
.

Algorithms for Efficient Image Synthesis

TR90-031

August, 1990

Andrew Stephen Glassner

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

,;,'~'~

I
I

'

i
,,

I

Algorithms for Efficient Image Synthesis

by

Andrew Stephen Glassner

A Dissertation submitted to the faculty of The

University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in the

Department of Computer Science

Chapel Hill

July 1988

Approved by:

Adviser (Kenan Professor Frederick P Brooks, Jr.)

Reader (Professor J. Turner Whitted)

Original material © 1988

Andrew Stephen Glassner

ALL RIGHTS RESERVED

11

ANDREW STEPHEN GLASSNER

Algorithms for Efficient Image Synthesis

(Under the direction of F. P. BROOKS, JR.)

Abstract

This dissertation embodies six individual papers, each directed towards the efficient

synthesis of realistic, three-dimensional images and animations. The papers form four

major categories: ray tracing, animation, texture mapping, and fast iterative rendering.

ill

The ray tracing papers present algorithms for efficiently rendering static and animated

scenes. I show that it is possible to make use of coherence in both object space and time to

quickly fmd the first intersected object on a ray's path. The result is shorter rendering

times with no loss of quality.

The first animation paper considers the needs of a modern animation system and

suggests a particular object-oriented architecture. The other animation paper presents an

efficient and numerically stable technique for transforming an arbitrary modeling matrix

into a fixed sequence of parametric transformations which yield the same matrix when

composed. The result is that hierarchical, articulated models may be described by the

human modeler or animator with any convenient sequence of transformations at each node,

and the animation system will still be able to perform parametrically smooth motion

interpolation.

The fast rendering paper describes a system built to allow quick modification of object

surface description and lighting. I use a space/time tradeoff to capitalize on the constant

geometry in a scene undergoing adjustment The result is a system that allows relatively

fast, iterative modification of the appearance of an image.

The texture mapping paper offers a refmement to the sum table technique. I show that

the fixed, rectangular filter footprint used by sum tables can lead to oversampling artifacts.

I offer a method which detects when oversampling is likely to occur, and another method

for iteratively refming the texture estimate until it satisfies an error bound based on the

oversampled area.

Together, these six papers represent a collection of algorithms designed to enhance

synthetic images and animations and reduce the time required for their creation.

lV

Acknowledgements

I gives me pleasure to thank my advisor and chairman, Dr. Frederick P. Brooks, Jr.,

for helping me make this dissertation a reality. Dr. Brooks applied a sure touch at critical

moments in the development of much of this dissertation, and I hope that some of his clear,

direct style has influenced my own.

I also owe thanks to the other members of my committee. Dr. Steven Pizer helped me

understand some of the implications of matrix decomposition. Dr. Steven Weiss offered

steady encouragement and help when preparing this document for the graduate school.

Dr. Henry Fuchs was always enthusiastically supportive of new ideas, and helped keep my

imagination stirring. Dr. Turner Whitted taught me through words and example the

precision and depth of thought that characterize a dissertation, and then made sure my work

reached those standards.

The papers in this thesis were written mostly as a result of independent research while I

studied at UNC-Chapel Hill. I never would have had the freedom to pursue this work

without the help and support of two research directors, who tolerated and even encouraged

many of my offbeat ideas over the years. For this and more, I thank Dr. Henry Fuchs and

Dr. Frederick P. Brooks, Jr.

I would like to thank Lakshmi Dasari, who put up with my keeping a lot of strange

hours when several of these projects were hatching. Lastly, I want to thank my parents. I

owe them much, for they gave me a love of knowledge and creativity, and the strength to

pursue both.

v

Table of Contents

Introduction ... 1

Space Subdivision for Fast Ray Tracing 8

Adaptive Precision in Texture Mapping 17

Supporting Animation in Rendering Systems 28

Template Parameterization for 3d Pose Interpolation 35

Late Binding Images .. 50

Spacetime Ray Tracing for Animation 74

Summary ... 86

1

Introduction

This dissertation contains six papers written over the course of five years. Each paper

addresses a topic within the field of computer graphics; the emphasis is on efficient realistic

image synthesis and animation. My goal has been to develop algorithms to enhance the use

of computers to construct realistic images and animations of three-dimensional scenes.

In this introductory chapter I will discuss the problems addressed by each paper. To

place the papers historically, I will consider the central issue of each paper and review the

state of the art relevant to that issue at the time the research was begun. Successive

chapters present the papers. A critique and discussion of each paper appears as the last

chapter.

Space Subdivision for Fast Ray Tracing
IEEE Computer Graphics & Applications, vol. 10, no. 4, October 1984

The central issue addressed by this paper is the reduction of rendering time of a ray

traced image. The paper implicitly assumes that the database may be described by a

collection of objects frozen in time.

The emergence of ray tracing as a popular and powerful tool for image synthesis began

with [Whitted80]. That paper presented a recursive scheme for estimating the light incident

upon and emitted from various surfaces.

The primary expense in the algorithm as presented there is determining which object is

the first along a particular ray's path. An exhaustive approach intersects every ray with

every object, and then searches among all intersected objects for the intersection nearest to

the ray origin. This approach can quickly grow very expensive. Consider a situation

where every intersection spawns s shadow rays (one to each of slight sources), one

reflection ray, and one transparency ray. If we follow these rays for g generations, then r,

the total number of rays traced per screen sample will be r = 1 + i (s + 2) 2 i -l . If we
i = 1

test each of these r rays against b objects, then we will have to compute rb intersections

between rays and objects for every screen sample. As the expression for rb shows, there

are many ray-object intersections in the exhaustive approach.

The biggest objection one may raise to this technique is that many of the ray-object

intersections are "clearly" superfluous - if an object of small spatial extent is far from the

path of the ray it should never be tested. There is no check in the exhaustive algorithm for

this sort of optimization.

In December 1983, when this work was begun, existing approaches to ray tracing

acceleration used nested hierarchies of bounding volumes [Rubin&Whitted80]. My

perception in 1983 was that ray tracing was considered a laboratory oddity- the power of

ray tracing to produce sophisticated images was accepted, but many people found it

prohibitively expensive for commercial production or other routine rendering. I felt that in

order to bring ray tracing into the realm of everyday rendering techniques, we needed a

fast, automatic algorithm to find the first intersection between a ray and the objects in the

database. I found that a spatial data structure provided such a scheme, and reported the

results in Space Subdivision for Fast Ray Tracing, one of the first papers to explicitly

describe a software algorithm to accelerate ray tracing.

The paper proposes building an auxiliary octree data structure on the space of the

objects being rendered. Rays are traced by following their progress through this data

structure; only objects in cells entered by the ray are examined for intersection. Typically

many ray-object intersections may be avoided in this way. As a result, the total cost for

generating an image is reduced to a fraction of the exhaustive approach.

Adaptive Precision in Texture Mapping
Computer Graphics, vol. 20, no. 4, Proc. Siggraph '86, August 1986

The central issue addressed by this paper is how to efficiently render a texture-mapped

image using the sum-table technique, while avoiding the oversampling artifacts to which

sum tables are prone.

When this work was begun in February 1986, the two most popular mechanisms for

efficient texture mapping were the mip-map [Williams83] and the sum table [Crow84].

Both algorithms extimated the texture on a surface seen by a pixel by using a space

invariant box ftlter derived from the texture-space image of the pixel.

2

3

A mip-map is a pyramid of images of decreasing size. Each level in the pyramid

contains a low-pass filtered version of the level below, saved at some lower resolution than

the lower level. The bottom-most level is the original texture image; the top-most level is a

single sample representing an "average" value for the entire texture. In practice, texture

sampling is limited to a square region, derived from the texture-space image of the pixel by

a heuristic rule [Heckbert86].

A sum table is a single table, equal in width and height to the original texture, but

typically many bits deeper. In a typical sum table, each element contains the sum of all

original texture samples below and to the left of that element. Four table accesses, three

additions and a division can yield the box-filtered average value of the texture within any

rectangle. In practice, the rectangle is usually chosen to be the smallest oriented rectangle

enclosing the texture-space image of the pixel.

Because the sum-table technique can average rectangles while mip-maps are limited to

squares, I felt that sum tables were the best efficient texturing method available when I

began work on a new rendering system in early 1986. After generating some images I

noticed that although my texturing was acceptable, there were distinct artifacts in regions of

high complexity. In particular, the textures became blurry more quickly than I expected

I studied the problem and realized that sum tables as used at the time involved two

important assumptions: a box filter was a good filter for texture sampling, and the

bounding rectangle of a pixel's texture-space image was a good approximation of that

image. I felt that although a box filter was not ideal, it was acceptable for most work, and

probably not the source of the artifacts I saw. But the second assumption would lead to

oversampling of the texture function, which could well result in blurry textures. I decided

to try to reduce or eliminate this oversampling.

In the paper I examine the errors introduced by estimating the texture within the

bounding box of the pixel's texture space image (instead of the image itself). I show that

this approximation can introduce measurable error when estimating the average texture

within the pixel, and thereby cause visible artifacts. To alleviate the problem, I proposed

using another table to hold the local variance of the texture. When variance is low, the

bounding-box approximation is accepted. But when texture variance is high, an iterative,

recursive algorithm is called to refine the region of texture space sampled for that pixel.

The essence of the idea is that standard sum tables can provide the average value within

any oriented rectangle in texture space. To find the average value in a more general region,

I find the average within the region's bounding rectangle and then remove smaller

rectangles that lie outside the region butwithin the bound.

4

Results show that the algorithm indeed works harder than sum tables only where the

texture is complex, that the extra effort is proportional to the local complexity of the texture,

and the images generated by this method are superior to those produced with standard sum

table techniques.

Supporting Animation in Rendering Systems
CHI+GI Workshop on Rendering Algorithms & Systems

Toronto, April 1987

This paper shows how to build an animation system that can support interactive

animation design, high-quality rendering, and a database of complex objects.

I present an object-oriented architecture that meets the criteria The animation database

is controlled by a manager that is responsive to a small set of messages, which specify the

parameters that describe that object's characteristics and motion. Animation specification

and rendering are each accomplished by communicating with the animation manager.

I also propose a technique for implementing object-oriented importance sampling,

particularly well-suited to the rendering architecture described in the paper.

Template Parameterization for 3d Pose Interpolation

A popular and common feature of many animation systems allows a user to begin the

process of character animation by designing an articulated model described by a hierarchical

tree structure. Keyframes may be explicitly or implicitly built by specifying a set of

transformation parameters at each node of the tree. Interpolation of keyframes is then

reduced to interpolation of the parameters.

In this article I show that two conditions must be met for this approach to succeed: the

trees at the two keytimes must have the same topology, and the transformations within

corresponding nodes must contain the same transformations in the same order. The first

condition is easy to satisfy; the latter is not. When I started to build a new animation

system in June 1987, I knew of no existing systems that could reliably convert an arbitrary

sequence of parametric modelling transformations into a fixed sequence (or template)

whose parameters could then be interpolated. The result of this limitation was that

5

modelers were prohibited from using skew or differential scaling in their original model

descriptions. I didn't want to be bound by these restrictions, particularly in a system of my

own creation, so I set out to find a way to convert arbitrary transformation specifications

into a fixed template.

In the paper I propose the use of the Singular Value Decomposition algorithm to

decompose a 4-by-4 modelling matrix into a sequence of mirror, rotation, scale, and

translation matrices. The resulting sequence of matrices may then be parametrically

interpolated to produce in-between poses. Since SVD can decompose any modeling

matrix, the model designer is free to use any sequence of any transformations when

preparing model descriptions for animation.

Late Binding Images
Submitted to IEEE Computer Graphics & Applications

Many images require hand-tuning of light sources and surface parameters to meet

technical and aesthetic demands. Light source color and placement, object color,

transparency, and reflection co-efficients interact visually in complex ways; changing one

feature often necessitates changes to the others.

In January 1987 the medical applications group felt a need for a new rendering system.

I realized that in the course of preparing a medical study, many of our images needed to be

iteratively adjusted by the user, to find the proper balance of shading, transparency, and

lighting. At the time, each change to these parameters required running the entire rendering

system again, even though the viewing direction remained unchanged. I felt that we could

save time by performing the expensive, view-dependent scan-conversion step once and

saving the result in a file. Starting with that file, we could then iteratively adjust the

lighting and surface properties of the rendered objects until the image was acceptable.

By 1987 several techniques had been published for separating the steps of scan

conversion and surface shading [Bass81], [Whitted81]. This allowed users to quickly

change the appearance of objects, while paying only once for the relatively high cost of

scan conversion.

In this paper I describe such a rendering system which I built for medical applications at

UNC-CH. The main points of the paper are a discussion of the implementation issues that

arose when planning and programming the system, and a group algebra which unifies the

system and provides a concise representation of its actions.

6

Spacetime Ray Tracing for Animation
IEEE Computer Graphics & Applications, vol. 8, no. 3, March 1988

This work was started in February of 1987. I wanted to produce an animated film, and

I wanted to use ray tracing for rendering. At that time, the only algorithms for speeding up

ray tracing were directed to the generation of single, static images. I could have applied

such methods individually to each frame, but I wanted to include motion blur in my film.

The only ways I could see to use existing techniques for motion-blurred animation seemed

inelegant and difficult.

I suspected that there was a clean algorithm for efficiently producting a piece of

animation with ray tracing. I also wanted to capitalize on our knowledge of the motion path

of each object to further speed up the rendering process. So I investigated algorithms that

would use time coherence and motion path information to accelerate ray tracing for

animation.

The paper begins with an assessment of the two ray tracing acceleration techniques

most popular at the time: bounding volumes and space subdivision. The analysis showed

that the strengths and weaknesses of these two approaches were complementary. This

suggested a hybrid algorithm, which combined features of both techniques. The result was

a nested hierarchy of disjoint bounding volumes, whose density followed that of the

database (any consistent measure of density could be used).

Extended into a four-dimensional spacetime, this hybrid algorithm provided a

framework in which individual rays of an animation could capitalize on the known motion

path of each object in the database. An efficient bounding volume structure was built in

spacetime that contained each object over the course of the animation. Use of this four

dimensional information was shown to reduce several important statistics in the ray tracing

algorithm for rendering a complete animation, including the total number of ray/object

intersections required.

References

[Bass81] Bass, Daniel H., "Using the Video Lookup Table for Reflectivity

Calculations: Specific Techniques and Graphic Results", Computer Graphics and Image

Processing, vol. 17, no. 3, Nov. 1981, 249-261

[Crow84] Crow, F., "Summed-Area Tables for Texture Mapping", Computer

Graphics, vol. 18, no. 3, July 1984

7

[Heckbert86] Heckbert, Paul, "A Survey of Texture Mapping", IEEE Computer

Graphics and Applications, vol. 12, no. 11, November 1986

[Rubin&Whitted80] Rubin, S., and T. Whitted, "A 3-Dimensional Representation for

Fast Rendering of Complex Scenes," Computer Graphics, vol. 14, no. 3, Proceedings of

Siggraph '80, July 1980

[Williams83] Williams L., "Pyramidal Parametrics", Computer Graphics, vol. 18, no.

3, July 1984

[Whitted80] Whitted, T., "An Improved lllumination Model for Shaded Display,"

Comm. ACM, vol. 23, no. 6, June 1980

[Whitted81] Whitted, Turner, and David M. Weimer, "A Software Test-Bed for the

Development of 3-D Raster Graphics Systems", Computer Graphics vol. 15, no. 3,

Proceedings of Siggraph '81

Space Subdivision for Fast Ray Tracing

IEEE Computer Graphics & Applications
vol. 4, no. 10, October 1984

© 1984 IEEE. Reprinted with permission, from

IEEE Computer Graphics and Applications,

Vol. 4, No. 10, pp. 15-22, October 1984.

8

Speed up ray-tracing techniques by reducing the number of time
consuming object-ray intersection calculations that have to be made.

You'll be able to handle large databases considerably faster.

Space Subdivision

for Fast Ray Tracing

Andrew S. Glassner

University of North Carolina at Chapel Hill

The most powerful general image synthesis method
used today is referred to generically as ray tracing. Ray
tracing was first described by Appe1 1 and later by
Bouknight and Kelley 2 and Kay. 3 The algorithm used by
most ray-tracing programs is described by Whitted. 4

This paradigm is attractive because of its very elegant im
plementation and the wide range of natural phenomena
it models.

Although ray tracing as it stands is not the final word
in image synthesis, it is probably the most realistic tech
nique we have today. This realism is further enhanced by
the technique of distributed ray tracing described by
Cook, Porter, and Carpenter. 5 Unfortunately, ray trac
ing is also very slow. Ray-tracing algorithms are famous
for the large amounts of computer time they consume to
create even one picture of moderate complexity. It is this
slowness that prevents more people from using the
powerful ray-tracing methods.

Previous work in speeding up the picture-generation
process has concentrated on screen-space solutions and
hardware solutions. Roth 6 has described a method for
examining a rough rendering of a scene and invesrigating
those areas of the screen where additional work seems to
be necessary. Ullner 7 describes hardware solutions that
consist of multiple microprocessors in various configura
tions, with each processor handling a subset of either
rays or objects. Both of these approaches use the basic
ray-tracing algorithm as described by Whined and at
tempt to draw pictures faster by either running the
algorithm in parallel or running it less often for a com
plete picture.

A different approach toward speeding up the process is
explored in this anicle: we decrease the time required by
the algorithm to render a given pixel. To do this, we first

need to determine what are the most time-consuming por
tions of the algorithm.

Whitted reports that ray-object intersections can require
over 95 percent of the total picture-generation time. A
synopsis of the ray-tracing technique with a qualitative
breakdown of where time is spent is also given in
Glassner. 8 Kajiya 9 has shown, with a simple skeleton of
the ray-tracing process, that these intersections comprise
an "inner loop" of the algorithm. He demonstrates that
each ray must be checked against each object in the scene
so that the number of intersection calculations is linear
with respect to the product of the number of rays traced
and the number of objects in the entire picture. Doubling
the number of objects in a scene (about) doubles the
rendering time; doubling both the objects and the rays
takes four times longer to render the image.

Recent work has concentrated on the ray-object inter
section problem for various classes of objects (Kajiya 10•11

and Hanrahan 12). These algorithms show that the in
tersection operation can require any amount of floating
point operations-from just a few to many thousands.

If we wam to reduce the time spent on ray-object inter
sections, we have at least rwo choices. We can speed up the
intersection process itself, possibly with specialized hard
ware. A.lternately, we can reduce the number of ray-object
intersections that must be made to fully trace a given ray;
this is the approach followed in this anicle.

Overview of the new algorithm

The new algorithm is based on a simple observation. To
make this observation, let us divide the space in a three
dimensional scene into small companmems, keeping a list
of all the objects that reside in each of these compart-

October 1984 0:-:'~·1716'84'li)Q(l.()OJ5$01.00 i9841EEE

9

ments. We can then speed up the ray·tracing process in the
following way.

Start a ray and determine in which compartment it orig
inated. Follow the ray and compare it against only the ob·
jects it hits in that compartment. If one or more objects in
the compartment are pierced, find the closest pierced ob
ject and return its color as the value ofthe ray. We are then
finished tracing that ray, for we have found the first object
the ray hit. If the ray does not hit an object in this com·
partment, project the ray into the next compartment and
repeat the process.

If each compartment contains a small number of ob
jects, we can process that compartment quickly. If we're
lucky and find right away that the ray has hit an object, we
have only a small number of object intersections to pro
cess. lfwe're very unlucky and find the ray has hit nothing
until we hit the world sphere (Kajiya 8), we are still better
off because we probably have checked fewer objects than
there are in the entire scene. Therefore, unless the
overhead of getting from compartment to compartment is
very high, we will always save time relative to intersecting
every object in the entire database.

Fortunately, a very good scheme for breaking up space
into such compartments is available. This octree technique
is described extensively in Jackins and Tanimoto 13 and
Meagher. 14 An octree structure allows us to dynamically
subdivide space into cubes of decreasing volume until each
cube (called a voxel) contains less than a maximum num
ber of objects. Octrees are normally used to define the
shapes of objects that are difficult to model with primitive
surfaces. In that context, each cell of the tree is either
occupied by that object, or it is empty. Each occupied
cube may contain some information about color, density,
or some other attribute of the object, but the cube itself is
considered to be either fully filled by the object or empty
of it.

Here, we use each cell of the octree to hold a list, not a
piece of an object. The list describes all the objects in the
scene that llave a piece of their surface in that cell.

Usually when we synthesize images we are interested
only in the surfaces of the objects in our scene. The
assumption is that the inside of a transparent or translu
cent object is either empty or else described by other, inde
pendently defined objects. For example, when we test a
ray against a sphere, we care only about those points on

Figure 1. Space subdivision. An object Is considered associated with
a voxel if and only If some of the object's surface exists within the
voxel. (a) shows an object not associated with the voxel; (b) shows an
object that Is associated with the voxel; and (c) Illustrates the voxel
within an object (the object Is not associated with the voxel).

16

10

the sphere where the ray pierces the sphere's surface. It's
unimponant to know if a given point on the ray is inside or
outside the sphere. Thus, for this algorithm, we subdivide
space into an octree, associating a given voxel with only
those objects whose surfaces pass through the volume of
the voxel. See Figure 1.

The next two sections of this article present the tech
niques central to the new algorithm. The first section
describes the process of building and maintaining the oc
tree and a technique for obtaining fast access to any node.
The second section describes the mechanism for finding
the next node intersected by a ray when it has hit nothing
in the current node.

Octree building and storage

The arguments for using octrees as the spatial compart
ments mentioned above are that octrees are well studied
and understood and that they allow dynamic spatial
resolution. Volumes with high object complexity can be
recursively subdivided into smaller and smaller volumes,
generating new nodes in the tree for only these new
volumes.

When a ray fails to hit any objects in a given node, it
must move on to another node in space. As we will see in
the next section, the algorithm works by finding a point
guaranteed to be in the next node encountered by the ray
and then determining the particular node containing that
point. In this section we address the process of finding the
node.

A very economical octree storage technique has been
described by Gargantini. 15 We use a slight variation here
to speed up the time required to find a given node.

The parent node (which just encloses the world sphere)
is labeled node 1. When we subdivide a node, it passes its
name as a prefix to all its children, which are numbered 1
through 8, as shown in Figure 2. Thus, the eight children
of the parent node are nodes 11 through 18. The children
of node 13 are nodes 131 through 138, and so on. Now we
need a way to address a node of a given name.

If we subdivide the parent node twice, we find the larg
est node name possible is 188. Clearly, we don't wam to
allocate 188 nodes when we start the program; for exam
ple, we might find that nodes 131-138 never need to be
created. The dynamic resolution of the octree scheme sug
gests a dynamic allocation of memory, creating a new
node only when we need it. But then we return to the prob
lem of finding a given node. If we just ask the operating
system fDr a chunk of memory to be used when it's time to
create (say) node 173, then how do we find node 173 later
on?

There are two extremes in the continuum of answers to
this question. At one extreme we could create a table with
an entry for every possible node name that contains that
node's address. This possibility woutd require vast
amounts of storage (more than for a straightforward
eight-pointers-at-a-node scheme!), but it would also have
the advantage of extreme speed in finding the address of a
node with a given name. At the other extreme, we could
create a large linked list of ail the nodes in the octree,
which we would have to scan from the beginning each time

IEEECG&A

we want to locate a given node. This provision would have
the advantage of requiring very little memory beyond that
needed for the nodes themselves, but it would slow the
operation to search the list each time we must look for a
particular node.

An attractive compromise is to mix·the two ideas-using a
hashing scheme. We can hash the name of a node into
some small number and then follow a linked list of all
nodes that hash into that number starting at a given point
in a table. By changing the size of the table, we can pick
any point in the continuum described above. Thus we
trade speed for memory consumption and vice versa. A
very simple hashing function, which merely returns the
node name modulo the table size, seems to work fine.

Here we see the difference between the original number
ing scheme proposed by Gargantini and the one used here.
Gargantini suggested numbering the nodes 0 through 7,
which had the advantage of assigning an octal number to
each node. However, consider the case of subdividing
node 0: one of the nodes created would have the name 00.
To a computer, the number 00 is the same as the number 0,
and we would have no way of differentiating the two.
Similarly, 005 would be the same as 05, and so on. A solu
tion to this problem would be to keep the name of each
node as a character string. This would keep node 0 dif
ferent from 000, but the string representation is bulkier
than an integer, as well as slower in comparing it against
another of its own type.

The modification presented here is to number the chil
dren from I to 8. Numbering the nodes this way loses the
octal purity of the original scheme, but it allows us to name
the nodes with numbers instead of character strings. Thus,
node l could never be confused with node Ill, and
similarly node 15 is distinct from node 1115.

We can then find the name of a node containing a point
(x,y,z) with the scheme presented in Figure 3.

Once we have a node name, we must search through the
appropriate linked list for its entry and associated object
list. Clearly the fewer nodes there are to be searched
through, the faster (on the average) we will find the node
we're looking for. We can use another observation tore
duce the number of nodes stored as entries in the
table/linked list structure by a factor of eight.

Each time we subdivide a node (because it contains too
many objects, or more precisely, too many surfaces), we
create all eight children at once. When we want to allocate
memory for these eight children, we can ask the memory
allocator for one large block of memory big enough to
hold all eight nodes. We then use the first eighth for the
first child node, the second eighth for the second child
node, and so on. Now we need to store only the first child
in the hash table/linked list structure. The other children
are easily found by adding the right number of node
lengths to the first node's address; i.e., add one node
length for node 2, add two node lengths for node 3, and so
on. This scheme is illustrated in Figure 4.

As we subdivide nodes, we keep a record of the smallest
node created anywhere in space. This record can just be
the length of the side of the smallest node; we will see why
we want this information when we look at the algorithm
for moving the ray from voxel to voxel.

October 1984

11

Let's now look at the structure of an octree node. It
consists of four members: a name, a subdivision flag, cen
ter and size data, and an object-list pointer. The name is an
integer that is the name of this node. The subdivision flag
is set if this node has been subdivided. The center and size
infonnation may be omitted to conserve memory space
and derived on the fly from just the node name (this is
another time-space trade-off). The object-list pointer
points to the start of a list of integers in a dynamically

/5/ / ['_ ['_6"

/ / /6 5 " "
1 2 v v

B
~"'- 1 2

7 '
3 4 l// " 3 4

/45/ /
/ / / 46

41 42 v v
46

43 44 v
/

i (b)

Figure 2. Space subdivision. (a) Subnodes are labeled 1·8;
(b) a parent voxel passes its name as a prefix to Its
children.

LISTING l

findnode(x,y,z) l
node= l:
WHILE (node subdivided is TRUE) I

IF (x > node_center_x)

ELSE

IF (y > node_center_y)
IF (z > node center_z)

node (node>'cl 0) + 6:
ELSE node = [nodeo'clQ) + "

ELSE
IF (z > node cenrer_z)

node = (nodeo'clO) + 8:
ELSE node = (node 'clO) + <4:

IF (y > node_center_vJ
IF (z > node_centeT_z!

node (node>',lO) + 5.
ELSE node = \nOd£>''10) +

ELSE
IF (z

ELSE

>node center zl
node -(node,~lo)
nod<> = (node,<lO)

+ i:

+ 3:

RETURN node)

Figure 3. Node·flnding scheme.

17

IS

allocated array. The integer indicated by this pointer is the
number of the first object in this node. Subsequent in
tegers continue to represent other objects, until some il
legal object number (say -1) is encountered, signalling the
end of the object list for this node.

Now we know how to generate the octree so we can easi
ly and quickly find a node of interest knowing only a point
in the node. Let's now look at the process of deciding
whether or not to subdivide a given node as we build the
tree.

What we're interested in doing now is looking at the list
o(objects that have surfaces that pass through the parent
node of the node under consideration. We will include
each of these objects in the list of objects for this child if its
surface also passes through the child's volume. When we
have done this for each child, we can consider how many
objects are contained in each child. If any child has too
many objects (and we have room to create new nodes), we
may then subdivide each overfull node recursively.

The algorithm used to determine whether an object's
surface passes through a voxel treats convex objects (par
ticularly spheres) with more efficiency than arbitrary ob
jects.

In general, we intersect the object with each of the six
planes that bound the voxel. Should any of these points of
intersection lie within the square region of the plane that is
the side of the voxel, the object is kept. Otherwise, some
point within the object must be examined. If that interior

' ' '
' I
I
I
I
I
I
I

ASH I

~ ABLE (le11g!h 1000) I
I

384 mod 1000) =384 I
I

2384x

I 23841

' 23842: I
I 23843:
I
I 23844·

' I 23845"

' 23848•
I
' 23847•

' ' 23848

' r ' ' ' i ' I
I

' '

12

point is within the voxel, the object is kept; otherwise, it is
discarded. A very efficient formulation of this algorithm
for the special case of polygons is found in Sutherland and
Hodgman. 16

Movement to the next voxel

Two important facts guide us in designing the algorithm
to get to the next voxel. First, because the space is
dynamically resolved when we build the octree, we don't
know how large (or small) any voxel in space is with the ex
ception of the current one. The second fact is that the
movement operation must be accomplished as fast as pos
sible. Certainly, the movement must be minimally fast
enough that we don't lose the time we save by cutting
down ray--object intersections by giving that time to voxel
movement operations.

The general idea behind the voxel-movement algorithm
is to find a point that is guaranteed to be in the next voxei,
whatever its size. This point is then used to derive a voxel
name (and its associated size and object list) according to·
the schemes presented in the previous section.

In the following, the term current node refers to the
node that has yielded no intersections; it is the node we are
leaving for greener pastures. We will refer to points on the
ray being traced with the parameter r. The value oft in
creases as we move away from the origin, where t has the
value 0.

' NODE 23846 ' ' CHILO LIST

' '
SIZE ' r -

' ' POSITION ' r -I ' ' FLAG ' ' ' I CHILDREN CHILD 0

' ' CHILD 1
' ' ' I

CHILD 2
' ' '

CHILD 3

' CHILD 4

' CHILO 5
I
I -1

' ' !- -' ' '
,__ -

' I
' ' ' ' ' I

' I
I I

' I

' I ' ' ' ' ' ' ' ' ' ' ' I
' I
' ' I

TEP 1. HASH ' ' ' s ' (NODE NAME/10) AND STEP 2: FINO ENTRY FOR STEP 3: LOOK AT NODE 1

LOOK IT UP !NODE NAME/10), AND DATA. GET ADDRESS OF 1STEP 4 GET LIST OF CHILOREN·i:
IN HASH TABLE GET POINTER FOR NODE NAME START OF CHILD LIST. FOR THIS NODE.

~-e~.~····~-"' o< •• -·,~·'">'--~-....-..,-· ·•-·.c~,~~· • '.0.~.,....,.,.,_.~....,._,.... "-'c-""'""''..; __ ;.,.;.,..;;;..;.;.,._~·', ,_. ~~""""""'"'··''-"'"~..,;>;,••<. • .•• "

Figure 4. Sample hash table/linked list. Here, we want information tor node 23846.

IEEECG&A

13

YPLANES ZPLANES

Figure 5. To fi.nd the endpoints of the ray segment within a voxel we first intersect that ray with the six bounding
planes of the voxel, noting the ray's t value at each intersection.

We know that the voxel we want to examine next will
contain points on the ray with t values greater than the ray
may attain in the current node. Thus the first step is to find
the largest value oft the ray may assume.while still in the
current node.

Let's designate this value oft as t +.We can fmd t+ by
intersecting the ray with the six planes that bound the cur
rent voxel. • Two of these intersections give us bOunds on 1

parallel to the x axis, two others parallel to they axis, and
the remaining two parallel to the z axis. We can fmd t
values for all six of these points as shown in Figure 5. Each
plane is parallel to two of the three coordinate axes, a fact
that simplifies its plane equation considerably. It is inex·
pensive to intersect a ray with one of these "simple"
planes because. it costs only one subtraction and one divide
operation per plane. Note that the points describing the in·
tersections of the ray with the planes of the voxel may lie
far outside the volume of the voxel itself. But certainly
some values of r will hold for all three ranges: these are ex·
actly the values oft inside the voxel. The intersection of the
three ranges of t yields those values of t that the ray may
assume while it is inside the box. The value of t + is the
value of the upper end of this range of t values, as il
lustrated in Figure 6.

The resolution of space in the next voxel to be en
countered cannot be any finer than the fmest resolution we
reached when we built the octree. Now we see the reason
we kept a record of the minimum·sized voxel when we
built the tree. Let us call the length of the side of this
smallest voxel Minlen.

Figure 7 illustrates that we can firid the next voxel by
merely moving perpendicularly to the face of the voxel
that contains t+. If t+ is on an edge, we must travel
perpendicularly to both faces sharing the edge, and sim
ilarly we must travel in three directions if t + is on a comer
of the voxel. ~ese movement operations are trivial to
compute and perfonn because each is perpendicular to a
coordinate axis. We are guaranteed not to move outside
the next voxel if we limit our movement to less than the

• It is sufficient to intersect the ray with only four planes, but I suggest the
additional code necessary to determme which four outweigh the advan
tages of eliminating two intersections.

October 1984

x- x•
X

r y+
y

I
z- I z+ .. , z ' I • I

FINAL
t

I

r+

Figure 6. To find the values of t that a ray may assume
within a voxel, we find the intersection of the three
ranges determined In Figure 5.

Figure 7. To find the next voxel in a ray's path, we find a
point guaranteed to be In that voxel. We find that point by
moving the distance Mlnlenf2 perpendicular to each face
in which t + lies.

19

14

Table 1. Timing statistics for old and new ray-tracing algorithms.

CHECKER·
BOARDS

AND BALLS SPIRALS

NUMBER OF OBJECTS 53 401

NUMBER OF RAYS TRACED 884.413 532 036

CHILDREN PER VOXEL 8 20

NUMBER OF VOXELS 101 169

OLD NUMBER OF INTERSECTIONS 46.830.111 212.713.658

NEW NUMBER OF INTERSECTIONS 6.149.864 13.789.597

AVERAGE !NTERSECTIONS PER RAY 6 9 25 9

OLD TIME rHR MIN) 822 8 53

OCTREE BUILD TiME (HR MIN) o-o4 0 02

~JEW TIME •HR-MIN) 2 23 0 40

Figure a. Two perfectly reflecting, intersecting spheres sit be·
tween a pair of checkerboards.

Figure 9. Two inteiWeaving spirals of spheres. Note the shadows
on the distant balls.

20

RECURSIVE GEODESIC SINC GREAT
PYRAMID CUBE FUNCTION CIRCLES

1.025 1.536 3.656 7 681

352.322 597 245 -<148 177 466.524

30 8 30 21

473 2.889 2.897 3 009

320.825.000 915.439. 104 1' 636.286.600 3.553.061 000
rESTiMATEl (ESTIMATE!

9.008 077 9 848.255 10.615 831 17.298 . .'343

25 6 16.5 23 7 31 1

17'41 42'12 .. sJ·oo "'"1 ~ 1 00
iES'IMATEl rESTIM.t..TEi

0 02 0 08 0 12 0 21

2"25 ~ 49 3 22 .: ~j
··-------

Figure 10. A procedurally generated model, similar to a kite
designed by Alexander Graham BelL

Figure 11. Two different (4, 4, 3), tilings of a geodesically pro
jected cube share the surface of a sphere.

IEEECG&A

minimum length of the side of that box. That minimum
length is Minlen, as stored when we built the octree.

Thus, if we travel some fraction of Minlen (say
Minlen/2) from t + in each necessary direction, perpen
dicularly to the faces of the current voxel, we have a point
within the next voxel encountered by the ray.

As long as we know that the point we finally end up with
is within this smallest possible voxel, we're guaranteed that
it is within the smallest voxel on the other side whatever the
resolution over there might be. For if the resolution isn't
fine enough to have created this smallest voxel, it is cer
tainly within the volume of the voxel that would have been
its parent, or the parent of that voxel, and so on.

Timing and sample pictures

The timing figures in Table 1 are based on statistics
gathered from runtime profilers and timers. The timing
statistics are used with code written in C, executed under
the Unix operating system, and run on a Vax-11/780.

All the measurements were made running the same
code. The old technique measurements were made using
the new technique and just one huge Voxel containing
everything; thus there was a very slight amount of addi
tional overhead (less than 0.01 percent). The overall execu
tion time for the new algorithm is the sum of the octree
creation time and the image synthesis time. Of course,
once the octree is built, multiple points of view can be
generated without performing another setup. Note that
due to the nature of naive ray-tracing techniques, the order
in which the database is created (and thus the order in
which the objects are intersected) can heavily influence the
number of intersections necessary to render a complete
picture with the traditional method.

The code runs the reflection model introduced by Cook
and Torrance.l1 All color calculations are produced on a
16-wavelength visible light spectrum and are converted
first to the CIE color coordinates XYZ and then to mon
itor RGB values when the final picture is displayed.

Figures 8-13 show ray-traced pictures of increasing com
plexity. Each scene was illuminated with ICI standard il
luminant A. The light yellow, orange, and dark purple ob
jects posess the spectral characteristics of a desaturated
yellow gladiolus petal, bright orange gladiolus petal, and
wine-colored gladiolus petal, respectively. The red objects
reflect as red felt, and the green objects are leaf green. All
these colors are found in Evans. !8 The blue backgrounds
are different shades of Carolina Blue, the usual color of
the sky in Chapel Hill.

Figure 8 demonstrates reflection and shadowing in a
standard ray-tracing test environment. Figures 9 and 10
show shadowing from large numbers of spheres and poly
gons.

Figure 11 was made by subdividing a cube and then pro-
jecting it onto the surface of a sphere. 19 Each resulting
patch of the sphere was tiled with one of two patterns
made of four triangles.

Figure 12 shows several thousand spheres following the
function sin (x) I x, or sine, rotated about they axis.

~igure 13 is also a projected, subdivided cube. In this
case, the tiling consisted of an over-and-under pattern,

October 1984

which was rotated and colored appropriately for each level
of subdivision. The result is a set of bands that surround
the sphere.

Note that the octree needs to be created only once per
static database. Thus we need only make the octree once to
produce multiple pictures from different points of view.
Another point to note is that most machines have a restric
tion on the number of digits we can store in an integer. If a
node is heavily-populated and has used all the digit resolu
tion the machine can afford, the node name can be split in
to low and high fields with a separate integer for each. This
step requires extra work, but shrewd programming can
keep the extra computing down to only those nodes with
expanded names.

Figure 12. A large number of spheres follow the function
sin(x)/x for several hatf.periods.

Figure 13. A single overlap pattern recursively applied to a
subdivided cube of frequency 3 and then projected onto a
sphere.

15

21

22

Figure 14. It Is possible that a given ray may be tested
against the same object several times.

In contrast to the naive techniques, it is possible that a par·
ticular ray may have to be tested against a single object sever
al times. This uncommon event is pictured in Figure 14.

Conclusions

We have seen that the infamous slowness of ray-tracing
techniques is caused primarily by the time required for ray
object intersection calculations. We have also seen a new
way of tracing the ray through small subsets of space at a
speed that reduces the number of ray-object intersections
that must be made, thereby cutting the overall ray-tracing
time considerably.

This new algorithm makes possible the ray tracing of com
plex scenes by medium- and small-scale computers. It is
hoped that this will enable the power of ray tracing to be em
braced by more people, helping them generate pictures at the
leading edge of computer graphics. •

Acknowledgments

I am grateful to Professor Frederic Way III of Case
Western Reserve University who provided the opportunity
and freedom to pursue this work. Thanks also go to Arch
Robison and Ben Pope for helping me with algorithms to
determine if panicular objects were within arbitrary voxels.

Critical reviews of this paper were provided by Mark
Boenke and Cayton Elwell, and editorial help was received
from Ed Levinson. The recursive pyramid picture is very
similar to an image produced by Alan Norton, who con
sented to its use as test data and an example image. Jim
Weythman and Linda Laird of Bell Conununications
Research provided the opportunity and facilities to prepare
the fmal text, and Tom Duff of Bell Labs helped produce
early versions of the pictures in record time.

References

1. A. Appel, "Some Techniques for Shading Machine Render
ings of Solids," AF/PS Conf. Proc., Vol. 32, 1968, pp.
37-45.

2. W. K. Bouknight and K. C. Kelley, "An Algorithm for Pro
ducing Half-Tone Computer Graphics Presentations with
Shadows and Movable Light Sources," AF/PS Cor1j. Proc.
Vol. 36, 1970, pp. 1-10.

3. D. S. Kay, "Transparency, Refraction, and Ray Tracing for
Computer Synthesized Images," master's thesis, Cornell
University, Ithaca, N.Y., Jan. 1979.

4. T. Whitted, '' . .o\n Improved Illumination Model for Shaded
Display," Comm. ACM, Vol. 23, No.6, June I980, pp.
343-349.

5. Robert L. Cook. Thomas Poner, and Loren Carpenter,
"Distributed Ray Tracing," ComputerGraphics(Proc. Sig·
graph), Vol. 18, No.3, pp: 137-145.

6. S.D. Roth, "Ray Casting for Modeling Solids," Computer
Graphics and lmoge Processing, Vol. 18, 1982.

7. M. K. Ullner, ''Parallel Machines for Computer Graphics,''
PhD thesis, California Institute of Technology, Pasadena,
Calif., 1983.

8. A. Glassner, Computer Graphics User'sGuide, Howard W.
Sams & Co., Indianapolis, 1984.

9. J. T. Kajiya, "Siggraph 83 Tutorial on Ray Tracing," Proc.
Siggroph, Course 10 notes, 1983.

10. J. T. Kajiya, "Ray Tracing Parametric Patches,'' Com
puter Graphics (Proc. Siggraph), Vol. 16, No. 3, !982, pg.
255.

II. J. T. Kajiya, "New Techniques for Ray Tracing Pro
cedurally Defined Objects,'' Computer Graphics (Proc. Sig
graph), Vol. 17, No.3, 19..83, pp. 91-99.

12. P. Hanrahan, "Ray Tracing Algebraic Surfaces," Com
puterGraphics(Proc. Siggraph), Vol. 17, No.3, 1983, pp.
83-89.

13. C. L Jackins and S. L. Tanimoto, "Octtrees and Their Use
in Representing Three-Dimensional Objects," Computer
Graphicsond Image Processing, Vol. 14, No.3, p. 249-270.

14. D. Meagher, "Geometric Modelling Using Octtree En
coding," Computer Graphics and Image Processing, Vol.
19, No.2, 1982, pp. 129-147.

15. I. Gargantini, "Linear Octtrees for Fast Processing of
Three-Dimensional Objects," Computer Graphics and Im
age Processing, Vol. 20, No.4, 1982, pp. 265-274.

16. I. E. Sutherland and G. W. Hodgman, "Reentrant Polygon
Clipping;" Comm. ACM, Vol. 17, No. l, Jan. 1974, pp.
32-42.

17. R. L. Cook and K. E. Torrance, "A Reflection Model for
Computer Graphics," ACM Trans. Graphics, Vol. I, No.
I, 1982, pp. 7-24.

18. R. Evans, An Introduction to Color, John Wiley & Sons,
New York, 1948.

19. R. Buckminster Fuller, Synergetics: Explorations in the
Geometry of Thinking, MacMillan, New York, 1975.

Andrew S. Glassner is a graduate student
with the Department of Computer Science
at the University of Nonh Carolina at
Qlapel Hill and a consultant in computer
graphics for Bell Communications Re
search. He bas worked on graphics at the
New York Institute of Technology's Com
puter Graphics Lab, the IBM Thomas J.
Watson Research Center, and Bell Com
munications Research. His research in

terests include raster-based computer graphics, nove! input/out
put devices, digital sound synthesis, tOpology, language design,
and the creative use of computers. ~

Glassner is the author of Computer Graphics User's Guide, a
tutorial of computer graphics techniques for artists and other
nonprogranuners. He received the BS in computer engineering
from Case Western Reserve University and is a member of the
ACM.

Questions about this article may be directed to the author at the
University of Nonh Carolina at Chapel Hill, Department of
Computer Science, Chapel Hill, NC 27514.

IEEECG&A

16

Adaptive Precision in Texture Mapping

Computer Graphics (Proceedings of Siggraph '86)
vol. 20, no. 4, pp. 297-306, August 1986

©Copyright 1986, Association for Computing Machinery, Inc., by permission

17

18

Dallas, August 18-22 Volume 20, Number 4. 1986

Adaptive Precision in Texture Mapping

Andrew Glassner

Department of Computer Science
The University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27514

Abstract

We introduce an adaptive, iterative technique for ob
taining texture samples of arbitrary precision when synthe
sizing a computer-generated image. The technique is an
improvement on the sum table texturing method. To mo
tivate the technique we analyze the error properties of the
sum-table method. Based on that analysis we propose us
ing a combination of tables independently or together to
obtain a better estimate, and analyze the error properties
of such methods. We then propose a new technique for
obtaining texture samples whose accuracy is a function of
the texture and the image. As part of this technique we
propose the use of an auxiliary table which contains local
estimates of the texture variance. We show how the iter
ation of a given sample may be controlled by values from
this table. We then analyze the error in this method, and
present images which demonstrate the improvement.

General Terms: Algorithms, Graphics
Keywords: Textures, Sum Tables, Iteration, Adaptive Re
finement, Variance
CR Categories: L3.3 Picture/Image Generation; I.3.7
Three-Dimensional Graphics and Realism

PermJ'>SJ0n to copy wuhout fee all or part of thJS mat~nal 1> granted
pro,Jded that the cop!<.'S ar~ not made or distributed for d1rect
c0mmercJal ad,antage, the AC\1 ~opHight notice and the title of the
publicatiOn and tts date appear. and nou~e i$ g1\en that copying 11 b)

permiSSiOn of the .A:i\0Ci31100 for Computing \1achmery. ro copy
otherwJ;e, or to republi>h. requ1res a fee and tH >pcufic perml'>'>llH'i

@, 1986 ACM 0-89791-196-2 86 008 0297 500.75

1.0 Introduction

Synthetic texturing was first introduced by Catmull
jCatm75]. Since that time there has been considerable in
terest in the correct and efficient appiication of texture to
surfaces.

A popular use of texturing has been to apply color de
tail to surfaces. In this sense, textures have been used to
simulate painted images jBlin76]. Another use of textures
has been to simulate shape detail that would be inefficient
or difficult to model directly, either through normal pertur
bation [Blin78), or displacement mapping [Cook84).

Some techniques for generating textures that have been
discussed in the literature are stored look-up tables [Blin76],
procedural routines [Gard84], and multi-dimensional meth
ods [Peal85]. Texture has also been incorporated into syn
thesized images as a post-process, either to enhance the
understanding of shapes [Schw83], or to generate special
effects [Perl85].

Many image synthesis systems build an image by ren
dering pieces of surface (such as a polygon) one at a time.
The pieces may be combined with previous pieces as they
are rendered in a Z-buffer [Suth74) or an A-buffer [Carp84).
Alternatively, entire images may be merged after rendering
[Port84], [Duff85]. In all of these schemes, the texturing
process is usually one of inverse mapping [Feib80].

The problem of texturing may be expressed in many
ways, with varying degrees of theoretical and practical con
siderations. A popular model which is theoretically incom
plete but often visually acceptable is to assign a texture
value to a pixel based on the average value of the texture
within the surface region seen by that pixel. This is the
model we use in this paper.

In general, a pixel may be considered to be a small
window looking onto a surface. When texture is applied
to that surface, the inverse viewing transform is invoked to
find the projection of the pixel onto the surface (in practice,
we usually project only the four corners of the rectangular
pixel). We now want to know where those surface points sit
in the texture. Often, the axes of two-dimensional textures
are referred to as (u, v). These four (u,v) pairs (one for each
pixel corner) then describe a quadrilateral in that table.
If we are rendering a very warped surface, it is possible
that this quadrilateral will not be convex; in such a case we·
usually use the convex hull for the rest of the process. We
then find an average texture value inside that quadrilateral.
This average value is returned to the renderer as the average
particular property of that surface seen from that pixel.

In [Will83] Williams described the mip map, which pre
computed averages of square regions of texture at a variety
of different resolutions. In !Crow84] Crow described the
sum table, which can provide the average value in any rect·
angle oriented parallel to the texture axes. The sum table is
usually used to find the average texture value in the small
est oriented rectangle enclosing the mapped pixel. The tex
ture value returned by a sum table is usually more accurate
than that from a mip map, due to its ability to sample a
region that more tightly encloses the texture-space image
of the pixel. Sum tables have been studied in the field of
probability theory as joint cumulative probability distribu
tion funetions on two variables [Ross76j.

Both mip maps and sum tables provide a great speedup
over direct averaging for every pixel, especially when the
texture area covered by the pixel is large. Although sum
tables are superior to mip maps, they can still present arti
facts. In particular, texture outside the pixel but within the
enclosing rectangle is included in the average. It is possi
ble that the area inside the pixel is very small compared to
its bounding rectangle; thus texture from outside the pixel
may dominate the final average. If this extraneous texture
contributes substantially to the final average, the texture
value applied to a pixel may be substantially wrong.

The texture-sampling problem can be expressed math
ematically by writing the average value g as a nonlinear
convolution of a filter kernel h with a texture function f
[Andr77]. If we knew the correct filter to apply to the
texture for a given sample, we could simply convolve the
texture and the filter to obtain:

""'''" ~ jjh(x- <,y-")!(o,")dod"

The assumption behind sum tables is that the filter h can
be approximated by a unit-height filter which is 1 inside
the bounding box of the texture-space image of the pixel,
and 0 outside of that box (see Figure la).

Figure 1

(a) The filter used in
rectangular sum
tables has unit height
over the bounding
box of the pixel's
texture-space image.

(b) We suggest a bener
filter would have unit
height only over the
texture-space pixel
itself.

In this paper we present an .improvement on the sum
table technique which allows us to compensate for errors
that arise from the inclusion of texture which lies outside
the pixel. We will give methods to construct a filter which
is 1 only inside the transformed pixel, and 0 everywhere else
(see Figure lb). Our conjecture is that this filter will pro
vide superior results over the standard sum table bounding
box filter. We present methods for obtaining this improved
filter to different degrees of precision. Our technique is also
iterative and adaptive, allowing us to perform only as much
extra work as the image requires.

19

- S I G G R A P H '86

2.0 Terminology

When we refer to texture space, we mean that co
ordinates are to be interpreted as positions in the texture
function. If the function is two dimensional, we call the
axes u and v. When we transform a screen pixel into a cor
responding quadrilateral in texture space, we call the new
quadrilateral the pixel's texture-space image. The convex
hull of this quadrilateral we will call the inverse-mapped
pixel, or for convenience simply the mapped pixel. The four
points that comprise a mapped pixel may form a quadrilat
eral, triangle, line, or single point. For simplicity, we will
call the shape formed by a mapped pixel a general quadri
lateral.

For a given region R in texture space, we will designate
its area by Ra., the sum of all its values (its integral) by R:r;,
and its average value Rr:./ Ra. as Rv.

We will sometimes illustrate texture operations by de
termining a color for a pixel, but the texture may actually
be supplying any surface parameter. When we do speak of
color from textures, we imply that three texture tables are
accessed simultaneously (holding the red, green, and blue
components of the texture color).

3.0 Fixed Polygon Approximation

When we build a sum table, each entry receives the
summation of all the values in the original texture within
some fixed region, oriented with reference to that entry.
The traditional region used in a sum table is a rectangle.
In a rectangular sum table each table entry contains the
sum of the texture values between its corresponding posi
tion in the texture and the texture origin. We may eX·
tend the utility of the sum table by integrating under other
shapes. The sum table is valuable because of its ability to
provide the average value under a fixed region of variable
size and position. However, the orientation and shape of
the region must remain fixed throughout the table. Thus,
we may quickly find the average value within any fixed re
gion with a sum table, but each change in the desired shape
or orientation of the region will require a new table. We
will call the integration region provided by a sum table that
table's fundamental region. Note that the region we inte
grate under to build a sum table is of the same shape as
the fundamental region provided by the table.

The values returned by a sum table may be composed
with one another to create an average value for a region
with a shape other than the table's fundamental region.
This may be achieved with simple linear combinations of
the values returned by the table and the areas of the queried
regions. Figure 2 shows an example of finding the average
value in the region bounded by a letter E in a sum table
with a rectangular fundamental region. The desired region
is E, the enclosing rectangle is R, and the extra spac~ are
A, B, and C. \Ve can express E~, the average value Ill E.

E _ Er; = Rr; - A:r; - Br:, - Cr;
v - E, Ra.- A... Ea. Ca.

which may be generalized as

" Rr:;- L (region,)E
Ev = ---''~-c'~---

R,- t (region;)a
•=I

Dallas. August 18-22

We will investigate a variety of techniques for finding
the average value in regions other than a table's fundamen
tal region. To compare these techniques it is helpful to have
a measure of how much error may exist in the final value.
To compare these different techniques we use the relative
error measure:

_ 1 desired value- obtained value I

€relative - I desired value :

It is a bit inore difficult to decide what we ought to
measure. It would be nice to include the texture data itself
in our comparison of texture estimation schemes. However,
the only aspect of the different techniques that remains un
changed over different textures is the area averaged by that
technique for a given mapped pixel. Thus, our measured
values will be the area we want in our final region (whose
contents are averaged to obtain a final value), and the area
of the region we actually get from each technique.

Let us first analyze the area errors from the rectangu
lar sum table. Figure 3a shows a screen pixel which has
mapped into a diamond in texture space. The bounding
box encloses twice as much area as the interior of the dia
mond. Let us call the side of the bounding box L. Then
the length of one side of the diamond is L..fi/2, so the di
amond's total area is £ 2 /2. The relative area error in this
case is

I
£2/2 ~ £2 I

f~ecta.ngle-tab/e = I £Z 12 I = 1

One solution to this problein is to augment the rectangular
sum table with a diamond sum table. This is simply a
rectangular sum table built at a 45"' angle relative to the
standard rectangular sum table. When this combination
is presented with a mapped pixel, based on the geometry
of the pixel we determine which of the two tables to use
for the texture estimate. Consider this combination of sum
tables applied to Figure 3b, which shows a rectangle canted
at a 22.5° angle to the table sides. We want the area inside
the rectangle; this is the area of the bounding box minus
the four outer triangles:

des1red area= L - 4 - -L X -L = -L . 2 "1'(3) '] s,
L2 4 4 8

(5/8)L 2
- L2

1 3
fdia.mond-tab/e = (5/ 8)£2 = 5

We can easily combine elements from a
sum table to find the average of a shape
other than the table's fundamental region.

Figure 2

20

Volume 20, Number 4, 1986

For comparison with the other techniques analyzed in
this paper, let us find the relative error of the ·worst cases
for these tables. Figure 3c shows the worst case for the
rectangular table (a thin quadrilateral at 45"), and Figure
3d shows the worst case for the combined tables (a thin
quadrilateral at 22.5°). Under the combined tables, if the
mapped pixel's bounding box is not square, we call the
shorter side Land the longer side nL. The respective errors
are:

IL- L'l frecta.ng/e =
1
--L- =]1 - £]

freda.ng/•-o~-diamand = I nL :Ln£
2

1 = II- Ll
Note that the errors in the worst case are the same, so

the addition of the diamond table hasn't really earned us
anything in generaL

We have just seen one approach to improving estimates
provided by a rectangular sum table: maintain a table with
a different fundamental region and use it where the rect
angular table's estimates would be at their worst. Another
way to improve a texture estimate is to remove regions
of texture we don't want included in our sample. We are
not limited to a rectangular fundamental region for these
subtracted regions. If we maintain a S£:Cond table with a
different shape, we may find it easier to remove unwanted
areas.

(a) A bad case for
rectangular sum tables.

(b) A bad case for combined
rectangular and diamond
tables.

(c) A worst case for
rectangular sum 'tables:
a degenerate quadrilateral
at 45 degrees.

(d) A worst case for combined
rectangular and diamond tables:
a degenerate quadrilateral
at 22.5 degrees.

Figure 3

299

Let us choose triangles as the fundamental region for
such an auxiliary sum table. Recalling the above state
ments on sum tables, we may pick any fixed shape of trian·
gle we like, but we may only have one such shape per table.
Let's choose 45° right triangles, with the sides adjacent to
the right angle lined up parallel to the sides of the sum ta·
ble. It may appear that we need four sum tables, one for
each orientation of the right angle. However, we can get by
with just two triangle tables and the rectangle table. The
trick is that when we want a triangle we don't have we can
find its bounding box and subtract the triangle we do have.
The ability to remove these triangular regions allows us to
draw a generalized octagon around a mapped pixel, and
obtain the average within this octagon, as shown in Figure
4a.

The worst case for the rectangle-plus-triangles scheme
is when the sides of the mapped pixel make 22S angles
with the sides of the bounding box. Figure 4b demonstrates
the degenerate form of this worst ca.se, whose error may be
expressed a.s:

. _lnL- (nL' -z(tL'))I-1 , 'I

€t~•"ngl~ -~ nL - 1- zL

(a) A general case. (b) A worst case: all
triangles are 45-45-90.

Mapped pixels approximated by 45 degree octagons.

Figure 4

This error is still linear in L, but grows half a.s quickly
as for the combined rectangle-or-diamond table error.

We might want to improve our texture estimate further
by iteratively removing more triangles of smaller size from
the unwanted region. However, we would need to know
when to stop. We would also like to be able to stop as
soon as practical; that is, remove no more regions than the
image and the texture require to provide acceptable results.
In the following section we examine a method to provide a
stopping point for such an iteration.

We should also mention that one can interpolate to
sub-table values in the sum table, using techniques such as
bilinear interpolation. Indeed, this interpolation is required
to generate alias-free images. It does not save us from the
kinds of oversampling errors mentioned above, however, un
less carried to an extreme (as briefly discussed in Section 5).

300

21

- S I G G R A P H '86

4.0 Estimation of Local Texture Complexity

We have seen that we can improve the texture esti
mate (or at least the area sampled) by iteratively removing
extraneous regions from the first approximation made with
the bounding box. However, we noted that a stopping point
is required that will enable us to stop iterating when the
sampled value is sufficiently accurate for that pixel.

To achieve this goal we create a new table: the vari
ance table. Th,; variance table contains a local estimate of
the variance of the texture at each texture position in the
table. For a color texture, we can estimate local variance
by looking at the 3 x 3 neighborhood around each texture
entry, finding the mean color (r,g,b), and computing:

est. variance=
,t, [r,,- t)' + (g,- g)'- (b,- b)']

8

To use the variance table, first convert it into a rectan
gular sum table. \Vhen a pixel is mapped into image space,
we estimate the variance in that pixel before computing the
texture value. We estimate the average variance by finding
the total variance inside the bounding box of the mapped
pixel and dividing by the area of the bounding box.

Using this technique, we can find an est. -~te of the
average amount of high-frequency information mside the
mapped pixel, and use that information to control how
much work we need to do to get a good texture estimate.
Figure 5 shows a sample texture (before conversion into a
rectangular sum table), along with some sample mapped
pixels. Note that mapped pixel A is in a region with no
local variance; the average value inside the bounding box
is exactly the same as the average value inside the mapped
pixel. In this case we should do no more work than that in
volved in looking up the bounding box. However, mapped
pixel 8 is in a very busy area. We would like a very careful
estimate of the area inside the mapped pixel in this case.

In the next section we will show how to use the es
timated variance to control the accuracy of the sampled
pixel.

We can approximate A coarsely, but we
will want a very careful estimate for B.

Figure 5

5.0 Adaptive Polygon Approximation

In the texturing operation we desire an estimate of the
average value within a genera! quadrilateral. One way to
derive this estimate is to approximate a non-rectangular
shape with rectangles. There are at least tWo ways to do
this: additive and subtractive synthesis. We will briefly
discuss additive synthesis, and then focus on subtractive
synthesis for the remainder of this paper.

Dallas, August 18-22

The image of the pixel in texture space is usually some
form of quadrilateral. This quadrilateral- cmild be scan
converted in texture space, creating a set of spans defined
by one constant co-ordinate and a pair of the other co
ordinates defining the endpoints. Each such "scan line" can
be looked up in the sum table. This would require one sum
table access for a.s many lines as one cares to generate. If
the quadrilateral is enclosed in a box with height L, this
would require L table lookups. Alternatively, one may ap
proximate the actual region with a set of smaller rectangles.
Let us use K rectangles and apply them to the worst case
(Figure 4c). Each rectangle would beL/ K high by nLjK
wide. Thus, the error would be

1nL-K(f?-x"L)I I £1
fa.ddititJe-synthesis =! nL K ·1 = ~1- J((1)

Let us now look at subtractive synthesis. We will call
the area within the quadrilateral representing a mapped
pixel the internal region, while the total area outside the
quadrilateral but within the bounding box is the external
region. We may obtain an estimate of the average value in
a general quadrilateral by first estimating the average value
in its bounding box, and then removing rectangles from the
exterior region. We call each removed rectangle a bite.

To maximize the benefit of removing bites from the
exterior region we should insure that we remove the largest
possible bite remaining at each step. We must also be able
to identify this largest bite quickly and efficiently, since it
is an operation we may perform many times for every pixel.

Bite identification is a two-step process. The first step
partitions the exterior region into a set of geometric primi·
tives, or fragments. The second step finds the largest avail·
able rectangular region and removes it from the set. The
first step is performed once per pixel, while the second step
is executed once each time we want to refine our texture
estimate for a given pixeL

We chose rectangles and right·angled, table·aligned tri
angles for the fragments. These shapes are attractive be
cause the area of their largest bite is easy to compute, and
their extents require the storage of only four co-ordinates.
The largest bite in a rectangle is the entire rectangle, and it
may be stored by just its two diagonal corner points. The
largest bite in a triangle is the rectangle with one corner
at the right angle and the other at the midpoint of the hy
potenuse, and it may be stored by its right-angle vertex
and two side lengths. When a rectangle is removed it is
simply deleted from the set. When a triangle is removed
it is deleted from the set, and the two smaller remaining
triangles are added, as shown in Figure 6.

When we take a bite out of a triangle, we remove the
largest rectangle it encloses. Two smaller triangles
remain.

Figure 6

22

Volume 20, Number 4, 1986

We have developed an iterative technique that parti
tions the exterior region into rectangles and triangles. At
several points in this approach we need to find the orien
tation of a point with respect to a line. We can find which
side of the line the given point is on by examining the sign
of the line equation when solved for the point. We can com
pute this efficiently for a point A and a line from PO to Pl
by finding the sign of

d ~ (PI, -PO,)(A,- PO,)+ (PI, -PO,)(PO,- A,)
We first tag each point of the quadrilateral with a bit

field indicating whether it lies on each of the four edges or
its bounding box (points on a comer are marked by both
edges). We look for three special cases before proceeding
farther. Special case 1 holds if no points are corner points;
then we must have the case illustrated in Figure 7. Special
case 2 holds if all points are corner points; then the quadri
lateral is a rectangle or a single point, and we have one of
the two cases illustrated in Figure 8 (either way there is no
exterior region to be partitioned). Special case 3 holds if
we only have corners on a diagonal, and the other points lie
along this line. We check for this case by first looking at all
the cOTnern; if we only have diagonally opposite corners we
then find the sign of the distance of the other two points
from that line. If the sign of both distances is 0, then they
all lie along a line, and the partitioning is as illustrated in
Figure 9.

If all 4 corners of the mapped
pixel are on the edges of the
bounding box, then the pixel
must have this form: a right
triangle in each corner of the
bounding box.

Figure 7

If all four corners of the pixel are on
the comers of the bounding box, there
are only these two situations:

(a) when the mapped pixel is a
rectangle with non· zero area.

(b) holds when the mapped pixel
degenerates into a single texture point.

Figure 8

\Vhen the mapped pixel
is a degenerate line
across the diagonal of
its bounding box we
panition the bounding
box into two triangular
regions of equal size,
indicated A and B.

Figure 9

301

302

23

- S I G G R A P H '86

L'"; ·«d---g~enerated
fragment

If the 2-span forms a diagonal of the bounding
box we examine a third point (A); if possible this
point is chosen to lie off the line formed by the
2-span. Based on the direction of the 2-span
and the postition of A, we can tell which triangle
to create as a fragment.

(a) Figure 10

D
If the 2-span travels from edge to edge, then it
must cut off a comer. We can deduce from the
rules that created the 2-span that the rest of the
polygon must lie away from that comer. We thus
create the fragment triangle between the corner
and the 2-span.

(b)

sl =sign of distance from (E.T) to A
s2 =sign of distance from (T,G) to A

"'T~:r s3 = sign of distance from (UL,LR) toT

if (s3 > 0) then

if ((sl = 0) AND (s2 = 0)) then

else if ((sl <= 0) AND (s2 <= 0)) then

else

if ((sl = 0) AND (s2 = 0) AND (s3 != 0)) then

else if ((s 1 > 0) AND (s2 > 0)) then if (s3 != 0) then

else * An asterisk indicates this partition is
complete at this step and no funher
spans should be processed

LL Gl LR

When we process a 3-span, we need a variety of values to help us create the fragments. We compute
the sign of the distance from the middle point of the 3-span (denoted T) to each of the two corners not
included in the 3-span. We also want to know if the fourth point A is on the same side of both segments
of the 3-span. To this end we compute lhe distance from A to each of the two line segments. We then
process the 3-span as shown above. The same process is followed for 3-spans on the other diagonal,
with appropriate re-labelling. On each partitioning diagram we show the location of the fourth point A,
determined by the algorithm, to show how the convex hull is automatically determined as we process
the span.

Figure 11

Dallas, August 18-22

If none of these special cases holds, we p2.rtition the
region with an iterative procedure. We start with a corner
point and fix a direction to pick up the remaining points
(clockwise around the original pixel works fine). We then
look at the edge information for next point around the
quadrilateral.

If this second point is on an edge, we call this pair of
points a 2-span. We pick one of the other two points as an
auxiliary point and call it point A; if possible, we pick A to
lie off the line formed by the 2-span. We then find the sign
of the distance from this point to the line formed by the
2-span. If both points of the 2-span are corner points, then
we create partitions as shown in Figure lOa, otherwise we
create partitions as shown in Figure lOb.

If this second point is not on an edge, then we examine
the next point in turn. If this third point is on an edge,
we call the trio a 9-span, and A is assigned the remaining
point. If the first and last points of the 3-span are corners
we create partitions as shown in Figure 11, otherwise we
re-label the points as shown in Figure 12 and then create
the partitions shown in Figure 11.

If this third point is not on an edge, we then take the
fourth point and call the quartet a 4-span, and partition it
as shown in Figure 13.

G G

[J '[J, D
G G

If the endpoints of a 3-span are not comers,
then we label them according to these conven
tions and use the algorithm of Figure 11.

Figure 12

A 4-span necessarily spans opposite
diagonals of the bounding box. If
both of the other points are on the
same side of the diagonal we parti
tion the box into these 6 fragments.

If the two non-corner points in a
4-span are not on the same side of
the diagonal, then we derive the
convex hull and partition the
regions outside it into 6 fragments
using this scheme.

Figure 13

24

Volume 20, Number 4, 1986

If the point at the end of the most recently classified
span is not the same point we started with, we use last
that point as the start of a new span and continue walking
around the points of the quadrilateral. When we return
to our starting point, we will have walked around the en
tire outside of the mapped pixel, partitioning the region
between its convex hull and its bounding box into triangles
and rectangles. The partitioning algorithm is summarized
in the Appendix.

We are then prepared to remove bites from the external
region, as guided by this partitioning. The process is reca
pitulated in Figure 14. Figure 14a shows a mapped pixel,
14b shows its decomposition into triangles and rectangles,
14c shows the removal of the first bite, a.nd 14d shows the
removal of the first six bites.

IOIUI
rEJ"Ifil
(c) the largest bite (d) the first six bites

Figure 14

It is informative to compute the area error left after
each step in the refinement of the estimate. A worst-case
general quadrilateral consists of a line from one comer of
its bounding box to its diagonal opposite. Let us label the
shorter side (if there is one) as L, and the longer side as
nL. Both regions around L have equal area; let us take the
largest bite out of one of them. The area left after this bite
is now

. , (L nL) 3nL2

de.stred = nL - 2 x Z = -
4
-

Th us the relative error is

'•"'-'"' ~ lnL- ~;L'f•)l ~ 1'- ~L~
Similar reasoning for other numbers of bites leads us

to a piecewise-linear approximation to the curve 2-n, with
exact matches where n is an integer. We thus arrive at the
general formula for the error after k bites:

I (3(21'''''1)-k-I) I
Ea.d<tpti<>~(k) ::::: 1- 4llog2 kj L (2)

This formula gives us a relationship (albeit a little complex)
between the number of rectangular bites taken from the
area and the resulting relative area error. Since this anal
ysis was carried out for the worst case, if we take enough
bites to meet this error for any situation we are guaranteed
a maximum bound on the relative error.

The variance table and the results of Equation 2 are
used to determine a maximum bound on the number of
bites we need to take from a sample. We simply use a
linear relationship between the range of variance and the
range of error, adjusted to err on the side of over-refining.

303

6.0 Implementation and Results

The implementation of the technique was written to
run in either of two environments: on a VAX·ll/780 run
ning UNIX BSD4.2, or within the Adagejlkonas RDS-3000
raster graphics engine. To this end, the code was written
in gia2 :Bish82], a dialect of C.

The implementation used to generate the pictures par
titions the external regions with the iterative span classi
fication technique. The generated rectangles and triangles
(or fragments), are kept in a doubly-linked Jist. Each entry
in the list contains the co-ordinates needed to describe the
fragment, the area of the largest bite it contains, and a pair
of forward and backward pointers. Bites are taken from the
sample until no fragments with non-zero area remain, or the
maximum number of bites (as determined from the average
variance) have been taken.

It is most efficient to pre-allocate memory for storage
of the fragment list. An upper bound on the size of the list
is the maximum number of starting fragments (6) plus the
maximum number of bites (because each triangle bite adds
one triangle to the list). When there are no more entries
left to fill in the list we simply discard the fragments we
can't accommodate. The maximum number of bites can be
found from the last entry in the error/bite correspondence
table (discussed below). In the current implementation an
upper limit of 80 bites is imposed, so the fragment list has
86 entries.

Equation 2 expresses the allowable error, in terms of
the number of bites taken. We want the opposite relation,
i.e. how many bites to take given a particular error. To
compensate for this problem we create a table indexed by
tolerable error. When we have a maximum allowable error
(derived from the variance map) we scan this table for the
first entry with an error value less than the atlowable er
ror. The associated number of bites is the value we use to
terminate the refinement.

It is interesting to note that the three color tables and
the variance table can all be stored in a singie square array.
We used 256 x 256 tables, arranged in a 512 frame buffer
as a two-by-two matrix.

As a demonstration of the new technique case we pre
sent Figure 15, which shows images of a black·and·white
checkerboard in perspective. In the lower-left is the image
generated by standard sum tables. As the checkerboard
nears the horizon the sum table image blurs into a grey
band. In the lower-right is the image generated by the
technique described in this paper. The black and white
squares of the checkerboard near the horizon are stili re·
solvable, especially as we sight along the diagonals. Above
each checkerboard is an enlargement of the square region
indicated in red.

Figure 16 is an image which was generated along with
the bottom·right image of Figure 15. It shows how many
bites were taken on a pixel basis. Black indicates no bites
were taken; a whiter entry indicates a larger number of
bites. Pure white indicates 21 bites for this image. Note
that the iterative technique only executes where the stan
dard sum table would not provide a good estimate.

Figure 17 shows the same checkerboard receding at a
45"' angle to the axes of the pixels.

Table 1 summarizes the number of rectangular sum
table samples taken for the two images. Recall that the
division operation needed to derive an average from a sum
and an area is still executed only once per pixel in the new
technique.

304

25

- S I G G R A P H '86

Figure 15

Figure 16

Figure 17

Figure 15 Figure 17 /

Rectangle samples
in standard sum table 50,176 65,536

Rectangle samples 76,942 88,774
in new technique

Relative increase 1.5334 1.3545

Experimental Costs of New Technique
and Sum Tables

Table I

Dallas, August 18-22

7.0 Discussion and Future Work

The use of the variance map to determine how many
bites to take in an estimate seems to be a good approxima~
tion, but it's not ideal; in fact it can lead to estimates which
are much higher than they ought to be. A better way to
determine which bite to take would be to take the Fourier
transform of all the possible bites at each step, and choose
the bite with the maximum energy under its transform.
The drawback to this scheme is clearly the high computa
tional cost involved in taking the transforms and evaluating
their energy. It would be interesting to examine techniques
to get a quick estimate on these values.

It would be nice if we could remove bites from the con
cave portions of concave mapped pixels, rather than work
with their convex hulls. It would be interesting to look for
other fr-agment shapes that had the storage and simplicity
characteristics of oriented rectangles and oriented right tri
angles, but could also give us a handle on approximating
concave mapped pixels.

It should be noted that there is an inherent limit on
the theoretical precision of this technique. As mentioned
in Section 1.0, we are not performing an ideal filtering of
the texture when we derive our estimate. Our first ma
jor assumption was to use rectangular, abutting "Fourier
windows" to control our examined texture region. Our sec
ond assumption was to effectively sample the texture with
a delta function, instead of a proper filter. These assump
tions usually produce good results in synthesized images.
However, after a certain point further refinement of the
texture estimate by the techniques presented here will not
come closer to a theoretical value. This theoretical draw
back does not seem to detract from the general usefulness
of the technique.

It is true that the complexity measure described in
this paper is best for textures with large homogeneous ar
eas (such as checkerboards!). Complex textures will have
very high values throughout the variance map. This isn't
too bad, since we will usually will want very accurate esti
mates of complex textures. But this is another reason that
a better complexity estimator than the variance would be
valuable.

We have investigated another way to determine the
partitions of a mapped pixel and its bounding box. \Ve
haYe found that there are 25 types of box-bounded convex
quadrilaterals. If we can quickly determine to which of the
25 types a given mapped pixel corresponds, we can have
the entire partitioning immediately. We hope to follow this
line of thought farther.

The techniques described in this paper can be extended
in a straightforward way to sum tables of 3 or more dimen
sions. In the 3d case we would remove right pyramids and
right parailelpipeds from our bounding right parallelpiped
to refine the texture estimate. The fragmentation code
would be considerably more complex.

8.0 Acknowledgements

Several of the ideas in this paper were considered in
dependently by Ken Perlin iPerl86:. Specifically. he inves
tigated three-dimensional t~bles f~r the triangular tables
discussed in Section 3, using two axes for u and v and the
third for the free angle.

26

Volume 20, Number 4, 1986

Thanks go to my advisor Henry Fuchs for his enthusi
astic support. Thanks also go to my fellow students in the
UNC-CH Computer Graphics Lab, whose expertise and in
sight contributed greatly to this work. ~any of the ideas
and results in this paper grew out of conversations with
Greg Abram, Phil Amburn, Larry Bergman, John Gauch.
Eric Grant, Jeff Hultquist, Marc Levoy, Chuck Mo,sher, and
Lee Westover. Comments on this paper were offered by sev
eral of the above and Babette Eckland.

Special thanks go to Jeff and Mary Hultquist, who vol
unteered to assist me in the final production of this paper.
The excellent layout and pasteup are entirely due to their
talents and friendship.

9.0 References

A.ndr77]

[Blin76]

jBlin78]

1Catm75]

[Carp84]

:cook84]

[Crow84)

[Duff85j

;card84]

:real85)

[Perl85j

[Ross76)

[Schw83j

Andrews, H.C., and Hunt, B.R., "Digital Image
Restoration," Prentice-Hall, Inc. (1977)
Bishop, G., ~Gary's Ikonas Assembler \'ersion
2," UNC-CH Computer Science Department
Technical Report, June, 1982
Blinn, J., and Newell M.E., uTexture and Re
flection in Computer Generated Images,"
CACM 19, 10 (Oct 1976)
Blinn, J., "Simulation of Wrinkled Surfaces,"
Computer Graphics, vol. 12, no. 3, August 1978
Catmull, E., "Computer Display of Curved Sur
faces," Proc. IEEE Conference on Computer
Graphics, Pattern Recognition, and Data Struc
ture, May 1975.
Carpenter, L., "The A-buffer, an Antia!iased
Hidden Surface Method," Computer Graphics,
vol. 18. no. 3, July 1984
Cook, R., "Shade Trees," Computer Graphics,
val. 18, no. 3, July 1984
Crow, F., "Summed-Area Tables for Texture
Mapping," Computer Graphics, vol. 18, no. 3,
July 1984
Duff, T., "Compositing 3-D Rendered Images,"
Computer Graphics, vol. 19, no. 3. July 1985
Feibush, Levay, M., Cook, R., "Synthetic Tex
turing Using Digital Filters," Computer Graph
ics, vol. 14, no. 3 July 1980
Gardner G., ~Simulation of Natural Scenes
Using Textured Quadric Surfaces," Computer
Graphics, vol. 18, no. 3, July 1984
Peachey D., ~solid Texturing of Complex Sur
faces," Computer Graphics, vol. 19, no. 3, July
1985
Perlin, K., "An Image Synthesizer,~ Computer
Graphics, vol. 19, no. 3, July 1985
Perlin, K., private communication
Porter, T., and Duff, T .. "Compo<>: ·'c; Digi
tal Images," Computer Graphics, voi. 19, no. 3,
July 1985
Ross S., ~A First Course in Probability,~
MacMillan Publishing Co, Inc. (1976)
Schweitzer D., "'Artificial Texturing: An Aid to
Surface Visualization," Computer Graphics, vol.
18, no. 3, July 1984

[Suth74) Sutherland, I., Sproull, R., Schumaker, R .. "A
Characterization of Ten Hidden-S~rface Al
gorithms," Computmg Survfys, val. 6, no. L
March 1974

:wil!S3] Williams L., "Pyramidal Parametrics." Com
puter Graphics, vo!. 18, no. 3, July 1984

305

306

27

.., S I G G R A P H '86

Appendix: derivation of the partitioning algorithm

The figure below shows the possible spans that may arise in a mapped pixel. When we
consider edge infonnation some spans become unrealizable; these are marked X. For
example, the fifth span on the first row must have the given partitioning; if the quadri
lateral had any points inside the shaded triangle the endpoints of the span would be cor
ners. Sometimes we need another point of the polygon to decide which side of the span
to partition. This point is chosen to lie off the line(s) formed by the span, if possible.
and is marked e in this diagram.

28

Supporting Animation in Rendering Systems

In my opinion, one of the most important issues facing the rendering system designer

today is the integration of animation concepts into the rendering package. Traditional

rendering systems have produced instantaneous "snapshots" of the world they imaged.

Thus, each object in the database could be described by a single, static set of parameters

that described the shape, orientation, surface characteristics, and other features of the

object.

It is well known that motion blur enhances the apparent fluidity of animation. I believe

that motion blur is sufficiently attractive that all future high-quality animation systems will

provide it as a standard rendering feature.

But when we try to incorporate motion blur into standard rendering systems we find

that there are severe difficulties. The crux of the problem is that time is no longer a

constant throughout the rendering pipeline (see Figure 1). It is well known that any regular

sampling of an unfiltered signal may lead to aliasing, but that stochastic sampling can

replace this aliasing with the less objectionable artifact of noise [Cook84], [Dippe85],

[Lee85], [Kajiya86]. In a stochastic sampling system, the hidden-surface resolver

(usually near the end of pipeline) is now deciding at what time to sample the database, and

these decisions must be supported by the object transformation software (usually near the

start of the pipeline). A naYve approach would be to connect the time output from the

renderer to the time input for the object transformer, which would then transform the entire

database to position it at the requested time. Not only must the database transformer

perform standard matrix operations, but it must also perform all of the other operations

needed to support the database transformations designed by the animator, including the

determination of the position of objects along control splines, and the interpolation of

various shape and surface control parameters.

This is clearly a lot of work, and will involve the wasted effort of transforming many

objects that don't even participate in this sample. For large databases this wasted effort

will dominate the rendering time. For this reason I believe that the standard rendering

pipeline is inappropriate for rendering animation with motion blur.

Other alternatives include distributed ray tracing and solving the rendering equation. In

these approaches, rays at different times enter the database looking for intersections.

Various algorithms may be used to prune the number of objects to be intersected, or replace

29

groups of objects with simpler objects, but still at some point in the process some objects

must be transformed to the appropriate position, orientation, shape, and so forth to test for

intersection with the ray. This is the same task performed by the object transformer in the

traditional pipeline. Note that the determination of the position and shape parameters for

the ray may be as complex as the animation system itself, requiring moving objects along

splines, interpolating shape parameters, and so on.

But observe that this is also the exact same task performed by the animation editing

system. When an animator sits in front of an interactive animation system, the animator is

interacting with an animation database through a set of controls and displays. In effect, the

animator specifies operations to be performed on the animation database, the results of

which are then displayed. The animation system must then support all the same object

transformation and distortion operations on objects that are performed when testing a ray

for intersection.

Thus I propose using a single set of routines for accessing the animation database. The

database itself is composed of object-oriented modules which may communicate; this is a

very powerful paradigm for developing databases, both static and moving [Amburn86].

The animation system and the renderer both speak to the database only through its

interface.

The animation system interacts with the database with two commands:

SetParameters(object, time, parameter-list)
Represent(object, time, representation, controls)

SetParameters associates a parameter list with an object for a given time. The

parameters may describe a transformation matrix, a texture map index, a shape distortion

control, a force vector, or any other information that the object may find useful. This

information is stored internally by the object and may be used as traditional keyframe

control, or for more complex purposes such as parameters that affect how the object

animates itself (e.g. electric charge in an electromagnetic field).

Represent causes an object to represent itself in some way, usually for display.

Possible representations may include vectors, polygons, patches, and so forth. The

controls determine other object-related properties affecting the representation, such as level

of detail.

The rendering system interacts with the database with two commands:

lntersect(object, ray, time)

Complete(object, ray, time)

Intersect determines the intersection of a given object with a given ray at a given time.

30

The result of such an operation is either a notification of a miss, or the ray position (e.g. the

scalar s in the ray equation R = R0 + R1s for ray R).

When the nearest intersection has been found, Complete finishes the job for the desired

object. The result of complete is a description of the intersection containing all information

for which the object is responsible (e.g. Complete will return surface color, reflected and

refracted rays (for distributed ray tracing), surface physics co-efficients (specular, diffuse,

highlight, etc.), and other shading and geometrical information).

This system places the responsibility for uniform sampling on the objects, rather than

on the ray generator. For example, an object may subdivide its generic reflection

hemisphere into n solid angles. Each time a reflected ray needs to be generated, the object

selects one of the solid angles not chosen before. The reflected ray is generated to fall

somewhere within that solid angle, and the angle is marked as used In this way

successive requests will receive reflected rays distributed over the hemisphere, no matter

where on the object the intersections actually occur; see Figure 2. When all angles are

used, they are all cleared and the process begins anew. I believe that this method of

distributing rays is as effective as methods controlled by a ray generator. Some

experiments with distributed light sources and rough surfaces have produced good images,

which lends support to this view.

The composite system is shown in Figure 3. The animation database is insulated by its

access routines. The animator interacts with controls that adjust and query the animation

database. The rendering system contains a module which queries the database for

intersection events and processes those events to form an image.

In summary, I advocate the incorporation of ray-object intersection routines into a

protected animation database system. Under this scheme, as more sophisticated and

involved animation and motion control techniques are presented to the animator, the

rendering system remains unchanged but capable of rendering the new animation

immediate! y.

References

[Amburn85] Amburn, P., Grant, E., Whitted, T., "Managing geometric complexity

with enhanced procednral models," Computer Graphics 20, 4 (August 1986)

[Cook84] Cook, RL., Porter, T., and Carpenter, L., "Distributed ray tracing,"

Computer Graphics 18, 3 (July 1984)

31

[Dippe85] Dippe, M.A.Z, and Wold, E.H., "Antialiasing through stochasic sampling,"

Computer Graphics 19, 3 (July 1985)

[Kajiya86] Kajiya, J.T., "The rendering equation," Computer Graphics 20, 4 (August

1986)

[Lee85] Lee, M.E., Redner, R.A., Uselton, S.P., "Statistically optimized sampling for

distributed ray tracing," Computer Graphics 19, 3 (July 1985)

32

Database

DB Accessor

llisible Surfaces

Shading

I mage Collector

Uideo Generator

The I mage Generation Pipeline

Figure 1

When a reflected ray is needed, the reflection hemisphere is
searched for an unused solid angle. When such an angle is
found, it is marked as used, and the reflected ray is built to
pass through it. The sizes of the various solid angles and the
order through which they are searched is weighted by the
shape of the reflection distribution function.

The next time this object needs to generate a reflected ray, it
searches its reflection hemisphere for an unused solid
angle. This new angle is marked used, and the new
reflected ray is constructed. Similar book-keeping is used
by all objects with sampled parameter spaces. For
example, an area light source subdivides itself into several
smaller areas. Each time a shadow ray is generated, the
light source is asked for one of these peieces. This is the
location on the light source towards which the shadow ray
is directed.

Figure 2

33

ray
descriptions

ray
generator

viewing
information

sphere

house

camera

intersection
requestor

polygon

road

tree

Object -Oriented
Animation Database

Interface Routines

object intersections,
surface descriptions

ray
requests

surface
physics

generated
picture

Rendering System

Figure 3

patch

light

fence

0
Display

Animation
Editor

+tl

34

Animation System

Template Parameterization for 3d Pose
Interpolation

Abstract

Many 3-dimensional animation systems use hierarchical transformation trees to

describe articulated 3-d models. These models may be animated by

interpolating keyposes created (either explicitly or implicitly) by the animator at

different times. Correct keypose interpolation demands that all model trees

involved in the interpolation have the same topology. A second, more difficult

condition for interpolating keyposes is that corresponding nodes in the

transformation trees must be composed of the same transformations in the same

order (called a template). We believe that a model designer should be free to

specify arbitrary transformations at each node; somehow these transformations

must be converted into the template form necessary for interpolation. This

raises the template parameterization problem: how to find the parameters for the

transformations in a given template from the composite matrix at a node. We

present a new template composed of six transformations in twelve parameters,

and show how it may be efficiently computed with standard numerical

algorithms.

Introduction

Hierarchical modeling is a powerful and popular technique for constructing and

animating complicated objects. The general idea is to build a tree of transformations and

primitives, where each node in the tree represents a linear transformation, and each edge

represents one or more primitive objects. TI1e model description is recovered by

35

processing the tree from the root to the leaves, accumulating transformations and placing

(and perhaps rendering) objects as they are encountered.

36

This method may be used to construct a powerful modeling language [Duff84]. In this

context, the designer prepares a text script which contains the transformations and

primitives that describe the model. The modeling language itself imposes no restrictions on

the structure of the tree described by such a script; it is perfectly possible that some nodes

have many branches while others have none. Similarly, the transformations at the nodes

are usually unrestricted; any number of transformations may be specified in any order. The

transformations are simply accumulated into a current modeling matrix that is used for all

objects placed at that node. That matrix is also propagated to all child nodes.

This hierarchical structure is ideal for parametric animation. In such a system the

designer builds a sequence of instances of the modeling tree either explicitly (in a keypose

system, such as [Stern83)), or implicitly (in an event-driven system, such as [Gomez84)).

For simplicity, we will assume in this paper that the keyposes are available explicitly. At

moments for which a keypose was specified, the pose completely describes the object. At

all other moments in the animation the object is described by a transformation tree

interpolated from these keys. In order to build an interpolated tree, all trees involved in the

interpolation (2 trees for linear interpolation, 3 for quadratic, and so on) must have the

same topological structure, as shown in Figure la. This is usually not a severe problem for

articulated figures such as humanoid shapes and mechanical systems of rigid parts, since

the topology of these structures doesn't change much over time. When the tree structure of

a model must change over time, the modeling language may include constructions that

allow the user to describe the time and form of the topological change.

1a
These two trees cannot be interpolated since they have different topologies

A

1b
Both trees have the same topologies, but nodes A-A' and B-B'

cannot be interpolated directly as given, since their transformation
sequences are different.

Figure 1

37

38

A more difficult restriction to meet, however, is that the topological structure of the

transformations at corresponding nodes must also be the same, as shown in Figure 1 b.

Parametric transformation interpolation requires that we decompose the matrix into a

sequence of primitive modeling transformations, each a function of one or more

parameters. If we attempt to avoid this decomposition and instead interpolate the elements

of the composite transformation matrix at each node we get very poor results: the in

between matrices are shears of the key matrices, and objects are distorted by even a simple

rotation.

A particular, fixed set of transformations in a node structure is called a template . In a

template we only allow the "primitive transformations" of translation, rotation, shear, and

uniform scaling (the last is a special case of shear). For notational convenience, we extend

the term "primitive" to include the 3-d composite matrices combining similar, commutative

elements (for example, a single transformation that applies translations to all 3 axes is also a

"primitive" matrix of 3 parameters).

We refer to the problem of converting an arbitrary modeling matrix into a fixed

sequence of parametric primitive transformations the template parameterization problem. In

the next section we summarize previous work on this problem, and then in following

sections we present our new solution.

Previous Work

Consider the following transformation template B, used in the bbop animation system

[Stern83]:

(B) Translate_XYZ (tx, ty, tz)

Rotate_XYZ (rx, ry, rz)

Scale_XYZ (sx, sy, sz)

where Translate_XYZ(tx, ty, tz) means the three transformations Translate_X(tx),

Translate_ Y(ty), and Translate_Z(tz) in that order. Rotate_XYZ and Scale_XYZ have

similar meanings. So B consists of 3 transformations in 9 parameters. The parameters

which determine template B may be found by symbolically composing these 3 matrices,

and then simultaneously solving the 16 equations relating the symbolic matrix containing

the nine parameters and the numerical matrix which is to be matched.

The problem of extracting the parameters for template B from a particular numerical

matrix has been studied by Greene [Greene83] [Greene86]. He developed a variety of

identities which show the relationships between various sets of transformations. Using

these identities, we find that template B is not completely general.

One way to see this is to consider the following identity from [Greene83]:

shear_XY (a)= Rotate_Z (b)

Scale_X (c)

Scale_Y (d)

Rotate_Z (e)

where
tan(a) ±--/ 4 + tan2(a)

c= 2
1 n

d=c' e=tan·l(c), b=e-:z

From this we can see that shear transformations are equivalent to differential scaling

(scaling by different amounts along the principal axes) nested between rotations. Since

template B contains only a single rotation node, that template cannot match a matrix that

includes shear.

39

This is a serious restriction, since it means not only that designers cannot use shear

explicitly, but they also may not scale along just one axis when modeling (since that can

introduce shear if nested between rotations). This problem can be somewhat alleviated by

the animation system, since after the modeling matrix has been decomposed the animator

may apply differential scaling to particular keyposes. Nevertheless, we would prefer to

allow the designer to build the desired model in the script, rather than relying on hand

adjustement when animating. This preference becomes a necessity when scripts are

generated by a simulation program, which may need to include shear and differential

scaling to correctly model some deformations.

An improved approach due to Greene involves using templates of higher complexity.

Not all such templates are practical; for example, Greene states that computing the

parameters for the transformations in his template T6 presents "an intractably difficult

algebra problem." A "solvable" system is given by the following template G:

(G) Perspective (90, 1, c)

Translate_XYZ (tx, ty, tz)

Shear_ YZ (syz)

Shear_ZY (szy)

Shear_ZX (szx)

Shear_XZ (sxz)

Shear_XY (sxy)

Shear_ YX (syx)

Scale_XYZ (sx, sy, sz)

40

G consists of 9 transformations in 13 parameters. Greene suggests that to find the

parameters in G we again write the composite matrix symbolically and then fmd the

solution of the 16 equations describing this matrix for the 13 unknowns corresponding to a

particular numerical matri.x.

Greene's approach represents one solution to the parameter extraction problem. In the

next section we present a new approach, using a new template based on the techniques of

matrix transformations.

Singular Value Decomposition

A well-established technique in the field of numerical linear algebra is the computation

of the singular value decomposition (SVD) of an arbitrary matrix [Golub71]. SVD was

developed to solve problems in linear algebra, for which more direct routines fail from

numerical instability.

The use of SVD for linear algebra problems is very much like the use of the adjoint

matrix in modeling problems, where the adjoint is often used where the theory requires the

inverse. The adjoint of a matrix differs from the inverse by only a constant factor (the

inverse of determinant of the matrix), but it always exists, even when the matrix is

singular. The adjoint is also easier to compute. In cases where the scaling is critical, we

can always divide the result by the determinant (if it is non-zero).

Similarly, SVD is useful for inverting linear algebra problems involving a singular

matrix. Suppose we have a singular transformation A and two vectors x and b, related by

Ax=b, and we wish to fmd x given A and b. The normal solution is to invert A and solve

x=A-lb. Unfortunately, if A is singular then A-1 doesn't exist, so this technique is not

useful. But if we use the SVD technique, then we can compute a vector x which is the

"closest" correct answer, in the least squares sense that it minimizes the residual lAx - bl.

41

The input to SVD is a matrix; the output is three new matrices, which when multiplied

together reconstruct the original matrix. S VD is useful for our purposes because of the

form of the matrices it produces. Given a square, real matrix A, the singular value

decomposition of A results in the three real matrices U, W, and V, such that A= UWVt,

where V1 is the transpose of V. Some properties of the three SVD-generated matrices U,

W, and V will prove to be important to us. First, the entries along the diagonal of W

(called the singular values of A) are closely related to the eigenvalues of A. Second, U and

V are both orthonormal matrices (the columns of U for which the diagonal element in the

corresponding column of W is nonzero form an orthonormal basis for the range of the

transformation A; the columns of V for which the diagonal element in the corresponding

column of W is zero also form an orthonormal basis, this time for the nullspace of A).

One reason SVD is popular is because from the singular values we can find when A suffers

from rank degeneracies. Isolating the particular singular values that are nearly zero can

help us analyze A, and perhaps modify it for some other purpose. We will not be using

SVD in this analytic capability; we are only interested in using the equivalent matrix

representation it generates.

A New Template

Our goal is to decompose a modeling matrix A into some sequence of primitive

transformations whose parameters we may interpolate. Recall that a square orthonormal

matrix may be interpreted as a rotation, a mirror, an inversion, or some combination of the

three. We will find it useful to replace orthonormal matrices with an equivalent "MR-pair"

- two matrices, where the first (M) includes any mirroring or inversion, and the second (R)

includes any pure rotation. Recall also that a diagonal matrix may be interpreted as

representing pure scaling (i.e. no shear).

Let us consider applying SVD directly to a 4-by-4 modeling matrix A. Then U and V1

will be 4-by-4 orthonormal matrices, and W a 4-by-4 diagonal matrix. We may consider

U and VI to represent MR pairs in a 4-dimensional space, and W to represent a 4-d scaling

vector. Note that in this context the fourth row and column of each matrix is not

homogeneous information; they have the same spatial interpretation as the first three rows

and columns. We may thus create a sequence of the form (MR)S(MR), which is formed

from A by direct application of SVD; this is illustrated in Figure 2.

42

SVD
A .. ~ X

M x R X s X M x R

Singular Value Decomposition converts a square matrix into three new
matrices: a diagonal matrix flanked by two orthonormal matrices.
We may consider each orthonormal matrix to be a product of a

mirror-inversion matrix and a pure rotation matrix.

Figure 2

The drawback to this form is that these 4-dimensional transformations carry little

intuitive meaning for us. On the other hand, 3-dimensional transformations are well

understood and easily implemented. For example, recent work for rotations has shown

how to smoothly interpolate composite 3-d rotations without resorting to Euler angles

[Shoemake85]. We know of no similar work which applies to 4d rotations.

Rather than develop a new body of techniques for 4d transformations, we can use SVD

to generate 3-d transformations if we are willing to add one more transformation to our

template. We will fmd it notationally convenient to introduce a "promotion" operator P(B),

which accepts as argument a 3-by-3 matrix B and promotes it into a 4-by-4 matrix by

substituting B into the upper-left corner of a 4-by-4 identity matrix. The inverse operator

P·l(B) "demotes" a 4-by-4 matrix B into a 3-by-3 matrix by stripping off the bottom row

and rightmost column.

To make SVD more useful we first note that no combination of primitive modeling

transformations (rotation, translation, scaling, and shearing) alters the rightmost colunm of

a composite transformation matrix; it is always [0 0 0 1]1• We then note that A may be

written as A'•T, where A'=P(F-1(A)), and Tis an identity matrix augmented with the

translation components. In diagram form, this is

A=(:= ~~J= (~~HJ(~ r ~~J= A'·T.
txtytzl 0001 txtytzl

[

abc]
p·l(A) = de ~

g hI

43

If we now run A' through SVD, we get three new 3-by-3 matrices U, W, and V,

which represent a sequence of 3-d transformations in the order (MR)S(MR), that together

make up A'.

To convert each of the orthonormal matrices U and V into MR-pairs, we follow a

practical procedure. For each matrix we first compute the cross product of the upper two

rows. We then compare the six possible sign and position permutations of that result with

the third row of the matrix. The correct mirroring opetation is easily deduced from the

permutation that aligns the two vectors, and is summarized in Table 1. Pre-multiplying U

or V with the correct M yields the associated pure rotation matrix. In degenerate cases, it

is possible that more than one mirrot matrix will align the two vectors; it is therefore

important that we always exanline the mirror matrices in the same order and use the first

one that matches.

Given a matrix A with rows AI> A2, and A3, we compute B = A1 x A2.

We then find the permutation of B that makes it the same vector as A3; each permutation

has an associated mirror-inversion matrix M. In this table, l23 means the identity matrix

with rows 2 and 3 interchanged; -I is the identity matrix multiplied by -1.

Pe1 mJ.H;U.iQn Qf B that ma~b!:~ A.1 MatrixM

(bx, by, bz) I

(-bx, -by, -bz) -I

(by, bx, bz) I12

(-by, -bx, -bz) -I12

(bx, bz, by) I23

(-bx, -bz, -by) -I23

(bz, by, bx) I13

(-bz, -by, -bx) -Il3

Table 1

44

If we multiply these the (MR)S(MR) matrices together, promote the result, and then

compose this with the translation matrix T computed above, we recover the original matrix

A. Alternatively, we may promote each of the five matrices first, and then compose the

promoted matrices together with the T matrix.

Thus SVD allows us to match the (MR)S(MR)T template:

((MR)S(MR)T) Mirror-Inversion

Rotate_XYZ (rx, ry, rz)

Scale_XYZ (sx,sy, sz)

Mirror-Inversion

Rotate_XYZ (rx, ry, rz)

Translate _XYZ (tx, ty, tz)

which consists of six transformations in 12 parameters.

We can summarize the parameter extraction algorithm for (MR)S(MR)T with the

following steps:

l. A' = p-l(A)

2. T=I+A-P(A')

3. Compute SVD(A'), generating 3-by-3 matrices U, W, and Vt

4. Decompose U = M1' • Rt'

5. Decompose V = Mz' • Rz'

6. M1 = P(M1'), R 1 = P(Rt'), Mz = P(M2'), R2 = P(R2'), S = P(W)

7. A= M1 • Rt • S • Mz • Rz • T

A'

A = r-
I

I +A- P(A')

• T

w

P(W)

• [;Jx@x[Jx[;Jx~x

Using SVD and MR pairs to match a matrix A
with the (MR)S(MR)T template.

Figure 3

T

~

45

46

This technique is diagrammed in Figure 3. Note that step 5 needs the matrix V, but

SVD in step 3 generates V1. Since the promotion operator adds the right row and bottom

column of the (symmetric) identity matrix, it doesn't matter if we transpose before or after

the promotion, but we must not forget to transpose before working with V.

Step 7 expresses our original matrix A in the (MR)S(MR)T template. We may now

convert every matrix in our tree into this form when we wish to interpolate. If we wish to

interpolate Euler angles for rotation, we may extract the three angles corresponding to a

given order of axes from the elements of Rt and R2. Equations for the zyx order are

given in [Shoemake85]; equations for other orders are easily derived. If we use

quatemions for rotations, then we may extract the quatemion directly from the matrix

elements in Rt and R2 using the equations in [Shoemake85].

To understand the motion produced by interpolating the (MR)S(MR)T template for an

object we need to look at the operation of the component transformations. We can see that

the first MR-pair rotates the object to align its eigenvectors with the environment's co

ordinate system, the S matrix then scales the object along its eigenvectors, the second MR

pair rotates the object back into the desired orientation, and finally the T matrix positions

the object in space. Thus smoothly interpolating each of these transformations will produce

smooth components that together make sensible motion for the object.

Note that the two Mirror-Inversion matrices have no parameters. This embodies the

natural requirement that all nodes involved in an interpolation reside in co-ordinate systems

with the same handedness. Happily, since SVD seeks out the eigenvalues that make up W

in decreasing order, matrices U and V will normally have the same chirality for all nodes.

They may differ if an animator deliberately changes the sense of the modelling co-ordinate

system between successive poses. Regardless of the interpolation scheme, such motion is

sure to be somehow degenerate; perhaps the best thing to do is to allow the object to pass

through itself with an inversion. Probably the best solution to this problem is to always

model with consistent chirality.

Computation of SVD

The SVD algorithm is not easy to briefly summarize in detail. Consider the case of

Numerical Recipes [Press86], an excellent 818-page book on numerical methods. In

Chapter 2.9 they discuss SVD, and after a high-level summary they say, "As much as we

dislike the use of black-box routines, we are going to ask you to accept this one, since it

47

will take us too far afield to cover its necessary background here." And this is from a book

written expressly to explain numerical algorithms! But this is not a disaster, since SVD is a

popular algorithm, and actual code is available from several sources.

Fortran and Pascal programs for computing SVD are given in [Press86], and C code is

available in [Press88], both of which are also available in diskette form. Computation of

SVD is also provided as part ofLINPACK [Dongarra79], a linear algebra package, in the

routine SSVDC; pages C.!22 through C.129 present the Fortran source (also available

from netlib [Dongarra87] at no cost: to get the Fortran source (for SVD only) send the mail

message send ssvdc from linpack to either net lib@anl-mcs. arpa on the

Arpanet, or research! net lib on the uucp network, or use send linpack to get all

the support code as well). An Algol listing for SVD is given in [Golub?!], which also

discusses the algorithm; this program is useful for study, but the algorithms from

Numerical Recipes and LINPACK are slightly more numerically sophisticated.

We have attempted to build a "streamlined" version of SVD particularly for matching

the (MR)S(MR)T template. This version was hard-coded for 3-by-3 matrices, and unrolled

most of the loops for efficiency. Unfortunately, the resulting code was far more complex

than that presented in the above sources, and almost no faster; it's the computations of SVD

that dominate the run time, not the flow control.

For those who are inclined to understand the technique of SVD, discussions may be

found in [Golub?!], [Dongarra79], and [Press86], along with references to the component

algorithms which work together to compute the singular value decomposition. Most of this

material is rather dense due to concerns of efficiency and error in a digital computer; the

algebraic manipulations at the heart of the algorithms are themselves quite clean and

elegant.

Comparison

The central differences between the approach presented here and [Greene86] are the

cost and stability of the parameter extractions.

The two templates are very similar in complexity, which is no surprise since they both

are rather compact solutions to the problem. The (MR)S(MR)T template contains 6

transformations in 12 parameters. The G template contains 9 transformations in 13

parameters. The discrepancy in parameter count is because G includes the perspective

transform, which we do not.

48

We wanted to compare the time required for the computation of the templates in the two

approaches. Unfortunately, using Vax Macsyma [Macsyma79] we were unable to solve

the system of simultaneous equations required to extract the parameters for template G; this

was in fact the original motivation for this work.

Determination of the parameters for the (MR)S(MR)T template is performed by the

singular value decomposition, a carefully studied and tuned algorithm which is extremely

stable. Our experience with SVD has been that it runs quickly enough for modeling work.

On our VAX-11nso we can compute a 3-by-3 SVD in 850 microseconds, using the Pascal

code of [Press86]. We have not tried it yet in an interactive animation environment,

although we are incorporating it into an animation system under development.

Summary and Conclusions

We have presented a solution to the template parameterization problem. We have

proposed the (MR)S(MR)T template which consists of 2 composite rotations, 1 composite

translation, 1 composite homogeneous scale, and 2 parameter-free mirror transforms.

Parameterization of this template from an arbitrary 4-by-4 modeling matrix is accomplished

by trivially extracting the T matrix, executing the SVD algorithm, and separating the

resulting orthonormal matrices into MR-pairs.

Our experience with this template is that its parameterization is efficient and numerically

stable.

Acknowledgements

Principal thanks go to Frits Post and Wim Bronsvoort. This work benefitted greatly

from many discussions with Frits, who also helped get a Pascal version of SVD running

on our system. Wim offered constant encouragement, and also acted as my host during my

visit with the Faculty of Informatics at the Delft University of Technology. The other

members of the Leerstoel Technische Toepassingen helped this guest feel at home in their

friendly and supportive atmosphere. I also want to thank colleagues in the Vakgroep

Informatica and the entire Facultit der Technische Wiskunde en Informatica for their

assistance in arranging and supporting my visit, which made this work possible.

At the University of North Carolina at Chapel Hill I am grateful for the freedom and

support provided by my advisor, Dr. Frederick P. Brooks, Jr. My understanding and

49

analysis of numerical issues involved in SVD benefitted from discussions with Dr. James

Coggins and Dr. Steve Pizer. Thanks go to Lakshmi Dasari for help in preparation of this

article. And as always, this work was influenced both in the large and small as a result of

numerous discussions with my colleagues in the UNC-CH Computer Graphics Lab.

References

[Dongarra79) J. Dongarra, C. Moler, J. Bunch, G. Stewart, "Linpack User's Guide",

Society for Industrial and Applied Mathematics, Philadelphia, 1979

[Dongarra87) J. Dongarra, E. Grosse, "Distribution of Mathematical Software via

Electronic Mail," Communications of the ACM, 30(5), May 1987

[Duff80) T. Duff, "The Mat Manual, Second Edition", NYIT Computer Graphics Lab,

July 1980

[Golub71) G. Golub and C. Reinsch, "Singular Value Decomposition and Least

Squares Solutions", Contribution J/10 in Linear Algebra: Volume II of Handbook for

Automatic Computation, Edited by J. Wilkinson and C. Reinsch. Springer-Verlag, 1971

[Gomez84) J. Gomez, "Twixt: A 3-d Animation System", Proceedings of

£urographies '84, Elsevier Science Publishers, 1984

[Greene83) N. Greene, "Transformation Identities", Personal communication

[Greene86] N. Greene, "Extracting Transformation Parameters from Transformation

Matrices (Extended Abstract)", Personal communication

[Macsyma79) "Macsyma Reference Manual", The Mathlab Group, Laboratory for

Computer Science, MIT, Cambridge, MA. 1977

[Press86) W. Press, B. Flannery, S. Teukolsky, W. Vetterling, "Numerical Recipes",

Cambridge University Press, 1986

[Press88) W. Press, B. Flannery, S. Teukolsky, W. Vetterling, "Numerical Recipes in

C", Cambridge University Press, 1988

[Shoemake85) K. Shoemake, "Animating Rotations with Quaternion Curves",

Computer Graphics 19(3), Proceedings of Siggraph '85, July 1985

[Stern83) G. Stern, "Bbop - A System for 3-d Keyframe Figure Animation", Siggraph

'83 Course Notes, Introduction to Computer Animation, 1983

50

Late Binding Images

Abstract

We have developed a high-quality Z-buffer based rendering system which allows users

to quickly change the surface properties and illumination of objects in a 3d scene. We use

standard scan-conversion techniques for each primitive to produce a surface description

packet for each relevant pixel on the screen. When rendering is complete, these packets

are depth-sorted at each pixel and stored on disk. The user then binds shading co

efficients, textures, and colors to the objects, and also positions light sources to illuminate

the scene. Because the expensive scan conversion step has been separated from the

shading calculation, we can produce images with new surface properties and illumination

more quickly than with a standard rendering pipeline. Storing all potentially visible

surfaces at a pixel also enables us to support transparency.

The system is easily described with a group algebra, which supports the

implementation, provides a convenient user interface, and also serves as a succinct but

exact manual of operation. We have used the system extensively for almost two years and

have found it to be a robust and practical tool.

51

Introduction

Part of our ongoing research at UNC-Chapel Hill is the application of computer

graphics to medicine. In particular, we work on developing tools to assist physicians with

the interpretation of radiographic images (such as those obtained from a CAT or NMR

scanners), as well as planning radiation therapy (such as burning away a tumor with

focused beams of radiation). Some of our tools create a 3d database of surface primitives

which we then render with traditional shaded surface techniques. For these images to be of

value to the physician, they must be of high quality, free ofrendering artifacts, and quickly

produced.

For the last few years we have created our shaded images using rendering programs

that we already had running in the lab. But we recently decided that we needed to generate

our fmal, medically useful 3d images more quickly. We felt that the best way to make

pictures faster would be to speed up those portions of the image generation pipeline where

users were spending most of their time. I watched users prepare several complete

radiological studies, and noted which steps were the slowest.

The first step was viewpoint selection. The user loaded a small subset of the database

into a program that could generate near-real-time images of scenes composed of several

hundred polygons. The user then interacted with that program to select an eyepoint, gaze

direction, clipping planes, and perspective information.

This viewing information was then fed into the polygon rendering system. This

program produced images at a fixed 2048-by-2048 resolution (filtered down to 512-by-512

for display). Users would typically run this expensive rendering program over and over

again, changing the surface parameters of the objects and the positions of the lights

between runs. It turned out that although specular highlights were desirable in the final

images, highlights on a transparent surface often occluded important details behind it; this

meant the lights had to be moved and the image re-rendered. The degree of transparency of

different objects would also have to be adjusted time and again; our images typically have

several transparent objects nested within one another, and too much or too little

transparency on any one surface can ruin the illusion of nesting. Colors and surface

reflectivity coefficients were also adjusted, in response to the changes in lighting and

transparency.

This rendering program was quite slow; it often took many hours to complete an image.

When I observed users running the program repeatedly to tune colors, surface properties,

and illumination parameters, it became clear that this iterative re-rendering was the slowest

step in our system.

52

From these observations we constructed the goals for our new rendering system. We

knew that our users did not change the viewing information between renderings; we

wanted to exploit this fact. Given a viewing transformation, we wanted to be able to

quickly change the illumination and all surface characteristics of all elements in the scene -

this would be the essential new feature of our system. Additionally, the system should be

capable of handling large databases (many tens of thousands of primitives), a wide variety

of primitives (not just polygons), and transparency.

Although our system was motivated by the medical application discussed above, this

list of criteria is independent of its medical origins, and the result was a general purpose

renderer.

Our solution was to separate the scan conversion of an image from its display. Given a

viewpoint, the database is scan convened, with the information produced by the scan

convener placed into a disk file. To display the image, the user specifies surface attributes

and light sources, and then shades the image. The user can then adjust the illumination and

any surface properties andre-render the image quickly, since the very costly scan

conversion step has been eliminated from each iteration of the cycle. Because the surface

and lighting attributes of an image are bound to objects after scan conversion, we have

named the rendering system the Late Binding Image, or LBI, renderer.

Previous Approaches

The literature contains several previous approaches to generating images with different

surface parameters without necessarily repeating the scan conversion. A common theme is

to encode surface information into frame buffer pixels, and then adjust the colormap to

achieve the desired effects [Shoup79].

For example, [Holmes85] describes a system where the user could interactively change

the apparent direction of a light source illuminating a shaded scene.

The problem with such approaches is the quantization due to storing bulky geometric

information in memory designed to hold color information. One simply runs out of bits

very quickly. Additional hardware enhancements like crossbars [Ikonas82] and wide

colormaps can ameliorate the problem, but they still cannot provide us with enough bits to

encode all the geometric information we need, since we must see color, transparency, and

localized highlights simultaneously.

[Perlin85] describes a system for exploring textures based on manipulation of pixel

streams. Scenes were built from 2d digital composition, not rendering, so it would be

difficult to provide for more than one surface at a pixel.

The LBI Process

53

In this section we give an overview of the process of building and modifying LBI

images (see Figure 1). The essence of the project is that we have separated the scan

conversion step from the rest of the image generation pipeline. After scan conversion, the

system performs specular shading and then supersampled Z-buffer hidden surface removal,

with transparency.

The first step in building an image is the selection of the viewing parameters. The user

specifies an eyepoint, a viewing angle, gaze direction, an up vector, the desired size and

location of the image on the screen, the size and location of a viewing window into that

image, and whether or not the fmal image should be anti-aliased.

The viewing parameters and database of surface primitives are then given to the

viewing transformation program, whose output is sent to the scan conversion program,

where each primitive is scan converted using standard techniques. We must be sure that

this step generates all the information we will need further down the image generation

pipeline. To accomplish this the scan converter generates a list of packets for each pixel,

one packet for each surface. If more than one surface is visible at a particular pixel, the

system maintains all of the packets at that pixel in a list

The Packet Structure

The first part of each surface description packet is an object tag: a small integer that

specifies to which larger, composite object this primitive belongs. This tag is given to the

scan converter as part of the surface description. All polygons that are part of a lung, for

example, will have the same object tag; all patches that are part of the nearby heart will

share a different object tag. In general, each surface to which we want to assign unique

surface properties will have a unique object tag.

Let us assume for a moment that we have turned off anti-aliasing and texturing in the

interests of speed. Then for a given primitive, the scan converter will only produce packets

for pixels whose centers are covered. For such pixels the scan converter will produce a Z

depth and a surface normal for that primitive at the center of the pixel. The tag, depth, and

normal comprise the complete packet for an image with no anti-aliasing or textures; see

Figure 2a.

54

If anti-aliasing is enabled, we also include a coverage bitmask as in the A-buffer

[Carpenter84]. The surface normal and depth are computed at the pixel center; if the

primitive does not cross the pixel center we estimate the surface normal and Z depth as if it

did, by extending the geometry of the surface. Figure 2b shows a packet including this

bitmask. As in the A-buffer, packets which have a common tag and Z but disjoint bitmasks

are merged into a single packet by OR'ing their bitmasks, and averaging their colors

weighted by relative coverage.

Texture information is included by adding a texture list to the packet. The texture list is

preceded by a texture count, stating how many textures are to follow. Textures are saved

as the center and side lengths of the smallest box in texture space ~ontaining the projection

of the associated pixel. Each individual texture is represented by a texture tag, and the co

ordinates of the texture space box. If there are several textures, they are simply listed one

after the other, as in Figure 2c.

After all primitives have been scan converted, the packets at each pixel are depth sorted,

merged if necessary, and then written to disk.

Image Generation

The next step is to shade the surfaces at each pixel. Shading requires going through

each packet list at the pixel, evaluating the incident and reflected light, and computing

(perhaps partially) hidden surfaces.

To compute the shade we use a slightly modified version of Phong's shading model.

We specify a surface by color (RGB), transparency, diffuse reflectivity, specular

reflectivity, and highlight exponent. Surfaces are defmed in one of the input flies to the

shader, called the Surface Property Binding (SPB) file, which can specify a unique surface

description for the inside and outside of every object. The SPB file contains a list ofthe 14

surface properties (7 each for inside and outside) for each object tag in the scan converted

file, as well as a background color for the object world. If we have textures in the system,

the SPB file associates each texture tag with an actual texture (by giving its file name), and

a texturing operation (bump, color, transparency, diffuse or specular reflectivity, or

highlight exponent). Thus, it is perfectly possible to apply a transparency map, a picture

map, and a bump map to the same primitive.

The other input to the shader is a list of the (infmitely far away) light sources in the

illumination Binding (!B) flle. Each light is specified by its color and direction of

55

illumination. As an aid to the user, the direction may be specified in either object space or

screen space. The light color is modulated by a single intensity parameter, which scales the

color of the light more conveniently than by adjusting the three ROB color values. The

color of an ambient light source may also be specified.

To sh~de a pixel, we start with the nearest packet, and search in increasing Z for a

primitive that is fully opaque and covers the pixel. We search until we fmd such a primitive

or reach the end of the list (an opaque, fully covered pixel of the background color is

assumed at the end of each list). We then work backwards, packet by packet, returning to

the head of the list. At each step we first shade the current primitive (this includes

texturing). If we are anti-aliasing with bitmasks, we scale the color contribution of this

pixel by the coverage of its bitmap. We then adjust the color by the primitive's

transparency factor and add in any light passing through the surface from behind. We then

step back to the next nearest packet in the list, incrementally accumulating the fmal color for

the pixel.

The Algebra of the LBI Group

The LBI rendering system may be usefully described with a simple group algebra. The

advantages of writing this algebra are threefold: first, the requirements of the algebra

guided our selection of data structures for implementation of the system; second, the

algebra provides a simple and consistent user interface for describing operations on LBI

files; third, the algebra provides an exact, unambiguous description of what user actions

will do and what the result will be. In effect, the algebra is a complete and precise user's

manual for the file composition part of the system.

The elements of the algebraic group are the LBI files themselves (the files produced by

the scan conversion process). These files contain a depth-sorted list of packets at each

pixel. Operations on LBI files cause operations on their lists, so we will focus our

attention in this section on these lists and the individual packets they contain. Nevertheless,

it is the files themselves that are the group elements.

The group operation is file addition. When two files are added, the sorted lists at each

pixel are merged and the result is sorted by Z. If two individual data structures are identical

except for Z depths of opposite sign, they cancel and both data structures are eliminated

from the sum. A data structure with a Z depth of 0 would be exactly in the image plane,

and we must make some arbitrary decision about how to handle it. We will see in a

moment that a good choice is to simply ignore such data structures: they never appear in the

result of an LBI operation. If any pixels in the file have no list associated with them, we

define that empty list to be equivalent to a data structure with every field equal to 0.

56

We now see why we chose to ignore data structures with a depth of 0: they are our

identity element More precisely, an LBI file with every pixel containing a data structure at

a Z depth of 0 (or, equivalently, no pixel lists at all) is the identity, since adding it to any

LBI file leaves that file unchanged

Since two packets that are identical except for opposite depths (one positive, one

negative, of equal magnitude) cancel and leave behind nothing (or an empty list, equal to

the identity), two such data structures are inverses of each other. Thus the inverse of a

complete LBI me is another LBI file with the same contents, except every packet has a Z

value of opposite sign.

Clearly the sum of two LBI files results in another LBI file: it may only contain a list of

packets at each pixel. Thus file addition is a binary operation, and the set of LBI files is

closed under file addition.

Because the contents of individual packets in a pixel list are never altered (they may be

entirely deleted, but the values are never changed), imprecisions of computer arithmetic do

not affect the associativity of LBI operations. If Z values are stored as exactly

representable integers then all comparisons are associative; thus file addition is also

·associative. Incidentally, the act of binding and displaying an LBI f:tl.e is considered an

interpretation of that file, and does not enter into the gtoup description.

We have shown that the set of LBI flies under me addition forms a gtoup: every

element has an inverse, the gtoup has an identity, it is closed, and it is associative. It is

interesting to note that me addition is also commutative.

This algebra gives us a simple user interface, a clean description of the system, and an

unexpected, powerful operation: object subtraction. Let's say that several LBI files have

been added together into one, very large f:tl.e containing many objects. Upon rendering, the

user decides that one or more objects are not needed in this particular image.

One way to remove those objects is to make them fully transparent. The drawback here

is that the specification of scene attributes followed by rendering is an iterative process

repeated many times. Each time the image is bound and displayed those transparent objects

will still need to be processed when computing shading and visibility, costing some time.

If this time is large then we will have some significant overhead in repeatedly waiting for

the processing of invisible objects! The image will be correct, but slow.

A faster alternative is to subtract the unwanted objects from the LBI file. The user

simply adds to the composite file the inverses of the original LBI f:tl.es of the unwanted

objects. The result is a new composite LBI f:tl.e different from the first only in lacking the

undesired objects. Figure 3 illustrates another situation where the LBI algebra proves

useful.

57

From this discussion we can see one useful way to use the system. A user scan

converts all objects that might be in the final image, placing each object into a separate LBI

file. These files are then added and subtracted to build a composite LBI file containing only

the desired objects. This approach of adding and subtracting scan-converted (but un

shaded) object may be considered a kind of 3-dimensional "matting" operation [Porter84],

[Duff85]. We thus also have the unusual "un-matting" operation supported by the

subtraction operator.

An issue on the border between theory and practice is repeated elements: what is the

result when two identical LBI files are added together? There are many solutions that

preserve the group properties. We chose to accumulate both file~, in exactly the same way

as if they were different. Thus if the user takes a composite file, adds in some new file

three times, and subtracts it twice, the result still contains one copy of the new file.

Since the operations of image addition and subtraction are associative, the user is freed

from any concern about the order of the addition and subtraction operations used to build

an image.

The implementor may augment and enhance the LBI algebra with other operators,

applied immediately to a file given as an argument. For example, such operators may

implement windowing and clipping (applied to intensity, depth, and the screen image), or

the simulation of fog (depth cuing).

Implementation

In this section we will describe the practical choices we made in our implementation of

this system. The choices were influenced by the nature of our computing environment and

the needs of our users. In fact, we have written two complete systems. The earlier system

does not include anti-aliasing or textures, and has a primitive user interface. This system

has been in regular use for almost two years, and has proven robust as our standard

renderer. Our more recent research system supports anti-aliasing, textures, and a more

complete algebra as described above.

Our main rendering hardware consists of a V AX-llnso with 6 megabytes of processor

memory. The VAX runs UNIX 4.2 BSD, which incorporates virtual memory. We also

have an Ikonas/Adage RDS-3000 bit-slice microprogrammable graphics engine and frame

buffer. The Ikonas is supported by the gia2 language [Bishop82] and various local

libraries and debugging aids [Glassner86].

Scan Conversion

58

We wrote a new polygon scan converter specifically to produce LBI files in a fast and

efficient manner. An important consideration was the effective allocation of storage for the

packet lists at each pixel. The simplest technique would be to allocate a 2d array equal to

the size of our picture times the size of a packet, and place the first element in each list into

this array, as in Figure 4a. Subsequent packets in the list would be dynamically allocated.

The list would be singly- or doubly-linked to ease the depth sorting, though those links

would be discarded when the writing the file to disk.

Unfortunately, this straightforward approach is very inefficient. The VAX page size is

512 bytes. A typical picture in our environment is 512-by-512 pixels. We know that

polygons can arrive in any order, starting at an arbitrary scanline on the screen. Thus, even

if our 2d array consisted solely of (4-byte) packet pointers, in a simple 2d array each time

we move to a new scanline we would get a page fault, which would cost us time.

A better organization is to arrange the virtual frame buffer into a 2d array of smaller 2d

arrays of pointers, each 16 by 8, as in Figure 4b. Since this smaller array contains 128

entries, and each pointer consumes 4 bytes, exactly one of these smaller arrays fits on each

page. Thus, if a polygon is enclosed within a bounding box of 45 pixels wide by 45 pixels

high, we will at worst have 18 page faults, instead of 45. This is illustrated in Figure 5.

We have observed typically about an 8-fold reduction in page faults when rendering many

small polygons.

Each entry in this 2d virtual frame buffer is a pointer to a data structure created at the

same time that the pointer is allocated. We do use forward and backward-pointing links to

ease the job of sorting the list when we create the output file. When we need to create

additional pointers and storage for new packets, we create entire 16-by-8 blocks at a time.

We try to keep all the packets for a given polygon within the same block, which can

sometimes cause small holes in our packet list. The scan conversion is faster due to this

technique, but memory consumption is slightly increased (typically about 4-6% for our

images). This statistic is kept down by searching for an appropriately sized, existing hole

for a polygon before allocating new memory for it.

59

File Format and Shading

The LBI file itself begins with a header, which provides information about the file for

the system and the user. The header contains text fields containing creation time and date,

and any descriptive text the user wishes to associate with the file. There then appear fields

containing the image origin and window size, the smallest and largest Z values in the file,

the smallest and largest object tags in the file, and flags indicating the presence of anti

aliasing and texture information.

Each of the individual data structures uses 8 bits (1 byte) for the o~ect tag. This limits

us to a maximum of 256 individually bindable objects in any LBI file. In our environment,

this is a reasonable upper bound.

We store the Z depth as a 16 bit integer (recall the identity value Z=O).

Surface normals are used to compute shading. The diffuse shading from a collection of

infinite light sources may be looked up in a table indexed by two of the (normalized)

surface normal components [Greene86]. The illumination color from the table is then

scaled by the diffuse reflection surface color of the object Specular shading is handled

with another set of tables, one for each light source. All of these tables are built by the

binder, which knows both the eye position and the light directions. The values in the

specular tables are exponentiated appropriately for each surface when we shade.

Our light tables are 64 by 64, and provide good shading if the values are linearly

interpolated. Experimentation with real images has convinced us that we routinely produce

images for which 32 steps of interpolation is insufficient to prevent contours and Mach

banding. We thus compute the two light table addresses (derived from the normal

components) to 12 bits (6 bits each of integer and fraction), but store these addresses in the

least significant bits of a pair of bytes; this keeps us nicely aligned on byte boundaries. In

an efficiency hack, we encode the sign of the Z component of the surface normal in the

high-order bit of the Y address.

Anti-aliasing requires adding a coverage bitmap to every data structure. We have found

that we get good results with a bitmap that is 8 bits wide by 4 bits high (as in the A-buffer),

requiring 4 additional bytes per data structure.

Texture information is more complex. Our research system uses a variety of system

dependent hacks to reduce storage. In general, each primitive will require one byte for

texture count. Then each texture needs a map tag (1 byte), U and V indices (2 bytes each),

and texture sample width and height values (2 bytes each), for a total of 9 bytes per texture.

60

Thus the full LBI f!le contains 12 bytes per primitive per pixel, plus another 9 bytes for

each texture applied to that primitive at that pixel. Without anti-aliasing or texturing, each

LBI packet contains 7 bytes.

The actual scan conversion of surface primitives into LBI files is performed by a C

program on the VAX. Binding is performed by Ikonas microcode.

Results

Figures 6, 7, 8, and 9 shows various models rendered with the LBI system. Each

model was scan converted once, and then shaded with a variety of surface parameters.

Figure 6 shows several heads seen from above, built from radiographic data. Because the

CAT scans did not continue all the way to the top of the skull, the top of the brain is

missing; this makes the brain appear as a donut when seen from above. The rows show

the head and brain with different colors and reflectivities, the columns show different

amounts of transparency.

Figure 7 shows four icosahedra, tesselated with a variety of tiles.

Figure 8 was built from NMR scans of the pelvis of a 59 year-old man. The main

visible bones are the pelvic girdle and the spine. At the lower left and right the tops of the

femurs are shown where they fit into the pelvis. The bladder is yellow, the prostate is

purple, and the rectum is colored red. The bladder should have a rounder shape; it has

been distorted by cancer. This study shows a possible treatment of the bladder by radiation

therapy. The dark shape surrounding the internal organs is a 90% isodosage surface. The

radiation has been shaped to also irradiate the lymph system, above the bladder but not

rendered in this image.

Figure 9 shows two views of a section of a male chest containing a stomach, spine,

esophagus, lung, skin, bones, and 16 different radiation isodosages computed for treating

a tumor on the esophagus. In each of these images one of the isodosage contours has been

made opaque, and the others have been left transparent

The LBI rendering system has been in daily use since May 1986. In that time it has

produced many images useful in the medical imaging research we pursue with our

radiotherapy colleagues. The system has also been used to produce several animations.

The production of an anintation of a rotating pelvis with internal bones and organs

identified an interesting use of the LBI system. The script for the film (each frame of

which was rendered at 512-by-512 pixels) specified a spinning pelvis, displaying just the

bones. Then various organs would fade in, appear for several cycles of rotation, and then

61

fade out, to be replaced by other collections of organs. Thus, viewers could see the

relationships of various body parts with other parts by viewing a succession of small

collections of the objects. The plan was to scan convert the spinning pelvis once with all

the objects. Then the different parts of the film could be generated by making the unwanted

parts partially transparent (when fading in and out), or by subtracting them entirely from

the file (when invisible). Thus the entire fllm could be generated by one set of scan

conversions, and then many bindings. Unfortunately, because of the size of the rendered

image the data flles grew beyond the virtual memory limits of our machines, so each frame

was individually scan-converted and rendered.

By reducing the image size and thus virtual memory consumption, this approach was

used successfully to create the film shown in Figure 10. In this film we see 4 different

views of the same chest as in Figure 9. Reading from left-to-right, top-down, we see

increasing levels of radiation dosage converging on the esophagus (the three beams are

most clearly visible in the upper-right image of each set). This film was made from only 4

LBI files, one for each view. By keeping the image size to 256-by-256, we were able to

hold all of the internal structure and radiation contours in virtual memory simultaneously.

Each of these flles was then bound 16 times, each time with different surface parameters, to

produce the animation.

It is interesting to note the performance of the LBI system for these frames. Our old

rendering system required an average of 105 minutes of system time to produce each

individual image (about 58,000 polygons each). The LBI system scan-converted each of

the 4 views in about 17.2 minutes, and produced a bound image in about 1.1 minutes.

Thus, creation of the 64 images by the old system would have required 64 * 105 =
6720 minutes, or about 4 days and 14 hours. The LBI system required (4 * 17.2) + (64 *
1.1) = 139.2 minutes, or just over 2 hours and 20 minutes, which shows dramatic

improvement. Note that these are system times; our clock times can be found by

multiplying by 3.2, compensating for the performance degradation on our heavily time

shared machine.

Encouraged by the success of this "one-scan, many-binds" approach, we would like to

modify the scan converter so that the entire image need not reside in virtual memory at

once. Instead, full (or nearly-full) packet blocks will be written to disk and their memory

freed. This will require some pre-sorting of the polygons after the viewing

transformations, but will enable us to generate images with many more primtives at high

resolutions, limited only by disk capacity.

62

Discussion

An interesting comparison between the LBI technique and the radiosity approach to

image synthesis [Immel86] was suggested by Marc Levoy [Levoy86]. Radiosity

effectively. pre-computes the shading in a 3d scene, but calculates visibility on the fly. This

allows it to generate multiple viewpoints of a fixed model quickly. Our technique pre

computes visibility, but calculates shading on the fly, allowing the fast selection of shading

parameters. The two techniques effectively span a wide range of applications, each

focusing on one end of a well-defined spectrum.

Our final medical images are now produced in far less time than required by our more

traditional image rendering tools. Each medical image must be carefully (and usually

iteratively) tuned to emphasize important structures and guarantee that all objects are easily

differentiable. The fast generation of images with adjusted surface propenies and

illumination has provided an effective solution to this otherwise time-intensive problem.

The LBI rendering system has shown itself to be 'robust, useful, pleasant to use, and

fast. In addition to medical imaging, we have used the system for many standard computer

graphics projects, including the display of curved surfaces and solid modelling.

Acknowledgements

My thanks go principally to Drs. Henry Fuchs and Stephen Pizer, who supervised this

work. An early version of this paper was reviewed by John Gauch, Marc Levoy, Chuck

Mosher, and Lee Westover, whom I thank for their insightful and constructive comments.

Many persons in the Department of Radiation Therapy were helpful in this paper and this

project. Figure 9 was generated by Chuck Mosher and Kevin Novins. Figures 10 and 11

were generated by Andy Skinner. Thanks also go to our medical colleagues Drs. Chaney,

Rosenman, and Sherouse for their encouragement and support while this system was being

designed and built. I would also like to thank the anonymous reviewers for their helpful

comments. This work was performed under the Med3d program, supported by NIH Grant

RO 1-CA39060.

References

[Bergman86] Bergman, L., Fuchs, H., Grant, E., Spach, S., "Image Rendering by

Adaptive Refinement", Computer Graphics 20, 4, August 1986

63

[Bishop82] Bishop, G., "Gary's Ikonas Assembler Version 2", UNC-CH Computer

Science Department Technical Report, June 1982

[Carpenter84] Carpenter, L., "The A-buffer, an Antialiased Hidden Surface Method",

Computer Graphics 18, 3, July 1984

[Crow77] Crow, F., "The Aliasing Problem in Computer-generated Shaded Images",

Communications of the ACM, 20, 11, November 1977

[Duff86] Duff, T., "Compositing 3-D Rendered Images" Computer Graphics 19, 3,

July 1985

[Glassner86] Glassner, A., "Ikonas Utilities Package, Release 1.2," University of

North Carolina at Chapel Hill, Chapel Hill, NC.

[Greene86] Greene, N., "Environment Mapping and Other Applications of World

Projections," IEEE Computer Graphics & Applications, 6, 11, November 1986.

[Ikonas82] RDS-3000 Programming Reference Manual, Adage Inc., Billerica, MA.

June 1982.

[Holmes85] Holmes, D., "Three dimensional Depth Perception Enhancement by

Dynamic Lighting," Master's Thesis, Department of Computer Science, UNC-Chapel Hill,

1975

[Immel86] Immel, D., Cohen, M., and Greenberg, D., "A Radiosity Method for Non

Diffuse Environments," Computer Graphics 20, 4, August 1986

[Levoy86] Levoy, M., private communication, December 1986

[Newman79] Newman, W., and Sproull, R., "Principles of Interactive Computer

Graphics, 2nd edition", McGraw Hill1979

[Perlin85] Perlin, K, "An Image Synthesizer," Computer Graphics 19, 3, July 1985

[Porter84] Porter, T., and Duff, T., "Compositing Digital Images", Computer

Graphics 18, 3, July 1984

[Shoup79] Shoup, R., "Color Table Animation", Computer Graphics 13, 2,

August 1979

Surface
Primitives

illumination
Binding I--~
File

Viewing
Transformation

Scan Conversion

Run only when
viewpoint changes

Shading and
Surface Parameter
Binding

Run only when surface or
lighting parameters change

Frame
Buffer

Viewing
1+----l Parameters

Surface
1+----l Properties

Binding
File

The LBI Renderer Pipeline

Figure 1

64

Surface Nonnal
(X, Y, Z)

J Zdepth

l

object tag

r-
(a)

LJ'''''"'"'' '''''"'' ' ..;;. I"
coverage n
bionask

Surface Nonnal
(X, Y, Z)

Zdepth

object tag

r- (b)

l J texture count

coverage
bionask

I Surface Normal
(X, Y, Z)

J texture count

1 Zdepth

object tag

r
r-

-

(c)

{,:i

r-11

A simple
LBI packet.

A packet with a
bitmask for
anti-aliasing.

A packet with
bitmask and
texture
information

Figure 2

65

These examples show the construction of two composite LBI files in a medical
environment. We assume that a scan conversion program has produced
LBI-format files called skin, bones, heart, lungs, and stomach. The first image
we want to produce will contain the skin, bones, heart, and lungs:

file1 = skin +bones +heart+ lungs

When we frrst build the second image we specify that we want the skin, bones,
heart, and stomach. One approach is to build a new composite file from these
three smaller files:

file2 = skin + bones + heart + stomach

A better approach is to take the fust composite file, subtract the lungs, and add
the stomach:

file2 = file1 - lungs+ stomach

Let's now say that we want to see the tumor unobscured by the lungs: no lung
data closer to us than Z=3000 should be rendered. We also want the skin to appear
only above and below the lungs (scanlines 100 and 350, respectively). File
windowing commands can help us accomplish this goal

file3 =bones +tumor+ hitherClip(lungs,3000) +
topClip(skin, 100) + bottomClip(skin, 350):

Examples of LBI Commands

Figure 3

66

(a)

one page

Here is a vinual screen that contains packets. The screen is a rectangular
array large enough to hold one packet and a pointer to the next packet at that

pixel, which is located elsewhere in memory. Because very few of these packets
can fit in a page, polygons which cover several pixels horizontally will page fault

on every new scanline.

- (b)

--
Here we've allocated the screen as blocks of pointers. Each block fits onto

one page. When a primitive is scan converted, transitions from one scanline to
another in the same block don't cause page faults. The actual packet

records are allocated in a similar manner.

Figure 4

67

0

8

16

24

32

40

68

0 16 32 45

A polygon with a 45-by-45 bounding box, cornered on the origin of a page. In this
example, we get 18 pages faults when finding the pointers for the packet lists
(18 blocks of pointers are accessed). If we allocated the memory as a single

large 2d array, we'd get 45 faults, one for each scanline.

Figure 5

A head and brain, from CAT scan data. The colors, diffuse reflection, and specular

reflection change across the rows. Opacity changes across the columns.

The hole in the brain is in the data, because the scanning process was stopped

before the entire head had been scanned.

Figure 6

69

70

Several tiled icosahedra rendered with polygons, illuminated by colored lights.

Figure 7

71

A pelvis with internal organs. The large bones are the pelvic girdle. Fitting into

sockets at the bottom left and right of the girdle are the tops of the femurs. The

red shape is the rectum, the purple is the prostate. The yellow bladder is cancerous,

and is a candidate for radiation therapy. The darker surface surrounding the

organs is a surface of 90% radiation dosage.

Figure 8

This data was generated from '\\!R scans of a male chest. The long blue tube is

the esophagus, which leads to the stomach. This esophagus has a tumor which is

to be treated with focused raclicttion beams. The spine is yellow. The lungs,

skin, and vertebral bodies are mostly transparent. The scanned LEI file contains 16

isodosage surfaces. On the left, all surfaces but the 55% radiation surface are

transparent: on the right, all but the 80% surface are transparent.

Figure 9

72

This 16-frame film was built from the same data as Figure 9.

Each frame shows 4 different views of the chest, and is labelled with

the particular isodosage surface made visible in that frame.

The 4 views were each scan converted once, and then bound with a

different set of surface parameters for each frame. Note that as the

radiation dose increases, the surface changes from light blue to red.

Figure 10

73

Spacetime Ray Tracing for Animation

IEEE Computer Graphics & Applications
vol. 8, no. 3, March 1988

© 1988 IEEE. Reprinted with permission, from

IEEE Computer Graphics and Applications,

Vol. 8, No.3, pp. 60-70, March 1988.

74

75

Spacetime Ray Tracing for
Animation

Andrew S. Glassner
Univers'ity of North Carolina at Chapel Hill

Ray tracing is a powerful and popular technique for
image synthesis. When first introduced for computer
graphics, 1•

2 ray tracing was comparable in power to
scan conversion, but less attractive because of its high
computational cost.

Survey
The effects of reflections, refractions, and shadows

were estimated by adding recursion to the original ray-

tracing algorithm.3.4 Unfortunately, some notable com
binations of these effects were incorrect.

Image synthesis and ray tracing
For example. if a shadow-testing ray encountered a par

tially transparent sphere, there was no proper single
direction in which to send the ray after passing through
the sphere's surface. Either this shadow was rendered as
though blocked by an opaque object, or the modeler

60 0272.1716188/0300-0060$01.00 1988 IEEE IEEE Computer Graphics & Applications

introduced ad hoc techniques into the algorithm to han·
die particular situations correctly.

A solution to some of these problems was introduced
in the form of distributed ray tracing. 5 Whenever there
was no single correct value for a ray parameter (such as
the direction of the shadow ray discussed above), the
domain of useful values was searched for an "appropri·
ate" choice. This choice was made on the basis of the
shape of the parameter space being sampled and the
expected number of samples to be taken. Soft shadows
and antialiasing in all dimensions were now available in
a single, conceptually elegant algorithm. A technique for
dynamically optimizing the number of rays cast when
generating an image was presented by Lee and Uselton.6

The ray-tracing algorithm was theoretically unified
and extended again by Kajiya. 7 Ray tracing was formal
ized as a technique for solving the "rendering equation,"
which describes light distribution and energy balancing
in an environment This work suggested ways to include
caustics and diffuse interreflections in a ray-tracing envi
ronment

Unfortunately, a straightforward implementation of
ray tracing is prohibitively expensive in computer
resources and time. Finding efficient techniques to
implement ray tracing is an active research area.

A brief survey of single-image rendering
speedup techniques

Efforts to improve the efficiency of the technique have
taken place on two major fronts: bounding volumes and
space subdivision. Both of these efforts have seen inves
tigation of important subissues: hierarchies for bound
ing volumes and the style of decimation for space
subdivision.

A central idea behind bounding volumes is that it is
often cheaper to intersect a ray with several mathemati
cally simple objects than a single complex one. So com
plex objects are surrounded by simple objects (the
bounding volumes), and these are recursively grouped
together and enclosed within larger bounding volumes,
forming a hierarchy. Rays that miss a bounding volume
save a lot of work: they needn't examine any object
within. Rays that do strike a bounding volume must then
be intersected with everything inside the volume (which
might include smaller bounding volumes). Such rays suf
fer the penalty of having computed the bounding volume
intersection; the details of this intersection are useless
except to signal that the internal objects must be tested.
Bounding volume approaches to ray tracing are
described in a number of works.8

•
14

A different approach to speeding up ray tracing is
called space subdivision. The central idea here is to deci
mate space into a collection of disjoint simple volumes
{often boxes), which are chosen so that each encloses
only a small number of objects. When a ray enters a given
box, it is intersected only with the objects within that

March 1988

76

box. If no objects are hit within the box, the ray moves
to the next box on its path and repeats the procedure.
Several approaches that use space subdivision have been
published.15•18

Both techniques address the issue of rendering a sin
gle image. In this article we propose combining these
methods and extending them into the realm of animated
sequences.

A hybrid technique combining
adaptive space subdivision and

bounding volumes
In this section we present a technique for the creation

of efficient bounding volume hierarchies. The technique
is a hybrid of adaptive space subdivision and bounding
volume techniques.

The advantages of bounding volume techniques lie in
their ability to easily avoid computing ray-object inter
sections for all objects within a bounding volume not
penetrated by a particular ray. If the volume is entered,
then all of its immediate children must be intersected.
If the bounding volumes can overlap, then it is not suffi.
cient simply to proceed with the nearest of these chil
dren, since the nearest bounding volume may not
contain the nearest object. 9 In this context, the biggest
drawback to bounding volume techniques is that some
times ray-object intersections are ignored; such compu
tations {which may be very expensive for complex
objects) are unnecessary. A recent paper14 presents
some techniques for measuring and building a hierarchy,
but the definition and construction of good hierarchies
is still poorly understood.

The other popular speedup technique is space subdi
vision. Many space subdivision schemes use rectangu
lar prisms (called cells) for the unit element of space. The
hierarchy created by adaptive space subdivision tech
niques is excellent: No cells at any given level overlap,
and-cells are dense only where the database is dense. On
the other hand, rectangular prisms can perform poorly
as bounding volumes compared to sets of slabs and other
techniques.

To summarize, bounding volumes offer tight bounds
but poor hierarchies, while adaptive space subdivision
offers poor bounds but very good hierarchies; the
approaches are complementary in their strengths and
weaknesses. Our technique is to use the excellent hier
archy created by space subdivision as a guide to control
the structure of the tighter bounding volume hierarchy.
We will now present an overview of the algorithm, and
then discuss some variations.

The general theme of our approach can be summa
rized as constructing a bounding volume hierarchy in
the order "space subdivision down, bounding volumes
up." For simplicity, we will often refer to a bounding vol
ume simply as a "bound."

61

Figure 1. The subdivision of a rectangular prism into
eight smaller prisms. On the left is the prism showing
the locations of the cutting planes. On the right is an
exploded view of the subdivided prism showing the
labels of the eight smaller prisms.

We begin by finding an enclosing box for the entire
database, including light sources and the eye. We then
evaluate a subdivision criterion (discussed below) for
that box and its contents. If we decide to subdivide, then
that box is split into eight new, smaller boxes, as shown
in Figure 1. It is important to note that these boxes do not
overlap. We then examine each new box in turn, deter
mining which objects within the parent box are also
within each child. We then evaluate the subdivision
criterion for each child box, and recursively apply the
subdivision procedure for each box that must be split.
The recursion terminates when no boxes need to be sub
divided.

This concludes the "space subdivision down" step. We
now build the bounding volume hierarchy as we return
from the recursive calls made by the space subdivision
process. Each node is examined, and a bounding volume
is built which encloses all the objects contained within
that node, within the bounds of that node. One way to
visualize this process is to consider building a bounding
volume for all objects within a node, and then clipping
that volume to lie within the walls of the space subdivi
sion box, as shown in Figure 2 (note that implementa
tions may use a simpler and more direct method). As we
work our way back up the space subdivision tree, we
build bounding volumes that contain the bounds and
primitives of the child boxes at each node. We note that
if a cell has only one child, then we may replace that cell
by its child to improve efficiency when rendering.

This completes the "bounding volume up" step. The
result is a tree of bounding volumes that has both the
nonoverlapping hierarchy of the space subdivision tech
nique and the tight bounds of the bounding volume tech
nique. Thus the new hierarchy shares the strengths of
both approaches while avoiding their weaknesses. The
result is that when we trace a ray, we can always exam
ine the nearest bounding volume at all levels in the hier
archy. If we find an intersection in that volume then we

62

77

/~ /

/E :;?v
./

F'

IJ:J
Figure 2. On the top is an object surrounded by a sin
gle bounding volume (for clarity the bounding
volumes are rectangular prisms in this figure). On the
bottom is the same object after the surrounding
bounding volume has been subdivided. Note that the
new, smaller bounding volumes are contained within,
but not equal to, the smaller prisms created by the suf>..
division of the original bounding volume.

a b

c d

Figure 3. (a) shows a scene of 10 objects. (b) shows an
adaptive space subdivision grid placed on those
objects, subdividing any cell that contains more than
two objects. (c) shows octagonal bounds (four slabs)
placed around each primitive. (d) shows the final
bounding hierarchy formed by the bounds in (c) and
the subdivision tree in (b).

can immediately stop. Figure 3 summarizes the hierar
chy creation process.

If no intersection is found, we then proceed to the next
bounding volume, using either the bounding volume or

IEEE Computer Graphics & Applications

Figure 4. This diagram shows a 3D spacetime. The
two space axes are labeled X and Y. Each slice of this
spacetime volume parallel to the X and Y axes selects
the world at a particular instant of time. Inhabitants
of this world would experience the flow of time if they
were moving along the time axis at a steady rate.

space subdivision structure to guide the ray propagation.
It is important to note that since our bounding volumes
might not completely enclose their objects, we must
check that the intersection is indeed within the limits of
the current bound.

There are many ways to apply adaptive space subdi·
vision and bounding volumes; we will briefly mention
some of the variations. The space subdivision cells may
be axis--oriented,15 or oriented arbitrarily in space.13 The
adaptive subdivision may be performed by equal cuts .in
all directions, 15 in a BSP methodology, 17 or with the
median cut algorithm 19 based on the distribution of
objects in the cell. The subdivision criteria may be based
on the amount of projected "void area, " 10 the object
count in a cell, 15 or on the density ratio of the total val·
ume enclosed by the objects to the total volume of the
cell.20 The last technique is useful when working with
''intelligent'' objects, which may represent themselves
with different bounding volumes, depending on the level
of the bounding hierarchy.

The bounding volume construction may use rectangu·
lar boxes, 13 polyhedrons, 10 parallel slabs, 9 or surfaces of
revolution. 21 Because the bounds constructed at each
cell are a union of the bounds of all child cells and prim·
itive objects in that cell, the style of bound at each cell
may be different, enabling one to "tune'' the bounds of
each object individually.

Spacetime ray tracing
The central idea in our solution to the ray tracing of

animated sequences is to consider the tima.varying
geometry of the 3D database as a static structure in 4D
spacetime.22 Since many people find it difficult to
visualize 4D spaces directly, we will approach the 4D
spacetime algorithm by analogy with 3D spacetime.

March 1988

78

a

b

Figure 5. (a) To ray trace a frozen instant of 3D space
time, we choose a 2D slice along the space axes. This
entire slice has the same time value. We then project
this 2D world onto a 1D image line, with the observer
at the apex of this 2D viewing pyramid (a triangle). (b)
To approximate motion blur, different samples in the
image are taken at different times. This has the effect
of thickening our sampling plane into a sampling
volume.

3D spacetime
Three-dimensional spacetime can be thought of as a

3D space, containing a 2D space translated continuously
in time. 23 Figure 4 shows a 2D world (a section of a
plane), changing with time. In an animated sequence,
objects will move about in this 2D space as time
progresses.

Most of the rendered animation we usually produce
consists of the projection of worldly 3D objects onto a
2D image plane. In a world of one less dimension (the 2D
world of Figure 4), we render 2D objects onto a lD image
line, as shown in Figure Sa. Let's say we want to use ray
tracing to produce a movie of this changing 2D world.
Our rays that sample the 3D spacetime may start at any
point (say an intersection with an object) and move in any
direction. If we want to include motion blur in our
movie, then these rays may also start at any time during
a frame, as shown in Figure 5b.

63

The question now becomes one of quickly tracing the
3D ray in spacetime, intersecting it with each 2D object
in its spacetime path. Each intersection of a ray and
object is denoted by the three coordinates (X;Y,I'). Each
{X,Y) location in pure space is called a space point. Each
(X,Y,f) location in spacetime is calleO.- a spacetime
event.24

To make our movie of the motion depicted in Figure
4, we could simply shoot rays from the eye, at various
times and in various directions, into the 3D spacetime
structure and try intersecting the rays with each object.
searching for the first event along the ray's path. This
naive approach would be very expensive computation
ally. Alternatively, we can adapt the bounding volume
hierarchies described in the previous section. Instead of
building spatial bounding volumes in 3D space, we will
build spacetime bounding volumes in 3D spacetime. As
long as we know the 3D spacetime structure, we can
rename one of the axes in the 3D space algorithm as time.
When we subdivide along the time axis, we are actually
now subdividing the amount of time· for which this
bounding volume encloses its child objects.

One way to see this is to envision Figure 1 as bound
ing volume for a 2D object in 3D spacetime. With this
interpretation, nodes 0 through 3 now contain the first
half of the time interval, and nodes 4 through 7 contain
the second half {visualize the time axis as moving from
the bottom to the top of the page). Now· we can restrict
our intersection tests only to those objects that occupy
the same region of space and time that the ray is
sampling.

Subdivision in higher dimensions
So far we have looked at a 3D spacetime containing a

2D world, rendered onto a lD image line. The techniques
discussed above extend easily into a 4D spacetime of
three spatial dimensions plus time. Higher dimensions
are also straightforward, and may be useful in situations
where objects change along dimensions that are being
sampled other than just space and time, such as wave
length.

Animation in 4D spacetime
When we pierce a spacetime bounding volume with

a 4D ray, we don't yet actually have the ray /object inter
section event. Since collections of objects and other
bounding volumes may reside within a single bounding
volume, we must look into the volume and test the ray
against its contents. Because objects may move in com
plicated ways over time, we feel that 4D ray tracing is best
handled by an object-oriented environment, which
allows intelligent objects to perform their own intersec
tions. After describing such an environment, we will
describe how to achieve the same function (though with
greater effort) from data-driven animation in a proce-

64

79

dural environment, such as a traditional keyframe ani
mation system.

Bounding volumes and intersection events
from intelligent objects

In our technique the bounding volumes are created by
the objects themselves, in response to requests by the
hierarchy construction preprocessor. 25 Requests consist
of asking an object for its enclosing spacetime volume
within some region of spacetime. Many objects can eas
ily respond with one of the bounding volumes discussed
earlier.

An advantage of this intelligent object approach (such
as described by Amburn, et al. 26

) is that objects can
determine their own most efficient representations. For
example, a group of stars may represent itself by a sin
gle bounding volume when the subdivision begins.
When the bounding volume requests enclose smaller
spacetime volumes, the star group may improve its rep
resentation by describing itself as several smaller
clusters, returning several bounding volumes instead of
one. Another advantage is the simplicity of the program
itself, and the ease of adding new objects. Objects are
also able to respond to requests to intersect themselves
with a particular 40 ray, returning the first such event
along the ray if one exists.

If the application environment of the ray tracer does
not support such intelligent objects, then the work of
building bounding volumes and finding intersection
events must be made by the animation manager. For
example, a keyframe animation system would need to
construct the bounding volumes for objects in given
ranges of space and time according to the interpolation
techniques it used to build the animation. When build
ing a particular bounding volume, such a system needs
to examine the object carefully throughout the time dura
tion of the request to which it is responding: In a com
plicated animation system objects may move and change
in complicated ways; one must be careful to insure that
each bound completely encloses the object for the entire
time interval. Similar care must also be taken when
determining intersection events.

Summary of the 4D spacetime algorithm
The creation of a piece of animation begins with a

preprocessing step. This step recursively builds an adap
tive space subdivision tree on the static 4D spacetime
structure of the moving objects. When we return back up
the tree, we build bounding volumes that enclose the
objects at each cell.

To render this structure we fire 40 rays into the bound
ing volume hierarchy. Because of the nonoverlapping
nature of the hierarchy, we are guaranteed that we may
choose the nearest bounding volume at every level. If we
strike an object in this nearest volume, then we need not
also test other, further volumes.

IEEE Computer Graphics & Applications

Motion blur due to camera motion is naturally accom
modated by using different starting times and positions
for the primary rays.

The sources of efficiency
The spacetime rendering algorithm is efficient for ani

mation for the same reason that space subdivision and
bounding volumes are efficient for single frames. Con
sider that in ray tracing, a ray must find its nearest object:
This requires searching the entire database. Space sub
division sorts the database almost cbmpletely in a
preprocessing step. Now each ray need only search the
objects in a given volume. Any bounding volume hierar
chy in fact does the same thing, although the sorting may
be more complicated. With these techniques, each ray
needs only to search through a small number of objects,
each with a high probability of intersection. In single
frame techniques the bulk of the searching was dis
tributed to the preprocessing sort that built the hierar
chy of space enclosures.

Space subdivision and bounding volumes speed ren
dering by sorting the database once at the start of the
frame, instead of for every ray. The technique introduced
in this article speeds rendering by using a single, nearly
complete spacetime sort instead of many space sorts. It
performs this one sort at the start of the animation,
instead of for every frame.

Another important source of efficiency is the reduc
tion in the number of object transformation calculations
that must be performed. When we shoot rays at differ
ent times to approximate motion blur, those rays inter
sect the objects in the database at different times. To
intersect the ray and each object properly, the object
must be transformed to the correct position, orientation,
and shape for that time. If the object motion is complex.
the transformation may include deformations and other
sophisticated changes. These transformations may be
very expensive to compute. Because our bounding vol
ume hierarchy is nonoverlapping, we avoid computing
intersection events along hierarchy descent paths that
don't lead to the first intersection. This reduction in the
number of intersections that we must compute can
become significant for complex object transformations
in dense regions of the database.

Implementation
The algorithm generating the hierarchy of spacetime

bounding volumes requires a technique of bounding
volumes and a technique of adaptive space subdivision.
In our implementation, we chose slab bounding
volumes9 and equal subdivision. 15 Both algorithms are
easily extended to work in spacetime instead of just
space.

Spacetime rays are represented by a pair of 4D events
giving the origin and direction of the ray. When render-

March 1988

80

ing at normal scales, the time component of the direc
tion vector may be set to 0, implying that the light ray has
infinite speed. At extremely large and small scales, we
may instead set the time component to a value consis
tent with the speed of light in the database. With suitable
enhancements to the ray-tracing geometry, we can then
handle relativistic effects. 24

In the 3D environment, a good set of bounding planes
consists of the seven planes generated from the three
axes and the eight octants they form. 9 The three axes
give rise to three principal planes (each containing one
unique pair of axes: XY, XZ, or YZ}, plus four auxiliary
planes that each diagonally slice two octants.

In 4D we have four principal axes, which cut space~
time into 16 subspaces, which we call hexants. Eight of
these hexants contain the first half of the time interval,
while the other eight cover the latter half of the time
interval. We now have four principal planes {containing
XYZ, XYT, XZT, YZT), plus eight auxiliary planes that
diagonally slice half of the hexants, for a total of 12
planes.

Our principal planes have normals:

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

Note that these slabs are required if we are using axis
oriented subdivision, since they form the walls that sep~
arate adjacent cells. The auxiliary planes have normals

(.5,.5,.5,.5) (.5,.5,.5,-.5) (.5,.5,-5,.5)
(.5,.5,-.5,-.5)

(.5,-.5,.5,.5) (.5,-.5,.5,-.5) (.5,-.5,-.5,.5)
(.5,-.5,-.5,-.5)

Using planes formed by these normals we effectively
enclose each spacetime path in a convex, bounding poly·
hedron formed by the intersection of 12 slabs, each com
posed of two parallel planes. We may add additional
spacetime slabs to those above if we desire even tighter
bounding volumes.

The cost of the 4D spacetime ray /slab intersection is
virtually the same as for the 3D case. The difference is
an extra pair of multiplies and additioris once per ray per
normal to compute both cif the dot products of the space
time normal with the ray origin and direction.9 But we
consider that cost negligible, since it is amortized over
the life of the ray.

Our system is implemented in the C programming lan
guage under Unix, which is not the most natural envi·
ronment for object-oriented programming. We thus use
indirect procedure calls and consistent methodology to
achieve an object-oriented flavor in the system. For exam
ple, our objects are able to respond to messages request
ing bounding volumes within a given 4D box,
intersections with a given ray, and intersection comple-

65

Figure 6. The upper photo shows a cyclic 64-frame
animation of six small spheres (''electrons'') spinning
in different speeds in complicated motion around a
larger central sphere (the "nucleus"). The lower photo
is an enlargement of the 25th frame, showing the
effect of motion blur on the small balls and their
shadows.

tions (e.g., determining surface normal). Our objects also
perform a variety of householding tasks such as main
taining their own motion paths, managing time-varying
surface deformations and texturing, and so on.

Results
Figures 6, 7, and 8 show three animations we have

produced with ihese techniques. Because of the limita
tions of the print medium. we present the animations by
grids of fraines equally spaced in time. Read the anima
tion grids as you would read a book: starting at the upper
left, moving left to right and top to bottom.

Figure 6 shows 64 samples from a cyclic animation of
an atomic modeL Six spheres spin about each other and
about a central nucleus in a complicated ballet. Motion
blurring is evident in the faster moving balls and their
shadows.

Figure 7 shows 16 samples from a cyclic animation of
a group of spheres, moving on the surface of an
octagonal prism. This figure was generated with four
samples per pixel, distributed in space and time.

Figure 8 is a 64-frame synopsis of the short film Dina's
Lunch.

66

Tables 1 and 2 summarize the statistics we have mea
sured for Figures 6 and 8. All frames were generated at
126-by-126 pixels. Each frame of Figure 6 contains seven
spheres and one polygon, and was sampled with a con
stant 32 eye-rays per pixel. Each frame of Figure 8 con
tains47 spheres and 21 polygons, and was sampled with
a constant four eye-rays per pixel. All eye-rays were dis
tributed in the 30 spacetime volume occupied by the
frame.

The columns labeled "Frame-by-frame" report the
costs for the entire animation when generating purely
spatial bounding volumes anew for each frame. These

IEEE Computer Graphics & Applications

81

Figure 7. The upper photo shows a cyclic 16·frame
animation of eight spheres bounding on the surface
of an octagonal prism in a small box. The lower photo
is an enlargement of the 12th frame, showing the
speckled pattern characteristic of Iow·density dis·
tributed ray tracing with motion blur (each pixel fired
four rays}.

bounds were taken to encompass the object for the dura·
tion of the frame, created and arranged in a hierarchy as
in Kay and Kajiya.g The column labeled "Spacetime"
reports the equivalent costs using the techniques in this
paper.

Figures 6, 7, and 8 were all computed using a hybrid
subdivision criterion. At the upper levels of the tree, we
subdivided until no more than three objects were in a
cell. After meeting that criterion, we used a density mea·
sure: If the ratio of the volume enclosed by the objects
in a cell to the volume of the cell was less than 0.3. the
cell was subdivided (we used standard numerical inte·

March 1988

82

Li

-~ r ~ r~ ,c."-".. .. ··"'''U""'\
I / i - .l

,_
1 C1 c~ c ' /_ ' J ,

r- 1 C..J ':.-. \ c 1
l ' '

'

CJ r -, c- 1

gration 'techniques27 to estimate the volumes). The
column labeled "Spacetime to frame-by·frame ratio'' con·
tains the ratios of the animation totals for the two tech·
niques, and is graphed in Figure 9.

Clock timings are not presented in the tables, since
actual rendering times are strongly influenced by pro·
gramming style and code tuning. Specifically, our code
is not optimized for the algorithms in this article, since
it performs many other tasks as part of a much larger
system.

We have thus normalized all time measurements to an
arbitrary unit time. Our unit time \Vas the average time
to render one frame of Figure 8. All measurements below
the heavy horizontal line in the Tables are reported rela·
live to this time unit. The proper statistics for com pari·
son lie not in the elapsed time, but in the other columns,
reporting the number of bounding volumes made and
intersected, and the number of ray/object intersections
with their accompanying expensive object transfer·
mation.

Discussion
The ratios in the comparison columns in Tables 1 and

2 are encouraging. They reveal that even in animations
of modest complexity spacetime ray tracing with a
hybrid hierarchy yields savings over frame·by·frame ren·
dering.

From Table 1 we see that spacetime ray tracing was
able to cut the rendering cost of Figure 6 to about 50 per·
cent of that required by frame-by-frame techniques. Table
2 shows that spacetime ray tracing reduced the cost of
Figure 8 to about 80 percent of frame·by·frame methods.

67

....-.,_ ... ~ r.•
'

.... :"' ~ ' ' '

.,.
~ ~ ,. ' ' '

..... ' ' ' ' "' "'
,- • -- ·- ._:. - .;.:"':' ._:. -. --

.::--.
-~ !\. .i'-

-' --' --' -' _, -
.:~ ...

~ ' ' '

Table 1. Rendering statistics for Figure 6.

~.sy.fRAME SPACETIME
Spacewnc: to I ,_

lwlna~on """""' Frame-by-Frame
A- T"" Tool Ratio

trays 793,637 S0,792,79S 50,792,794 1.0

I ,to' bounding volumes I built 7.3 "' "' 0.463

IJit ray/pnm.iti~
llllC!le(:IIOil$ 1,825.365 116,823.418 !>6,030,634 0.565

• rayibounding
volume inte~tions 2,857,093 182,8S4,062 106,664,869 O.S83

averoge primitive
2.3 2.3 Ll 0.565 1mer=uon• per n~y

!averoge bollnd!ng
3,6 3.6 2.1 0.583 ~ ~olumc inr.:rsecnons

per ray

lbour>ding volume
hier=hy =•tion ti!nl: 0-011 0.710 0.33 0.465

'
' ' j~~:ndeMg time: 34.8 2233 1179 0 768

' i ~l3J 01\lm.lOO!l genennon arne 35.1 n~ ""' 0.528

Since spacetime ray tracing builds bounding volumes
only once at the staft of the animation, we would expect
that it should generate fewer bounding volumes over the
course of the animation than frame-by-frame techniques.
The results show that we indeed observed such an effect
in both animations. The most important statistic is the

68

I
' I

..

..
...

"
-"

d

... Figure 8. This is a 64-frame sample of the
short film Dina's Lunch.

Table 2. Rendering statistics for Figure 8.

FRAME BY FRAME SPACEJ1ME

83

I
I

Spao::c!>me to I
F~ Anirmtion Frame~:ranx Animalion
A=~ T"" Tool

trays 22.748 \,43S,876 1.453.876 LO

i • bo_unding volumes
boil! 66 "" '" .08

) • raylpriminve I mter.;cetiO!Is 73,148 4,68U06 4,20!.077 0.90

I

vol~ inlersections I'.,..,~""· 273,962 17.661.570 12,841,139 0.73

lavcragef'runnivc
mteMC:nons per no.y 3.22 3.22 2.89 0.90

I
la•or:tgo bounding

12.13 11.13 8.81 0.73 •olwne lnlei"SIX"nOIIS
potrray

rbound!ng volume
0' 6A 22 0.34 iu=hyatoi!IOII~

'
I I

lrtndenng nmo LO " " 0.77 i
i I
I
I'Ot.>l anuna11011
igonor:>non lime lA 90.2 71.1 0.79

number of ray-object intersections; this figure also
decreases in spacetime ray tracing, thanks to the addi
tional information provided by the time component in
the spacetime bounding volumes.

Thus even in these simple animations, spacetime ray
tracing can offer us significant savings in time by reduc-

I

I

lEEE Computer Graphics & Applications

1.

bounding volumes built

average primitive object
intersections per ray

average bounding volume
intersections per ray

bounding volume hierarchy
creation time

rendering time Figure 9. Percentage of work
required by new technique relative
to frame-by-frame techniques.
Light shaded boxes are for Figure
6; dark boxes are for Figure 7.

total animation
generation time

ing the number of complex intersection operations that
must be performed.

We note that several factors strongly affect these statis
tics, such as the distribution of objects in the scene, the
complexity of each ray-object intersection, the complex
ity of the animation and database transformations, and
the length of the animation in frames.

Consider a complex object changing in complex ways
over time, such as a boiling fractal volcano with flowing
lava. It can be very expensive to intersect such an object
with a ray at a given time. This is because time
dependent intersections require positioning an object
along its motion path, interpolation of all object descrip
tion parameters, and then construction of the object
itself {at least to a level sufficient to reject the ray). With
out spacetime bounds all of this work will have to be per
formed for each object, even for rays that cannot possibly
hit the object because they are in the wrong place at the
wrong time. Spacetime bounds eliminate the majority of
these useless intersection calculations, eliminating also
their associated complex object positioning and con
struction operations.

We therefore expect that complex animation, involv
ing many complex objects in sophisticated motion, will
yield substantially higher savings than the examples
presented here; indeed, we expect that as the animation
grows more complex, the savings will become greater.
This is based on the above discussions about the sources
of efficiency, and by analogy to the performance of space
subdivision and bounding volume algorithms. We are
currently planning an elaborate animation called Dina
and the Windmill {the sequel to Dina's Lunch) to test this

March 1988

expectation. Dina and the Windmill will also include
extensive movement of the lights and camera.

Future work includes lazy evaluations of the bound
ing hierarchy (constructed of only those bounds needed
as the animation progresses). We also plan to synthesize
our methods with other multidimensional ray-tracing
acceleration techniques, such as that described by Arvo
and Kirk.28

Summary and conclusion

We have presented techniques for efficient ray tracing
of animated scenes. We view the animation problem as
a spacetime rendering problem. Thus, instead of render
ing dynamically moving 3D objects in space, we render
static 4D objects in spacetime. To trace rays in spacetime
efficiently, we developed a hybrid technique of adaptive
spacetime subdivision and spacetime bounding
volumes, which generates an excellent hierarchy of
nonoverlapping bounding volumes. The spacetime sub
division is also used during preprocessing to help intel
ligent objects select the most appropriate bounding
volume for differently sized spacetime hypervolumes
built as the subdivision progresses. We then trace 4D rays
in this static spacetime to find ray-object intersection
events.

We are able to ray trace a piece of animation more
quickly with this spacetime algorithm and bounding
hierarchy than with straightforward frame-by-frame ren
dering. •

69

84

Acknowledgments
This work was developed and implemented in the

Computer Graphics Lab at the University of North Caro
lina at Chapel Hill.

Thanks go to my advisor, Henry Fuchs. for his support
of independent research. The idea of incorporating com
posite spa~etime information into an animation system
came out of discussions with Larry Bergman. Both a
preliminary and a revised version of this article were
carefully reviewed by a host of my fellow students in the
Department of Computer Science; my thanks go to Marc
Levay, Pete Litwinowicz, Chuck Mosher, Tom Palmer,
and Lee Westover. Kevin Nevins of the Department of
Radiology also provided insightful comments. Mark
Harris and Doug Thrner helped with the phrasing of
important passages, and Margaret Neal helped make the
article cohesive and clear. The observations and sugges
tions of these volunteer reviewers helped give this arti
cle structure and focus. Their friendly companionship
in the Lab helped make the work a pleasure. Lakshmi
Dasari provided key assistance in the production of the
animations.

References
1. A. Appel, ''Some Techniques for Shading Machine Renderings of

Solids," Proc. AFIPS Conf., Vol. 32, 1968, pp. 37-45

2. W. Bouknight and K. Kelley, "An Algorithm for Producing Half
Tone Computer Graphics Presentations with Shadows and Mov
able Light Sources." Proc. AFIPS Con f., Vol. 36, 1970, pp. 1-10.

3. D. Kay, "'l'ransparency, Refraction. and Ray Tracing for Computer
Synthesized Images.'' master's thesis, Cornell University. Ithaca.
NY. 1979.

4. T. Whitted, "An Improved Illumination Model for Shaded Dis
play," CACI\.f. fune 1980, pp. 343-349.

5. R.L. Cook, T. Porter, and L. Carpenter, "Distributed Ray Tracing,"
Computer Graphics {Proc. SIGGRAPH), July 1984, pp. 137-145.

6. M.E. Lee, R.A. Redner, and S.P. Uselton, "Statistically Optimized
Sampling for Distributed Ray 'fracing," Computer Gmphics (Proc.
S!GGRAPH), July 1985, pp. 61-67.

7. I.T. Kajiya, "The Rendering Equation," Computer Graphics {Proc.
S!GGRAPH), July 1986, pp. 143-150.

8. E.A. Haines and D.P. Greenberg. "The Lighl Buffer: A Shadow
Testing Accelerator," CG&A, Sept. 1986, pp. 6-16.

9. T. Kay and J.T. Kajiya. "Ray 'fracing Complex Scenes,'' Computer
Graphics (Proc. SIGGRAPH), luly 1986. pp. 269-278.

10. H. Weghorst, G. Hooper, and D. Greenberg, ""Improved Computa
tional Methods for Ray Tracing," ACM Trans. on Graphics, jan.
1984, pp. 52-69.

11. j.T. Kajiya, "New Techniques for Ray Tracing Procedurally Defined
Objects," Computer Graphics {Proc. SIGGRAPH}, july 1982, pp.
245-254.

12. S. Roth, "Ray Casting for Mode!ling Solids," Computer Graphics
and Image Processing, Vol. 18., 1982, pp. 109·144.

13. S.M. Rubin and T. Whitted, "A 3-Dimensional Representation for
Fast Rendering of Complex Scenes," Computer Graphics [Proc.
S!GGRAPH), fuly 1980. pp. 110-116.

70

85

14. J. Goldsmith and J. Salmon, "Automatic Creation of Object Hier
archies for Ray Tracing," CG&A, May 1987, pp. 14-20.

15. A.S. Glassner, ''Space Subdivision for Fast Ray 'freeing," CG&A,
Oct. 1984, pp. 15-22.

16. M. Dippe end J. Swenson, "An Adaptive Subdivision Algorithm
and Parallel Architecture for Realistic Image Synthesis," Computer
Graphics (Proc. SIGGRAPH), july 1984, pp. 149-158.

17. M. Kaplan, "Space Tracing: A Constant Time Ray Tracer," SIC
GRAPH 85 Thtorial on the State of the Art in Image Synthesis, july
1985.

18. A. Fujimoto, T. Tanaka. and K. Iwata, "ARTS: Accelerated Ray
Tracing System," CG&A, Apr. 1986, pp. 16·27.

19. P. Heckbert, "Color Image Quantization for Frame Buffer Display,''
Computer Graphics {Proc. SIGGRAPH), July 1982. pp. 297-307.

20. A.S. Glassner, "Spacetime Ray Tracing for Animation,'' Introduc
tion to Ray Tracing, course notes 1113 {SIGGRAPH), ACM, New
York, 1987.

21. J.T. Kajiya, "New Techniques for Ray Tracing Procedurally Defined
Objects," Computer Graphics {Proc. SIGGRAPH) July 1983, pp.
91-102.

22. R. Rucker, The Fourth Dimension, Houghton Mifflin, Boston, 1984.

23. A. Abbott, Flatland, Dover Publications, Mineola, N.Y., 1952 {origi
nal copyright 1884}.

24. P. Bergmann, Introduction to the Theory of Relativity, Dover Pub
lications, Mineola, N.Y., 1975.

25. A.S. Glassner, "Supporting Animation in Rendering Systems, Proc.
CHI+GI, Canadian Information Processing Soc., Toronto, 1987.

26. P. Amburn, E. Grant, and T. Whitted, "Managing Geometric Com·
plexity with Enhanced Procedural Models,'' Computer Graphics
{Proc. SIGGRAPH}, July 1986, pp. 189·195.

27. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes, Cambridge University Press, N.Y., 1986.

2 8 J. Arvo and D. Kirk, "Fast Ray Tracing by Ray Classification, Com·
puter Graphics {Proc. SIGGRAPH), July 1987, pp. 55·64.

of Technology.

AndrewS. Glassner is a PhD student in Com
puter Science at the University of North Caro
lina at Chapel Hill, where he studies
algorithms for image synthesis, modeling.
and animation. He spent recent summers
working on computer graphics at a variety of
research institutions, including the Delft Uni·
versity of Technology, Xerox PARC, IBM TJ
Watson Research Laboratory, Bell Communi
cations Research, and the New York Institute

Glassner writes on computer graphics for both the technical and
popular literature. His book for artists, Computer Graphics User's
Guide, has recently been translated into fapanese. He is presently
working on two new books, describing procedural geometric
methods for graphics programmers, and symmetry design for
artists. Glassner's current research interests include image syn·
thesis, geometrical methods for designing computer graphics
algorithms, and the theory of certain knotwork patterns. He is also
interested in other uses of computers for enhancing and support·
ing creativity, including music, multimedia displays, and interac·
tive fiction, both verbal and visual.

Glassner can be reached at the Department 'of Computer
Science, Sitterson Hall, Box 3175, UNC-CH, Chapel Hill, NC
27599.

IEEE Computer Graphics & Applications

Summary

Introduction

This dissertation contains six papers written over a span of five years. Each paper

addresses a topic in the field of computer graphics; the emphasis is on efficient realistic

image synthesis and animation.

In this concluding chapter, I will consider the content of each of the six papers

individually. I will attempt to redress errors and omissions, clarify what is unclear,

refine what is vague, and set them in the context of subsequent developments. These

sections should be read as commentary on the papers, not revisions of the papers

themselves.

Space Subdivision for Fast Ray Tracing
IEEE Computer Graphics & Applications, vol. 10, no. 4, October 1984

Space Subdivision for Fast Ray Tracing was essentially a synthesis paper: it took

several existing ideas, and combined them with some new techniques to make a

composite algorithm.

The thesis of the paper was that a software implementation of ray tracing could

advantageously use a spatial data structure to speed the process of finding ray-object

intersections. The data structure chosen was the linear octree, described in

[Gargantini82]. The new techniques were a hashing scheme for fast voxellookup and

a mechanism for moving from voxel to voxel along a ray.

We will now look at the choice of the octree structure, the hashing mechanism, and

the movement mechanism.

86

Spatial Data Structure

The choice of linear octree was explained with the following argument: in addition

to being well understood, octrees have the desirable property that they can change the

resolution of the subdivided space based on the properties of the objects in that space.

In this paper, the density of the octree structure followed the density in the enclosed

space, measured by the number as objects in some volume.

This was the extent of the defense of the selection of octrees in the paper. Although

the claims are valid, there was no mention of the problems with octrees, nor

consideration of alternative spatial data structures. These issues were addressed by a

variety of later papers [Fujimoto85], [Kaplan85], [Kay85], [Jansen86], [Nemoto86],

[Amanatides87], [Amaldi87], [Cleary87], [Peng87], which also extended and refined

some of the algorithms in this article. It now appears that arguments can be made both

for adaptive and fixed spatial structures, depending on the nature of the database being

rendered.

The essence of the tradeoff between the structures is in the cost for the voxel

traversal mechanism, and the cost of fmding the data structure corresponding to the

next voxel. Typically the voxel traversal cost is more expensive for adaptive structures,

since there is some built-in uncertainty about the resolution of the next voxel. The

algorithm in this paper, for example, requires 6 subtractions, 6 multiplications, four

comparisons, and an average of k additional multiplications, k additions, and 4k

comparisons, where k is the average height of the octree. Uniform structures can

exploit the regularity of subdivision to use simpler, very efficient traversal algorithms.

For example, the 3DDDA algorithm of [Fujimoto85] requires about 4 truncations and

additions per step (their paper is sparse on details, so this is an estimate from their

statement" ... one way to realize 3DDDA is to use two synchronized DDA's ... ",using

the DDA algorithm in [Newman79]). This measure does not include initialization of the

DDAs.

The advantage of an adaptive structure such as the octree, k-d tree, or BSP tree, is

most evident in a database where the object density is heterogeneous on a large scale.

Such databases include most human environments: a typical room has a large amount of

empty space for people to move within, and dense, varied regions such a bookshelf or

coatstand. The ability of an adaptive structure to conform to the changing spatial

density of objects can translate to a faster propagation speed of the ray through the

database; the ray may get from one end of the room to the other by passing through

87

only one or two large, mostly empty nodes. The extra work involved in moving from

one cell to another may be compensated by the smaller number of cells involved.

On the other hand, many databases of very small and very large phenomena can be

rather homogeneous in density, or at least composed of a simple, regularly repeating

structure. An example of the former is a volume of the ocean; the latter might be a salt

crystal. In such a database uniform spatial subdivision is attractive, as described by

[Fujimoto85]. The cost of moving from one voxel to the next is less than for an

adaptive technique, and the likelihood of striking an object in each voxel is relatively

high.

The critical question is the comparison of the total cost of each algorithm. In a

heterogeneous scene, adaptive techniques appear superior: the high voxel-traversal cost

is offset by the small number of voxels required to pass through sparse areas.

Uniform techniques would need to process many empty cells, and though each step

may be faster than an adaptive step, the overall cost would be higher. In a

homogeneous scene, uniform subdivision appears superior: movement is cheaper, and

more likely to result in an intersection. In this case the more expensive voxel

propagation cost of adaptive techniques would be a burden, since only a small number

of cells are likely to be traversed until an intersection is found.

Counting objects in a small volume was a very crude method for measuring the

local density of space. The reason we want to use some kind of density measure is

because we want to estimate the chances of hitting an object when a ray enters a cell.

Better estimates of this probability can come from fmding the ratio of the sum of all

object volumes compared to the cell volume, or else a ratio of the sum of all surface

areas compared to the cell's surface area [Weghorst84].

Voxel Hashing Technique

The idea behind the hashing technique was to trade time for space in the storage of

the octree. The mechanism was to eliminate the eight pointers at each node required to

explicitly store the octree, and replace them with a number of linked lists. To find a

node, one hashed its name into a small integer, and then followed a linked list of nodes

associated with that integer. The claim was made that in the largest limit, each node

would reside in its own list, so that access was immediate upon hashing. In the

smallest limit, all nodes would reside in the same, large linked list, so that the whole list

would need to be searched for each node.

88

To determine whether this was a good approach, we must look at just how much

memory was actually saved. The result: we indeed save measurable memory, but the

context in which this approachis used makes it of dubious value.

To address the first problem, consider that each node still had to contain one pointer

to the next node in the linked list. Thus in a tree of k nodes, we saved 7k pointers.

Suppose we had a scene composed of n objects. If each object is a triangle, then we

will store at least 3 points in 3-space with the object, plus some surface information

(let's suppose this is just a pointer to a surface description). Then assuming 4 bytes

each for a floating-point number and a pointer, each triangle will cost 40 bytes, for a

total of 40n bytes to store the database. Assume the objects are distributed uniformly in

space, so the tree is as wide as possible. Then the tree will have k levels, where k is

the smallest integer that satisfies 2k ~ n. Solving for k gives k = r ~~! ~ l· The total

k-1

number of nodes that we need to store this tree is t = L 2i (we only sum to k-1
i=O

because the leaves have no child pointers).

Let us assume that each node contains a pointer to an object list, and a byte of local

information, costing 5 bytes. In the hashed scheme, the cost of the complete tree

would be 2k (5+4) = 9 * 2k bytes. For the complete tree, each node has 8 child

pointers, for a total of 5+(8*4) = 37 bytes; thus the tree costs 37 * 2k bytes. The

relative memory consumption of the hashed scheme is thus

9t+40n ~1
i rlog(n)l

s = 37t + 40n' where t = i :-o 2 , and k = J log (2)

From this, we can plots as a function of n:, as in Figure 1 (in the Figure, n is

plotted from 1 to 10000):

89

min: .51
max: .64
40 bytes/object

min: .56
max: .69
52 bytes/object

Relative memory costs for complete tree versus hash table

Figure 1

We can see that when we store 40 bytes/object, the ratio of hash-table to full-tree

memory use ranges from about .51-.64. If we store a surface normal with each object,

that takes 12 more bytes; the savings per node is less now, increasing the ratio to the

range .56-.68. Clearly as each object consumes more memory, the relative savings

from node reduction will continue to decrease.

We made two assumptions in the above discussion. The first was small object

sizes; in the spacetime ray tracing system (the last article in this dissertation) each object

consumes at least 400 bytes; some take much more. The memory savings ratio for 400

bytes/object is from .88-.94, or a savings between 6-12%. The second was assuming

a complete tree; typical octrees will have many fewer nodes, and thus will expend

memory on fewer pointers.

Unfortunately, we pay a rather large time penalty for these memory savings.

Consider that when we wish to find the next voxel along a ray's path (using the

techniques in this paper), we must descend the octree from the root, using the

mechanism of Figure 3 in the text Thus we examine each voxel along the path from

90

the root to the leaf of our next voxel along the ray's path. If the 8 child pointers are

stored at that node, then we may simply consult the appropriate pointer to find the next

child immediately. Using the hash table mechanism, we must hash the name of the

child and follow the linked list to fmd the child. The irony is that we will descend

much of the tree in the same order repeatedly (only differing below the lowest common

parent of the two leaves); each time, for each node, we must go through the hash

lookup step.

The actual time consumed by this step is dependent on the hashing function and the

number of lists maintained.

Is the space savings worth the time cost? Even without experimental data, we can

make some observations. Virtual memory is now routinely available on most

computers. With declining memory costs, the number pages that can be active in real

memory at any given time is increasing. Furthermore, the very spatial locality exploited

by the octree technique (successive voxels are spatially adjacent) translates into memory

locality on the pages. In effect, our working set of pages corresponds into a working

set ofvoxels. I suspect that we can hold enough complete (appropriate) voxels in

memory at a time that the memory savings from the hash table is not necessary, and

thus we need not pay its time penalty.

In conclusion, the hashing table does. provide a savings in memory, but at a cost in

running time; we probably don't need to save that memory these days, and

consequently we may dispose of the technique and improve execution time. The

hashing technique is only attractive when memory is more precious than running speed.

Movement Mechanism

When no intersections were found in a particular voxel, the algorithm found the

next voxel with a three-step process. First, the point was found where the ray left the

voxel. Second, that point was displaced away from the voxel interior by a small

amount (carefully determined) perpendicular to each face which shared that point,

creating a new point in another voxel. Third, the octree was descended from the root to

find the voxel containing that new point.

The technique worked. The amount moved was equal to half the length of the

smallest voxel side in the database, guaranteeing that the point was within the next

voxel on the ray's path. The displacement simulated the propagation of the ray, and the

octree descent indeed found the correct voxel.

91

The algorithm was slow. Faster mechanisms have since been found, such as those

of [Amanatides87] and [Lathrop88]. But it was a reasonable way to proceed, and

worked correctly.

Other items

Several other points in the article bear re-examination.

The algorithm that constructs the octree only considers the surfaces of objects, not

their interiors. The article states, "The assumption is that the inside of a transparent or

translucent object is either empty or else described by other, independently defmed

objects." This is not wrong, but it is incomplete. What we really are concerned with is

where a ray might change its direction or color. If an object has a translucent interior of

varying density, then the interior might well be associated with the enclosing object

itself, rather than as a separate object. This presents no difficulty to the algorithm,

since the critical information is which object is influencing the ray, and that is exactly

the object that the ray is within. So objects may have sophisticated internal structure,

but as long as that structure is part of the object's description, and has a well-defmed

boundary or surface, then we may restrict our attention only to the surfaces.

The mechanism for determining which voxels contain a given object was not

discussed at all. In fact, the program used to make the pictures did a simple overlap test

between the object's bounding box and the voxel; this should have been mentioned. Of

course, more sophisticated tests would be useful and would probably provide for

sparser trees (and therefore faster image generation).

The footnote on page 19 is in error; only three planes, not four, need to be tested to

find the exit point of a ray from a voxel. My opinion in that footnote was wrong;

determining which three planes lie in the forward direction of the ray can be part of an

efficient movement algorithm [Arnanatides87].

Lastly, the article states that a single object may straddle several cells, and thus the

ray would need to intersect that object several times. It claims that this is an

"uncommon" event. Perhaps that was so for the particular images in the paper, but it

could easily be a common event in the general situation. Consider a dense region of

space containing many objects; there is no reason to believe that the voxel walls should

cleanly separate groups of objects without piercing any of them; indeed, such

penetration appears likely. Multiple intersections with a single object appear to be a real

drawback.

92

Fortunately, one may simply associate the ray parameter at the intersection point

with the object, along with the ray id number. Should that ray ever query that object

again, the intersection parameter may be simply retrieved from this "ray intersection

cache" without re-solving the intersection problem [Hanrahan86].

The article is missing two important literature citations. [Rubin&Whitted80]

presented one of the few ray-tracing acceleration techniques extant when this paper was

written. [Murakami83] also discussed ray tracing in the context of a spatially

subdivided world.

Further work

Several papers have extended and improved many of the techniques described in

this paper; others have explored alternatives. Other strategies for subdivision have been

studied, including uniform subdivision [Fujimoto85], BSP trees [Kaplan85]; the use of

k-d trees has also been explored [Hultquist87]. Voxel movement algorithms have been

examined and extended by [Amanatides87] and [Fujimoto85]. Another way to find a

voxel's address immediately has been proposed by [Lathrop88].

Summary

The main contribution of Space Subdivision for Ray Tracing was not in any of its

component algorithms. Rather, it was one of the first demonstrations that a simple

spatial data structure could be applied to the ray tracing problem to achieve speedups of

more than an order of magnitude. Further work by others focused on other spatial data

structures, including hierarchies of more general bounding volumes. This paper was

most useful not for the particular algorithms employed, but for demonstrating the

power of spatial data structures for accelerating ray tracing.

Adaptive Precision in Texture Mapping
Computer Graphics vol. 20, no. 4, Proc. Siggraph '86, August 1986

This paper isolated one of the approximations used in the sum-table texturing

technique, and proposed a solution whose cost and effectiveness were proportional to

an estimate of the error in the approximated texture.

93

The sum-table method is useful in many contexts, but it is most convenient to

consider it in a traditional pipeline rendering system. In their job of estimating the

texture appropriate for a given pixel, sum tables incorporate two fundamental

approximations. First, the texture filter is approximated by a flat filter, with unit

response inside its footprint, and zero response outside. Second, the image of a pixel

is approximated by a rectangle oriented to the texture axes. This paper accepted the first

approximation, but attempted to reduce the errors introduced by the second. Thus the

final quality of the texture sample is limited by the flat filter response, however accurate

its footprint.

The main assumption in the paper is that a better footprint is given by the convex

hull enclosing the texture-space images of the four pixel corners. Indeed, this filter is

superior to some arbitrary axis-oriented rectangle, but it is also i~erior to other forms

of space-variant footprints which allow overlap among pixels.

The paper begins by analyzing various additive and subtractive schemes among one

or more sum tables. The quality of a texture estimate was measured by the amount of

texture included in the sample, yet outside the pixel's texture-space image. This

measure obviously ignores the values in the texture itself, which is a drawback. The

analysis of various additive and subtractive schemes is useful and interesting. It is

surprising that the availability of another sum table at a 45' angle to the first does not

reduce the extraneous area sampled in the worst case.

A different error measure is then introduced, based on the local variance of the

texture. Variance is a reasonable measure of image complexity, and indeed has been

used to control stochastic sampling schemes [Lee85]. It was later proposed that a better

measure is contrast, since that is a concept that correlates to our perception of a scene,

rather than its abstract statistical properties [Mitchell87].

To estimate variance, a second table was built containing the variance in the local

neighborhood of each pixel; this table was then converted into sum-table format. When

the texture in a pixel was to be estimated, the average variance within the pixel was

found by consulting the variance sum table. Once the variance was estimated, the

algorithm removed rectangular pieces from the texture estimate until the sampled area

was less than a worst-case value, originally computed by formula but stored in a table.

The texture estimate improved as more pieces were removed.

A better way to estimate the average variance was suggested by [Heckbert86]. He

suggested building a sum table of the squares of the texture values Xj, in addition to the

normal texture sum table. Variance could then be estimated by the following (for a

sampling region of n texture samples):

94

Comments

The abstract stated that texture samples could be detennined to arbitrary precision;

this is wrong. Sample quality was still limited by the flat filter response, and the

"ideal" footprint assumed by the algorithm (the convex hull of the mapped corners of

the pixel) is not ideal. But the algorithm could respond with increasing precision up to

those limits.

In Section 3.0, a distinction was made between the region summed over in a sum

table, and the region which could be queried. The former was called the table's

fundamental region. Although the idea of a fundamental region is important to the

study of sum tables, in retrospect there seems no reason to distinguish between the

integration region and the query region. Indeed, the paper goes on to state that both

regions usually have the same shape.

The discussion in Section 7.0 repeated a confusion between the approximations in

the paper. It incorrectly stated that the texture was sampled "with a delta function,

instead of a proper filter", which is both incorrect and misleading. The error is that the

f:tlter used was not a Dirac delta function (zero everywhere except for unit height at one

value), but rather unit-height within the sample and zero elsewhere. The misleading

part is that this filter shape is not improper, though it certainly is not ideal.

Supporting Animation in Rendering Systems
CHI+GI Workshop on Rendering Algorithms & Systems

Toronto, April 1987

This short paper has a single major message, and an interesting, though unrelated

idea. The message is an advocacy of an object-oriented, distributed database for

animation support; the idea is to let objects help determine efficient sampling strategies.

Both ideas were implemented in my spacetime rendering system.

The starting point is an argument that the traditional rendering pipeline is not

efficient for creating motion-blurred animation. The proposed alternative is a

95

distributed, object-oriented architecture to support both animation design and rendering.

This is not the first time such an architecture has been proposed, but to my knowledge

this paper is the first to supply the actual messages required to support such an scheme.

The arguments in favor of code sharing were also not new, but persuasion is required

to justify the difficulty of implementing such a system in a system such as Unix, which

is not friendly to code-sharing. Overall, the paper proposes a very simple and

straightforward system, but one I had not seen explicitly described before.

The surprise in the paper is the suggestion of object-oriented parameter space

sampling schemes for stochastic ray tracing; particularly for path tracing. The idea is

not fully developed here, but the essence is described. The idea was later crystallized in

the spacetime ray tracing system in the form of the "deck" data structure. The fmal

analysis has not yet been completed, but the images appear at least as good as with

other approaches for efficient path tracing [Kajiya86].

In summary, this paper presents a straightforward, though complete architecture for

animation support It also introduces the barely related concept of object-oriented

parameter space sampling.

Template Parameterization for 3d Pose Interpolation

This paper suggests a technique for allowing a model designer complete freedom in

specifying the transformations that describe a hierarchical model destined for interactive

animation. The work came about when I was building an animation system, and

wished to remove some of the restrictions inherent in many other modeling systems I

have seen.

The use of the Singular Value Decomposition is appropriate; the numerical stability

of the published algorithms of SVD makes this an attractive approach for solving our

numerically delicate problem of matrix transformation.

This paper is straightforward; its message and technique are simple and are stated in

only a few pages. However, one issue is not completely resolved in the paper, and that

has to do with the conformation of mirror-inversion matrices between two decomposed

keys.

The mirror-inversion matrices were introduced because I wanted some way to

parametrically interpolate the orthonormal matrices created by SVD. From linear

algebra we know that an orthonormal matrix J may be matched by J=MR, where R is

96

a pure rotation matrix, and M combines a single mirror and a single inversion. R may

be represented as a function of three Euler angles, or with an equivalent quaternion,

which respectively provide us with either 3 or 4 components to interpolate.

But M is not parametric, and therein lies the problem. Consider two matrices

Jo=MoRo and Jt=MtRJ. We wish to create an intermediate matrix J.s=M.sR.s.

Since Ro and R1 are described parametrically, we can create R.s by interpolating the

parameters at the two extremes. But without parametric descriptions for the M

matrices, it is unclear how to create M.s.

In the extraction of the original matrix into the (MR)S(MR)T template, two M-type

matrices are generated. When two keys are to be interpolated, each of the in-between

matrices is built from interpolated key matrices; the M matrices, though, are not

parametric, and cannot be interpolated. If they have the same form at both keys then all

is well, since all intermediate M matrices are the same. But if the endpoint M matrices

have different forms, then it is unclear how intermediate keys should be built.

If the modeler does not introduce inversions or mirrors into the model, then I

believe that both M matrices will always have the same form at successive keys,

making interpolation easy. I cannot prove this now, but I have run the algorithm on

several hundred randomly-composed test keys that obeyed the above rules, and I never

found a pair of mis-matched M matrices.

But hoping for continued success of an underanalyzed algorithm is a risky

proposition. A better way to handle the problem is to remove the parameter-free M

matrices from the template. In the paper, the M matrix is extraCted by considering the

cross product of the first two rows of the corresponding R matrix and the third row of

the composite matrix being decomposed. By working instead with columns we may

match J=RM. If we apply this technique to the ftrst orthonormal matrix from SVD,

we get the template (RM)S(MR)T, which we may re-write as R(MSM)RT =
RHRT. In general, H will represent simultaneous shears of all 9 varieties in 3d.

Since H represents a composite shear matrix we may interpolate its elements directly.

This technique removes the difficulty of working with the parameter-free M matrices,

but what kind of motion it would generate is not clear.

This straightforward paper advocates a simple solution to a common difficulty in

modeling and animation systems. Test animation produced with this template has

appeared qualitatively similar to that built from animation derived from templates

matched by the modeler.

97

Late Binding Images
Submitted to IEEE Computer Graphics & Applications

This paper proposes a scheme for separating scan conversion from shading; the

term shading covers hidden surface removal (with possible transparency) and surface

coloring. The approach is a classic space/time tradeoff: to reduce the total rendering

time, the first few steps in a classical rendering pipeline (transformation and scan

conversion) are performed only once and the results stored in a large file. As long as

the viewpoint remains unchanged, the contents of this file may be used directly for

shading, avoiding repetition of those first few pipeline steps.

This is useful when trying to develop a complex image composed of many objects.

To make an image informative and visually pleasing, typically one must carefully tune

the placement and coloring of lights, surface colors and reflectivities, and object

transparencies. This adjustment is often repeated many times until all these parameters

are both individually appropriate and collectively harmonious.

In the paper I make the argument early that separation of scan conversion and

shading is desirable; the remaining bulk of the paper describes my implementation,

rather than an argument for the approach.

Previous work

Separation of scan conversion and shading is essentially a simple idea. Others have

previously advocated various approaches to separating the steps of scan-conversion and

shading; unfortunately many of the appropriate references do not appear in the text

Probably the first description of the idea was given by [Crow74], who discussed

hardware implementations for storing multiple objects per pixel. The "raster testbed" in

[Whitted81] included provisions for storing spans of scan-converted objects. These

spans could be individually adjusted with external procedures to effectively change the

description of each object when constructing an image. A system is described

[Atherton81] which stored several objects at each pixel, principally for determining

various combinations of CSG operations on the objects. This system allowed very fast

iterative rendering by avoiding repeated scan conversions.

Fast interaction of shading parameters and light sources has been implemented

through colormap modification. Interactive texturing is possible by encoding the

surface normal of the closest object at a pixel in the pixel's color fields, a process called

normal encoding, discussed by [Sloan79], [Bass81], and [Heckbert88]. Interactive

98

adjustment of the texture is accomplished by modifying the colormap, which can be

done very quickly. These latter schemes suffer from the drawbacks of very low

resolution of the surface normal orientation, and lack of support for transparency.

Shading in response to a moving light is described in [Holmes85].

Point sampling

In the section on Packet Structure I consider the problem of a point-sampling

scheme that has some anti-aliasing information. In particular, the LBI system can store

a bitmask with each packet, giving the surface coverage of that object But the Z

information is presumed to describe the depth of the surface at the pixel center.

Addressing this subject, the paper says "The surface normal and depth are computed at

the pixel center; if the primitive does not cross the pixel center we estimate the surface

normal and Z depth as if it did, by extending the geometry of the surface." Is this

justifiable?

I believe so, but the statement should have been restricted to polygons. Although

the LBI renderer was developed to handle any primitives after scan-conversion, much

of the scan-conversion discussion is implicitly focused on polygon rendering. The

environment in which the system was developed and in which it is mostly used is a

polygon environment, and some work went into handling polygons efficiently. The

extension of a polygon's geometry to cover a pixel center involves only linear extension

of the polygon's surface, which can be performed very accurately. In effect we are

guessing where the surface would be if it extended as far as the pixel center, but since

polygons are planar our guess can be excellent.

An alternate estimate of the surface depth at the pixel center is to use the Z depth of

the surface at its closest approach to the pixel center. Unfortunately, this can result in a

choppy, zig-zag edge, particularly where two surfaces interpenetrate. The situation can

become complex and subtle when dealing with highly curved surfaces. Thus it would

have been more proper to restrict the earlier statement to polygons.

Another solution might be to store Z values at each corner of the pixel, rather than

the center, as in [Duff86]. Of course, this is only a matter of convention and costs no

more storage, but it has the advantage of giving us four pieces of depth information per

pixel rather than only one. If all four corners are not covered then we must again

extend the surface to estimate the depth at those points.

99

Texture and shading

To handle texture the system saves "the side lengths of the smallest box in texture

space containing the projection of the associated pixel." This is to facilitate texturing

with sum tables.

In the section called Image Generation I refer to a modified version ofPhong's

shading equation; the difference is that we handle transparency in the manner described

in the text.

Light sources are restricted to those "infmitely far away". This is because we wish

to shade using pre-computed tables, which give illumination intensity as a function of

surface normal. Such tables are only useful for infinite light sources; local sources

must have their position included in the shading calculation.

When discussing the tables, the article states that" ... we routinely produce images

for which 32 steps of interpolation is insufficient ... "; this is true but not explained. A

table at 64-by-64 resolution with 32 steps of interpolation gives us up to 2048 unique

shades when interpolating between two antiparallel normals. We felt that this gave us a

safe margin when building 512-by-512 images. However, when working with medical

images users often wanted to zoom in on some structures of interest. Magnifications of

8- and 16-fold were common in our community, which resulted in normal quantization

which assigned the same shade to groups of 2 or 4 pixels. These shades would form

clearly visible bands around the object. Thus we elected to provide 64 steps of

interpolation, and left the code amenable to changes for further resolution. The issue

was critical to our timing because each additional bit of interpolation required

measurable expense in the Ikonas graphics engine.

The LBI Algebra

There is some discussion of a group algebra to support the LBI system. I believed

at the time, and still do, that this is a powerful part of the overall structure of the

renderer. The algebra is certainly simple, but it is also powerful. Most importantly, it

is a proof that the system works. I have had many experiences where a plausible

argument or algorithm has a hidden flaw, only discovered after extensive work. Even

mere existence of a working program is not a proof; there could still be subtle cases in

which the program suddenly produces unexpected, wrong results. The group algebra

proves that no such flaws exist in the system structure. The actual implementation

programs may have bugs, but the intellectual structure is sound.

100

Implementation Details

We state that " ... a Z depth ofO would be exactly in the image plane ... "; this is

because of how we set up the transformation at the start of the pipeline. More precisely,

we transform 3d objects so that the viewing plane is positioned at Z=O in the

transformed world. This is useful because we use packets at Z=O as identity elements

in the algebra.

The discussion of matting is correct, but incomplete. When composing two LBI

files, we can invoke a 3d transformation operator, corresponding to one of the 2d

operators such as Dissolve and Opaque [Porter85]. The simplest is a 3d windowing

operator that restricts inclusion of the new file to within a volume defined by another

flle. In this spirit, we can follow the lead of the conceptual structure developed to

describe the "rgba" [Porter85] and "rgbaz" [Duff86] flle formats, and describe LBI

files using an "onz" format (for object-tag, normal, z depth).

When discussing repeated elements, I say that there are other solutions that preserve

the group properties. Another approach that would work includes a packet count field

in each packet; rather than duplicating a packet we just increment the count field;

subtracting a packet decrements the count. This approach does not expand the file

when the same LBI file is added to itself; the approach in the paper would double the

flle size in such a situation.

The fmal sentence in the algebra section might be seen as implying that fog and

depth cueing are synonymous; they are not. Fog simulation reduces contrast as a

function of distance from the eye, as a result of scattering due to particulate matter in the

air. Depth cueing refers to a variety of techniques for representing depth information to

the viewer; fog is one such technique. In vector and point-plotting displays, fog may

be inexpensively approximated if one assumes a black background; then contrast

reduction can be achieved with simple intensity reduction.

Paging and polygon scan converting

The scan conversion section explicitly discusses some efficiency techniques I used

for polygon rendering. Much of the discussion focuses on the notion of page allocation

and page faulting; unfortunately, some imprecision in the discussion weakens the

conclusions. As mentioned previously in this chapter, locality on the screen often

translates into locality in memory. Thus a working set of pages can include the core

representation of a piece of screen memory. The text implies that each time we change

101

pages we suffer a page fault; of course, this is not true - we fault only when we access

memory outside of the working set Because polygons affect locally dense regions of

the screen, it's likely that two polygons adjacent in the model will be adjacent in the

screen, and thus share some pages.

Despite the lack of precision in the presentation, the argument presented in the text

for the allocation of rectangular blocks of screen memory per page is valid. To see this,

consider the tiling process that generates the polygons in our medical system. It

generates rings of polygons that surround an object. Now consider viewing an object

so that one of these rings runs vertically; that is, its central axis is horizontal. Adjacent

polygons will be vertically adjacent, as in Figure 2.

Figure 2

In this figure, the boundaries between polygons are shown as horizontal edges.

Successive polygons will thus have few scanlines in common. If we store each

scanline on its own page, then once we have filled the page store, each new polygon

will require a new scanline, and we will indeed page fault and need to access a new

page from memory.

The essence of the problem is that polygons tend not to be oriented wide and short,

like scanlines, but rather in small regions of the image plane without preferred

orientation. This has been noted before, and has even served as the basis for hardware

design [Sproull83].

The solution advocated in the paper is similar to the hardware solutions, in that it

allocates memory in small blocks with comparable side lengths (we use a ratio of 2:1 to

match our page size; hardware solutions typically use 1 :1). Part of the mechanism of

accessing these blocks is not well described in the paper.

Memory for packets is allocated sequentially, although we allocate enough at a time

to fill one of the 16-by-8 blocks. For each pixel, we maintain a pointer to the head of

102

the packet list, and a pointer to the last packet in the list; the latter lets us inexpensively

extend the packet list. This is illustrated in Figure 3.

one pixel

head

tai I

Figure 3

This is a cheap approach while scan converting, but it becomes expensive when

writing the complete list out to disk. We prefer this distribution of expenses, since scan

conversion is repeated many times, while disk writing happens but once.

The allocation of packets is shown in Figure 4, where for clarity we assume packets

are allocated in 2-by-2 blocks, rather than the 16-by-8 blocks used in the system:

necessary
new packet

Figure 4

pixel head pointers

existing
packets

newly-allocated
"anticpatory"
packets

103

Here one packet was demanded to extend the list for a particular pixel; we allocated

an entire block of packets, though, in anticipation of upcoming demands.

Comments

The LBI system began as an architecture, file format, and group algebra. From

these components it turned into a complete rendering system that indeed sped up our

image production time. The figures reported in the paper show improved rendering

time for scenes that were rendered multiple times from a single point of view.

In practice, the size of our images in core (a function of the number of primitives

and the resolution of the image) becomes very large very fast, and can easily

overwhelm the virtual memory manager. A working solution would be to write

sections of the image to disk when virtual memory begins to fill, and then clearing the

packet lists. The various ftles would then be merged together into a single, larger LBI

file after scan conversion is complete. This bears similarity to the processing and disk

writing order of the Reyes rendering system [Cook87].

The LBI paper describes the design and construction of a rendering system. As a

case study it presents an interesting discussion of the tradeoffs and efficiency concerns

encountered. Perhaps the paper's strongest contribution is the group algebra, which

gives the system a sound theoretical footing. Defining and following this algebra gave

the project focus and coherency of concept, and gave both the author and users

confidence in its proper behavior in new situations.

Spacetime Ray Tracing for Animation
IEEE Computer Graphics & Applications, vol. 8, no. 3, March 1988

This is the most recent paper in this dissertation. In fact, this paper is really two

papers in one: one paper on a new hierarchy structure, and another on four-dimensional

spacetime ray tracing. I did not see this distinction until the first draft of the paper was

finished; rather than separate it into two smaller papers, I left them combined.

This may have been a mistake, since it could give the impression that the two

methods are linked in some way. In fact, the bounding volume hierarchy and the 4-d

ray tracing are completely independent ideas, and either one may be used with or

without the other.

104

Besides this major organizational point, I believe the problems in this paper are

minor, and mostly in the presentation, not the algorithms.

Presentation

The survey of single-image ray tracing acceleration techniques surveyed some of

the field at the time it was written. Possibly beam tracing [Heckbert84] and cone

tracing [Amanatides84] should have been included; for simple databases these

techniques may produce anti-aliased images more quickly than point sampling. Since

the time that survey was written, pencil tracing [Shinya87] and ray classification

[Arvo87]have been presented as additional speedup mechanisms .

. In the section introducing the hybrid bounding volume technique I state " ... the

defmition and construction of good hierarchies is still poorly understood." At the time

of writing I believed this was generally accepted in the field Nevertheless, it should

have been more clearly labeled as an opinion.

Figure 3 is missing a horizontal line representing a bound separating the upper third

of the upper-leftmost object The corrected Figure is given here. The change is the

addition of a horizontal bound on the concave, star-shaped polygon in the upper left

105

a

Figure 4 does not show interpenetration of objects. It would have been a good idea

to show two spacetime prisms passing through one another, indicating that the

techniques support objects passing through on another in space.

Both photos in Figure 7 should be flipped horizontally, exchanging left for right.

Performance

The performance figures given in Tables 1 and 2 show an increase of modest size;

the new technique required about 53% and 79% of the time required by other

techniques. The discussion called these "significant," which is perhaps overstating the

case.

Why are the savings so small? I believe this is simple an artifact of the test cases.

The power of the spacetime algorithm comes from early rejection of intersection events

with moving, deforming objects. The savings comes about because the object position

and deformation need not be calculated for each event; the spacetime bounds are built

up front, one time for the entire animation. The more complex the movement and

deformation, the greater the savings will be from the pre-processing step that builds the

bounds.

106

In these test cases all motion was linearly interpolated from keyframes. The only

objects to undergo deformation were most of the spheres in the animation of the

article's Figure 8 (titled Dino's Lunch), and their only change was a varying radius. In

the atomic ballet, there was no deformation at ali. With such simple motion and

deformations, there was no chance for the rejection mechanism to display a savings.

Had I created an animation with more sophisticated motion or deformations, I expect

that the savings would have been much greater. To test this I have started work on a

new animation called Dino and the Windmill, the sequel to Dino's Lunch.

As discussed in the paper, this expectation of increased performance is supported

by experience with the space subdivision technique described in the first paper of this

dissertation; in both cases, the more complex the database, the greater the savings.

Simple databases will display small savings. Unfortunately for the spacetime paper, I

did not build a sophisticated test case involving complex (perhaps procedural) motion

and deformations.

In retrospect, it might have been wiser to hold off publication until more dramatic

results had been obtained, since the algorithm appears to have acquired a reputation for

yielding only modest savings. I believe the reputation is inaccurate.

107

Summary

These six papers represent several different approaches to different problems in

computer graphics. The most important papers in terms of new ideas and algorithms

are the first, Space Subdivision for Fast Ray Tracing; second, Adaptive Precision in

Texture Mapping;and last, Spacetime Ray Tracing for Animation. Each of these papers

makes either a theoretical or practical contribution to the field of realistic image

generation.

Each of the six papers uses geometry as a solution technique; sometimes the

geometry is in the data structures, other times it is in the flow of the algorithm. This is

not very surprising, since most of the problems studied were geometric in nature.

The analyses have pointed up a lack of precision and rigor in most of the papers.

The discussion in this chapter has attempted to compensate for that lack, and gives a

level of analysis I would like to strive for in the future.

I feel that these papers represent useful and creative approaches to a variety of

interesting problems in computer graphics; the collection has breadth and depth.

108

References

[Amanatides84] Amanatides, John, "Ray Tracing with Cones", Computer Graphics

(SIGGRAPH '84 Proceedings), vol. 18, no. 3, July 1984, pp. 129-135,

[Amanatides87] Amanatides, John, and Andrew Woo, "A Fast Voxel Traversal

Algorithm for Ray Tracing", £urographies '87, North-Holland, Amsterdam

[Arnaldi87] Arnaldi, Bruno, Thierry Priol, Kadi Bouatouch, "A New Space

Subdivision Method for Ray Tracing CSG Modelled Scenes", Visual Computer,

vol. 3, 1987,

[Arvo87] Arvo, James, and David Kirk, "Fast Ray Tracing by Ray Classification",

Computer Graphics (SIGGRAPH '87 Proceedings), vol. 21, no. 4, July 1987

[Atherton80] Atherton, Peter R, "A Method of Interactive Visualization of CAD

Surface Models on a Color Video Display", Computer Graphics vol. 15, no. 3,

Proceedings of Siggraph '81

[Bass81] Bass, Daniel H., "Using the Video Lookup Table for Reflectivity

Calculations: Specific Techniques and Graphic Results", Computer Graphics and

Image Processing, vol. 17, no. 3, Nov. 1981, 249-261

[Cleary87] Cleary, John G., GeoffWyvill, "An Analysis of an Algorithm for Fast

Ray-Tracing using Uniform Space Subdivision", Research Report 87/264/12, U.

of Calgary, Dept. of CS, 1987

[Cook87] Cook, Robert L., Loren Carpenter, Edwin Catmull, "The Reyes Image

Rendering Architecture", Computer Graphics (SIGGRAPH '87 Proceedings),

vol. 21, no. 4, July 1987

[Crow74] Crow, Franklin, "Expansions on the Frame Buffer Concept", personal

communication (also presented at a Computer Science Seminar at the University

of Utah, 6 February 1974)

[Dippe84] Dippe, Mark E., John Swensen, "An Adaptive Subdivision Algorithm and

Parallel Architecture for Realistic Image Synthesis", Computer Graphics

(SIGGRAPH '84 Proceedings), vol. 18, no. 3, July 1984, pp. 149-158

[Duff86] Duff, Tom, "Compositing 3-D Rendering Images", Computer Graphics vol.

19, no. 3, Proceedings of Siggraph '86

109

[Fujimoto85] Fujimoto, Akira, Kansei Iwata, "Accelerated Ray Tracing", Computer

Graphics: Visual Technology and An (Proceedings of Computer Graphics Tokyo

'85), Tosiyasu Kunii ed., Springer Verlag, Tokyo, 1985, pp. 41-65

[Fujimoto86] Fujimoto, Akira, Takayuki Tanaka, Kansei Iwata, "ARTS: Accelerated

Ray-Tracing System", IEEE Computer Graphics and Applications, Apr. 1986,

pp. 16-26

[Gargantini82] Gargantini, I., "Linear Octtrees for Fast Processing of Three

Dimensional Objects", Computer Graphics and Image Processing, vol. 19, no. 2,

1982

[Glassner84] Glassner, AndrewS., "Space Subdivision for Fast Ray Tracing", IEEE

Computer Graphics and Applications, vol. 4, no. 10, Oct 1984, pp. 15-22

[Glassner88] Glassner, AndrewS., "Spacetime Ray Tracing for Animation", IEEE

Computer Graphics and Applications, vol. 8, no. 2, March 1988, pp. 60-70

[Haines86] Haines, Eric A., Donald P. Greenberg, "The Light Buffer: A Ray Tracer

Shadow Testing Accelerator", IEEE Computer Graphics and Applications, vol. 6,

no. 9, Sept. 1986, pp. 6-16

[Hanrahan86] Hanrahan, Pat, "Using Caching and Breadth-First Search to Speed Up

Ray-Tracing", Graphics Interface '86, May 1986, pp. 56-61

[Heckbert84] Heckbert, Paul S., Pat Hanrahan, "Beam Tracing Polygonal Objects",

Computer Graphics (SIGGRAPH '84 Proceedings), vol. 18, no. 3, July 1984,

pp. 119-127

[Heckbert86] Heckbert, Paul, "A Survey of Texture Mapping", IEEE Computer

Graphics and Applications, vol. 12, no. 11, November 1986

[Heckbert88] Heckbert, Paul, private communication, May 1988

[Holmes85] Holmes, D., "Three-dimensional Depth Perception Enhancement by

Dynamic Lighting", Master's Thesis, Department of Computer Science, UNC

Chapel Hill, 1985

[Hultquist87] Hultquist, Jeff, private communication, March 1987

[Jansen86] Jansen, Frederik, "Data Structures for Ray Tracing", L. R. A. Kessener

ed., F. J. Peters ed., M. L. P. van Lierop ed., Data Structures for Raster

Graphics, (Eurographic Seminar), New York, 1986, Springer-Verlag, pp. 57-73

[Kajiya86] Kajiya, James T., "The Rendering Equation", Computer Graphics

(SIGGRAPH '86 Proceedings), vol. 20, no. 4, Aug. 1986, pp. 143-150

[Kaplan85] Kaplan, Michael R., "Space-Tracing, A Constant Time Ray-Tracer",

SIGGRAPH '85 State of the Art in Image Synthesis seminar notes, July 1985

110

[Kay86] Kay, Timothy L., James T. Kajiya, "Ray Tracing Complex Scenes",

Computer Graphics (SIGGRAPH '86 Proceedings), vol. 20, no. 4, Aug. 1986,

pp. 269-278

[Lathrop88] Lathrop, Olin, "Notes Regarding Ray Tracing with Octrees", Ray Tracing

News, vol. 2, no. 1, February 1988

[Lee85] Lee, Mark E., Richard A. Redner, Samuel P. Uselton, "Statistically

Optimized Sampling for Distributed Ray Tracing", Computer Graphics

(SIGGRAPH '85 Proceedings), vol. 19, no. 3, July 1985, pp. 61-67

[Mitchel187] Mitchell, Don, "Generating Anti-aliased Images at Low Sampling

Densities", Computer Graphics vol. 21, no. 4, Proceedings of Siggraph '87

[Murakami83] Murakami, Kouichi, Hitoshi Matsumoto, "Ray Tracing with Octree

Data Structure", Proc. 28th Information Processing Conf, 1983

[Nemoto86] Nemoto, Keiji, Takao Omachi, "An Adaptive Subdivision by Sliding

Boundary Surfaces for Fast Ray Tracing", Graphics Interface '86, May 1986,

pp. 43-48

[Newman79] Newman, William M. and Robert F. Sproull, "Principles of Interactive

Computer Graphics, 2nd Edition", McGraw-Hill Book Co., 1979

[Peng87] Peng, Q. S., "A Fast Ray Tracing Algorithm Using Space Indexing

Techniques", £urographies '87, North-Holland, Amsterdam

[Porter84] Porter, Tom, and Tom Duff, "Compositing Digital Images", Computer

Graphics vol. 18, no. 3, Proceedings of Siggraph '84

[Rubin80] Rubin, Steven M., Turner Whitted, "A 3-Dimensional Representation for

Fast Rendering of Complex Scenes", Computer Graphics (SIGGRAPH '80

Proceedings), vol. 14, no. 3, July 1980, pp. 110-116

[Shinya87] Shinya, Mikio, Tokiichiro Takahashi, and Seiichiro Naito "Principles and

Applications of Pencil Tracing", Computer Graphics (SIGGRAPH '87

Proceedings), vol. 21, no. 4, July 1987

[Sloan79] Sloan, Kenneth R., Jr., Christopher M. Brown, "Color Map Techniques",

Computer Graphics and Image Processing, vol. 10, no. 4, Aug. 1979,297-317

[Sproull83] Sproull, Robert F., Ivan E. Sutherland, Alistair Thompson, and Charles

Minter, "The 8 by 8 Display", ACM Transactions on Graphics, vol. 2, no. 1,

January 1983

[Ullner83] Ullner, Mike K., "Parallel Machines for Computer Graphics", PhD thesis,

California Institute of Technology, 1983

111

[Weghorst84] Weghorst, Hank, Gary Hooper, Donald P. Greenberg, "Improved

Computational Methods for Ray Tracing", ACM Trans. on Graphics, vol. 3, no.

1, Jan. 1984, pp. 52-69

[Whitted81] Whitted, Turner, and David M. Weimer, "A Software Test-Bed for the

Development of 3-D Raster Graphics Systems", Computer Graphics vol. 15, no.

3, Proceedings of Siggraph '81

[Wyvill86] Wyvill, Geoff, Tosiyasu L. Kunii, Yasuto Shirai, "Space Division for Ray

Tracing in CSG", IEEE Computer Graphics and Applications, vol. 12, no. 4,

Apr. 1986, pp. 28-34,

112

About the Type

This dissertation was prepared on an Apple Macintosh II using

Microsoft Word 3.01. The main body of the text (and all papers

not appearing as reprints) is 12 point Times. Figures were created

with MacPaint 1.5 and MacDraw 1.9.5. Equations were prepared

with Expressionist 1.11. Camera-ready output was generated on a

LaserWriter II NTX with a resolution of 300 dots per inch using

fonts from Adobe.

Space Subdivision for Fast Ray Tracing and Spacetime Ray

Tracing for Animation were prepared on a VAX -11nso running

Unix BSD4.2. The text was entered and edited with the vi display

editor, and formatting was prepared with nroff. Final typesetting

for both papers was prepared by the journal. Figures for Spacetime

Ray Tracing for Animation were printed by the journal directly

from originals prepared by the author using MacDraw 1.9.5.

Adaptive Precision in Texture Mapping was also written with

the V AX/Uttix system, but used the TEX typesetting language for

formatting. Output was generated at 120% on an Imagen printer,

and photoreduced for journal publication. Figures were created

with MacDraw and inserted into the manuscript by hand during

pasteup.

All computer-generated images in all papers were shot with a

tripod-mounted 35mm camera. The monitor was a Tektronix

69M41, displaying the output of an Adage!lkonas RDS-3000

graphics system. Gamma correction for all figures was performed

in the colormap.

dulce est desipere in loco

(sweet it is to rest at the proper time)

