
Journal of Automated Reasoning 9: 25-42, 1992.
© 1992 Kluwer Academic Publishers. Printed in the Netherlands.

Eliminating Duplication with the
Hyper-Linking Strategy*

SHIE-JUE LEE and DAVID A. PLAISTED
Department of Computer Science. University of North Carolina, Chapel Hill. NC 27599-3175.
U.S.A. Tel. (919)962-{1934/ 1751}, {lee/ plaisted}@cs.unc.edu.

(Received 24 August 1990; accepted 19 October 1990)

25

Abstract. The efficiency of almost all theorem proving methods suffers from a phenomenon called
duplication of mstances of clauses. In this paper, we present a novel technique, called the hyper-linking
strategy, to eliminate such duplication. This strategy is complete for the full first-order predicate calculus.
We show the effectiveness of this strategy by comparing it with other proving methods. We give empirical
evidence that both the Davis-Putnam procedure and the hyper-linking strategy are comparable to each
other and better than other common theorem proving strategies on propositional calculus problems. The
fact that the Davis-Putnam procedure is faster than resolution and other common methods on prop
ositional problems seems not to be appreciated by a large segment of the theorem proving community.
Also, we give empirical evidence that the hyper-linking strategy is better than other common theorem
provmg methods on near-propositional problems like logic puzzles. We attempt to explain the superior
behavior of the hyper-linking strategy and the Davis-Putnam procedure by examining the kinds of
duplication that can occur during the search with the different methods. In addition, we show the
completeness of the hyper-linking strategy combmed with several support strategies.

Key words. Theorem proving, links, hyper-links, instances, the propositional calculus decision procedure.

1. Introduction

Duplication of instances of clauses is a common phenomenon during the process of
inference in various theorem proving methods. This duplication is a significant
hindrance to these theorem proving methods. There are two kinds of duplic?tion. The
first we call duplication by combination. This appears in resolution [28], model elim
ination [14], the connection graph method [3], the modified problem reduction format
[24], and other strategies. The same instances of a clause can contribute to many
resolvents, for example. Such duplication may cause combinatorial problems since a
small number of formulas may combine in many different ways. The second kind of
duplication is duplication by case analysis. This appears in the linked conjunct
procedure of [6], mating strategy [1], as well as in the Davis-Putnam propositional
calculus decision procedure [6, 7]. The same instances of clauses may appear in more
than one case of a case analysis, although in each case there may be no duplication.
Such duplication may waste work since identical clauses are to be processed again and
again.

*This research was partially supported by NSF under grant CCR-8802282.

26 SHIE-JUE LEE and DAVID A. PLAISTED

Given clauses C and D, resolution computes a most general unifier 0 and then
combines literals of CE> and DE> to obtain a resolvent E. Note that if C and CE> are
identical, then the same literals may appear in both C and the resolvent E. This is
one kind of duplication of instances by combination. Another kind appears when a
clause C resolves against many clauses D1, D2 , ••• , D" using the substitutions 0 1,

0 2 , ••• , 0". In this case, it may be that many of the instances CE>, are identical. Then
the literals in CE>, may appear in many different resolvents. This is another kind of
duplication by combination. Duplication by combination occurs for similar reasons
in model elimination and the connection graph method. The linked conjunct
procedure of [6] involves duplication by case analysis. Given a set of S clauses, a
linked conjunct is obtained by matching the literals in clauses in S in different ways.
Each matching has to be looked at separately; each such matching is another case to
be considered. The same instances will appear in many such matchings; thus we have
duplication by case analysis. Even if Sis propositional, there may be many cases to
consider and the method may be slow. Since a given literal may match many other
literals, there may be many cases to consider for each literal. Similarly, the Davis
Putnam procedure of [6] (which differs slightly from that of [7]) involves case analysis
on the truth values of atoms appearing in S. If an atom A appears in S, the cases
A = TRUE and A = FALSE are considered separately. Many clauses and literals
will appear in both cases, so we have duplication by case analysis.

A theorem prover may gain efficiency by avoiding duplication of instances of
clauses. Such avoidance can be achieved by reducing first order logic to propositional
calculus and then applying a propositional calculus decision procedure. In this paper,
we present a novel strategy, the hyper-linking strategy, of this kind. The strategy is
a refutation theorem proving method based on Skolemized first-order formulae
(clause form). It basically generates selected instances of the input clauses by a process
called hyper-linking, then applies a propositional calculus decision procedure to test
the unsatisfiability of the ground set of the retained clauses. The strategy is complete
for the full first-order predicate calculus.

The hyper-linking strategy has some analogies to human problem solving methods.
The hyper-linking phase may be considered as creative and the unsatisfiability test
phase as analytic. It is also related to the associative network model of artificial
intelligence, in which nodes are connected by links and activations can spread from
node to node along the links. For us, the nodes are assertions, the links are unifi
cations between parts of formulas, and the activations are substitutions that
propagate from node to node. There is an obvious if possibly superficial resemblance
to neural networks. The similarities with semantic networks in artificial intelligence,
and with connection graph methods in theorem proving, are closer. The hyper-linking
strategy also has some similarity to the connection graph method of Bibel [3].

A prover which is an implementation of the new strategy has been written in Prolog.
Experiments show that the prover works well. We compare the hyper-linking strategy
prover with other theorem provers and show that both the Davis-Putnam procedure
and the hyper-linking strategy are comparable to each other and better than other

ELIMINATING DUPLICATION 27

common theorem proving strategies on propositional calculus problems. Also, we
show that the hyper-linking strategy is better than other common theorem proving
methods on near-propositional problems like logic puzzles. A near-propositional
problem is one in which the function symbols play a minor role; for example, a
problem with only variables and constants in the input clauses but no k-ary function
symbols fork ~ l, is near-propositional. The hyper-linking strategy prover is also
good on other problems.

2. The Hyper-Linking Strategy

The philosophy of the hyper-linking strategy is never to combine literals from two
clauses. The method consists of a two stage process. The first stage, hyper-linking,
generates the selected instances of the given clauses. The second stage, a propositional
unsatisfiability test, tests for unsatisfiability on the ground set of clauses retained in
the database using a propositional calculus decision procedure. We completely avoid
duplication by combination in the hyper-linking stage. A little duplication by case
analysis occurs in the propositional calculus decision procedure. However, there are
at most two cases, TRUE and FALSE, to be considered per literal. It turns out that
this propositional calculus decision procedure is so efficient that such duplication is
negligible most of the time. The two stages are performed iteratively until the input
problem is solved or until the time limit is exceeded.

We keep clauses as lists of literals, as in resolution. All literals are on an equal
footing. This contrasts with the modified problem reduction format of [24], in which
contrapositives of clauses are considered separately. The conceptual simplicity of
having clauses as lists has enabled us to add some refinements to the method without
having to deal with the complexities of contrapositives.

2.1. HYPER-LINKING

Given a setS clauses, define a link inS to be a pair (L, M) of literals such that both
Land M appear in (distinct) clauses inS and such that Land the complement of M
are unifiable. We may have to rename the variables in Lor M so that Land M have
no common variables. We treat (L, M) and (M, L) as identical. Note that this is
essentially the same as a connection in Kowalski's proving procedure for Horn clauses
[11] or in connection graph resolution [3], except that we don't explicitly store the
links, so that they cannot be deleted as they are in Kowalski's proving procedure or
connection graph resolution.

DEFINITION. Suppose S is a set of clauses. The connection graph of S, denoted
(S, £), is the graph whose nodes are the clauses of S, and which has an edge labeled
(L 1 , L2) in E between C1 and C2 if (L 1 , L2) is a link and C, and C2 contain L 1 and L2

respectively.

28 SHIE-JUE LEE and DAVID A. PLAISTED

DEFINITION. SupposeS is a set of clauses. Gr(S) is defined to be {01>: C E S},
where <I> is a substitution replacing all variables of all clauses in S by a new constant
symbol $. We call Gr(S) a ground set of S.

For example, if Sis {{1p(X)}, {q(X, Y)}} then Gr(S) is {{1p($)}, {q($, $)}}.

DEFINITION. Suppose (S, E) is a connection graph. If C = {L1 , ••• , Lm} is a
clause then a hyper-link of CinE is a set { (L1, M 1), ••• , (Lm, Mm)} of links in E such
that there exists a substitution <I> such that L,0 and M;0 are complementary for
all i, 1 ~ i ~ m. We may have to rename the variables in L, or M, so that L, and M,
have no common variables. A most general such 0 is called the substitution of the
hyper-link and C0 for this 0 is called the instance of the hyper-link. We call this
instance generation a hyper-link operation. We call C the nucleus of the hyper-link and
we call the M, (or clauses D, containing M,) the electrons of the hyper-link.

Suppose we have the following clauses: {p(a)}, {1q(X), r(a, X)}, {1p(Y), 1s(Z),
1r(Y, Z)}, {q(b)}, and {s(b)}. Let's call them C1 through C5 respectively. The con
nection graph for these clauses is shown in Figure 1. Each node represents one clause.
There are four links (edges). m1 is (p(a), 1p(Y)), m2 is (q(b), 1q(X)), m3 is (r(a, X),
1r(Y, Z)), and m4 is (1s(Z), s(b)). There are five hyper-links. The hyper-link with
nucleus C1 contains link m1 • The hyper-link with nucleus C2 contains links m2 and

q(b) -.q(X),r(a,X)

Cs s(b)

Fig. I. A connection graph.

ELIMINATING DUPLICATION 29

m3 • The hyper-link with nucleus C3 contains links m1 , m3 • and m4 • The hyper-link with
nucleus C4 contains link m2 • The hyper-link with nucleus C5 contains link m4 •

Given a nucleus C = { L 1 , ••• , Lm} of a hyper-link { (L 1 , M 1), ••• , (Lm, Mm)} the
computation of an instance is as follows: Compute the most general unifier e, such that

L,e1 ••• e,_ 1 e, = (1M,)e,

for 1 ~ i ~ m. The substitution 0 of the hyper-link then is e1 • • • em. The instance
corresponding to this substitution is ce.

The hyper-linking stage works this way: suppose (S, E) is a connection graph. For
each clause C in S, all hyper-links of C in E are computed, together with their
substitutions 0. Then, the set of all such instances C0 and consequent links are added
to (S, E), for all clauses C inS and all substitutions 0 of their hyper-links. This results
in a new graph (S', E'). We call this expansion of (S, E) to (S', E') a round of hyper
linking or a round. For example, if {1p(X), q(X)} is inS and literals p(a) and 1q(a)
appear in clauses in S, then the instance {1p(a), q(a)} is generated. If {1p(X),
q(f(X))} is inS and the literals p(a) and 1 q(X) appear in clauses inS then the instance
{1p(a), q(f(a))} is generated. However, the set E of links is not stored explicitly.

As we mentioned earlier, the hyper-linking strategy performs hyper-linking and
unsatisfiability tests iteratively. SupposeS' is the set of clauses retained after a round
of hyper-linking. We then test Gr(S') for propositional unsatisfiability using the prop
ositional calculus decision procedure to be explained later. We now give an example
to show how the hyper-linking strategy works. Suppose S is { { p(a)}, { 1 p(X),
p(f(X))}, {1p(f(f(a)))}}. We call these clauses C1 , C2 , and C3 , respectively. There
are three hyper-links. First, we consider the hyper-link of (1p(X), p(a)). (p(f(X)).
1p(X)) with nucleus C2 • The instance of this hyper-link is {1p(a),p(f(a))}. Another
hyper-link contains (1p(X), p(f(X))) and (p(f(X)), 1p(X)) and the instance of this
hyper-link with nucleus C2 is {1p(f(X)), p(f(f(X)))}. The third hyper-link contains
(1p(X), p(f(X))) and (p(f(X)), 1p(f(f(a)))) and the instance of this hyper-link
with nucleus C2 is {1p(f(a)), p(f(f(a)))}. This completes the first round of hyper
linking. At this point the setS' of clauses is {{ p(a)}, {1p(X), p(f(X))}, {1p(f(f(a)))},
{1p(a), p(f(a))}, {1p(f(X)), p(f(f(X)))}, {1p(f(a)), p(f(f(a)))}}. We ground
all clauses, replacing all variables with $,obtaining the set Gr(S') of ground instances
{ { p(a)}, {1p($), p(f($))}, {1p(f(f(a)))}, {1p(a), p(f(a))}, {1p(J($)), p(f(f($)))},
{1p(f(a)), p(f(f(a)))}}. This set is found to be propositionally unsatisfiable by the
propositional calculus decision procedure to be presented later. Note that if we have
grounded the set S of input clauses, we would get {{p(a)}, {1p($), p(f($))},
{1p(J(f(a)))} }. This set is satisfiable. The extra instances generated by hyper-linking
were needed for the proof.

2.2. THE PROPOSITIONAL CALCULUS DECISION PROCEDURE

After a round of hyper-linking, the set S of clauses available so far is given to the
propositional calculus decision procedure for an unsatisfiability test. First, all variables
inS are replaced by a new individual constant$ to obtain a set Gr(S) of ground clauses.

30 SHIE-JUE LEE and DAVID A. PLAISTED

Thus, the clause {1p(X, Y), q(Y)} would be replaced by {1p($, $), q($)}, for
example. Then Gr(S) is tested for unsatisfiability using the propositional calculus
decision procedure. If Gr(S) is unsatisfiable, then the ground instantiation problem
has been solved and we know S is unsatisfiable. Otherwise, more rounds of hyper
linking and so on, are done.

The propositional calculus decision procedure is a modification to the Davis
Putnam procedure [6]. It uses a technique similar to dependency-directed back
tracking [8, 9] and McAllester's RUP [16, 17] in the area of Artificial Intelligence. One
disadvantage of the Davis-Putnam procedure is that it carries out two cases in a case
analysis all the time, which results in unnecesary duplication by case analysis. The
motivation of our propositional calculus decision procedure is to remove such
unnecessary duplication. Our propositional calculus decision procedure always
performs about as well as the Davis-Putnam procedure on the problem tested, and
for some problems it performs much better.

Although the satisfiability problem is NP-complete [5], we have found that the time
taken by the propositional calculus decision procedure is usually small. It is only for
a few problems such as the 'pigeonhole problems' [23] that the propositional calculus
decision procedure takes most of the time. It is surprising that such a simple method
works so well. Also, since the only duplication by case analysis in the hyper-linking
strategy occurs in the propositional calculus decision procedure, the speed of the
propositional calculus decision procedure shows that this duplication is negligible
most of the time.

The following simplification rules are used by the propositional calculus decision
procedure:

1. -,FALSE can be replaced by TRUE.
2. A clause containing TRUE can be deleted.
3. -,TRUE can be replaced by FALSE.
4. FALSE may be deleted from a clause containing FALSE.
5. A clause containing both Land 1L can be deleted.
6. TRUE may be deleted from a set of clauses containing TRUE.
7. A set of clauses containing FALSE may be replaced by FALSE.

Thus, {{TRUE, p}, {FALSE, q}} simplifies to {{q}}.
The propositional calculus decision procedure basically performs unit simplifi

cation and case analysis iteratively. It is described as follows:

procedure PC(S)
simplify S to S' using simplification rules;
If S' is TRUE or FALSE, returnS';
If S' contains a unit clause C then % do unit simplification

if C is { L} for positive literal L,
replace L by TRUE inS', and simplify S' to S" using simplification rules;
return PC(S");

if C is {1 L} for positive literal L,

ELIMINATING DUPLICATION 31

replace L by FALSE inS', and simplify S' to S" using simplification rules;
return PC(S");

If none of the above holds, then
if S' does not contain a positive or a negative clause
then return TRUE
else let C be a smallest negative clause in S'; % do case analysis

pick a literal ---, L in C;
replace L by FALSE, and simplify S' to S, using simplification rules;
if PC(S 1) is TRUE then return TRUE
else if the assignment of FALSE to L was not

needed to show that S, is unsatisfiable
then return FALSE % right cutoff

end PC.

else replace L by TRUE, and simplify S' to S2 using simplification rules;
if PC(S2) is TRUE, then return TRUE
else if the assignment of TRUE to L was not

needed to show that S2 is unsatisfiable
then return FALSE % left cutoff
else return FALSE;

This procedure returns TRUE if Sis satisfiable, FALSE otherwise. It is similar to
the Davis-Putnam procedure except for the following features:

I. We can detect the input set of clauses satisfiable earlier than the Davis-Putnam
procedure. Whenever the set being considered does not contain a positive or a
negative clause, we conclude that the input set of clauses is satisfiable. Notice that
the Davis-Putnam procedure can't conclude that the input set of clauses is
satisfiable until an empty set is derived.

2. The clause used for case analysis is chosen as a smallest negative clause, if one
exists. This simulates backward-chaining which is goal-oriented and is usually a
good strategy.

3. The major improvement to the Davis-Putnam procedure is in the case analysis
itself. If PC(S1) is FALSE, we keep track of whether the assignment to L is used
in this part of the proof. If not, we call this a right cutoff and return FALSE, since
the same proof could be done if the other truth value were assigned to L. If the
truth assignment to L was used in the first case, but in the second case, PC(S2) is
FALSE and the truth assignment to L is not used, we call this a left cutoff, and
PC(S) returns FALSE. Right cutoffs correspond to cases in which our procedure
does less case analysis than the Davis-Putnam procedure. Left cutoffs do not save
work on the current case analysis.

4. We don't need a special procedure to carry out pure literal deletion. Pure literal
deletion is essential to the Davis-Putnam procedure. Suppose Lis a pure literal and
is not deleted. The Davis-Putnam procedure may choose L to do case analysis.

32 SHIE-JUE LEE and DAVID A. PLAISTED

Then both L assigned TRUE and L assigned FALSE are to be considered, which
wastes time. Case analysis in our propositional calculus decision procedure carries
out pure literal deletion automatically. Suppose a pure literal p (pis negative) is
picked in a case analysis. All the clauses containing occurrences of pin the set being
considered are deleted. The remaining clauses do not contain occurrences of 1 p
since p is a pure literal. So the proof of the subcase with p does not use p and we
have a right cutoff. Therefore we don't need to try the other subcase. This
essentially achieves the same effect done by pure literal deletion on p. However, we
don't take any action on p if pis positive since p can't be picked by case analysis.

2.3. SOUNDNESS AND COMPLETENESS

The hyper-linking strategy is obviously sound, that is, the proof that is found logically
follows the axioms. This is justified by the following universal instantiation rule:

VXF(X)

F(c)

where F is a formula and c is some arbitrary constant in the domain.
We now prove the completeness of the hyper-linking strategy.

DEFINITION. A mapping 4> from clauses to clauses is an instance mapping if for all
clauses C, C is an instance of ¢(C).

LEMMA 1. Let T be an unsatisfiable set of ground instances of set S of clauses.
Suppose Gr(S) is satisfiable. Let

cf>:T-+ S

be an instance mapping. Extend 4> to map the literals of C to the corresponding literals
of cf>(C);for this, it may be necessary to distinguish the literals in different clauses. Then
there are literals L, Min T that are complementary but Gr(cf>(L)) and Gr(¢(M)) are
not complementary.

Proof Let I be a model of Gr(S). Suppose the lemma is false; then for all literals
L, M of clauses in T, if Land Mare complementary then Gr(cf>(L)) and Gr(¢(M))
are complementary. Then I can be used to give a model I' ofT defined by I' I= L if
and only if I I= Gr(¢(L)). This contradicts the assumption that Tis unsatisfiable.

DEFINITION. For a clause C, II C II is the sum of the number of occurrences of
non-variable symbols inC, that is, individual, function, and predicate constants. IlL II
is defined similarly for a literal L. If

cf>:T-+ S

is an instance mapping and Tis { D 1 , ••• , Dn} then II¢ II is the sum over i of lief>(D.) 11.

ELIMINATING DUPLICATION 33

DEFINITION. Suppose (L, M) is a link inS and Land Mare contained in clauses
C and D respectively. A link operation on S with (L, M) produces two instances ce

and De, where e is the most general unifier of Land M.

LEMMA 2. Let T be an unsatisfiable set of ground instances of set S of clauses. Let
¢be as in the above lemma. Suppose Gr(S) is satisfiable. Then there are clauses C1 and
C2 obtained by a link operation on S and there is an instance mapping

¢': r -> s u { c,, c2}

such that 11¢'11 > 11¢11.
Proof By Lemma I, there must exist literals, L, Min clauses D1, D2 and T such

that L and M are complementary but Gr(¢(L)) and Gr(l/J(M)) are not comp
lementary. However, it must be that their most general unifier e binds at least one
variable to a non-variable term. Then,

II¢(L)811 + II¢(M)811 > lll/J(L)II + II¢(M)II

Define¢' by l/J'(D) = l/J(D)e forD = D 1 or D = D 2 , and ¢'(D) = l/J(D) otherwise.

Then IWII > 11¢11.

THEOREM 3. If S is an unsatisfiable set of clauses, then there is a set S" of clauses
obtained by a sequence of link operations on S such that Gr(S") is unsatisfiab/e.

Proof IfGr(S) is unsatisfiable, we are done. Suppose Gr(S) is satisfiable. We know
by Herbrand's theorem that there is an unsatisfiable set T = { D 1, ••• , D"} of
ground instances of clauses of S. Let¢ be an instance mapping from T to S. Now,
II¢ II is bounded by the sum over i of II D, 11. By Lemma 2, if Gr(S) is satisfiable then
we can perform a link operation on two clauses of S obtaining S' and

¢': T-> S'

with IWII > 11¢11. If Gr(S') is satisfiable, this can be repeated. Since the 11¢11 are
bounded, this process must stop. Letting S" be the set of instances at that time, Gr(S")
will be unsatisfiable by Lemma 2.

COROLLARY 4. If Sis an unsatisfiable set of clauses, then there is a setS" of clauses
obtained by a sequence of hyper-link operations on S such that Gr(S") is unsatisfiable.

Proof From the theorem we know that there is a sequence of link operations
producing a set of instances as desired. We convert this into a sequence of hyper-link
operations. For this part of the proof we assume that Tis a minimal unsatisfiable set
of ground instances and R is the corresponding minimal sequence of link operations.
Suppose a link operation between clauses C and Dis in R. Suppose this link operation
produces the instances ce and De. We show that there is a hyper-link operation on
C producing an instance of ce suitable for our purposes, and similarly for D. Suppose
Cis {L 1, ••• , Lm}. Now C must be ¢(C) for some ground clause C = {L;, ... , L~}
in T. For each L;, pick clause D, in Tand literal M, in D, such that Gr(L;) and Gr(M,)
are complementary. Such clauses must exist since Tis minimal unsatisfiable (since
clauses containing pure literals can be deleted without affecting satisfiability). Then if
we work on the hyper-link {(L1 , l/J(M1)), ••• , (Lm, l/J(Mm))} we will obtain an

34 SHIE-JUE LEE and DAVID A. PLAISTED

instance of CO. As in the proof of the theorem, we can construct a new instance
mapping ¢' and show that if a suitable set of ground instances has not been found,
II¢' II > II¢ II, hence we will eventually find a set of instances as desired.

3. Unit Simplification

The retained clauses after each hyper-linking round can be simplifed by a unit
simplification phase which is analogous to operations in the Davis-Putnam
procedure. If a unit clause { L} is derived and a clause Cis obtained by hyper-linking
such that C contains M, and M is an instance of the complement of L, then C is
replaced by C - {M}. We can write this as an inference rule as follows:

S u {C} u {{L}}, Min C, Mis an instance of1L

S u {C- {M}} u {{L}}

This is called unit literal deletion. Also, if a unit clause { L} is derived, and clause C
is derived, and C contains a literal M that is an instance of L, then C can be deleted.
This is called unit subsumption. This may be written as an inference rule as follows:

S u {C} u {{L}}, Min C, M is an instance of L

Su{{L}}

Note that unit literal deletion may produce more unit clauses, which may enable more
unit literal deletions, and so on. Thus, a considerable amount of inference may occur
in the unit simplification phase. As an example, supposeS is { { p}, {1p, q}, {1q, r}}.
Then unit literal deletion withp produces { {p}, { q}, {1q, r}}. There is now a new unit
clause q, and unit literal deletion with q finally produces the set of clauses { { p}, { q},
{r}}. As an example of unit subsumption, if Sis { { p}, {p, q}}, then unit subsumption
with p causes { p, q} to be deleted, producing the set { { p}} of clauses.

Unit simplification simplifies the set of clauses, in the sense that the size of the set
of clauses is reduced, but proofs do not become harder to obtain. Moreover, unit
simplifiction maintains the completeness of the hyper-linking strategy.

4. Support Sets

In resolution, set-of-support strategies [32] are widely used. Given a setS of clauses,
a support set is a subset T of S such that S - Tis satisfiable. Such strategies restrict
the generation of irrelevant resolvents and seem essential for applications in which
there are a large number of clauses. The idea can also be used in the hyper-linking
strategy to improve its efficiency. By specifying support sets, we can restrict which
hyper-links are performed. Thus reduces the number of instances generated in each
round of hyper-linking.

We provide three basic support strategies. One simulates forward chaining, another
simulates backward chaining, and the other simulates set-of-support in resolution.
We permit these support methods to be interleaved in arbitrary orders on successive

ELIMINATING DUPLICATION 35

hyper-linking rounds, which allows us to combine forward and backward chaining,
for example. We have found such strategies to be effective in reducing the size of the
search space. We also permit combinations of support strategies to be used in a given
round.

Let S be the set of input clauses. We have the following definition.

DEFINITION. A forward support set is the set of all positive clauses m S. A
backward support set is the set of all negative clauses in S. A user support set is a set
of clauses provided by the user. If Tis the user support set then we assume that S - T
is satisfiable.

We say the clauses in the support set are forward supported, backward supported,
or user supported, respectively. As the hyper-link operation proceeds, the number
of supported clauses increases. More and more clauses are supported according
to the following criterion. Suppose C is a nucleus of a hyper-link and L 1 • • • Lm
are the positive literals that are electrons for C and M 1 • • • M" are the negative literals
that are electrons for C. Thus Chasm negative literals, linked by L,, and n positive
literals, linked by~. Let A 1 • • • Am be the clauses containing L 1 • • • Lm, respectively,
and let B1 • • • B" be the clauses containing M 1 • • • M". Let D be the instance of C
obtained by this hyper-link. Then Dis forward supported if m = 0 (Cis all positive)
or if all A, are forward supported. D is backward supported if n = 0 (Cis all negative)
or if all B1 are backward supported. D is user supported if C was user supported or if
some A, or B1 was user supported. By specifying that all instances be user supported,
forward supported or backward supported, the number of instances generated can be
reduced.

User support seems necessary when there are large numbers of clauses. The user will
typically specify the user support set to be those clauses that come from the theorem
to be proven, and the other clauses will typically be axioms of some theory. User
support restricts attention to clauses that are in some way related to the theorem. This
appears to be necessary when there are large numbers of axioms, for otherwise many
clauses will be derived purely from the axioms. The set of support restriction in
resolution has a similar effect.

The use of support sets maintains completeness of the hyper-linking strategy as
shown below.

Let I be an interpretation. We define nt(l) to be the number of propositions
assigned TRUE by I.

LEMMA 5. Suppose Sis a minimal unsatisfiable set of ground clauses obtained by
hyper-linking. For all interpretations I there is a clause C in S such that C is false in I
and C is forward supported after some number of rounds of hyper-linking with forward
support strategy.

Proof The proof is done by induction on nt(I). Suppose nt(l) is 0. Then I assigns
all propositions FALSE. Since S is unsatisfiable, some clause C in S is assigned
FALSE by I. C must be positive, and therefore C is forward supported.

36 SHIE-JUE LEE and DAVID A. PLAISTED

Suppose the lemma is true for nt(I) < n. We show it for nt(I) = n. Let L 1,

L2 , ••• , Ln be propositions assigned TRUE by I. Let I 1 , I2 , ••• , In be defined this
way:

1 • I 1 assigns L2 , L3 , ••• , Ln TRUE, others FALSE
• I2 assigns L1, L3 , ••• , Ln TRUE, others FALSE

• In assigns L~> L2, ••• , Ln_ 1 TRUE, others FALSE

Thus nt(~) = n - 1. Since Sis unsatisfiable, none of~ makes S true. By assumption,
there is a clause c; false in~- If~ does not contain L1 then c; is false in I also. Also,
since nt(~) = n - I, by induction, we know that c; is forward supported eventually.
We pick C = c;. So, if some c; is false in~ for some}, and c; does not contain L1 ,

we are done. Suppose now that for all j, the clause c; contains L1 • Let C be some
clause of S that is false in I. The literals 1 L1 , 1 L2 , ••• , 1 Ln may appear in C or
some subset of them may appear; no other negative literals may appear. After all the
clauses c; have been found to be forward supported, the electrons L 1, L2 , ••• , Ln will
be available, and so another round of hyper-linking with forward support strategy
will cause C to be forward supported.

THEOREM 6. Suppose Sis a minimal unsatisfiable set of ground clauses obtained by
hyper/inking. Then all clauses in S will be forward supported after some number of
rounds of hyper-linking with forward support strategy.

Proof From Lemma 5, we know that for each interpretation I we get a forward
supported clause C that is false in I. Let T be the set of all such C. Then T s S and
Tis unsatisfiable. Since S is minimal unsatisfiable, we have T = S. Thus all clauses
in Swill be forward supported eventually.

THEOREM 7. SupposeS is an unsatisfiable set of clauses and Tis a minimal unsatis
fiable set of ground instances of S. Then eventually every D in T will have some more
general C in S that is forward supported.

Proof Let fjJ be an instance mapping from Tto S. We show by induction on nt(I)
that if D is false in I then eventually some C will be produced by hyper-linking such
that Cis forward supported and C = f/J(D).

Suppose nt(I) is 0. The D is positive as before. So C is positive too, and therefore
forward supported.

Suppose the theorem is true for nt(I) < n. We show it for nt(I) = n. Suppose I
assigns L1 , L2 , ••• , Ln TRUE, other propositions FALSE. Let I 1 , I2 , ••• , In and D 1 ,

D 2 , ... , Dn be as before; D, is false in ~. If any Dj does not contain L1 then D1 is false
in I too and we can let D be Dr Suppose all D1 contain Lr Let C1 , C2 , •.• , Cn be
f/J(D 1), f/J(D2), ••• , f/J(Dn). Let D be some clause false in I. By induction, some such
c; will eventually be forward supported. Then electrons L;, L~, ... , L~ will be
available, where L; E C, and L; = f/J(L.). These electrons can be used to produce a
forward supported instances of D by a hyper-link operation. This completes the
proof.

ELIMINATING DUPLICATION 37

COROLLARY 8. The hyper-linking strategy is complete with forward support
strategy.

Proof Suppose the set S of clauses is unsatisfiable. From Theorem 7, we know that
eventually ¢(D) is forward supported for all D. Thus any hyper-link between the
clauses cjJ(D) is allowed. Since unrestricted hyper-linking strategy is complete, we will
get a proof for S eventually.

COROLLARY 9. The hyper-linking strategy is complete with backward support
strategy.

Proof The proof is similar to that for forward support strategy. However,
we replace nt(I) by nf(I) which means the number of propositions assigned FALSE
by I.

COROLLARY 10. The hyper-linking strategy is complete with user support strategy
if the clauses not contained in the user support set are ebsatisfiable.

Proof The proof is similar to that for forward support strategy if we change the
signs of atoms in the right way. Forward support is like user support if positive clauses
are chosen as the support set. By changing signs of some atoms we can get the effect
of user support.

A round of hyper-linking can be restricted to be forward supported, backward
supported, user supported, or any combination of the three. If forward support is
specified, for example, then only forward supported hyper-links are performed. If a
round is forward and user supported, then only instances which are both forward and
user supported, are retained. Also, various support criteria can be interleaved. For
example, we may specify one round to be forward supported and the next round to
be backward supported.

5. Implementation

We have implemented the hyper-linking strategy in Prolog. We use backtracking to
examine all possibilities oflinks for all literals in a nucleus C. Each instance is asserted
into the database. If some literal in C is a ground literal, or becomes a ground literal
due to previous unifications, then no backtracking is needed since linking will not
instantiate this literal. Also, for efficiency, ground literals ~ are considered first.

We don't store links as in connection graph resolution. This has advantages and
disadvantages. It saves space since usually the number of links is very big. However,
identical instances are generated in different rounds and it takes time to generate and
delete them.

There is another kind of duplication in the current implementation. If the number
of iterations needed to obtain a proof is greater than one, then identical ground
clauses may tested by the propositional calculus decision procedure in each iteration.
We call this duplication by iteration. However, this duplication causes no problem in
general since the number of iterations needed is usually small (often 3 or 4).

38 SHIE-JUE LEE and DAVID A. PLAISTED

6. Comparison with Other Theorem Provers

In this section, we compare our hyper-linking strategy prover with some other
theorem provers. The other provers considered are DP [6] (the Davis-Putnam
Procedure), OTTER [18], 'sprfn' [24, 20, 21], and PTTP [30]. DP is a propositional
calculus decision procedure. We coded this procedure in Prolog for comparison
purposes. OTTER is a fast resolution-style theorem prover. It is written in C and uses
discrimination nets for fast look-up of potential unifications. 'sprfn' is based on the
modified problem reduction format (MPRF) [24]. It is written in Prolog and uses
depth-first iterative deepening search and caching of answers to avoid repeated
solution of the same subgoal. PTTP uses the MESON procedure [14] which is a
refinement of Model Elimination. It uses depth-first iterative-deepening search. It also
uses the same data structures and optimization techniques as for a Prolog imple
mentation, to obtain very fast rates of inference, on the order of thousands or tens of
thousands of inferences per second. The version we used for our comparison is a
Pro log version that is not as fast as that reported in [30], and does not have all of the
optimizations of the faster version.

We use some propositional and near-propositional problems. Propositional
problems contain no variables. All clauses contained in them are ground. A near
propositional problem is one in which the function symbols play a minor role. Usually
it does not contain many variables and the search space is finite. Since clauses of these
problems are mainly propositional, the instance generation strategy has little effect on
the performance of the provers. Therefore, the performance of the provers on these
problems reveals the effect of duplication of instances during the proof.

The times spent on these problems for different proving systems are listed in
Table I. All the times are obtained on a SUN3/60 workstation with 12MB memory.
The Prolog system used for running DP, PTTP, 'sprfn', and our prover is ALS-Prolog
(Version 0.60) of Applied Logic System, Inc. [2]. An entry with '-' indicates we
stopped the run on the problem in the entry after the time spent is greater than

Table I. Performance comparison on some propositional and near-propositional problems.

problem no. of input DP OTTER PTTP sprfn our prover
clauses (sec) (sec) (sec) (sec) (sec)

ph4 22 0.167 63.620 88.833 o.600
ph5 45 1.017 38606.760 7145.450 1.800
ph6 81 6.183 7.300
ph7 133 40.133 39.600
ph8 204 289.000 276.467
ph9 297 2368.250 2266.617
example 6 NA 142.360 9.766 17.183
latinsq 16 NA 56.350
liar 8 NA 0.320 76.483 8.530 5.433
salt 44 NA 1523.820 5728.383 28.016
jobs 45 NA 331.000
zebra 128 NA 866.116
lion 51 NA 100.480 2391.133 231.400

ELIMINATING DUPLICATION 39

24 hours. An entry with 'NA' means the prover is not applicable to the problem in
the entry. The first six problems:ph4' through 'ph9' are pigeon hole problems [23].
'ph4' means 4 objects in 3 holes, etc. They are propositional problems. The rest are
near-propositional problems. 'example' is a theorem presented by Pellitier and
Rudnicki in AAR Newsletter No.6, 1986. 'latinsq' is the latin square problem from
[27]. 'liar' is the truth tellers and liars problem [I 5]. 'salt' is the salt and mustard
problem from Lewis Carroll [15]. 'jobs' and 'zebra' are logic puzzles from [3 1] and [29]
respectively. 'lion' is the lion and unicorn problem from Raymond SmuJlyan [22].
Note that DP is only applicable to the propositional problems. The strategies used for
OTTER are hyperresolution and UR resolution together, plus forward and backward
subsumptions. For those problems that can't be solved by OTTER, we also tried the
strategies above and binary resolution, respectively, with reasonable support sets
specified, i.e., the clauses corresponding to the negation of the answers in puzzles,
without any success. As another comparison, Murray and Rosenthal's dissolver takes
168 seconds for 'ph6' [19).

The hyper-linking strategy prover runs as well as the Davis-Putnam procedure on
the propositional problems. This is reasonable since both methods work in the same
manner for propositional problems. However, the hyper-linking strategy prover
performs much better than the other provers for most of the cases. Since our prover
attempts to eliminate duplication of instances of clauses, this indicates that such
duplication might be a real problem that is hindering the other proving methods.

The hyper-linking strategy prover also runs weJI for other problems. For a com
parison with other provers on these problems, see [12, 25].

7. Related Work

Some of the early work in theorem proving was similar in spirit to ours, such as the
linked conjunct procedure of [6]. Even the methods of [10, 26] have similarities
to ours. However, they also have significant differences. In Gilmore's procedure,
instances are generated by blind substitution. It replaces variables in a clause by
elements of the Herbrand universe with level saturation. This results in exponential
explosion of the search space. Consider the set S of the following two clauses [4]

• { p(X, g(X), Y, h(X, Y), Z, k(X, Y, Z))}

• {rp(U, V, e(V), W, f(V, W), X}

The Herbrand universe oflevel 0 contains 1 element, Ievell contains 6 elements, ... ,
and level 5 contains about 1065 elements. Gilmore's procedure can't find a proof of S
until level 5 in which about 10256 instances are generated at level 5. Furthermore, the
unsatisfiability test is done using the multiplication method. Clauses are transformed
to a disjunctive normal form before the test. This transformation is very inefficient.
It results in exponential explosion of the number of conjuncts. It also combines parts
of different clauses in a conjunct.

40 SHIE-JUE LEE and DAVID A. PLAISTED

The Prawitz procedure needs duplicate clauses. Each duplicate may have indepen
dent instantiations. For example, consider the following three clauses: { p(a)}, { p(b)},
and {1p(X)}. Two copies of the third clause are required. One copy is instantiated
to {1p(a)}; the other copy is instantiated to {1p(b)}. One problem with the Prawitz
procedure is related to the determination of the number of duplicates for an input
clause. It also uses the multiplication method; the use of disjunctive normal form
inevitably produces the same difficulties as Gilmore's procedure.

The linked conjunct procedure also needs duplicates as the Prawitz procedure. It
unifies literals in a clause one at a time, in contrast to our method which unifies all
literals in a clause simultaneously. Due to this global unification, the instances
generated by our method are fewer and more useful than those generated by the
linked conjunct procedure. The linked conjunct procedure may have to consider a
large number of cases. Suppose each literal has m possible mates (literals it can
complementarily unify with). If there are n literals, then there may be mn cases
to be considered. Even if each case can be done fast, mn may still be a large number.
This might involve a lot of duplication by case analysis since identical clauses may
appear in many cases. The linked conjunct procedure also performs the unsatis
fiability test more often than our method. Moreover, Ref. [6] (the linked conjunct
procedure) also doesn't explicitly give a completeness proof or a method of generating
instances.

Our method is based on unification but does not generate such a large number of
cases as the linked conjunct procedure. In this our method is similar to resolution.
This may explain the effectiveness of resolution (and our method) as compared to
methods used prior to 1965. Methods developed since 1965, such as model elimination
and connection graph methods, also tend to be based on unification without requiring
a large number of cases to be considered. Since 1965, much work has been done on
the resolution method of Robinson [28]. Unlike our method, resolution combines
parts of different clauses. This has advantages and disadvantages. The connection
graph methods of [3] are close to ours, but even these combine literals from different
clauses. Also, we do not store any links between clauses as in the connection graph
methods, which rely heavily on such links.

8. Concluding Remarks

Duplication of instances of clauses is very common in theorem proving methods. This
duplication can cause combinatorial problems and redundant work. The hyper
linking strategy eliminates duplication by combination and makes duplication by
case analysis negligible. The effectiveness of the strategy has been demonstrated by
comparing it with other theorem provers. It works better than other provers on
propositional and near-propositional problems. It is also good on other problems.

The current implementation of the hyper-linking strategy uses breadth-first search.
The search may cause memory-paging problems for some problems. However, the
problem doesn't occur on propositional and near-propositional problems we have

ELIMINATING DUPLICATION 41

tested. Moreover, we have developed a mechanism, called sliding priority [12], to
reduce the memory-paging problem.

The efficiency of the implementation can be improved. First we may require that
the electrons come from different clauses than the nucleus itself. This may reduce the
number of hyper-links and the number of instances generated. Secondly, we may
require that one of the electrons for a hyper-link be generated in the last hyper-linking
round. This avoids the generation and deletion of duplicate instances occurring in
different rounds since we don't store links. However, it may be complicated if
alternative support sets are used.

The hyper-linking strategy prover can work as a problem solver, i.e. finding answers
for a set of given constraints. This is done by the capability of model finding of our
propositional calculus decision procedure. The propositional calculus decision
procedure prints out a model if the input set of clauses is satisfiable. For example, the
hyper-linking strategy prover finds a solution for the salt and mustard problem in
53.650 seconds. If the problem has multiple solutions, the hyper-linking strategy
prover can find all of them one by one. This method is explained in [13].

References

l. Andrews, P. B., 'Theorem proving via general matings', Journal of the Association for Computing
Machinery 28, 193-214 (1981).

2 Applied Logic Systems, Inc., ALS Prolog User's Guide and Reference Manual, Syracuse, New York,
March 1988.

3. Bibel, W., Automated Theorem Proving, Vieweg (1982).
4. Chang, C. and Lee, R .. Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York

(I 973).
5. Cook, S.A., 'The complexity of theorem-proving procedures', In Proceedmgs of the Jrd Annual AC M

Symposium on Theory of Computing (1971) pp. 151-158.
6. Davis, M., 'Elimmating the irrelevant from mechanical proofs', In Proceedmgs Symp. of Applied Math.

(1963) Vol. 15, pp. 15-30.
7. Davis, M. and Putnam, H., 'A computing procedure for quantification theory', Journal of the Assoct

ationfor Computing Machmery 7, 201-215 (1960).
8. de Kleer, J., 'An assumption-based TMS', Artificial Intelligence 28, 127-162 (1986).
9. de Kleer, J., 'A comparison of ATMS and CSP techniques', In Proceedmgs of lith International Jomt

Conference on Artificial Intelligence, (1989) pp. 290-296.
10. Gilmore, P.C., 'A proof method for quantification theory', IBM Journal of Research and Development

4, 28-35 (1960)
II. Kowalski, R., 'A proof procedure using connection graphs', Journal of the AssoCiation for Computing

Machinery 22, 572-595 (1975).
12. Lee, S.-J., CLIN. An Automated Reasoning System Usmg Clause Lmking. PhD thesis, University of

North Carolma at Chapel Hill, 1990.
13. Lee, S.-J. and Plaisted, D., 'New applications of a fast propositional calculus decisiOn procedure', In

Proceedings of the 8th Biennial Conference of Canadian Society for Computatwnal Studies of Intelli
gence, pp. 204-211 (1990).

14. D. Loveland, Automated Theorem Proving· A Logical Basis, North-Holland, New York (1978).
15. Lusk, E. and Overbeek, R., 'Non-Horn problems', Journal of Automated Reasomng 1, 103-114 (1985).
16. McAIIester, D., 'An outlook on truth maintenance', Technical Report AIM-551, Artificial Intelligence

Laboratory, MIT, Cambridge, MA (1980).
17. McAIIester, D., 'Reasoning utility package user's manual'. Techmcal Report AIM-667. Artificial

Intelligence Laboratory, MIT, Cambridge, MA (1982).

42 SHIE-JUE LEE and DAVID A. PLAISTED

18. McCune, W.W., Otter 1.0 Users' Guide. Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois (1989).

19. Murray, N. and Rosenthal, E., 'DISSOLVER: A dissolution-based theorem prover, system abstract,
In Proceedings of the lOth International Conference on Automated Deduction, pp. 665-666 (1990).

20. Nie, X. Implementation Techniques in Automatic Theorem Proving. PhD thesis, University of North
Carolina, at Chapel Hill, 1989.

21 Nie, X and Plaisted, D., 'A complete semantic back chaining proof system', In Proceedings of the lOth
International Conference on Automated Deduction (1990).

22. Ohlhach, H.J. and Schmidt-Schauss, M., 'The lion and the unicorn', Journal of Automated Reasoning
1, 327-332 (1985).

23. Pelletier, F.J., 'Seventy-five problems for testing automatic theorem provers', Journal of Automated
Reasoning 2, 191-216 (1986).

24. Plaisted, D., 'Non-Hom clause logic programming without contrapositives', Journal of Automated
Reasoning 4, 287-325 (1988).

25. Plaisted, D. and Lee, S.-J., 'Inference by clause linking', Technical Report TR90-022, University of
North Carolina - Chapel Hill, Chapel Hill, NC (1990).

26. Prawitz, D., Prawitz, H. and Voghera, N., 'A mechanical proof procedure and its realization in an
electronic computer', Journal of the Association for Computing Machinery 7, 102-128 (1960).

27. Robinson, J ., 'Theorem proving on the computer', Journal of the Association for Computing Machmery
10, 163-174 (1963).

28. Robinson, 1., 'A machine-oriented logic based on the resolution principle', Journal of the Association
for Computing Machinery, 12 23--41 (1965).

29 Sterling, L. and Shapiro, E., The Art of Prolog, MIT Press, Cambridge, Massachusetts (1986).
30. Stickel, M.E., 'A Prolog technology theorem prover: Implementation by an extended prolog compiler',

Journal of Automated Reasoning, 4, 353-380 (1988).
31. Wos, L., Overbeck, R., Lusk, E. and Boyle, J., Automated Reasoning: Introduction and Applications,

Prentice Hall, Englewood Cliffs, N.J. (1984).
32 Wos, L., Robinson, G. and Carson, D., 'Efficiency and completeness of the set of support strategy in

theorem proving', Journal of the Association/or Computing Machinery 12,536-541 (1965).

