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ABSTRACT 

A promising approach to medical image 
object definition involves automatic 
computation of a region-based image 
description along with a region 
containment directed acyclic graph 
(RCDAG) induced from the description 
via multiscale analysis of image 
structures [Pizer 1989]. The 
information resulting from this 
computation provides the basis for 
interactive object definition. During 
object definition the human user inserts 
semantics into the image description 
through additions to and alteration of 
the automatically computed RCDAG. This 
paper describes the object definition 
method and a tool for interactive object 
definition. Design criteria and 
resulting design decisions for this tool 
are presented, followed by a discussion 
of preliminary image segmentation and 
object definition results. 

Introdnctjon 

Medical image objects consist of image 
regions characterized both by spatial 
and intensity structure and by semantic 
constraints understood by image 
analysts, including physicians and 
dosimetrists. We have developed a tool 
for defining image objects based on 
interactive user augmentation of an 
automatically-derived description of 
image structure. The image description 
consists of non-overlapping contiguous 
pnmitive image regions organized by 
region containment relationships into a 
directed acyclic graph (RCDAG). Each 
object in the original image is composed 
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of a set of pnm1t1ve regions; object 
definition requires specification of the 
component primitive regions. Our 
object definition tool does this through 
manipulation and editing of the RCDAG, 
hence the name Image Hierarchy Editor 
(IHE). IHE operates on images organized 
by RCDAGs. Two approaches for 
creating such image 
representations are described 
1990] and [Coggins 1990]. 

Motjyatjon 

structure 
in [Pizer 

Medical imaging seeks to measure 
quantitative or qualitative properties of 
objects. Such measurement requires 
that the image pixels portraying an 
object be distinguished from pixels not 
pertaining to the object. Known object 
definition methods use manual 
contouring (boundary specification), 
thresholding, or heuristics to label 
image regions according to the objects 
portrayed. Defining an object using 
manual contouring is tedious and time 
consuming. The requirement for 
accuracy demands pixel level operations 
such as painting and contouring; the 
requirement for speed demands higher 
level operations. Alternatively, 
automatic computation, for example 
thresholding or heuristic methods, can 
be fast but are much less accurate. 

Our Approach to Object Definition 

Our approach to object definition takes 
advantage of the strengths of both 
automatic bookkeeping of pixels, 
regions and labels, and human 



perception and knowledge about the 
problems being solved. Figure 
illustrates the main steps of our method. 
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Figure 1. 
The ob ·ect definition rocess. 

We describe an image as a collection of 
primitive regions that can be organized 
by a region containment directed 
acyclic graph (RCDAG). These primitive 
regions may then be composed into 
coherent, visually sensible image 
objects. The primitive regions and 
hierarchies can be computed 
automatically [Pizer 1989, 1990] based on 
image intensity surface geometry. Some 
example methods for producing 
primitive regions and RCDAGs are based 
on maxima and minima [Lifshitz 1987], 
watershed (WS), watershed dual (WSD) 
and Intensity Axis of Symmetry (lAS) 
regions [Gauch 1988]. Another method 
produces regions based on spatial and 
scale coherence of scale and orientation 
features [Coggins, 1990]. IHE is designed 
to work independently from any 
particular algorithm. 

The primitive regions and the RCDAG 
are computed without knowledge of 
expected object types in the image, so 
there are no objects explicitly defined 
in the RCDAG. Because people are much 
better than computer programs at 
recognizing objects in the varying 
context of medical images, IHE is 
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designed to allow the user to insert 
semantics into the RCDAG. 

The IHE user inserts semantic 
information into an RCDAG by defining 
objects through aggregation of 
primitive regions. If the primitive 
regions and RCDAG are reasonable, then 
objects may be defined with a small 
number of actions. Region aggregates 
may be named, thereby adding new 
nodes representing these named objects 
to the RCDAG for later selection and 
refere~ce. The object can be defined by 
selectmg a pixel in each primitive 
region making up the object's image. 
IH~ handles the bookkeeping of filling 
regwns based on a user's pixel selection 
and maintains lists of selected regions. 
The definition of image objects can be 
accelerated further by exploiting the 
region relationships represented in the 
RCDAG. Each node in the RCDAG 
represents the region composed of all 
the primitive regions corresponding to 
its terminal node descendants. If the 
RCDAG connects primitive regions into 
visually coherent objects, then moving 
up the RCDAG from a terminal node (a 
primitive region) will aggregate 
pnm1t1ve regions faster than selection 
of individual primitive regions making 
up an object. 

To be effective, IHE must make the 
process of object definition simple, fast 
and accurate. Such performance 
requires 1) accurate primitive regions, 
2) a good RCDAG, and 3) fast and easy use 
of IHE. The first two requirements are 
addressed by algorithms that compute 
the primitive regions and RCDAG [Cullip 
1990]. The third requirement is 
addressed by careful design of the tool. 

Desjgnjng IHE 

Object definition operations 
implemented by IHE are: a) color 
labeling of primitive regions, b) 
primitive region aggregation, c) 
primitive region union and difference, 



d) aggregate region union, difference 
and intersection, and e) RCDAG traversal. 
Each of these are discussed below. 

Color Labeling of Regions 
Color labelling is used to display the 
results of region selection and 
aggregation operations. Labeling is 
achieved by linearly mapping each 
pixel in the labeled region from its 
unlabeled intensity level to a 
corresponding intensity level in a color 
scale. This scheme allows the intensity 
structure of a selected region to remain 
visible during object definition, albeit at 
a lower contrast. Color labeling is 
supported by a color look-up table 
defined as shown in figure 3. The 256 
colors supported by the workstation are 
divided into a 128-level grey scale and 
eight 16-level color scales. Seven of the 
colors are available to the user (see the 
IHE user interface in figure 2). 

GREY SCALE COLOR SCALES 

Allocation of color map entries. 

Figure 3. 
The IHE color mao imolementation. 

Object Definition Operations 
Users define objects by selecting and 
combining regions. Results of these 
operations are indicated by color 
labeling. Operations on regions labeled 
with different colors are also provided. 

To label a primitive region, the user 
clicks a mouse button while pointing to 
a pixel in the image. The primitive 
region containing the selected pixel is 
painted with the currently selected 
color. Clicking on other pixels effects a 
set union of the primitive regions 
containing the selected pixels. The 
aggregate region thus composed need 
not be contiguous. Figure 4 shows a 
selected primitive region in the corpus 
callosum. A primitive region is removed 
from the labelling by clicking on a 
pixel in that primitive region. 
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Aggregated regions (labeled with 
distinct colors) can be manipulated to 
produce new regions using set union, 
difference, and intersection operations. 
The user selects two operand regions by 
color, specifies the color of the result 
region, and then specifies the operation 
to be performed. This suite of operations 
requires a maximum of four mouse 
clicks. 

The potentially most powerful object 
composition operation in IHE allows the 
user to select regions based on the 
RCDAG. In a single step, the user can 
traverse the RCDAG to a parent node, 
thereby labeling all pixels in primitive 
regions that are descendants of that 
parent node. This traversal to the 
parent can be interpreted as selecting 
the next larger contammg region in 
the RCDAG. Although a given node may 
have more than one parent, ambiguity 
is avoided by reducing the DAG to a 
logical tree (explained below). 

Navigational Aid 
IHE provides a simple but useful aid to 
navigation through the RCDAG (figure 
5). While the right image window 
displays the currently selected object 
region (a portion of the brain stem in 
the figure), the left image shows in blue 
the primitive regions that will be added 
by performing a parent operation from 
the current node of the RCDAG. This 
allows the user to decide whether 
performing a parent operation is 
desirable. The navigational window is 
updated as the user traverses the RCDAG; 
if the RCDAG is reasonably good, regions 
of interest may be defined rapidly with 
a minimum of operations. 

Learning and Performance Curves 
IHE is designed for a user community of 
computer literate medical professionals. 
Minimization of learning time and of 
object definition time (as measured by 
the number of mouse operations) were 
primary design criteria. 



In general, a point-and-click (event­
driven) user interface minimizes 
memory load on the user by eliminating 
the need to memorize command line 
structures, and provides a simple 
interactive environment. The event-
driven user interface developed for IHE 
allows use of the mouse both for 
selecting regions and for performing 
operations. IHE provides labeled buttons 
on the control panel, pop-up menus, and 
abbreviated mouse click semantics 
using all three mouse buttons and the 
shift and control keys. 

Reducing Apparent Complexity 
Our intended users can easily 
understand the concept of a binary tree. 
Visualizing and using a bushier tree is 
more difficult; visualizing a DAG is 
more difficult still because a node may 
have more than one parent. We 
therefore simplify the presentation of 
the RCDAG by traversing the RCDAG as a 
tree. The reduction of the RCDAG to a 
tree is accomplished by ignoring all but 
a node's first parent. This simplification 
could possibly remove important 
structure information; however the 
RCDAGs we have encountered are in fact 
trees, so we have yet to observe negative 
effects from this simplification. 

The Need for Speed 
Fast response is crucial for any 

IHE interactive tool. Because 
manipulates multiple images and 
abstract data structures simultaneously, 
the internal structure of IHE is 
carefully designed to achieve 
reasonable response rates. 

The speed of object definition with IHE 
is determined largely by the quality of 
the regions and the RCDAG computed by 
the image description algorithms. 
Assuming that good primitive regions 
and a good hierarchy can be obtained, 
there remain several design issues 
facing IHE that affect its response time. 

The first issue is to create a simple and 
fast command format. Commands to IHE 

Ill 

can be specified by clicking a mouse 
button (possibly shifted) while pointing 
to either a button on the main control 
panel or a portion of the right image 
window. Control panel buttons may 
bring up a menu or another control 
panel. Most button commands are 
duplicated with specific mouse actions. 
These abbreviated commands can help 
expert users to manipulate IHE rapidly, 
while the buttons and menus provide 
for the novice or less frequent user. 

The speed of pixel operations is 
improved through use of two data 
structures. First, the RCDAG is 
implemented using an array-based node 
heap rather than explicit pointers. 
Array indexing is used to traverse the 
RCDAG rather than pointer evaluation. 
Second, bounding boxes on primitive 
regions are stored to limit pixel 
operations to image areas of interest. 
The use of bounding boxes increases the 
speed of pixel operations, such as color 
labeling of primitive regions, by an 
order of magnitude. 

Definjtjon Process ' Eya!uatjon 

Evaluation of our object definition 
process requires qualitative and 
quantitative evaluations of primitive 
regions and their organizmg RCDAG. 
Some indication of the quality of the 
objects defined and the speed at which 
they may be defined is also necessary. 
The test image used in this evaluation is 
the MRI image of the head used in the 
figures in this paper. 

Qualitative Evaluation 
The range of primitive region sizes 
produced by the WSD and lAS methods 
differ widely. The WSD method produces 
primitive regions that are more 
uniform in size and shape. The lAS 
method results in regions that are large 
in wide, flat areas of the intensity 
surface, but small and more numerous 
in areas of the intensity surface that 
have finer structure. This is a good 



indication of the sensitivity of the lAS to 
scale in the image. 

The organizing RCDAGs are also 
qualitatively different. The lAS RCDAG 
is in general much flatter than the WS 
RCDAG; it moves to larger scales more 
quickly for a given next-parent action. 

Quantitative Evaluation 
The object definitions we speak of here 
generally include some portion of the 
object surround. Quantitative results of 
object definition in the test image using 
the WSD approach were reported in 
[Pizer, 1989] and are repeated here. 
Surprisingly, both the lAS and WSD 
methods yield an almost identical 
number of regions (1510 for the lAS and 
1530 for WSD). Definition of the tongue 
region in the image required 5 atomic 
actions (mouse clicks) with the WSD 
method, but 13 atomic actions with the 
lAS method. Defining the cerebral 
cortex with the WSD method required 18 
groups of 3-5 next-parent operations; 
using the lAS method required 10 
groups of 2-3 next-parent operations 
and 10 individual primitive region 
union operations. This is a difference of 
about 30-40 atomic actions, or a 50% 
savings over the WSD method. Finally, 
definition of the brain stem using the 
WSD method required 11 atomic actions 
while requiring 17 atomic actions using 
the lAS method. 

Volume Renderin~ 

The general quality of the lAS 
segmentation method was evaluated by 
segmenting and volume rendering a 
cerebellum from a 3D MRI image of a 
human head. (The image used in the 
figures in this paper is one slice of that 
data set.) The object definition labels 
were treated as image masks, and were 
used to extract the selected volume 
elements from the original 3D data set. 
These volume elements were then used 
in a volume visualization process. The 
number of atomic actions required to 
define the cerebellum varied from slice 
to slice., ranging from 3 to 15, with an 
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average around 10. Each slice also 
required somewhere from 1-3 minutes, 
averaging slightly less than two 
minutes. The volume rendering was 
produced from 69 128x128 sized image 
slices. Some images from this process 
are displayed in figure 6. It is obvious 
that there are some regions produced by 
the segmentation process that are 
inappropriate (note the extra material 
on the bottom right of the cerebellum in 
figure 6b.). These deficiencies may be 
addressed with better primitive regions 
or with region editing capabilities (see 
Future Developments). Although the 
resulting volume visualization may not 
be pleasing to the eye, our radiation 
physicist evaluator believes that the 
resulting segmentation is good enough 
for most computational purposes, for 
example dose volume determination. 

Conclusjons 

The lAS and WSD methods are 
computationally different, and 
therefore produce qualitatively 
different segmentations and 
hierarchies. These differences are 
reflected in the quantitative 
measurements of object definition 
discussed above. Segmentation using 
the lAS creates region sizes in closer 
correspondence with local surface scale, 
which results in good object boundary 
definition. We also note that in the 
cases where the WS method required 
fewer atomic actions for object 
definition than the lAS method, the lAS 
method produced better object 
boundaries due to its primitive region 
size variation corresponding to image 
structure scale. The shallowness of the 
lAS hierarchy is, we believe, a result of 
our implementation of the hierarchy 
induction method and is therefore 
correctable. Finally, the volume 
rendering produced using IHE is of a 
quality that appears to be satisfactory 
for computational purposes in radiation 
treatment planning. 



Future Deye!opments 

Image roam-and-zoom is implemented 
in preparation for adding pixel level 
editing operations. These operations are 
required even when good RCDAGs are 
available because some semantically 
meaningful structures, e.g. radiation 
treatment volumes, are actually clinical 
or mathematical abstractions that are 
not present in the image data. Because 
IHE must support definition of such 
volumes, pixel level editing cannot be 
ignored. Implementation of pixel 
painting will require the ability to 
create new pnm1t1ve regions because 
painting portions of a pnmitive region 
will force IHE to split that region. 

The current version of IHE does not 
allow the user to select nodes directly 
from the RCDAG. A terminal node must 
be chosen first, then parent and child 
operations are used to move through the 
RCDAG. Object definition may be even 
faster if the RCDAG can be manipulated 
directly, but such a capability will 
require a 3-D visualization of the RCDAG 
connectivity. 

IHE is implemented in AT&T C++ and uses 
the InterViews user interface library. 
Forthcoming enhancements of X 11 
(X11R4) such as a shared memory 
facility should make display updates 
faster, so we plan to continue use of X11. 
We are seeking possible alternatives to 
InterViews. 
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