 as before. However, once
task T3 is scheduled it will execute with a deadline equal to
MIN(tr + pi, (ts + 1) + Pr i

) = MIN(0 + 20, 0 + 1 + 4) = 5.

That is, at times 1 and 2, task T3 has a deadline at time 5.
When task T2 is invoked at time 1, its invocation will
have an initial deadline at time 1 + p2 = 11. At time 1, T3
has a nearer deadline than T2 and hence an EDF scheduler
will not allow T2 to preempt T3 at time 1.

The imposition of separate deadlines for execution and
initial acquisition of the processor ensures that blocked

6

Time

T i

tr + pitr ts tc

. . .

. . .

T i ’s
Deadline

tr + pi

. . .

Time

ts + Pri + 1

tr + pitr ts tc
. . .

ts+1 tc–1

Figure 3.3

tasks become unblocked as
soon as possible. Although
an invocation of a resource
requesting task may now
execute with a deadline that
occurs before the end of the
invocation interval, this
“deadline” is indeed a dead-
line. We will show that a
task can fail if an invoca-
tion of a resource request-
ing task does not complete
by its execution deadline.

A final point to address
is the mutual exclusion constraints on access to resources.
The combination of EDF scheduling with the dynamic
deadline modification strategy is sufficient for ensuring
mutually exclusion. There is, however, one subtlety in the
case that there exist multiple outstanding invocations with
the earliest deadline. To guarantee that the mutual exclu-
sion constraints are respected, when there exist multiple
tasks with outstanding invocations with the earliest dead-
line, a scheduler must (1) allow the currently executing
task to continue execution if it has the earliest deadline,
and (2) select a task with an outstanding invocation that
has been preempted before selecting any task whose out-
standing invocation has not begun execution. The combi-
nation of an EDF task selection rule with dynamic deadline
modification and tie breaking rules will be called earliest
deadline first scheduling with dynamic deadline modifica-
tion (EDF/DDM). The EDF/DDM scheduling policy is
validated by demonstrating that it is an optimal discipline
(with respect to the class of disciplines that do not use in-
serted idle time) for scheduling a set of single phase tasks
that share a set of resources. To prove optimality it suf-
fices to show that the satisfaction of conditions (1) and (2)
from Theorem 3.2 is sufficient for ensuring that the
EDF/DDM discipline will succeed in scheduling a set of
tasks with shared resources. To demonstrate that the disci-
pline succeeds in scheduling a set of tasks it must be
shown that (1) all invocations of all tasks complete execu-
tion before the end of their respective invocation intervals
and that (2) the mutual exclusion constraints on the execu-
tion of resource requesting tasks are respected. The follow-
ing lemma demonstrates that the EDF/DDM scheduling
discipline enforces the mutual exclusion constraints on
access to resources.

Lemma 3.3: The EDF/DDM scheduling discipline
satisfies the preemption constraints on access to resources.

Proof: It suffices to show that a task that requires re-
source Rj can neither preempt another task that requires Rj
nor execute while such a task is preempted when scheduled
by the EDF/DDM scheduling discipline.2 Let Ti be a Rj
requesting task. Let ts be a point in time at which an invo-

2 Note that the first tie breaking rule ensures that there can
exist only one preempted task with the earliest deadline.

cation of Ti commences
execution. Let t > ts be a
point in time at which this
invocation is either execut-
ing or is preempted. Let Tk
be a Rj requesting task
with an invocation that is
contending for the proces-
sor at time t. Let tr be the
time at which this invoca-
tion by Tk was made.
Under a EDF/DDM sched-
uling discipline, in order

for Tk to preempt Ti or to execute while Ti is preempted,
it must be the case that ts < tr ≤ t (and tr + pk < ts + pi).
The invocation of Tk occurring at tr will have an initial
deadline at time dk = tr + pk. Since Ti is scheduled at ts,
its invocation must have a deadline no later than at di = ts
+ Pj + 1 ≤ ts + pk + 1. Since ts < t, it follows that di ≤
dk. If di < dk, then the invocation of Tk occurring at tr
will not be scheduled until after the invocation of Ti occur-
ring at ts has completed execution. If di = dk, then since
the EDF/DDM scheduling discipline gives priority to the
currently executing task and then to preempted tasks, Tk
will again not be scheduled until after the outstanding
invocation of Ti has completed execution. Therefore, a task
that requires Rj can neither preempt another Rj requesting
task nor execute while such a task is preempted. ּ

Theorem 3.4: Let τ be a set of single phase sporadic
tasks {T1, T2, ..., Tn}, sorted in non-decreasing order by
period, that share a set of serially reusable, single unit
resources {R1, R2, ..., Rm}. The EDF/DDM discipline
will succeed in scheduling τ if conditions (1) and (2) from
Theorem 3.2 hold.

Proof: Lemma 3.3 has shown that the EDF/DDM
scheduling discipline always maintains the mutual
exclusion constraints on access to resources. It remains to
show that the use of the EDF/DDM scheduling discipline
guarantees that tasks will not fail if conditions (1) and (2)
of Theorem 3.2 hold. This will be shown by contradiction.

Assume the contrary, i.e., that conditions (1) and (2) of
Theorem 3.2 hold and yet a task fails when τ is scheduled
by the EDF/DDM algorithm. For a set of tasks τ, define
the actual processor demand, or simply the processor
demand, in the interval [a, b], written da,b, as the least
upper bound on the amount of processing time actually
required by τ in the time interval [a, b] to ensure that no
task fails in [a, b]. If a set of tasks τ is feasible, then for
all a and b, a < b, it follows that da,b ≤ Da,b ≤ b – a. The
proof proceeds by deriving upper bounds on the actual
processor demand (i.e., the achievable processor demand)
for an interval ending at the time at which a task fails.

Let td be the earliest point in time at which a task fails.
τ can be partitioned into three disjoint subsets A1, A2, and
A3, where

7

A1 = the set of tasks that have an invocation with an
initial deadline at time td,

A2 = the set of tasks that have an invocation occurring
prior to time td with initial deadline after td, and

A3 = the set of tasks not in A1 or A2.
Tasks in A3 either have a release time greater than td, or

are not invoked immediately prior to time td. To bound the
actual processor demand prior to td, it suffices to
concentrate on the tasks in A2. Let b1, b2, ..., bk be the
invocation times immediately prior to td of the tasks in
A2. There are two main cases to consider.

Case 1: None of the invocations of tasks in A2
occurring at times b1, ..., bk are scheduled prior to time td.

Let t0 be the end of the last period in which the
processor was idle. If the processor has never been idle let
t0 = 0. In the interval [t0, td], the actual processor demand
is the total processing requirement of tasks that are invoked
at or after t0, with deadlines at or before td. This gives

dt0 ,td
≤ td − t0

pj

j =1

n

∑ Cj .

Since there is no idle period in [t0, td] and since a task fails
at td, it must be the case that dt0,td > td – t0. Therefore

td − t0 < td − t0

pj

j =1

n

∑ Cj ≤ td − t0

pjj =1

n

∑ Cj = (td − t0)
Cj

pjj =1

n

∑ .

This is a contradiction of condition (1). Therefore, if
conditions (1) and (2) hold and the EDF/DDM scheduling
discipline fails to schedule τ, then an invocation of at least
one task in A2 must have been scheduled prior to td.

Case 2: Some of the invocations of tasks in A2
occurring at times b1, ..., bk are scheduled prior to time td.

Let Ti be the last task in A2 to execute prior to td. Let
ti be the point in time at which the invocation of Ti
occurring immediately prior to td is scheduled for the first
time. Note that because of deadline-based scheduling, if a
task Tk fails at td then ti < td – pk. We show that if the
invocation interval of Ti containing the point td is
scheduled prior to td, then there must have existed enough
processor time in [ti, td] to schedule all invocations of
tasks occurring after ti with deadlines at or before td. There
are two sub-cases to consider depending on whether or not
the invocation of Ti scheduled at ti has an execution
deadline less than or equal to td. If this is the case then this
invocation of Ti must be completed at or before td.

Case 2a: The invocation of task Ti scheduled at time ti
has an execution deadline less than or equal to time td.

In this case, since Ti is in A2, Ti must be a resource
requesting task. We proceed by deriving the achievable
processor demand for the interval [ti, td]. If a task fails at
time td then the following facts hold for Case 2a:
i) Other than task Ti, no task with period greater than

or equal to td – ti executes in the interval [ti, td].

Since an invocation of Ti is scheduled at ti and has an
execution deadline less than or equal to td, every other task
scheduled in [ti, td] must have had an initial deadline at or
before td. Therefore, if an invocation of a task Tj, with
period greater than or equal to td–ti, executes in the interval
[ti, td], then this invocation of Tj must have been available
for execution at ti. Consequently, since the invocation of
Ti in question had an initial deadline greater than td, the
EDF/DDM algorithm would have chosen Tj before Ti in
the interval [ti, td]. Therefore, no task with period greater
than or equal to td – ti executes in the interval [ti, td].
ii) Other than task Ti, no task which executes in [ti, td]

could have been invoked at time ti.
Again, other than Ti, every task that executes in [ti, td]

has an initial deadline at or before td. If a task Ti' that
executes in [ti, td] had been invoked at ti, the EDF/DDM
algorithm would have scheduled Ti' instead of Ti at time ti.
iii) The processor is fully utilized in the interval [ti, td].

If the processor is ever idle in the interval [ti, td], then
the analysis of Case 1 can be applied to the interval [t0, td]
(where t0 > ti + Ci is the end of the last idle period prior
to td) to reach a contradiction of condition (1).

Since pi > td – ti, fact (i) indicates that only T1 - Ti
need be considered when computing dti,td. Since the invo-

cation of Ti that is scheduled at ti has an initial deadline af-
ter td, all task invocations occurring prior to ti with dead-
lines at or before td must have completed execution by ti
and hence do not contribute to dti,td. Similarly, since Ti
has the last task invocation with initial deadline after td
that executes prior to td, all invocations of T1 - Ti–1 oc-
curring prior to td with deadlines after td, need not be con-
sidered. Lastly, since none of the invocations of T1 - Ti–1
that are scheduled in [ti, td] occurred at ti, the achievable
demand due to T1 - Ti–1 in [ti, td] is the same as in [ti+1,
td]. These observations, plus the fact the invocation of Ti
scheduled at ti must be completed before td, indicate that
the actual processor demand in [ti, td] is bounded by

dti ,td
≤ Dt0 ,td

= Ci + td − (ti +1)

pj

j =1

i −1

∑ Cj .

Let L = td – ti. Since the invocation of Ti scheduled at
ti has an execution deadline less than or equal to td, it
follows that (ti + 1) + Pr i

 ≤ td. Hence td – (ti + 1) ≥ Pr i
 ,

td – ti > Pr i
 , pi > td – ti > Pr i

 , pi > L > Pr i
 . Since (iii)

indicates that there is no idle time in [ti, td], and since a
task failed at td, it follows that dti,td > td – ti and hence

dti,td > L. Combining this with the inequality above yields

L < Ci + L −1
pj

j =1

i −1

∑ Cj .

This contradicts the assumption that condition (2) was
true.

8

Case 2b: The invocation of task Ti scheduled at time ti
has an execution deadline greater than time td.

This will be the case if Ti is either a non-resource
requesting task (r i = 0), or if (ti + 1) + Pr i

 > td. The

significance of this case is that the invocation of Ti
scheduled at ti has a deadline after td, and hence may be
preempted by any task with an invocation interval
contained in [ti, td]. This is because, since td – ti ≤ Pr i

, Ti
can not share a resource with any task that can possibly
have an invocation interval contained in [ti, td]. Let t0 > ti
be the later of the end of the last idle period in [ti, td] or
the time Ti last stops execution prior to td. Since the
invocation of Ti scheduled at ti has a deadline greater than
td and since Ti is preemptable by any task that executes in
[ti, td], all invocations of tasks occurring prior to t0 with
deadlines less than or equal to td must have completed
execution by t0. The analysis of Case 1 can be applied
directly to [t0, td] to reach a contradiction of condition (1).

This concludes Case 2. We have shown that in all cases,
if the EDF/DDM scheduling discipline fails, then either
condition (1) or condition (2) from Theorem 3.2 must have
been violated. This proves the theorem. ּ

Corollary 3.5: With respect to the class of algo-
rithms that do not use inserted idle time, the EDF/DDM
discipline is optimal for scheduling a set of sporadic tasks
that share a set of serially reusable, single unit resources.

Proof: The proof follows immediately from Theorems
3.2 and 3.4. ּ

4 . Multiple Phase Task Systems

We next demonstrate how the EDF/DDM algorithm can
be extended to schedule multiple phase sporadic tasks that
share a set of resources. The extension is straightforward
and preserves the optimality of the EDF/DDM discipline.
Due to space limitations, the proofs in this section are
abbreviated. Complete proofs are available from the author.

4 . 1 Feasibility Conditions

The following gives necessary conditions for scheduling
multiple phase tasks.

Theorem 4.1: Let τ = {Ti = (si, {(cij , Cij , r ij) | 1 ≤ j
≤ ni}, pi) | 1 ≤ i ≤ n} be a set of multiple phase sporadic
tasks sorted in non-decreasing order by period, that share a
set of serially reusable, single unit resources {R1, ..., Rm}.
If τ can be scheduled without inserted idle time, then:

1)
Ei

pi

≤ 1
i =1

n

∑

2) ∀i, 1< i ≤ n, ∀k, 1≤ k ≤ ni ∧ r ik ≠ 0, ∀L, Pr ik
< L < pi − Sik :

L ≥ Cik + L −1
pj

j =1

i −1

∑ Ej

where:
• Pr ik

= min
1≤ j ≤n

(pj |∃l , 1≤ l ≤ nj : r jl = r ik) ,

• Ej = Cjll =1

nj∑ , and

• Sik =
0

cijj =1
k−1∑

if k = 1

if 1 < k ≤ ni

The feasibility conditions are similar to those for single
phase tasks. The parameter Ei represents the maximum
cost of an invocation of task Ti and replaces the Ci term in
condition (1). Condition (2) now applies to only a resource
requesting phase of task Ti rather than to the task as a
whole. Because of this, the range of L in condition (2) is
more restricted than in the single phase case. The range is
more restricted since the kth phase of a task Ti cannot start
until all previous phases have terminated, and thus the ear-
liest time phase k can be scheduled is Sik time units after
the start of an invocation of Ti. For the kth phase of a
task, the range of intervals of length L in which one must
compute the achievable processor demand will be shorter
than in the single phase case by the sum of the minimum
costs of phases 1 through k–1. Also note that no demand
due to phases of Ti other than k appear in (2). In the event
that each task in τ consists of only a single phase, condi-
tions (1) and (2) reduce to the conditions of Theorem 3.2.

Proof: By Lemma 3.1, it suffices to demonstrate the
existence of release times for which conditions (1) and (2)
are necessary for feasibility. The construction for the ne-
cessity of condition (1) is identical to the one used in the
proof of Theorem 3.2. For (2) choose a task Ti, 1<i≤n,
and choose a phase k of Ti, 1≤k≤ni, such that r ik≠0, and
Pr ik

<pi. Let si=0 and sj=Sik + 1 for all j, 1≤j≤n, j≠i. This

gives the pattern of task invocations shown in Figure 4.1.
For all L, L>Pr ik

, the interval [Sik, Sik+L] contains at

least one invocation of a task that requires resource rik. If τ
is to be feasible then, in the worst case, the computation
of task Ti started at time 0 must have its kth phase com-
pleted in [Sik, Sik+L]. Thus for all L, Pr ik

 < L < pi –Sik,

in [Sik, Sik+L], the achievable processor demand, is

DSik ,Sik +L ≥ Cik + L −1
pj

j =1

i −1

∑ Ej

In general it is not necessary for phases of Ti beyond phase
k to execute in [0, L] in order to ensure that a task does not
fail in [0, L]. For τ to be feasible it must be case that
L ≥ DSik,Sik+L, hence condition (2) must hold. ּ

4 . 2 Scheduling Multiple Phase Task Systems

The EDF/DDM scheduling discipline was defined for
single phase tasks. It can be extended to handle tasks with
multiple phases, by viewing a multiple phase task Ti =
(si , {(cij , Cij , r ij) | 1 ≤ j ≤ ni}, pi), as set of ni single
phase tasks {Tij = (si, (cij , Cij , r ij), pi) | 1 ≤ j ≤ ni}. For a
given value of i, all tasks in {Tij } conceptually are invoked
simultaneously and are scheduled such that the kth invoca-
tion of Tij , 1 < j ≤ ni, is not scheduled until the kth invo-
cation of Tij–1 has terminated. (Note that for a given value

9

T1

T2

 :

Th

 :

Ti
Time

Phase 1

...
Phase k

...

0 Sik Sik+1 Sik+Prik
+1 Sik+L pi

Figure 4.1

of i , since all tasks in
{ Tij } are invoked simul-
taneously, outstanding
invocations of tasks Tij
will always have the
same deadline. There-
fore, the EDF/DDM
scheduling discipline
can be made to enforce
the precedence con-
straints on the execution
of these single phase
tasks by further biasing its algorithm for selecting a task
for execution when there exist more than one ready task
with the earliest deadline.) It should be clear that the execu-
tion of the set of single phase tasks {Tij } defined above
will be equivalent to the execution of a multiple phase task
Ti. This motivates the treatment of each phase of a multi-
ple phase task as a logical single phase task. Specifically,
each resource requesting phase of a multiple phase task
should have both a contending and an execution deadline.

Let tr be a point in time at which a multiple phase task
Ti is invoked. For this invocation let tsk be the time the
kth phase of Ti is first scheduled and let tck be the time
this phase terminates. In the interval [tr, ts1], Ti will have
a contending deadline equal to tr + pi as in traditional EDF
scheduling. For all k, 1 ≤ k ≤ ni, if r ik ≠ 0 and Cik > 1,
in the interval [tsk+1, tck–1], Ti will have an execution
deadline equal to MIN(tr + pi, (tsk + 1) + Pr ik

). Between

phases Ti will again contend for the processor. At the time
of the completion of each phase the deadline of Tk will
revert to the initial deadline for this invocation. Hence for
all k, 1 ≤ k < ni, in the interval [tck, ts(k+1)], task Ti will
have a deadline of tr + pi. Figure 4.2 illustrates how a
multiple phase task’s deadline changes dynamically
throughout an invocation interval. It shows an execution
of a multiple phase task Ti = (si , {(3,3,r i1), (3,3,r i2),
(10,10,r i3)}, pi). Each phase has an execution deadline
different from its contending deadline.

Phase 1T
i Phase 2 Phase 3

tr + pitr ts1 ts2tc1 tc3tc2, ts3

T i ’s
Deadline

tr + pi

ts3 + Pri3 + 1

ts1 + Pri1 + 1

ts2 + Pri2 + 1

. . .

. . .

. . .

tr + pitr ts1 ts2tc1 tc3tc2, ts3

. . .

Time

Time

Figure 4.2

The extended version of the EDF/DDM scheduling dis-
cipline will be called the generalized EDF/DDM discipline.
Its design is again val-
idated by proving it is
an optimal policy for
scheduling a set of
multiple phase tasks.
To prove optimality it
suffices to show that
the satisfaction of the
conditions of Theorem
4.1 are sufficient for
ensuring the general-
ized EDF/DDM disci-
pline will succeed in
scheduling a set of
multiple phase tasks

with shared resources.
The following lemma
demonstrates that the
EDF/DDM discipline
respects the mutual ex-
clusion constraints on
access to resources.

Lemma 4.2: The
generalized EDF/DDM
discipline satisfies the
preemption constraints
on access to resources.

The proof is largely identical to that of Lemma 3.3.
Theorem 4.3: Let τ be a set of multiple phase

sporadic tasks as in Theorem 4.1. The generalized
EDF/DDM discipline will succeed in scheduling τ if
conditions (1) and (2) of Theorem 4.1 hold.

The proof is similar to the proof of Theorem 3.4.
Theorem 4.4: With respect to the class of scheduling

algorithms that do not use inserted idle time, the
generalized EDF/DDM discipline is an optimal discipline
for scheduling a set of multiple phase sporadic tasks that
share a set of serially reusable, single unit resources.

Proof: The proof follows from Theorems 4.1 and 4.3.ּ

Conditions (1) and (2) of Theorem 4.1 can be used as
the basis of a decision procedure for deciding the feasibility
of a set of sporadic tasks that share a set of resources. By
Theorems 4.3 and 4.4, a set of tasks will be feasible if and
only if they satisfy conditions (1) and (2). Deciding if
condition (1) holds is straightforward and can be performed
in time linear in the number of inputs. Condition (2) can
be tested in time O(mpn) where m is the number of
resources and pn is the largest period of any task.

5 . Discussion

This section discusses an implementation of our model,
revisits some of the assumptions and restrictions present in
the model of Section 2.

5.1 Implementation Considerations
The sporadic tasking model and EDF/DDM scheduling

policy have been implemented in the YARTOS operating
system kernel [9,12].
The implementation is
unique in that all tasks
share a single run-time
stack. The use of a
single stack greatly
improves memory uti-
lization as well as
lowers the cost of dis-
patching and preempt-
ing tasks [13].

To apply the feasi-
bility conditions of
Theorem 4.1 in prac-
tice, one must account

10

for the overhead of an implementation of an EDF/DDM
scheduler. Throughout this paper we have ignored the cost
of selecting, dispatching, and preempting tasks. If the
scheduling priority of tasks changes over time, as is the
case in EDF/DDM scheduling, one of the most difficult
implementation costs to appropriately quantify is the cost
of preempting a task. It would therefore be useful to deter-
mine, for a given set, if allowing preemption between
tasks is indeed necessary for feasibility. By combining in-
dividual resources into resource classes, one can represent a
task system with m shared resources, as a system with k
shared resources, for 1 ≤ k ≤ m. (In practice this amounts
to using the same monitor lock or semaphore for accessing
a set of resources.) In this manner we can, roughly speak-
ing, identify the “minimum” number of logical resources
necessary for ensuring the schedulability of a set of tasks.
For example, when using an EDF/DDM scheduler, if there
exist two resources Ri and Rj, i ≠ j , such that Pi = Pj,
then a resource Ri requesting task will never preempt a re-
source Rj task (nor execute while such a task is preempted)
and vice versa. Therefore, if Pi = Pj, one can always treat
resources Ri and Rj as a single logical resource thereby
simplifying the accounting for overhead when analyzing a
set of tasks. For a given set of resources, there is an ex-
ponential number of possible resource classes to consider.
However in practice the number of resources in a system is
likely to be small and the process of enumerating and test-
ing the feasibility of the various modified problem state-
ments may be performed off-line.

Even if the number of logical resources required for fea-
sibility is close to the number of actual resources in the
system, we observe that in practice the number of tasks
that are able to preempt other tasks is small. Note that in
each (contrived) example in this paper, the schedules pro-
duced by the EDF/DDM scheduling discipline have been
non-preemptive. For example, in the case of single phase
tasks, if Pi ≤ Pj then no resource Rj requesting task can
ever preempt a resource Ri requesting task. This implies
that there will always exist a group of tasks that may never
preempt any resource requesting task. Furthermore, since a
task Tk may preempt a resource Ri requesting task only if
pk < Pi, Tk can either preempt every resource Ri request-
ing task or it cannot preempt any such task. Based on these
observations and our experience with applying the
EDF/DDM discipline to actual task sets, we conjecture
that if preemption among tasks is required for feasibility, it
will be limited to a few tasks. For these tasks one may
account for the cost of preemption by inflating their cost
parameter c to include the cost of preempting a task.

5 . 2 Feasibility Versus Processor Utilization

Condition (1) of Theorems 3.2 and 4.1 requires that the
cumulative utilization of a set of tasks not overload the
processor. Note that this is the only feasibility condition
that constrains the achievable utilization of a task set.
Although condition (2) of these theorems constrains the
achievable utilization over a relatively short and well-de-

fined set of intervals, it does not constrain the overall pro-
cessor utilization. The feasibility of a set of sporadic tasks
that share resources is not a function of processor utiliza-
tion (to the extent that the tasks do not overload the pro-
cessor). It is possible to conceive of both feasible task sets
that have a processor utilization of 1.0, and infeasible task
sets that have arbitrarily small processor utilization. An
implication of this is that manipulating infeasible task sets
according to such “rules-of-thumb” as lowering the proces-
sor utilization will not necessarily yield a feasible task set.

5 . 3 Other Paradigms of Resource Usage

We have assumed throughout that tasks require at most
one resource per phase and that phases are statically or-
dered. The latter restriction can be mitigated to a limited
extent by judicious use of the minimum phase execution
time cost parameter c. A zero value for c can be used to
model simple branching logic that controls the order of
phase execution. An alternate approach described by
Stoyenko is to explicitly test the feasibility of all possible
interleavings of task invocations for all possible phase or-
derings [20]. We have chosen to restrict the programming
model in order to ensure a simple test for feasibility.

The restriction that phases require at most one resource
is certainly unrealistic for real-time systems such as in
transaction systems where phases may require multiple
resources simultaneously. The initial motivation for
consideration of a single resource per phase arose from the
use of monitors in concurrent programming languages.
Operationally, we have defined a resource as a monitor.
The use of multiple resources simultaneously by a task
corresponds to the “nested monitor problem” in the
concurrent programming literature (see [1] for a
discussion). Largely because of the problems associated
with deadlock, many popular concurrent programming
languages such as Modula3, Mesa, and Concurrent Euclid
do not allow nested monitor calls [1]. From a pragmatic
standpoint, if in practice it is the case that the number of
tasks that can preempt one another is indeed small, as
conjectured in Section 5.1, then we would argue that there
is little to be gained by investigating more complex
models of shared resources. It would be better to simply
consider the resources that a phase requires simultaneously
as a single logical resource. This reduces the problem to
the one considered in this paper. From our perspective, a
more interesting model to study is one that relaxes the
mutual exclusion constraints on the access to resources. In
this work resources have been required to be accessed in a
mutually exclusive manner. Other models of models of
exclusion, such as readers/writers, warrant consideration.

6 . Summary and Conclusions

We have modeled a real-time system as a set of sporadic
tasks that share a set of serially reusable, single unit re-

3 Modula allows lexically nested monitors, however, this is
compatible with our one resource per phase paradigm.

11

sources. Sporadic tasks are a generalization of periodic
tasks and are well-suited for representing event driven pro-
cesses. Tasks are composed of a sequence of phases. Each
phase is a contiguous sequence of statements that possibly
requires exclusive access to a resource. Resources are shared
software objects, such as data structures. For an instance of
the model the goal is to determine if it is possible to
schedule the tasks on a uniprocessor such that (1) no task
fails (every invocation of every task completes execution at
or before its deadline) and (2) each instance of each resource
requesting phase has exclusive access to the resource it
requires for the duration of the phase.

We have identified conditions that are both necessary and
sufficient for scheduling a set of sporadic tasks without the
use of inserted idle time. These conditions are sufficient for
scheduling periodic tasks. With respect to the class of algo-
rithms that do not use inserted idle time, we have devel-
oped an optimal algorithm for scheduling sporadic tasks
that share resources. This algorithm, called the earliest
deadline first with dynamic deadline modification
(EDF/DDM) algorithm, is an extension to the well-known
EDF algorithm. Under an EDF/DDM scheduler, tasks that
require exclusive access to resources have two types of
deadlines: a contending deadline for the initial acquisition
of the processor, and an execution deadline for subsequent
execution. The EDF/DDM policy ensures tasks that be-
come blocked due to mutual exclusion constraints are re-
sumed as soon as possible. This policy is pessimistic in
the sense that it always assumes the act of scheduling a re-
source requesting task will result in a competing task
becoming blocked. Our analysis has demonstrated that this
pessimistic approach is warranted.

The EDF.DDM scheduling algorithm and the sporadic
tasking model have been implemented and used to
construct several hard-real-time systems.

8 . References

1. Andrews, G.R., Concurrent Programming, Benjamin
Cummings, Redwood City, CA, 1991.

2. Becker, D, Analysis of the NIU Firmware
Per formance, University of North Carolina,
unpublished manuscript, April 1992.

3. Chen, M.-I., Lin, K.-J., Dynamic Priority Ceilings:
A Concurrency Control Protocol for Real-Time
Systems, Real-Time Systems, 2, 4, (November
1990), pp. 325-346.

4. Chen, M.-I., Lin, K.-J., A Priority Ceiling Protocol
for Multiple-Instance Resources, Proc. 12th IEEE
Real-Time Sys. Symp., San Antonio, TX, December
1991, pp. 140-149.

5. Chung, J.C., et al., Exploring Virtual Worlds with
Head-Mounted Displays, Non-Holographic True 3-
Dimensional Display Technologies, SPIE Proc., Vol.
1083, Los Angeles, CA, January 1989.

6. Conway, R.W., Maxwell, W.L., Miller, L., Theory
of Scheduling, Addison-Wesley, Reading, MA, 1967.

7. Garey, M.R., Johnson, D.S., Computing and
Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman, New York, 1979.

8. Jeffay, K., Stone, D.L., Smith, F.D., Kernel Support
for Live Digital Audio and Video, Computer
Communications, 15, 6 (July 1992), pp. 388-395.

9. Jeffay, K., On Kernel Support for Real-Time
Multimedia Applications, Proc. 3rd IEEE Wrkshp on
Workstation Op. Sys., Key Biscayne, FL, April 1992.

10. Jeffay, K., Analysis of a Synchronization and
Scheduling Discipline for Realtime Tasks with Pre-
emption Constraints, Proc. 10th IEEE Real-Time Sys.
Symp., Santa Monica, CA, Dec. 1989, pp. 295-305.

11. Jeffay, K., Stanat, D.F., Martel, C.U., On Non-
Preemptive Scheduling of Periodic and Sporadic
Tasks, Proc. 12th IEEE Real-Time Sys. Symp., San
Antonio, TX, December 1991, pp. 129-139.

12. Jeffay, K., Stone, D., Poirier, D., YARTOS: Kernel
support for efficient, predictable real-time systems, in
Real-Time Programming, W. Halang and K.
Ramamritham, eds., Pergamon Press, Oxford, 1992.

13. Jeffay, K., Stone, D.L., The Application of
Scheduling Theory to the Design and Analysis of a
Real-Time Multimedia System, University of North
Carolina, in preparation.

14. Hoare, C.A.R., Monitors: An Operating System
Structuring Concept, Comm. of the ACM, 17, 10,
(October 1974), pp. 549-557.

15. Leinbaugh, D.W., Guaranteed Response Times in a
Hard-Real-Time Environment, IEEE Trans. on Soft.
Eng., 6, 1, (January 1980), pp. 85-91.

16. Liu, C.L., Layland, J.W., Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,
Journ. of the ACM, 20, 1, (January 1973), pp. 46-61.

17. Mok, A.K.-L., Fundamental Design Problems of
Distributed Systems for the Hard Real-Time
Environment, Ph.D. Thesis, MIT, Department of EE
and CS, MIT/LCS/TR-297, May 1983.

18. Mok, A.K.-L., Amerasinghe, P., Chen, M.,
Sutanthavibul, S., Tantisirivat, K., Synthesis of a
Message Processing System with Data-Driven Timing
Constraints, Proc. 8th IEEE Real-Time Sys. Symp.,
San Jose, CA, December 1987, pp. 133-143.

19. Sha, L., Rajkumar, R., Lehoczky, J.P., Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization, IEEE Trans. on Computers, 39, 9,
(September 1990), pp. 1175-1185.

20. Stoyenko, A.D., A Schedulability Analyzer for Real-
Time Euclid, Proc. 8th IEEE Real-Time Sys. Symp.,
San Jose, CA, December 1987, pp. 218 - 227.

21. Zhao, W., Ramamritham, K., Stankovic, J.A.,
Scheduling Tasks with Resource Requirements in Hard
Real-Time Systems, IEEE Trans. on Soft. Eng., 13,
5, (May 1987), pp. 564-577.

