Scheduling Sporadic Tasks with Shared Resources in
Hard-Real-Time Systems

Kevin Jeffay

University of North Carolina at Chapel Hill
Department of Computer Science
Chapel Hill, NC 27599-3175
jeffay@cs.unc.edu

Abstract lem of scheduling sporadic tasks that require exclusive ac-
gess to a set of software resources. The problem is to se-

The problem of scheduling a set of sporadic tasks tha : .
share a set of serially reusable, single unit software reJuence a set of sporadic tasks on a uniprocessor such that

sources on a single processor is considered. The correctnegéa” cas_es itis _guar?nteehd th"’ll(t' | .
conditions are that (1) each invocation of each task com- eafc |nvocat|o|r) of each task completes execution at or
pletes execution at or before a well-defined deadline, and (2) | before its deadline, and db h task
a resource is never accessed by more than one task simul- zié]eusl?aunrggu'sslynever accessed by more than one tas
taneously. We present an optimal on-line algorithm for ’ I
scheduling a set of sporadic tasks. The algorithm results, OU" Work makes two contributions to the theory of real-
from the integration of a synchronization scheme for acces$Me Scheduling and resource allocation. The first is the de-
velopment of an on-line algorithm for sequencing a set of

to shared resources with tlearliest deadline firstlgo- radic tasks on a unior r h that the above crite-
rithm. A set of relations on task parameters that are neceszPOradic tasks on a uniprocessor such that the above crite

sary and sufficient for a set of tasks to be schedulable i4/2 &€ met. The algorithm results from the integration of a
also derived. Our model for the analysis of proCessorsynchromzatlon scheme for access to shared resources with

scheduling policies is novel in that it incorporates mini- the earliest deadline firstigorithm of Liu and Layland; a

mum as well as maximum processing time requirements o reemptive, priority-driven scheduling algorithm with dy-
tasks. The scheduling algorithm and the sporadic taskin amic priority assignment [16]. The:- aIgon}hm is optimal
' ith respect to the class of scheduling policies that do not

model have been incorporated into an operating syste use inserted idle time [6]. The algorithm is optimal in the

kernel and used to implement several real-time systems. sense that it can schedule a set of tasks, without inserted
1. Introduction idle time,.whgne.ver it w.iII b.e possible to do so. The sec-
ond contribution is a derivation of a set of relations on task

Hard-real-time systems are commonly structured as a s@sarameters that are necessary and sufficient for a set of
of tasks that are invoked repetitively. Two frequently tasks to be schedulable. With these conditions one can effi-
studied classes of repetitive tasks pegiodictasks,i.e, ciently decide whether it will be possible to schedule a set
tasks that are invoked at constant intervals [16], andof tasks without executing or simulating the execution of
sporadictasks,i.e, tasks that are invoked at random but the tasks. Our model for the analysis of processor schedul-
with a minimum inter-invocation interval [17]. In both ing policies is novel in that it incorporates minimum as
cases, each invocation of a task must complete executiofell as maximum processing time requirements of tasks.
before a well-defined deadline. Our contribution to the This work is part of a |arger design system for hard-real-
study of repetitive, real-time workloads is the considerationtime systems. The on-line scheduling algorithm we
of tasks that share a set of serially reusable resources. Ogflevelop has been implemented in the YARTOS operating
notion of a resource is a software objeetg, a data system kernel [9,12] and the sporadic tasking model we
structure, that is shared among a group of tasks and mugresent has been used to implement and analyze several
be accessed in a mutually exclusive manner. Operations ofylly functional real-time systems. These include a
a shared resource therefore constitute a critical section. Faforkstation-based conferencing system using digital audio
example, within the context of a concurrent programming and video [8], an interactive 3-dimensional graphics display
language in which shared data is encapsulated within &ystem used for research wirtual realities [5], and a
monitor [14], a resource would be an individual monitor. HiPP| data link controller [2].

We consider a characterization of a hard-real-time system Several approaches to scheduling real-time tasks that
as a set of sporadic tasks that share a set of seriall¢hare resources have been described in the literature
reusable software resources. This paper examines the prolpg 4,10,15,17-21]. Most consider the case where tasks are
periodic and develop heuristic algorithms for scheduling the
tasks. The model we present is simpler than many pre-
viously considered, however, for this model we are able to

* Supported by a grant from the National Science Foundation
(number CCR-9110938).

In: Proceedings of the T3EEE Real-Time Systems Symposium, Phoenix, AZ, December 1992, pp. 89-99.

establish fundamental optimality and complexity proper- cjj the minimum computational cost: the minimum

ties. Moreover, our experience in applying the model to ac- amount of processor time required to executetthe
tual systems indicates that it is powerful enough to build phase of taskrj to completion on a dedicated
actual systems without undue effort [13]. We focus on the processor,

study of sporadic tasks for two reasons. First, our experi-
ences indicate that in practice sporadic tasks more naturally
capture the real-rime behaviors of time constrained compu-
tational processes. Second, when tasks have preemption

Cij the maximum computational cost: the maximum
amount of processor time required to executgthe
phase of tasklj to completion on a dedicated

constraintsi(e., share resources) scheduling problems for processor,
periodic tasks are intractable. For example, Mok has rij the resource requirement: the resource (if any) that is
shown that the problem of deciding if it is possible to required during th¢h phase of tasKj, and

schedule a set of periodic tasks that use semaphores to en- _ - . .
force mutual exclusion is NP-hard [17]. The general prob-Pi — the period of the task: the minimum time interval
lem of deciding if it is possible to schedule a set of peri- between invocations of tadk.
odic tasks non-preemptively is NP-hard in the strong sense The “period” of a sporadic task is simply the minimum
[11] Moreover, if an 0ptima| non-preemptive Schedu”ng time between any tWO. successive invo_cations of the task
algorithm exists for periodic tasks, then P = NP. [17]. In general an arbitrary amount of time may lapse be-
The following section presents our model of a real-time tween successive invocations of a task. EachTaiskpar-
system in greater detail and defines the objective of outtitioned into a sequence of disjoint phases. A phase is a
study. Section 3 examines the problem of scheduling tasksontiguous sequence of statements that together require ex-
that use only a single resource. An optimal algorithm isclusive access to a resource. A task may have multiple
developed for this special case. Section 4 generalizes thiphases that require the same resource. The resource requirec
algorithm for tasks that share a set of resources. Section by T; during thejt phase of its computation is represented
discusses an implementation of the scheduling policy andoy an integerrjj, 0<rjj <m. If rjj =k, k # 0, then thgth
revisits the assumptions and restrictions in our model. phase ofy’s Computation requires exclusive access to re-
sourceRy. For a given invocation dfj, in the interval be-
2. System Model tween the time phagecommences execution and the time
We define a hard-real-time system as a set of sporadiit completes execution, no other phase of a task that re-
tasks that share a set of serially reusable, single unit softquires resourceRx may execute. Ifj; = 0, then thgth
ware resources. A sporadic task is a sequential program thgthase ofTj’s computation requires no resources. In this
is invoked in response to the occurrence of an event. Ancase thgth phase offj imposes no mutual exclusion con-
event is a stimulus that may be generated by processes eXtraints on the execution of other tasks. Within the context
ternal to the systene(g, an interrupt from a device) or by f a concurrent programming language with monitors, if
processes internal to the systesg(the arrival of a mes- ;%;t 0, then thgth phase ofTj would consist of a call to

sage). We assume events are generated repeatedly Witha@, entry procedure of a monitor that encapsulates resource

(non-zero) lower bound on the duration between consecuy.. fij = 0, then thgh phase offj; would consist of ei-

tive occurrences of the same event. Therefore, each sporadt er code in the main body of the task or reentrant proce-
task will be invoked repeatedly with a lower bound on thedure code called by the main body of the task. Note that

interval between consecutive invocations. Sporadic tasks;, o diferent tasks may perform different operations on a
are well-suited for implementing computational processes o<, ,.ca ¢ g. call different monitor entry procedures), it is
that are required to execute periodically (with a constant iny o<, hapie to assume that phases of tasks that access th
;esr;//r?(lzhtr)gavgﬁgne\?ecr:lt\éa(t\l/\c/)i?hsg?rr1ir|1ri]mr§r?1pi?1 ?:Eatr?iv;elctlijrgler)]gsame resource have varying computational costs. If a phase
During the course of execution, a task may perform operé-Of a task requires a resource then the computational cost of
’ he phase represents only the cost of using the required re-

?SS SS ak())lg z?lzr?gugf E)ae r:gggsrggg' ir'??%ﬁf&:” ar:xc?lirsli/l ource and not the cost (if any) of acquiring or releasing the
manner. This model of SOfware resources is mgt' ated b fesource. A minimum cost of zero indicates that a phase of
Sy W u : v Ya task is optional. A fundamental restriction is that each

the use of shared memory for efficient communication andphase of each task will require access to at most one

Syrézwggﬁ/at;)?ezitt\;vn?ggﬁ?gfﬁ is a senodporadic tasks resource at a ti_rrje. Oyher paradigms of_reso_urce usage and

{T1. T2, .. ,T } and a set of serially reusable, single task decomposm_on will be discussed brlgfly in Section 5.
1712 = 1n Y L 9 Throughout this paper we assume a discrete time model.

unit resources Ry, Ry, ...,Rm}. A task is described by @ |y this domain all task parameters as well as all values of

3-tuple Tj = (i, {(Gjj, Cij. rij) | 1<j < ni}, pi) where: time are expressed as integer multiples of some indivisible

si — the release time of task: the time of the first time unit. Without loss of generality, assume these
invocation of taskj, quantities are integers.

{ (cij, Cij, rjj) } — a set oh; phasesvhere for each phase: The behavior of a sporadic task is given by the follow-

ing rules. Lettk be the time of th&" invocation ofT;.

i) The initial invocation ofT; occurs at timéq = 5. 3.1 Feasibility Conditions

D) .If Ti hqs periodp;, then for allk = 1, the k+1) Consider a set of single phase sporadic tadks {.,

_ invocation of.Ti occurs aty+1 2tk + pj 2 § J.rkpi. T}, where T; = (s, (ci, Ci, i), pi),* that share a set of

iii) Each invocation oflj consists of the execution of ~ serially reusable, single unit resourceR,{..., Ry} It
phases in sequence. The execution of an invocation | he yseful to refer to the period of the “shortest” task
of T commences in phase 1. Thephase of each 5 yses resourdg. For resource;, letP; represent this

execution ofT; d_oes not commence until thie-(1yt period. That is,P, = min(p |r, =i).
phase has terminated. Isjsn o

iv) Execution of thgth phase ofTj requires at least;j Our results rely on the fact that the feasibility of a set of
units of processor time and at ma3f units of sporadic tasks is not a function of their release times. If a

set of sporadic tasks is feasible, then the tasks will be

V) Theki" invocation ofT; must be completed no later feasible for any combination of release times. A proof of
the following can be found in [11].

than timety + pj. This time is commonly referred to Lemma 3.1: Let T be a set of sporadic tasks.fis

as thf_eadllne.of thek™ invocation ofT;. feasible then the set of sporadic tasksbtained fromr
If the k™ invocation of tasKj occurs at tim, then the py replacing the release times of tasks with arbitrary values
closed intervalt] t+pj] is called thek" invocation interval will also be feasible.

processor timeCj; = cjj = 0.

or simply aninvocation interval of taskT;. If taskT; is The following theorem establishes necessary conditions
invoked at timet and does not complete execution at or for feasibility.

before timet + pj, then we say thafj hasfailed. A set of Theorem 3.2: Let 1 be a set of single phase sporadic
sporadic taskg is said to béeasibleon a uniprocessor if tasks {I'1, T2, ..., T}, sorted in non-decreasing order by

it is possible to scheduleon a uniprocessor such that: period (for all pairs of task$; andTj, if i >], thenp; 2

* no task fails,i.e., every invocation of every task p;j), that share a set oh serially reusable, single unit
completes execution at or before the end of its resources Ry, Ry,Rm}. If T can be scheduled on a
invocation interval, and . . i uniprocessor without inserted idle time, then:

» for each tasKj, and for all phaseg 1< | < nj, if rjj e
0, then thgth phase of each invocation @f has 1) Z?Sl
exclusive access to the resouRge from the time the SO0

E)

phase commences execution until the phase terminates 2) Ui, 1<i<nOr#0,0L, P<L<p: L2C+ 3 G—[

execution. ‘ =0R g

An algorithmsucceeds$n scheduling a set of tasks if it Condition (1) can be viewed as a requirement that the
can sequence the tasks such that both criteria above will bprocessor not be overloaded (the cumulative processor
met. A scheduling algorithm is said to dptimalif it can utilization cannot exceed unity). The right hand side of the
succeed for any task set that is feasible. Our goal is tdnequality in condition (2) is a least upper bound on the
develop an optimal uniprocessor scheduling algorithm. Inprocessor demand that can be realized in an interval of
doing so, we assume that in principle tasks arelengthL starting at the time an invocation of a resource
preemptable at arbitrary points. However, the requirementequesting tasklj is scheduled, and ending sometime
of exclusive access to resources places two restrictions oBefore the end of the invocation interval. For a set of tasks
the preemption and execution of tasks. For all taslted to be feasible, the processor demand in this interval must
k, if rjj =i andrij, r # 0, then (1) thg'™ phase of task always be less than or equal to the length of the interval. If
Ti may neither preempt th& phase of tasR, nor (2) this is not the case then a task can fail. Although condition

execute while thé phase of tasK is preempted. (2) is semantically similar to the requirement that the
processor not be over-utilized, we will demonstrate that
3. Single Phase Task Systems conditions (1) and (2) are in fact not related. The intuition

We first consider the problem of scheduling sporadic behind these conditions is developed further in the proof.

tasks that consist of only a single phase. As will be shown _Proof. By Lemma 3.1, it sufflces_ to show that there
in Section 4, the general problem of scheduling tasks with€*ISt rélease times for which conditions (1) and (2) are
multiple phases can largely be reduced to the problem of' €C€Ssary for to be feasible. We first show that (1) is
scheduling tasks with only a single phase. The following "€CeSSary. For a set of taskgheachievable processor
sub-section establishes conditions that are necessary for%emandn the time intervalg, b], written Df.*b IS defllned
set of single phase sporadic tasks to be feasible in th@S theé maximum amount of processing time required by
absence of inserted idle time. Section 3.2 then develops affl the interval &, b] to complete all invocations of tasks
algorithm for scheduling such tasks and demonstrates itd/ith deadlines in the intervaa[b]. That is,Dap is the

optimality.

1 Since tasks consist of only a single phase, the second
subscript on the parametes ¢, andr will be omitted.

processing time required, in the worst case,rhy the 3.2 that if a set of tasks can be scheduled when invoked as
interval [a, b] to ensure that no task fails in the intenval [in Figure 3.1, then the tasks are feasible. The notion of a
b]. The worst case occurs when tasks are periodic fromworst case interleaving is important as Lemma 3.1 indi-
pointa onward. If a set of tasksis feasible, then for ad cates that such an interleaving can always occur during the
andb,a<b,Dg p<b-a. execution of any task set.

For alli, 1<i<n, letsj = 0 and lett = p;p,...p,. In Some special cases of Theorem 3.2 are worth noting. A
the interval [0.t], tCi/p;j is the maximum processor time Set of single phase sporadic tagkshererj = 0, for 1<
that must be allocated f to ensure thafj does not fail <N, corresponds to a set of tasks with no resources and
_ . hot e _ hence no mutual exclusion constraints. In such a system a
in the interval [0f], henceD,, =5 —C =ty —. If T is task would, in principle, be preemptable at any time during

)) =P =R its execution by any other task. In this case condition (2)

feasible then it must be the case thajt<t, hence s void (the quantification dfis empty) and condition (1)

condition (1) must hold. . alone is necessary for feasibility. This agrees with results
For condition (2) choose a ta3k, 1 <i <n, such that reported for the preemptive scheduling of periodic tasks (a
ri # 0 (.e, Tj is a resource requesting task) and Py, special case of sporadic tasks) [16]. Similarly, if tasks

(i.e., the period ofT; is greater than that of the smallest '€quire resources but the resources are not shiaged(ly

task that requests resoung Lets; = 0 ands; = 1 for all one task requires each resource) then condition (2) is again

j,1<j<n,j#i. This gives rise to the pattern of initial V0!d (the quantification oL is empty for all tasks). At the

task invocations shown in Figure 3.1. Initially oflyis ?therngxtreme, aset ‘lj(f ?lngle pgise sporadic taSIéS in which
. . . N . . . <I < =

eligible for execution. Since inserted idle time is not al- oralli, 1<i<n,rj =k for som # 0, corresponds to a

lowed, T; must execute in the interval [0,1]. For BJIL > set of tasks that all share a single resource. Such single

. . . . phase tasks must be scheduled non-preemptively. In this
Pr;» the interval [0L] contains at least one invocation of case condition (2) applies to all tasks and the feasibility

some tasKk with ri =rj. SinceTy shares a resource with conditions agree with those reported in [11] for the non-
Ti and since this resource is in useTpat time 1, the ini- preemptive scheduling of sporadic tasks.

tial invocation of Tk may not be scheduled until after the

invocation ofT; made at time 0 has completed execution. 3.2 Scheduling Single Phase Task Systems

Therefore, to ensure that the initial invocationTgfdoes We seek an a|gorithm that will sequence a set of Sing|e

not fail, the initial invocation of; must be completed be- phase sporadic tasks on a single processor whenever it is

fore timepk + 1< Py, + 1. Hence for this choice of release possible to do so. Such an algorithm must ensure that (1)

times, for allL, P;. <L <pj, in the interval [0,L] the all task invocations complete execution before their dead-
: line and that (2) the mutual exclusion constraints on the

. _ i —10 execution of resource requesting tasks are respected. It is
achievable processor demand b, =C + le EB o %:, the latter requirement that motivates the development of a
]

h . f th . ¢ ._new scheduling policy. Our approach is to incorporate a
The demand consists of the maximum cost of executinggynchronization protocol for mutual exclusion into an ex-

the initial invocation ofTj plus the achievable processor isting real-time scheduling policy. The basis of our
demand due to tasks 1 throughl in the interval [1L]. scheduling policy is the preemptiearliest deadline first

(Note that tasks with periods greater than or equai ©© (EDF) algorithm [16]. Our choice of an EDF policy is mo-
have no invocation intervals contained in the interval [1, tivated by the fact that it is an optimal policy both when

!_] aEd h_ence clarflnoLt]fail tasks have no execution
in the interva . i
, T constraints [16] and when
Therefore they do not Tl L preemption is not allowed
contribute to the achiev- 2 L | [11]. The problem cur-
able processor demand in rently under consideration
the mterva_l [1,L.].) Fort T | | lies between these two
to be feasible it must be X extremes. We begin with
the case thatL = Do, |, _' some definitions.
hence condition (2) must Ti-1 | | When a task is in-
hold. E T | voked, if the resource the
The constructions in Tis1 | _ taskrequires is in use by

the proof of Theorem 3.2
characterize the worst case

inter-leavings of task in- Ty I
vocations for a set of Spo-Time

another task, then the re-
questing task is said to be
blocked otherwise the
task is said to beeady.

radic tasks. In essence, it 0 1 Pr:+1 |_: IOi—:l p| When an invocation of a

will be shown in Section Figure 3.1 task is executing on a

processor, the task Bsxecut- T l | The challenge is to quantify

ing. If a task is preempted — preciselywhena task invoca-
while executing then it returns tion must be completed. We
to the ready state. After com- CR 1 - claim that an invocation of a
pletion of an invocation, and Ttime +————+—+—+—+—+—+—+—+—+—> resource requesting task should
prior to the first invocation, a et 23 45 6 7 8 9 101112 havetwo notions of a deadline:
task isterminated The EDF ™ L= | one for the initial acquisition
scheduling di.scipl'ine.dictates T, | — of the processor, and one for
that at all points in time, the | subsequent execution.
ready task with the nearest Specifically, when a resource
deadline should be executing. Time FH—+—F—F——+——+—+—+——"F—+—> requesting tasK; is invoked at
0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
An EDF scheduler makes time t;, the invocation should
scheduling decisions (dis- Figure 3.2 have an initial deadline equal to
patches tasks) whenever a task ty + pj as in traditional EDF

is invoked or terminates. At each of these schedulingscheduling. This deadline will be referred to asitiitéal or
points an EDF scheduler dispatches the ready task with thegntendingdeadline. Lets be the time that the invocation
nearest deadline; preempting the previously executing tasky (aqk T, occurring at timet, is first scheduled
if necessary. Ties between tasks with identical deadlines arf}commences execution). We claim that after tigehe
broken arbitrarily. The EDF scheduling discipline can be . :) : .
extended to ensure exclusive access to shared resources WOC&IIOI’] of tasK;j should have a deadline aF tlmg MIN(
re-examining the concept of an execution deadline. If tasks' Pi» s + 1) +Pr). Thus, when a scheduler first dispatch-
share resources then when a resource requestingitisk €s an invocation of task;, the scheduler will potentially
invoked, it is no longer sufficient for the invocation to assignT; a nearer deadline. This deadline will be referred to
complete execution withip;j time units. It can be the case as theexecutiondeadline. Since we assume a discrete time
that a resource requesting task must complete exedgion domain, a resource requesting tagkhas a contending
fore the end of its current invocation interval. This situa- deadline at all points in time in the closed intertgltf]

tion can occur when an invocation of a task with a deadlineand, assumingCj > 1, has an execution deadline at all
becomes blocked. For example, consider the problem ohoints in the closed intervatg1, te—1], wheretc is the
scheduling the following task set according to a naive ap+jme that the execution of the invocation terminates. (In

plication of the traditional preemptive EDF discipline: the interval between the completion of one invocation and
1={T1=(2 (1,1,1), 4T2 = (1, (3,3,0), 10), the start of the next, a task logically has a deadline of in-
T3=1(0, (3,3,1), 20) }. finity.) This is illustrated in Figure 3.3 which plots the

T consists of three single phase tasks and one shared releadline of an invocation of a takthat has an execution
source R1). The initial interleaving of invocations of deadline of {5 + 1) +Py, as a function of time. If a re-
these tasks is illustrated in Figure 3.2. Since inserted idl&qrce consuming task has a maximum computational cost
time is not allowed, tasks will be scheduled at time 0 @s ¢ 1 then it will never have an execution deadline. Non-re-
shown at the top of Figure 3.2. At time 1, tagkhas @ source requesting tasks require no special treatment. If a
nearer deadline than the executing tagkSincerp # r3, non-resource requesting taskis invoked at timey, the
taskT, may preempt taskz and hence an EDF scheduler invocation will have a deadline at tirget pj for the dura-
might preempt the execution @k at time 1 in favor of tion of its execution. We will refer to our scheme of dy-
taskTo. At time 2 taskTq is invoked and has the nearest namically altering the deadlines of resource requesting tasks
deadline. However, sincE; requires the resource that is in as thedynamic deadline modificatigipDM) strategy.
use by taskia, T1 is blocked byT3 and hencd» contin- The application of the dynamic deadline modification
ues execution at time 2. At time 3, taBkcompletes exe- Strategy to the tasks in the previous example results in the
cution and taski3 resumes execution (since tagk is non-preemptive schedule |_Ilqs_,tra_ted at t_he bottom of Figure
stilled blocked by tasKs). This scenario causes tabkto ~ 3-2- Under this policy the initial invocation of ta$k has
eventually fail at time 6. This failure is due to the fact that @ contending deadline at time 20 as before. However, once
at time 2, it is no longer sufficient for the invocation of taskT3 is scheduled it will execute with a deadline equal to
taskT3 occurring at time 0 to be completed by its nominal MIN(tr +pj, (ts + 1) +Pr) = MIN(O + 20,0 + 1 + 4) = 5.
deadline at time 20. Since tasks andT3 share a re- Thatis, at times 1 and 2, ta$l has a deadline at time 5.
source, when taskj is invoked at time 2, the invocation When taskT; is invoked at time 1, its invocation will
of taskT3 occurring at time 0 must now be completed no have an initial deadline at time 1pp = 11. At time 1,T3
later than time 6; the initial deadline of taBk (Of course ~ has a nearer deadline thémand hence an EDF scheduler
the initial invocation of task'3 must actually be com- will not allow Ty to preempfl3 at time 1.
pleted by time 6 -C1 = 5. It will turn out, however, that The imposition of separate deadlines for execution and
this is not a useful observation.) initial acquisition of the processor ensures that blocked

tasks become unblocked as T,
soon as possible. Although _
an invocation of a resource Time

I | cation of Tj commences
execution. Lett >tg be a

4 - +—+—+—+—+++> i i

point in time at which this

& b +n invocation is either execut-

requesting task may now b
execute with a deadline that +pi - o ing or is preempted. Léf
occurs before the end of the be aR; requesting task
"‘g‘éggﬁ‘:‘g‘is 'i':]fjeerg’gg dtg:(‘j +P;+1 ee cccce ... ecee. with an invocation that is
line. We will show that /s conteno_llng for the proces-
tasek Caﬁ i I‘;’ ;n invgcg Deadline sor at timet. Lett, be the
- —H—t+—+——+++ —————— i i isi -
tion of a resource request- o Gitl 1t t+p meat which this invoca
; Time tion by Ty was made.
ing task does not complete ,
by its execution deadline. Figure 3.3 Under a EDF/DDM sched-

uling discipline, in order

is the mutual exclusion constraints on access to resource0" Tk {0 preempfj or to execute whild; is preempted,
The combination of EDF scheduling with the dynamic 't Must be the case they<ty <t (andty + p <ts + pj).
deadline modification strategy is sufficient for ensuring The invocation ofTy occurring atty will have an initial
mutually exclusion. There is, however, one subtlety in thedeadline at timalk =t; + px. SinceT; is scheduled d,
case that there exist multiple outstanding invocations withits invocation must have a deadline no later tham attg
the earliest deadline. To guarantee that the mutual exclu+ Pj + 1< tg + pi + 1. Sincetg <t, it follows thatd; <
sion constraints are respected, when there exist multiplely. If di < dk, then the invocation of occurring atty
tasks with outstanding invocations with the earliest dead-will not be scheduled until after the invocationTpfoccur-
line, a scheduler must (1) allow the currently executingring atts has completed execution. df = dy, then since
task to continue execution if it has the earliest deadline e epF/DDM scheduling discipline gives priority to the
and (2) select a task with an outstanding invocation thatcurrently executing task and then to preempted tagks,

has been preempted before selecting any task whose OUijy again not be scheduled until after the outstanding

standing invocation has not begun execution. The COmb'“mvocation ofTj has completed execution. Therefore, a task
nation of an EDF task selection rule with dynamic deadline

modification and tie breaking rules will be calledrliest that requiress; can qelther preemp'g anothigy requesting
deadline firstscheduling withdynamic deadline modifica- @Sk nor execute while such a task is preempted. .
tion (EDF/DDM). The EDF/DDM scheduling policy is Theorem 3.4: Let 7 be a set of single phase sporadic
validated by demonstrating that it is an optimal discipline tasks {T1, T2, ..., Tn}, sorted in non-decreasing order by
(with respect to the class of disciplines that do not use in{eriod, that share a set of serially reusable, single unit
serted idle time) for scheduling a set of single phase taskgesources R1, Rp, ...,Rm}. The EDF/DDM discipline
that share a set of resources. To prove optimality it suf-will succeed in schedulingif conditions (1) and (2) from
fices to show that the satisfaction of conditions (1) and (2)Theorem 3.2 hold.
from Theorem 3.2 is sufficient for ensuring that the Proof: Lemma 3.3 has shown that the EDF/DDM
EDF/DDM discipline will succeed in scheduling a set of scheduling discipline always maintains the mutual
tasks with shared resources. To demonstrate that the discexclusion constraints on access to resources. It remains to
pline succeeds in scheduling a set of tasks it must behow that the use of the EDF/DDM scheduling discipline
shown that (1) all invocations of all tasks complete execu-guarantees that tasks will not fail if conditions (1) and (2)
tion before the end of their respective invocation intervalsof Theorem 3.2 hold. This will be shown by contradiction.
and that (2) the mutual exclusion constraints on the execu- Assume the contrary,e., that conditions (1) and (2) of
tion of resource requesting tasks are respected. The followTheorem 3.2 hold and yet a task fails whes scheduled
ing lemma demonstrates that the EDF/DDM schedulingby the EDF/DDM algorithm. For a set of tasksdefine
discipline enforces the mutual exclusion constraints onthe actual processor demanar simply theprocessor
access to resources. demand in the interval &, b], written dg b, as the least

Lemma 3.3: The EDF/DDM scheduling discipline upper bound on the amount of processing time actually
satisfies the preemption constraints on access to resourcesequired byt in the time intervald, b] to ensure that no

Proof: It suffices to show that a task that requires re- task fails in f, b]. If a set of taskg is feasible, then for
sourceRj can neither preempt another task that requijes all a andb, a <b, it follows thatda h< D p< b—a. The
nor execute while such a task is preempted when schedulegroof proceeds by deriving upper bounds on the actual
by the EDF/DDM scheduling disciplirfelet Tj be aR; processor demand.€., the achievable processor demand)
requesting task. Lat be a point in time at which an invo- for an interval ending at the time at which a task fails.

Let tq be the earliest point in time at which a task fails.

2 Note that the first tie breaking rule ensures that there canr can be partitioned into three disjoint subsefsAz, and

exist only one preempted task with the earliest deadline. Az, where

A final point to address

A1 = the set of tasks that have an invocation with an

initial deadline at timey,

Since an invocation ofj is scheduled a and has an
execution deadline less than or equaljt@very other task

Ao = the set of tasks that have an invocation occurringscheduled int[, tg] must have had an initial deadline at or

prior to timety with initial deadline aftety, and

A3 = the set of tasks not iy or As.

Tasks inAg either have a release time greater thguor
are not invoked immediately prior to tini@ To bound the
actual processor demand prior tg, it suffices to
concentrate on the tasks Ap. Letb,, b,, ...,bk be the
invocation times immediately prior tty of the tasks in
Ao. There are two main cases to consider.

Case 1 None of the invocations of tasks &2
occurring at time$q, ...,bk are scheduled prior to tintg.

Let t, be the end of the last period in which the

beforety. Therefore, if an invocation of a tadk, with
period greater than or equalttgtj, executes in the interval
[ti, td], then this invocation ofj must have been available
for execution atj. Consequently, since the invocation of
T; in question had an initial deadline greater th@rthe
EDF/DDM algorithm would have chosélj beforeT; in
the interval {j, tg]. Therefore, no task with period greater
than or equal tég —tj executes in the intervat [tq].
ii) Other than tasKj, no task which executes if,[tg]
could have been invoked at tige
Again, other tharTj, every task that executes i, [q]

processor was idle. If the processor has never been idle l¢tas an initial deadline at or befotg If a taskTj that
to = 0. In the intervalt}, tq], the actual processor demand executes int[, tg] had been invoked at the EDF/DDM
is the total processing requirement of tasks that are invokealgorithm would have scheduldg instead ofT; at timet;.

at or afterty, with deadlines at or befotg. This gives
n —t D
dtutd z B j'
=0 P g
Since there is no idle period ify,[tg] and since a task fails
attq, it must be the case thdy t, > tq —to. Therefore
n t D
-, <y *—¢ , < —C -t,)
' ;a g 2 P z

This is a contradiction of condition (1). Therefore, if
conditions (1) and (2) hold and the EDF/DDM scheduling
discipline fails to schedulg then an invocation of at least

one task imy> must have been scheduled priotdo
Case 2: Some of the invocations of tasks Ao
occurring at time$y, ...,bk are scheduled prior to tintg.
Let T; be the last task iA> to execute prior tdg. Let
tj be the point in time at which the invocation Bf
occurring immediately prior tty is scheduled for the first

iii) The processor is fully utilized in the interval fg].

If the processor is ever idle in the interval {g], then
the analysis of Case 1 can be applied to the intefyah]
(wheretg >tj + Cj is the end of the last idle period prior
to tg) to reach a contradiction of condition (1).

Since pj > tg —tj, fact () indicates that onlylq -
need be considered when computtihg,. Since the invo-

cation ofT; that is scheduled #thas an initial deadline af-
terty, all task invocations occurring prior tpwith dead-

lines at or beforég must have completed execution tpy
and hence do not contribute d ¢, Similarly, sinceT;

has the last task invocation with initial deadline after
that executes prior tty, all invocations ofTq - Ti_1 oc-
curring prior totg with deadlines aftety, need not be con-
sidered. Lastly, since none of the invocationd of Tj_31
that are scheduled in; [tg] occurred atj, the achievable
demand due td1 - Ti—1 in [tj, tg] is the same as in;jf1,

time. Note that because of deadline-based scheduling, if &j]. These observations, plus the fact the invocatiof of

task Tk fails attq thent; <tq —pk. We show that if the
invocation interval ofT; containing the pointy is

scheduled prior tdy, then there must have existed enough

processor time int], tg] to schedule all invocations of
tasks occurring aftey with deadlines at or befotg. There

scheduled at; must be completed befotg, indicate that
the actual processor demandtintp] is bounded by

d, <D, -C+fﬂ -t +1)m:
RIS Y g

are two sub-cases to consider depending on whether or not LetL =tq —t;. Since the invocation of; scheduled at

the invocation ofTj scheduled atj has an execution
deadline less than or equaltp If this is the case then this
invocation ofTj must be completed at or befdge

Case 2aThe invocatiorof taskTj scheduled at timg
has an execution deadline less than or equal totgme

In this case, sinc&j is in Ap, Tj must be a resource

ti has an execution deadline less than or equa},ta
follows that § + 1) +Py, <tg. Hencetq — ¢ + 1)2 Py, ,

td —ti > Py, , pi >td —tj > Pr, , pi >L > Py, . Since {ii)
indicates that there is no idle time iy, [g], and since a
task failed aty, it follows thatdy, ¢, > tq —tj and hence
d; t, > L. Combining this with the inequality above yields

requesting task. We proceed by deriving the achievable i

processor demand for the intervgl {g]. If a task fails at

time tq then the following facts hold for Case 2a:

i) Other than tasHj, no task with period greater than
or equal taq —tj executes in the intervat [tg].

This contradicts the assumption that condition (2) was
true.

Case 2bThe invocation of tasKj scheduled at timg .« E = ZLCﬂ , and
has an execution deadline greater than tgme 00 ifk=1

This will be the case iffj is either a non-resource o g =g, .
requesting taskr(= 0), or if ¢ + 1) +Py, >tq. The E;ZHC., ifl<ksn
significance of this case is that the invocation Tof The feasibility conditions are similar to those for single
scheduled atj has a deadline aftég, and hence may be Phase tasks. The parametgrrepresents the maximum
preempted byany task with an invocation interval COSt of an invocation of task and replaces the; term in
contained inf, tg]. This is because, sintg—t; < Py,, Tj conqun (1). Condition (2) now applies to only a resource
can not share a resource with any task that can possibl questing phase of 'taﬁrq rather than to thg task as a
have an invocation interval contained tp {g]. Let ty >t hole. Because of th'S' the .rangeLofn condition (2) is :
be the later of the end of the last idle periodtintg] or more restr!cted than in the single phase case. The range is
the timeT; last stops execution prior ty. Since the more restrlc'Fed since tHé phase of.atas'ki cannot start
invocation ofTj scheduled & has a deadline greater than qntll 6?” previous phases have termlnateq, and 'ghus the ear-

. o . _liest time phas& can be scheduled g time units after

tg and sincdj is preemptable by any task that executes in : .] th
[ti, tg], all invocations of tasks occurring prior tgwith the start of an invocation dfj. For thek'" phase of a

deadlines less than or equaltipmust have completed task, the range of intervals of lendthin which one must

tion b Th Vsis of C 1 b lied compute the achievable processor demand will be shorter
execution byt The analysis of Case 1 can be applied), the single phase case by the sum of the minimum

direct_ly to ko, tg] to reach a contradiction of condi_tion (1) costs of phases 1 throughl. Also note that no demand

_ This concludes Case 2. We have shown that in all casegyye to phases df other thark appear in (2). In the event

if the EDF/DDM scheduling discipline fails, then either 1 each task im consists of only a single phase, condi-

condition (1) or condition (2) from Theorem 3.2 must have (jons (1) and (2) reduce to the conditions of Theorem 3.2.

been violated. This proves the theorem. Proof: By Lemma 3.1, it suffices to demonstrate the

~Corollary 3.5: With respect to the class of algo- existence of release times for which conditions (1) and (2)

rithms that do not use inserted idle time, the EDF/DDM are necessary for feasibility. The construction for the ne-

discipline is optimal for scheduling a set of sporadic taskscessity of condition (1) is identical to the one used in the

that share a set of serially reusable, single unit resources. proof of Theorem 3.2. For (2) choose a task1<i<n,
Proof: The proof follows immediately from Theorems 414 choose a phaseof Tj, 1<k<n;, such thati 20, and

3.2 and 3.4. P, <pi. Letsi=0 andsj=S + 1 for allj, isj<n, j#i. This

gives the pattern of task invocations shown in Figure 4.1.
For allL, L>Py,, the interval §k, Sk+L] contains at

least one invocation of a task that requires resoncH 1
to be feasible then, in the worst case, the computation

4. Multiple Phase Task Systems

We next demonstrate how the EDF/DDM algorithm can
be extended to schedule multiple phase sporadic tasks th
share a set of resources. The extension is straightforwar _ :
and preserves the optimality of the EDF/DDM discipline. of taskT; s'Farte.d at time 0 must have i phasg C9m'
Due to space limitations, the proofs in this section are!Dleted in Bik, Sik*L]- Thus for allL, Pry <L <pj ~Sike
abbreviated. Complete proofs are available from the authorin [Sk, Sk+L], the achievable processor demand, is

. - i-1 [:L _1|:|
4.1 Feasibility Conditions Dy, g 2C, + le Bp_»ij
The following gives necessary conditions for scheduling . gh O
multiple phase tasks. In general it is not necessary for phases$jdfeyond phase
Theorem 4.1: Let 7 = {Tj = (5, {(cjj, Cijj, rij) | 1= k to execute in [0L] in order to ensure that a task does not

<ni}, pi) | 1<i < n} be a set of multiple phase sporadic fail in [0, L]. For 1 to be feasible it must be case that

tasks sorted in non-decreasing order by period, that share 52 PSi.S+L, hence condition (2) must hold. [@
set of serially reusable, single unit resourcis, {..,Rm}.

If 7 can be scheduled without inserted idle time, then: 4.2 Scheduling Multiple Phase Task Systems
1) i5<1 The EDF/DDM scheduling discipline was defined for
Sp single phase tasks. It can be extended to handle tasks with

multiple phases, by viewing a multiple phase tagk

2)0i,1<i<n, Uk 1<ks<n Or,#0,0L, P <L<p -§: (si. {(cij. Cij» rij) | 1= < ni}, pi), as set ofy; single

a0 -10 phase tasksTi = (s, (Gii, Cii, rii), pi) | 1< < nj}. For a
E) ’ KR IR | VAT o |
L2G o+ ,z_l A, éﬁi given value of, all tasks in {jj} conceptually are invoked

where: simultaneously and are scheduled such thaktthmvoca-
e P =min(p|0,1<l<n:r =r.) tion of Tjj, 1 <j < nj, is not scheduled until the" invo-
o asjsnt S cation ofTjj_1 has terminated. (Note that for a given value

of i, since all tasks in T, | | with shared resources.

{Tijj} are invoked simul- T, | | The following lemma
taneously, outstanding : demonstrates that the
il always have te T | respects the mutual ox
will always have the 'n -
same deadline. There- : clusion constraints on
fore, the EDF/DDM T Fhase 1 Phase k | access to resources.
: il i o IR] .

can b made to enforee ™ b— - = > gencraized EDFIDDM
the precedence con- 0 Sk S+l , SictPrytl St Pi discipline satisfies the
straints on the execution Figure 4.1 preemption constraints
of these single phase on access to resources.

tasks by further biasing its algorithm for selecting a task ~ The proof is largely identical to that of Lemma 3.3.

for execution when there exist more than one ready task Theorem 4.3: Let 7 be a set of multiple phase

with the earliest deadline.) It should be clear that the execusporadic tasks as in Theorem 4.1. The generalized

tion of the set of single phase taskg;} defined above =~ EDF/DDM discipline will succeed in schedulingif

will be equivalent to the execution of a multiple phase taskconditions (1) and (2) of Theorem 4.1 hold.

Ti. This motivates the treatment of each phase of a multi- The proof is similar to the proof of Theorem 3.4.

ple phase task as a logical single phase task. Specifically, |N€orem 4.4: With respect to the class of scheduling

each resource requesting phase of a multiple phase tagk90rithms that do not use inserted idle time, the

should have both a contending and an execution deadline. generalized EDF/DDM discipline is an optimal discipline
Lett; be a point in time at which a multiple phase task for scheduling a set of multiple phase sporadic tasks that

T, is invoked. For this invocation leg be the time the share a.set of serially reusable, single unit resources.

ki phase off; is first scheduled and légx be the time Proof_. .The proof follows from Theorems 4.1 and 433.

this phase terminates. In the intervigl {s1], Tj will have Conditions (1) and (2) of Theorem 4.1 can be used as

. . ST - the basis of a decision procedure for deciding the feasibility
aconten_dmgjeadllne equal tg + piasin traditional EDF of a set of sporadic tasks that share a set of resources. By
scheduling. For alk, 1<k <n;, if rigx # 0 andCjk > 1,

: !] - Theorems 4.3 and 4.4, a set of tasks will be feasible if and
in the interval fsi+1, tek—-1], Tj will have an execution gnjy if they satisfy conditions (1) and (2). Deciding if
deadline equal to MINf +pj, (tsk + 1) +Py,). Between condition (1) holds is straightforward and can be performed
phasesT; will again contend for the processor. At the time in time linear in the number of inputs. Condition (2) can
of the completion of each phase the deadlingofvill be tested in timeO(mpy) wherem is the number of
revert to the initial deadline for this invocation. Hence for resources anf is the largest period of any task.
all k, 1<k <nj, in the interval {ck, tg(k+1)], taskT; will
have a deadline df + pj. Figure 4.2 illustrates how a
multiple phase task’s deadline changes dynamically This section discusses an implementation of our model,
throughout an invocation interval. It shows an executionrevisits some of the assumptions and restrictions present in
of a multiple phase taskj = (si, {(3,3,ri1), (3,3rij2), the model of Section 2.
(%0’10”3)}’ Pi)- Each p_hase ha_s an execution deadlinesll Implementation Considerations
different from its contending deadline. _ })
The extended version of the EDF/DDM scheduling dis- 1 he sporadic tasking model and EDF/DDM scheduling
cipline will be called thgeneralized EDF/DDMiiscipline. Policy have been implemented in the YARTOS operating

5. Discussion

Its design is again val- :sr>r/]st¢m Ikernelt [?,12_].
idated by proving it is T [Frase 2" Phase e iImplementation Is
an optir%/a'la polic%/ for - | [1 = Phese 2 I | unique in that all tasks
. ime t————————————+— i -

scheduling a set of P W ts t+p Shareasingle run-time
multiple phase tasks. stack. The use of a
To prove optimality it '*Pi ¢ e e e XX ° single stack greatly
suffices to show that improves memory uti-
the satisfaction of the s3+Priz*1 ceece .. e lization as well as
conditions of Theorem | ,p .o lowers the cost of dis-
4.1 are sufficient for a patching and preempt-
ensuring the general-,+p, ,+1 . ing tasks [13]. _

ized EDF/DDM disci- Ti's To apply_t_he feasi-
pline will succeed in Deadine “—+——+—+—+—+—++—+—+—+—+—++++— - ——++++ bility conditions of

scheduling a set of b e Bt te1 ts2 teats3 tea t+pi Theorem 4.1 in prac-
multiple phase tasks Figure 4.2 tice, one must account

for the overhead of an implementation of an EDF/DDM fined set of intervals, it does not constrain the overall pro-
scheduler. Throughout this paper we have ignored the costessor utilization. The feasibility of a set of sporadic tasks
of selecting, dispatching, and preempting tasks. If thethat share resources is not a function of processor utiliza-
scheduling priority of tasks changes over time, as is thetion (to the extent that the tasks do not overload the pro-
case in EDF/DDM scheduling, one of the most difficult cessor). It is possible to conceive of bfghsibletask sets
implementation costs to appropriately quantify is the costthat have a processor utilization of 1.0, am@asibletask
of preempting a task. It would therefore be useful to deter-sets that have arbitrarily small processor utilization. An
mine, for a given set, if allowing preemption between implication of this is that manipulating infeasible task sets
tasks is indeed necessary for feasibility. By combining in-according to such “rules-of-thumb” as lowering the proces-
dividual resources into resource classes, one can represensar utilization will not necessarily yield a feasible task set.
task system withm shared resources, as a system wWith .
shared resources, for<lk < m. (In practice this amounts ©°-3 Other Paradigms of Resource Usage
to using the same monitor lock or semaphore for accessing We have assumed throughout that tasks require at most
asetof resources.) In this manner we can, roughly speak-one resource per phase and that phases are statically or-
ing, identify the “minimum” number of logical resources dered. The latter restriction can be mitigated to a limited
necessary for ensuring the schedulability of a set of tasksextent by judicious use of the minimum phase execution
For example, when using an EDF/DDM scheduler, if theretime cost parametes. A zero value forc can be used to
exist two resource®j andR;, i #j, such thatPj = Pj, model simple branching logic that controls the order of
then a resourcBj requesting task will never preempt a re- phase execution. An alternate approach described by
sourceRj task (nor execute while such a task is preempted)Stoyenko is to explicitly test the feasibility of all possible
and vice versa. Therefore,R§ = Pj, one can always treat intgrleavings of task invocations for al! possible phase or-
resourcesR; andR; as a single logical resource thereby derings [20]. We have chosen to restrict the programming
simplifying the accounting for overhead when analyzing a Medel in order to ensure a simple test for feasibility.
set of tasks. For a given set of resources, there is an ex- |1€ restriction that phases require at most one resource
ponential number of possible resource classes to considefS certainly unrealistic for real-time systems such as in
However in practice the number of resources in a system ifansaction systems where phases may require multiple
likely to be small and the process of enumerating and testt€SoUrces simultaneously. The initial motivation for
ing the feasibility of the various modified problem state- conS|derat|or1 of a single resource per phase arose from the
ments may be performed off-line. use of monitors in concurrent programming languages.
Even if the number of logical resources required for fea- OPerationally, we have defined a resource as a monitor.
sibility is close to the number of actual resources in the "€ use of multiple resources simultaneously by a task

system, we observe that in practice the number of task§Orresponds to the “nested monitor problem” in the
that are able to preempt other tasks is small. Note that irfONcUrrent programming literature (see [1] for a
each (contrived) example in this paper, the schedules IorOdlscussmn). Largely because of the problems associated

duced by the EDF/DDM scheduling discipline have beenWith deadlock, many popular concurrent programming
non-preemptiveFor example, in the case of single phase lhguages such as Modglavesa, and Concurrent Euclid

tasks, ifPj < Pj then no resourc®] requesting task can do not allow nested monitor calls [1]. From a pragmatic

ever preempt a resourd® requesting task. This implies standpoint, if in practice it is the case Fha_t the number of
! . tasks that can preempt one another is indeed small, as
that there will always exist a group of tasks that may never

reempt anv resource requesting task. Furthermore Sinceconjectured in Section 5.1, then we would argue that there
P pt any q 9 - : SINCER Jittle to be gained by investigating more complex
task Tk may preempt a resouré® requesting task only if

. ith models of shared resources. It would be better to simply
Pk < Pj, Tk can either preempt every resouikerequest- qnqider the resources that a phase requires simultaneously

ing task or it cannot preempt any such task. Based on thesgs 5 single logical resource. This reduces the problem to
observations and our experience with applying thethe one considered in this paper. From our perspective, a
EDF/DDM discipline to actual task sets, we conjecture more jnteresting model to study is one that relaxes the
that if preemption among tasks is required for feasibility, it mytual exclusion constraints on the access to resources. In
will be limited to a few tasks. For these tasks one mayinis work resources have been required to be accessed in a
account for the cost of preemption by inflating their cost mytyally exclusive manner. Other models of models of
parametec to include the cost of preempting a task. exclusion, such as readers/writers, warrant consideration.

5.2 Feasibility Versus Processor Utilization

Condition (1) of Theorems 3.2 and 4.1 requires that the
cumulative utilization of a set of tasks not overload the
processor. Note that this is the only feasibility condition
that constrains the achievable utilization of a task set.
Although condition (2) of these theorems constrains the3 Modula allows lexically nested monitors, however, this is
achievable utilization over a relatively short and well-de- compatible with our one resource per phase paradigm.

6. Summary and Conclusions

We have modeled a real-time system as a set of sporadic
tasks that share a set of serially reusable, single unit re-

10

sources. Sporadic tasks are a generalization of periodi@.
tasks and are well-suited for representing event driven pro-

Garey, M.R., Johnson, D.SComputing and
Intractability, A Guide to the Theory of NP-

cesses. Tasks are composed of a sequence of phases. Each CompletenessV.H. Freeman, New York, 1979.

phase is a contiguous sequence of statements that possibdy

Jeffay, K., Stone, D.L., Smith, F.0Kernel Support

requires exclusive access to a resource. Resources are shared for Live Digital Audio and Video Computer

software objects, such as data structures. For an instance of
the model the goal is to determine if it is possible to 9.
schedule the tasks on a uniprocessor such that (1) no task
fails (every invocation of every task completes execution at

or before its deadline) and (2) each instance of each resourci0.

requesting phase has exclusive access to the resource it
requires for the duration of the phase.
We have identified conditions that are both necessary and

sufficient for scheduling a set of sporadic tasks without thell.

use of inserted idle time. These conditions are sufficient for
scheduling periodic tasks. With respect to the class of algo-
rithms that do not use inserted idle time, we have devel-

oped an optimal algorithm for scheduling sporadic tasks12.

that share resources. This algorithm, called e¢heliest
deadline first with dynamic deadline modification
(EDF/DDM) algorithm, is an extension to the well-known

EDF algorithm. Under an EDF/DDM scheduler, tasks that13.

require exclusive access to resources have two types of
deadlines: @ontendingdeadline for the initial acquisition
of the processor, and a&xecutionrdeadline for subsequent

execution. The EDF/DDM policy ensures tasks that be-14.

come blocked due to mutual exclusion constraints are re-
sumed as soon as possible. This policy is pessimistic in

the sense that it always assumes the act of scheduling a ré5.

source requesting task will result in a competing task
becoming blocked. Our analysis has demonstrated that this
pessimistic approach is warranted.

The EDF.DDM scheduling algorithm and the sporadic
tasking model have been implemented and used to
construct several hard-real-time systems.

8. References

1. Andrews, G.R.Concurrent ProgrammingBenjamin
Cummings, Redwood City, CA, 1991.

2. Becker, D, Analysis of the NIU Firmware
Performance University of North Carolina,
unpublished manuscript, April 1992.

3. Chen, M.-l., Lin, K.-J.Dynamic Priority Ceilings:

A Concurrency Control Protocol for Real-Time
Systems Real-Time Systems, 2, 4, (November
1990), pp. 325-346.

4. Chen, M.-l., Lin, K.-J.A Priority Ceiling Protocol
for Multiple-Instance Resource®roc. 1% IEEE
Real-Time Sys. Symp., San Antonio, TX, December
1991, pp. 140-149.

5. Chung, J.C.et al, Exploring Virtual Worlds with
Head-Mounted DisplaysNon-Holographic True 3-
Dimensional Display Technologies, SPIE Proc., Vol.
1083, Los Angeles, CA, January 1989.

6. Conway, R.W., Maxwell, W.L., Miller, L..;Theory
of SchedulingAddison-Wesley, Reading, MA, 1967.

11

16.

17.

18.

19.

20.

21.

Communications, 15, 6 (July 1992), pp. 388-395.
Jeffay, K., On Kernel Support for Real-Time
Multimedia ApplicationsProc. 3 IEEE Wrkshp on
Workstation Op. Sys., Key Biscayne, FL, April 1992.
Jeffay, K.,Analysis of a Synchronization and
Scheduling Discipline for Realtime Tasks with Pre-
emption ConstraintsProc. 168" IEEE Real-Time Sys.
Symp., Santa Monica, CA, Dec. 1989, pp. 295-305.
Jeffay, K., Stanat, D.F., Martel, C.UOn Non-
Preemptive Scheduling of Periodic and Sporadic
Tasks,Proc. 12" IEEE Real-Time Sys. Symp., San
Antonio, TX, December 1991, pp. 129-139.

Jeffay, K., Stone, D., Poirier, DYARTOS: Kernel
support for efficient, predictable real-time systems
Real-Time ProgrammingW. Halang and K.
Ramamritham, eds., Pergamon Press, Oxford, 1992.

Jeffay, K., Stone, D.L.The Application of
Scheduling Theory to the Design and Analysis of a
Real-Time Multimedia Systerniversity of North
Carolina, in preparation.

Hoare, C.A.R.Monitors: An Operating System
Structuring ConceptComm. of the ACM, 17, 10,
(October 1974), pp. 549-557.

Leinbaugh, D.W.Guaranteed Response Times in a
Hard-Real-Time EnvironmentEEE Trans. on Soft.
Eng., 6, 1, (January 1980), pp. 85-91.

Liu, C.L., Layland, J.W.Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environmgnt
Journ. of the ACM, 20, 1, (January 1973), pp. 46-61.
Mok, A.K.-L., Fundamental Design Problems of
Distributed Systems for the Hard Real-Time
Environment Ph.D. Thesis, MIT, Department of EE
and CS, MIT/LCS/TR-297, May 1983.

Mok, A.K.-L., Amerasinghe, P., Chen, M.,
Sutanthavibul, S., Tantisirivat, KSynthesis of a
Message Processing System with Data-Driven Timing
Constraints Proc. 8 IEEE Real-Time Sys. Symp.,
San Jose, CA, December 1987, pp. 133-143.

Sha, L., Rajkumar, R., Lehoczky, J.Priority
Inheritance Protocols: An Approach to Real-Time
SynchronizationlEEE Trans. on Computers, 39, 9,
(September 1990), pp. 1175-1185.

Stoyenko, A.D.A Schedulability Analyzer for Real-
Time Euclid Proc. 8 IEEE Real-Time Sys. Symp.,
San Jose, CA, December 1987, pp. 218 - 227.

Zhao, W., Ramamritham, K., Stankovic, J.A.,
Scheduling Tasks with Resource Requirements in Hard
Real-Time System$EEE Trans. on Soft. Eng., 13,
5, (May 1987), pp. 564-577.

