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ANDREW STEPHEN GLASSNER 

Algorithms for Efficient Image Synthesis 

(Under the direction of F. P. BROOKS, JR.) 

Abstract 

This dissertation embodies six individual papers, each directed towards the efficient 

synthesis of realistic, three-dimensional images and animations. The papers form four 

major categories: ray tracing, animation, texture mapping, and fast iterative rendering. 

ill 

The ray tracing papers present algorithms for efficiently rendering static and animated 

scenes. I show that it is possible to make use of coherence in both object space and time to 

quickly fmd the first intersected object on a ray's path. The result is shorter rendering 

times with no loss of quality. 

The first animation paper considers the needs of a modern animation system and 

suggests a particular object-oriented architecture. The other animation paper presents an 

efficient and numerically stable technique for transforming an arbitrary modeling matrix 

into a fixed sequence of parametric transformations which yield the same matrix when 

composed. The result is that hierarchical, articulated models may be described by the 

human modeler or animator with any convenient sequence of transformations at each node, 

and the animation system will still be able to perform parametrically smooth motion 

interpolation. 

The fast rendering paper describes a system built to allow quick modification of object 

surface description and lighting. I use a space/time tradeoff to capitalize on the constant 

geometry in a scene undergoing adjustment The result is a system that allows relatively 

fast, iterative modification of the appearance of an image. 

The texture mapping paper offers a refmement to the sum table technique. I show that 

the fixed, rectangular filter footprint used by sum tables can lead to oversampling artifacts. 

I offer a method which detects when oversampling is likely to occur, and another method 

for iteratively refming the texture estimate until it satisfies an error bound based on the 

oversampled area. 

Together, these six papers represent a collection of algorithms designed to enhance 

synthetic images and animations and reduce the time required for their creation. 



lV 

Acknowledgements 

I gives me pleasure to thank my advisor and chairman, Dr. Frederick P. Brooks, Jr., 

for helping me make this dissertation a reality. Dr. Brooks applied a sure touch at critical 

moments in the development of much of this dissertation, and I hope that some of his clear, 

direct style has influenced my own. 

I also owe thanks to the other members of my committee. Dr. Steven Pizer helped me 

understand some of the implications of matrix decomposition. Dr. Steven Weiss offered 

steady encouragement and help when preparing this document for the graduate school. 

Dr. Henry Fuchs was always enthusiastically supportive of new ideas, and helped keep my 

imagination stirring. Dr. Turner Whitted taught me through words and example the 

precision and depth of thought that characterize a dissertation, and then made sure my work 

reached those standards. 

The papers in this thesis were written mostly as a result of independent research while I 

studied at UNC-Chapel Hill. I never would have had the freedom to pursue this work 

without the help and support of two research directors, who tolerated and even encouraged 

many of my offbeat ideas over the years. For this and more, I thank Dr. Henry Fuchs and 

Dr. Frederick P. Brooks, Jr. 

I would like to thank Lakshmi Dasari, who put up with my keeping a lot of strange 

hours when several of these projects were hatching. Lastly, I want to thank my parents. I 

owe them much, for they gave me a love of knowledge and creativity, and the strength to 

pursue both. 



v 

Table of Contents 

Introduction ................................................................. 1 

Space Subdivision for Fast Ray Tracing ............................ 8 

Adaptive Precision in Texture Mapping .......................... 17 

Supporting Animation in Rendering Systems ................... 28 

Template Parameterization for 3d Pose Interpolation ....... 35 

Late Binding Images .................................................... 50 

Spacetime Ray Tracing for Animation ............................ 74 

Summary ................................................................... 86 



1 

Introduction 

This dissertation contains six papers written over the course of five years. Each paper 

addresses a topic within the field of computer graphics; the emphasis is on efficient realistic 

image synthesis and animation. My goal has been to develop algorithms to enhance the use 

of computers to construct realistic images and animations of three-dimensional scenes. 

In this introductory chapter I will discuss the problems addressed by each paper. To 

place the papers historically, I will consider the central issue of each paper and review the 

state of the art relevant to that issue at the time the research was begun. Successive 

chapters present the papers. A critique and discussion of each paper appears as the last 

chapter. 

Space Subdivision for Fast Ray Tracing 
IEEE Computer Graphics & Applications, vol. 10, no. 4, October 1984 

The central issue addressed by this paper is the reduction of rendering time of a ray

traced image. The paper implicitly assumes that the database may be described by a 

collection of objects frozen in time. 

The emergence of ray tracing as a popular and powerful tool for image synthesis began 

with [Whitted80]. That paper presented a recursive scheme for estimating the light incident 

upon and emitted from various surfaces. 

The primary expense in the algorithm as presented there is determining which object is 

the first along a particular ray's path. An exhaustive approach intersects every ray with 

every object, and then searches among all intersected objects for the intersection nearest to 

the ray origin. This approach can quickly grow very expensive. Consider a situation 

where every intersection spawns s shadow rays (one to each of slight sources), one 

reflection ray, and one transparency ray. If we follow these rays for g generations, then r, 

the total number of rays traced per screen sample will be r = 1 + i (s + 2) 2 i -l . If we 
i = 1 



test each of these r rays against b objects, then we will have to compute rb intersections 

between rays and objects for every screen sample. As the expression for rb shows, there 

are many ray-object intersections in the exhaustive approach. 

The biggest objection one may raise to this technique is that many of the ray-object 

intersections are "clearly" superfluous - if an object of small spatial extent is far from the 

path of the ray it should never be tested. There is no check in the exhaustive algorithm for 

this sort of optimization. 

In December 1983, when this work was begun, existing approaches to ray tracing 

acceleration used nested hierarchies of bounding volumes [Rubin&Whitted80]. My 

perception in 1983 was that ray tracing was considered a laboratory oddity- the power of 

ray tracing to produce sophisticated images was accepted, but many people found it 

prohibitively expensive for commercial production or other routine rendering. I felt that in 

order to bring ray tracing into the realm of everyday rendering techniques, we needed a 

fast, automatic algorithm to find the first intersection between a ray and the objects in the 

database. I found that a spatial data structure provided such a scheme, and reported the 

results in Space Subdivision for Fast Ray Tracing, one of the first papers to explicitly 

describe a software algorithm to accelerate ray tracing. 

The paper proposes building an auxiliary octree data structure on the space of the 

objects being rendered. Rays are traced by following their progress through this data 

structure; only objects in cells entered by the ray are examined for intersection. Typically 

many ray-object intersections may be avoided in this way. As a result, the total cost for 

generating an image is reduced to a fraction of the exhaustive approach. 

Adaptive Precision in Texture Mapping 
Computer Graphics, vol. 20, no. 4, Proc. Siggraph '86, August 1986 

The central issue addressed by this paper is how to efficiently render a texture-mapped 

image using the sum-table technique, while avoiding the oversampling artifacts to which 

sum tables are prone. 

When this work was begun in February 1986, the two most popular mechanisms for 

efficient texture mapping were the mip-map [Williams83] and the sum table [Crow84]. 

Both algorithms extimated the texture on a surface seen by a pixel by using a space

invariant box ftlter derived from the texture-space image of the pixel. 

2 
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A mip-map is a pyramid of images of decreasing size. Each level in the pyramid 

contains a low-pass filtered version of the level below, saved at some lower resolution than 

the lower level. The bottom-most level is the original texture image; the top-most level is a 

single sample representing an "average" value for the entire texture. In practice, texture 

sampling is limited to a square region, derived from the texture-space image of the pixel by 

a heuristic rule [Heckbert86]. 

A sum table is a single table, equal in width and height to the original texture, but 

typically many bits deeper. In a typical sum table, each element contains the sum of all 

original texture samples below and to the left of that element. Four table accesses, three 

additions and a division can yield the box-filtered average value of the texture within any 

rectangle. In practice, the rectangle is usually chosen to be the smallest oriented rectangle 

enclosing the texture-space image of the pixel. 

Because the sum-table technique can average rectangles while mip-maps are limited to 

squares, I felt that sum tables were the best efficient texturing method available when I 

began work on a new rendering system in early 1986. After generating some images I 

noticed that although my texturing was acceptable, there were distinct artifacts in regions of 

high complexity. In particular, the textures became blurry more quickly than I expected 

I studied the problem and realized that sum tables as used at the time involved two 

important assumptions: a box filter was a good filter for texture sampling, and the 

bounding rectangle of a pixel's texture-space image was a good approximation of that 

image. I felt that although a box filter was not ideal, it was acceptable for most work, and 

probably not the source of the artifacts I saw. But the second assumption would lead to 

oversampling of the texture function, which could well result in blurry textures. I decided 

to try to reduce or eliminate this oversampling. 

In the paper I examine the errors introduced by estimating the texture within the 

bounding box of the pixel's texture space image (instead of the image itself). I show that 

this approximation can introduce measurable error when estimating the average texture 

within the pixel, and thereby cause visible artifacts. To alleviate the problem, I proposed 

using another table to hold the local variance of the texture. When variance is low, the 

bounding-box approximation is accepted. But when texture variance is high, an iterative, 

recursive algorithm is called to refine the region of texture space sampled for that pixel. 

The essence of the idea is that standard sum tables can provide the average value within 

any oriented rectangle in texture space. To find the average value in a more general region, 

I find the average within the region's bounding rectangle and then remove smaller 

rectangles that lie outside the region butwithin the bound. 
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Results show that the algorithm indeed works harder than sum tables only where the 

texture is complex, that the extra effort is proportional to the local complexity of the texture, 

and the images generated by this method are superior to those produced with standard sum 

table techniques. 

Supporting Animation in Rendering Systems 
CHI+GI Workshop on Rendering Algorithms & Systems 

Toronto, April 1987 

This paper shows how to build an animation system that can support interactive 

animation design, high-quality rendering, and a database of complex objects. 

I present an object-oriented architecture that meets the criteria The animation database 

is controlled by a manager that is responsive to a small set of messages, which specify the 

parameters that describe that object's characteristics and motion. Animation specification 

and rendering are each accomplished by communicating with the animation manager. 

I also propose a technique for implementing object-oriented importance sampling, 

particularly well-suited to the rendering architecture described in the paper. 

Template Parameterization for 3d Pose Interpolation 

A popular and common feature of many animation systems allows a user to begin the 

process of character animation by designing an articulated model described by a hierarchical 

tree structure. Keyframes may be explicitly or implicitly built by specifying a set of 

transformation parameters at each node of the tree. Interpolation of keyframes is then 

reduced to interpolation of the parameters. 

In this article I show that two conditions must be met for this approach to succeed: the 

trees at the two keytimes must have the same topology, and the transformations within 

corresponding nodes must contain the same transformations in the same order. The first 

condition is easy to satisfy; the latter is not. When I started to build a new animation 

system in June 1987, I knew of no existing systems that could reliably convert an arbitrary 

sequence of parametric modelling transformations into a fixed sequence (or template) 

whose parameters could then be interpolated. The result of this limitation was that 
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modelers were prohibited from using skew or differential scaling in their original model 

descriptions. I didn't want to be bound by these restrictions, particularly in a system of my 

own creation, so I set out to find a way to convert arbitrary transformation specifications 

into a fixed template. 

In the paper I propose the use of the Singular Value Decomposition algorithm to 

decompose a 4-by-4 modelling matrix into a sequence of mirror, rotation, scale, and 

translation matrices. The resulting sequence of matrices may then be parametrically 

interpolated to produce in-between poses. Since SVD can decompose any modeling 

matrix, the model designer is free to use any sequence of any transformations when 

preparing model descriptions for animation. 

Late Binding Images 
Submitted to IEEE Computer Graphics & Applications 

Many images require hand-tuning of light sources and surface parameters to meet 

technical and aesthetic demands. Light source color and placement, object color, 

transparency, and reflection co-efficients interact visually in complex ways; changing one 

feature often necessitates changes to the others. 

In January 1987 the medical applications group felt a need for a new rendering system. 

I realized that in the course of preparing a medical study, many of our images needed to be 

iteratively adjusted by the user, to find the proper balance of shading, transparency, and 

lighting. At the time, each change to these parameters required running the entire rendering 

system again, even though the viewing direction remained unchanged. I felt that we could 

save time by performing the expensive, view-dependent scan-conversion step once and 

saving the result in a file. Starting with that file, we could then iteratively adjust the 

lighting and surface properties of the rendered objects until the image was acceptable. 

By 1987 several techniques had been published for separating the steps of scan 

conversion and surface shading [Bass81], [Whitted81]. This allowed users to quickly 

change the appearance of objects, while paying only once for the relatively high cost of 

scan conversion. 

In this paper I describe such a rendering system which I built for medical applications at 

UNC-CH. The main points of the paper are a discussion of the implementation issues that 

arose when planning and programming the system, and a group algebra which unifies the 

system and provides a concise representation of its actions. 
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Spacetime Ray Tracing for Animation 
IEEE Computer Graphics & Applications, vol. 8, no. 3, March 1988 

This work was started in February of 1987. I wanted to produce an animated film, and 

I wanted to use ray tracing for rendering. At that time, the only algorithms for speeding up 

ray tracing were directed to the generation of single, static images. I could have applied 

such methods individually to each frame, but I wanted to include motion blur in my film. 

The only ways I could see to use existing techniques for motion-blurred animation seemed 

inelegant and difficult. 

I suspected that there was a clean algorithm for efficiently producting a piece of 

animation with ray tracing. I also wanted to capitalize on our knowledge of the motion path 

of each object to further speed up the rendering process. So I investigated algorithms that 

would use time coherence and motion path information to accelerate ray tracing for 

animation. 

The paper begins with an assessment of the two ray tracing acceleration techniques 

most popular at the time: bounding volumes and space subdivision. The analysis showed 

that the strengths and weaknesses of these two approaches were complementary. This 

suggested a hybrid algorithm, which combined features of both techniques. The result was 

a nested hierarchy of disjoint bounding volumes, whose density followed that of the 

database (any consistent measure of density could be used). 

Extended into a four-dimensional spacetime, this hybrid algorithm provided a 

framework in which individual rays of an animation could capitalize on the known motion 

path of each object in the database. An efficient bounding volume structure was built in 

spacetime that contained each object over the course of the animation. Use of this four

dimensional information was shown to reduce several important statistics in the ray tracing 

algorithm for rendering a complete animation, including the total number of ray/object 

intersections required. 
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Speed up ray-tracing techniques by reducing the number of time
consuming object-ray intersection calculations that have to be made. 

You'll be able to handle large databases considerably faster. 

Space Subdivision 

for Fast Ray Tracing 

Andrew S. Glassner 

University of North Carolina at Chapel Hill 

The most powerful general image synthesis method 
used today is referred to generically as ray tracing. Ray 
tracing was first described by Appe1 1 and later by 
Bouknight and Kelley 2 and Kay. 3 The algorithm used by 
most ray-tracing programs is described by Whitted. 4 

This paradigm is attractive because of its very elegant im
plementation and the wide range of natural phenomena 
it models. 

Although ray tracing as it stands is not the final word 
in image synthesis, it is probably the most realistic tech
nique we have today. This realism is further enhanced by 
the technique of distributed ray tracing described by 
Cook, Porter, and Carpenter. 5 Unfortunately, ray trac
ing is also very slow. Ray-tracing algorithms are famous 
for the large amounts of computer time they consume to 
create even one picture of moderate complexity. It is this 
slowness that prevents more people from using the 
powerful ray-tracing methods. 

Previous work in speeding up the picture-generation 
process has concentrated on screen-space solutions and 
hardware solutions. Roth 6 has described a method for 
examining a rough rendering of a scene and invesrigating 
those areas of the screen where additional work seems to 
be necessary. Ullner 7 describes hardware solutions that 
consist of multiple microprocessors in various configura
tions, with each processor handling a subset of either 
rays or objects. Both of these approaches use the basic 
ray-tracing algorithm as described by Whined and at
tempt to draw pictures faster by either running the 
algorithm in parallel or running it less often for a com
plete picture. 

A different approach toward speeding up the process is 
explored in this anicle: we decrease the time required by 
the algorithm to render a given pixel. To do this, we first 

need to determine what are the most time-consuming por
tions of the algorithm. 

Whitted reports that ray-object intersections can require 
over 95 percent of the total picture-generation time. A 
synopsis of the ray-tracing technique with a qualitative 
breakdown of where time is spent is also given in 
Glassner. 8 Kajiya 9 has shown, with a simple skeleton of 
the ray-tracing process, that these intersections comprise 
an "inner loop" of the algorithm. He demonstrates that 
each ray must be checked against each object in the scene 
so that the number of intersection calculations is linear 
with respect to the product of the number of rays traced 
and the number of objects in the entire picture. Doubling 
the number of objects in a scene (about) doubles the 
rendering time; doubling both the objects and the rays 
takes four times longer to render the image. 

Recent work has concentrated on the ray-object inter
section problem for various classes of objects (Kajiya 10•11 

and Hanrahan 12). These algorithms show that the in
tersection operation can require any amount of floating
point operations-from just a few to many thousands. 

If we wam to reduce the time spent on ray-object inter
sections, we have at least rwo choices. We can speed up the 
intersection process itself, possibly with specialized hard
ware. A.lternately, we can reduce the number of ray-object 
intersections that must be made to fully trace a given ray; 
this is the approach followed in this anicle. 

Overview of the new algorithm 

The new algorithm is based on a simple observation. To 
make this observation, let us divide the space in a three
dimensional scene into small companmems, keeping a list 
of all the objects that reside in each of these compart-

October 1984 0:-:'~·1716'84'li)Q(l.()OJ5$01.00 i9841EEE 
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ments. We can then speed up the ray·tracing process in the 
following way. 

Start a ray and determine in which compartment it orig
inated. Follow the ray and compare it against only the ob· 
jects it hits in that compartment. If one or more objects in 
the compartment are pierced, find the closest pierced ob
ject and return its color as the value ofthe ray. We are then 
finished tracing that ray, for we have found the first object 
the ray hit. If the ray does not hit an object in this com· 
partment, project the ray into the next compartment and 
repeat the process. 

If each compartment contains a small number of ob
jects, we can process that compartment quickly. If we're 
lucky and find right away that the ray has hit an object, we 
have only a small number of object intersections to pro
cess. lfwe're very unlucky and find the ray has hit nothing 
until we hit the world sphere (Kajiya 8 ), we are still better 
off because we probably have checked fewer objects than 
there are in the entire scene. Therefore, unless the 
overhead of getting from compartment to compartment is 
very high, we will always save time relative to intersecting 
every object in the entire database. 

Fortunately, a very good scheme for breaking up space 
into such compartments is available. This octree technique 
is described extensively in Jackins and Tanimoto 13 and 
Meagher. 14 An octree structure allows us to dynamically 
subdivide space into cubes of decreasing volume until each 
cube (called a voxel) contains less than a maximum num
ber of objects. Octrees are normally used to define the 
shapes of objects that are difficult to model with primitive 
surfaces. In that context, each cell of the tree is either 
occupied by that object, or it is empty. Each occupied 
cube may contain some information about color, density, 
or some other attribute of the object, but the cube itself is 
considered to be either fully filled by the object or empty 
of it. 

Here, we use each cell of the octree to hold a list, not a 
piece of an object. The list describes all the objects in the 
scene that llave a piece of their surface in that cell. 

Usually when we synthesize images we are interested 
only in the surfaces of the objects in our scene. The 
assumption is that the inside of a transparent or translu
cent object is either empty or else described by other, inde
pendently defined objects. For example, when we test a 
ray against a sphere, we care only about those points on 

Figure 1. Space subdivision. An object Is considered associated with 
a voxel if and only If some of the object's surface exists within the 
voxel. (a) shows an object not associated with the voxel; (b) shows an 
object that Is associated with the voxel; and (c) Illustrates the voxel 
within an object (the object Is not associated with the voxel). 
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the sphere where the ray pierces the sphere's surface. It's 
unimponant to know if a given point on the ray is inside or 
outside the sphere. Thus, for this algorithm, we subdivide 
space into an octree, associating a given voxel with only 
those objects whose surfaces pass through the volume of 
the voxel. See Figure 1. 

The next two sections of this article present the tech
niques central to the new algorithm. The first section 
describes the process of building and maintaining the oc
tree and a technique for obtaining fast access to any node. 
The second section describes the mechanism for finding 
the next node intersected by a ray when it has hit nothing 
in the current node. 

Octree building and storage 

The arguments for using octrees as the spatial compart
ments mentioned above are that octrees are well studied 
and understood and that they allow dynamic spatial 
resolution. Volumes with high object complexity can be 
recursively subdivided into smaller and smaller volumes, 
generating new nodes in the tree for only these new 
volumes. 

When a ray fails to hit any objects in a given node, it 
must move on to another node in space. As we will see in 
the next section, the algorithm works by finding a point 
guaranteed to be in the next node encountered by the ray 
and then determining the particular node containing that 
point. In this section we address the process of finding the 
node. 

A very economical octree storage technique has been 
described by Gargantini. 15 We use a slight variation here 
to speed up the time required to find a given node. 

The parent node (which just encloses the world sphere) 
is labeled node 1. When we subdivide a node, it passes its 
name as a prefix to all its children, which are numbered 1 
through 8, as shown in Figure 2. Thus, the eight children 
of the parent node are nodes 11 through 18. The children 
of node 13 are nodes 131 through 138, and so on. Now we 
need a way to address a node of a given name. 

If we subdivide the parent node twice, we find the larg
est node name possible is 188. Clearly, we don't wam to 
allocate 188 nodes when we start the program; for exam
ple, we might find that nodes 131-138 never need to be 
created. The dynamic resolution of the octree scheme sug
gests a dynamic allocation of memory, creating a new 
node only when we need it. But then we return to the prob
lem of finding a given node. If we just ask the operating 
system fDr a chunk of memory to be used when it's time to 
create (say) node 173, then how do we find node 173 later 
on? 

There are two extremes in the continuum of answers to 
this question. At one extreme we could create a table with 
an entry for every possible node name that contains that 
node's address. This possibility woutd require vast 
amounts of storage (more than for a straightforward 
eight-pointers-at-a-node scheme!), but it would also have 
the advantage of extreme speed in finding the address of a 
node with a given name. At the other extreme, we could 
create a large linked list of ail the nodes in the octree, 
which we would have to scan from the beginning each time 
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we want to locate a given node. This provision would have 
the advantage of requiring very little memory beyond that 
needed for the nodes themselves, but it would slow the 
operation to search the list each time we must look for a 
particular node. 

An attractive compromise is to mix·the two ideas-using a 
hashing scheme. We can hash the name of a node into 
some small number and then follow a linked list of all 
nodes that hash into that number starting at a given point 
in a table. By changing the size of the table, we can pick 
any point in the continuum described above. Thus we 
trade speed for memory consumption and vice versa. A 
very simple hashing function, which merely returns the 
node name modulo the table size, seems to work fine. 

Here we see the difference between the original number
ing scheme proposed by Gargantini and the one used here. 
Gargantini suggested numbering the nodes 0 through 7, 
which had the advantage of assigning an octal number to 
each node. However, consider the case of subdividing 
node 0: one of the nodes created would have the name 00. 
To a computer, the number 00 is the same as the number 0, 
and we would have no way of differentiating the two. 
Similarly, 005 would be the same as 05, and so on. A solu
tion to this problem would be to keep the name of each 
node as a character string. This would keep node 0 dif
ferent from 000, but the string representation is bulkier 
than an integer, as well as slower in comparing it against 
another of its own type. 

The modification presented here is to number the chil
dren from I to 8. Numbering the nodes this way loses the 
octal purity of the original scheme, but it allows us to name 
the nodes with numbers instead of character strings. Thus, 
node l could never be confused with node Ill, and 
similarly node 15 is distinct from node 1115. 

We can then find the name of a node containing a point 
(x,y,z) with the scheme presented in Figure 3. 

Once we have a node name, we must search through the 
appropriate linked list for its entry and associated object 
list. Clearly the fewer nodes there are to be searched 
through, the faster (on the average) we will find the node 
we're looking for. We can use another observation tore
duce the number of nodes stored as entries in the 
table/linked list structure by a factor of eight. 

Each time we subdivide a node (because it contains too 
many objects, or more precisely, too many surfaces), we 
create all eight children at once. When we want to allocate 
memory for these eight children, we can ask the memory 
allocator for one large block of memory big enough to 
hold all eight nodes. We then use the first eighth for the 
first child node, the second eighth for the second child 
node, and so on. Now we need to store only the first child 
in the hash table/linked list structure. The other children 
are easily found by adding the right number of node 
lengths to the first node's address; i.e., add one node
length for node 2, add two node lengths for node 3, and so 
on. This scheme is illustrated in Figure 4. 

As we subdivide nodes, we keep a record of the smallest 
node created anywhere in space. This record can just be 
the length of the side of the smallest node; we will see why 
we want this information when we look at the algorithm 
for moving the ray from voxel to voxel. 

October 1984 

11 

Let's now look at the structure of an octree node. It 
consists of four members: a name, a subdivision flag, cen
ter and size data, and an object-list pointer. The name is an 
integer that is the name of this node. The subdivision flag 
is set if this node has been subdivided. The center and size 
infonnation may be omitted to conserve memory space 
and derived on the fly from just the node name (this is 
another time-space trade-off). The object-list pointer 
points to the start of a list of integers in a dynamically 
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Figure 2. Space subdivision. (a) Subnodes are labeled 1·8; 
(b) a parent voxel passes its name as a prefix to Its 
children. 

LISTING l 

findnode(x,y,z) l 
node= l: 
WHILE ( node subdivided is TRUE ) I 

IF (x > node_center_x) 

ELSE 

IF (y > node_center_y) 
IF (z > node center_z) 

node ( node>'cl 0) + 6: 
ELSE node = [nodeo'clQ) + " 

ELSE 
IF (z > node cenrer_z) 

node = (nodeo'clO) + 8: 
ELSE node = (node 'clO) + <4: 

IF (y > node_center_vJ 
IF (z > node_centeT_z! 

node (node>',lO) + 5. 
ELSE node = \nOd£>''10) + 

ELSE 
IF (z 

ELSE 

>node center zl 
node -(node,~lo) 
nod<> = (node,<lO) 

+ i: 

+ 3: 

RETURN node ) 

Figure 3. Node·flnding scheme. 
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allocated array. The integer indicated by this pointer is the 
number of the first object in this node. Subsequent in
tegers continue to represent other objects, until some il
legal object number (say -1) is encountered, signalling the 
end of the object list for this node. 

Now we know how to generate the octree so we can easi
ly and quickly find a node of interest knowing only a point 
in the node. Let's now look at the process of deciding 
whether or not to subdivide a given node as we build the 
tree. 

What we're interested in doing now is looking at the list 
o( objects that have surfaces that pass through the parent 
node of the node under consideration. We will include 
each of these objects in the list of objects for this child if its 
surface also passes through the child's volume. When we 
have done this for each child, we can consider how many 
objects are contained in each child. If any child has too 
many objects (and we have room to create new nodes), we 
may then subdivide each overfull node recursively. 

The algorithm used to determine whether an object's 
surface passes through a voxel treats convex objects (par
ticularly spheres) with more efficiency than arbitrary ob
jects. 

In general, we intersect the object with each of the six 
planes that bound the voxel. Should any of these points of 
intersection lie within the square region of the plane that is 
the side of the voxel, the object is kept. Otherwise, some 
point within the object must be examined. If that interior 
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point is within the voxel, the object is kept; otherwise, it is 
discarded. A very efficient formulation of this algorithm 
for the special case of polygons is found in Sutherland and 
Hodgman. 16 

Movement to the next voxel 

Two important facts guide us in designing the algorithm 
to get to the next voxel. First, because the space is 
dynamically resolved when we build the octree, we don't 
know how large (or small) any voxel in space is with the ex
ception of the current one. The second fact is that the 
movement operation must be accomplished as fast as pos
sible. Certainly, the movement must be minimally fast 
enough that we don't lose the time we save by cutting 
down ray--object intersections by giving that time to voxel
movement operations. 

The general idea behind the voxel-movement algorithm 
is to find a point that is guaranteed to be in the next voxei, 
whatever its size. This point is then used to derive a voxel 
name (and its associated size and object list) according to· 
the schemes presented in the previous section. 

In the following, the term current node refers to the 
node that has yielded no intersections; it is the node we are 
leaving for greener pastures. We will refer to points on the 
ray being traced with the parameter r. The value oft in
creases as we move away from the origin, where t has the 
value 0. 

' NODE 23846 ' ' CHILO LIST 

' ' 
SIZE ' r -

' ' POSITION ' r -I ' ' FLAG ' ' ' I CHILDREN CHILD 0 

' ' CHILD 1 
' ' ' I 

CHILD 2 
' ' ' 

CHILD 3 

' CHILD 4 

' CHILO 5 
I 
I -1 

' ' !- -' ' ' 
,__ -

' I 
' ' ' ' ' I 

' I 
I I 

' I 

' I ' ' ' ' ' ' ' ' ' ' ' I 
' I 
' ' I 

TEP 1. HASH ' ' ' s ' (NODE NAME/10) AND STEP 2: FINO ENTRY FOR STEP 3: LOOK AT NODE 1 

LOOK IT UP !NODE NAME/10), AND DATA. GET ADDRESS OF 1STEP 4 GET LIST OF CHILOREN·i: 
IN HASH TABLE GET POINTER FOR NODE NAME START OF CHILD LIST. FOR THIS NODE. 

~-e~.~····~-"' o< •• -·,~·'">'--~-....-..,-· ·•-·.c~,~~· • '.0.~.,....,. .. ...,.,_.~....,._,.... "-'c-""'""''..; __ ;.,.;.,..;;;..;.;.,._~·', ,_. ~~""""""'"'··''-"'"~..,;>;,••<. • .•• " 

Figure 4. Sample hash table/linked list. Here, we want information tor node 23846. 
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Figure 5. To fi.nd the endpoints of the ray segment within a voxel we first intersect that ray with the six bounding 
planes of the voxel, noting the ray's t value at each intersection. 

We know that the voxel we want to examine next will 
contain points on the ray with t values greater than the ray 
may attain in the current node. Thus the first step is to find 
the largest value oft the ray may assume.while still in the 
current node. 

Let's designate this value oft as t +.We can fmd t+ by 
intersecting the ray with the six planes that bound the cur
rent voxel. • Two of these intersections give us bOunds on 1 

parallel to the x axis, two others parallel to they axis, and 
the remaining two parallel to the z axis. We can fmd t 
values for all six of these points as shown in Figure 5. Each 
plane is parallel to two of the three coordinate axes, a fact 
that simplifies its plane equation considerably. It is inex· 
pensive to intersect a ray with one of these "simple" 
planes because. it costs only one subtraction and one divide 
operation per plane. Note that the points describing the in· 
tersections of the ray with the planes of the voxel may lie 
far outside the volume of the voxel itself. But certainly 
some values of r will hold for all three ranges: these are ex· 
actly the values oft inside the voxel. The intersection of the 
three ranges of t yields those values of t that the ray may 
assume while it is inside the box. The value of t + is the 
value of the upper end of this range of t values, as il
lustrated in Figure 6. 

The resolution of space in the next voxel to be en
countered cannot be any finer than the fmest resolution we 
reached when we built the octree. Now we see the reason 
we kept a record of the minimum·sized voxel when we 
built the tree. Let us call the length of the side of this 
smallest voxel Minlen. 

Figure 7 illustrates that we can firid the next voxel by 
merely moving perpendicularly to the face of the voxel 
that contains t+. If t+ is on an edge, we must travel 
perpendicularly to both faces sharing the edge, and sim
ilarly we must travel in three directions if t + is on a comer
of the voxel. ~ese movement operations are trivial to 
compute and perfonn because each is perpendicular to a 
coordinate axis. We are guaranteed not to move outside 
the next voxel if we limit our movement to less than the 

• It is sufficient to intersect the ray with only four planes, but I suggest the 
additional code necessary to determme which four outweigh the advan
tages of eliminating two intersections. 
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x- x• 
X 

r y+ 
y 

I 
z- I z+ .. , z ' I • I 

FINAL 
t 

I 

r+ 

Figure 6. To find the values of t that a ray may assume 
within a voxel, we find the intersection of the three 
ranges determined In Figure 5. 

Figure 7. To find the next voxel in a ray's path, we find a 
point guaranteed to be In that voxel. We find that point by 
moving the distance Mlnlenf2 perpendicular to each face 
in which t + lies. 
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Table 1. Timing statistics for old and new ray-tracing algorithms. 

CHECKER· 
BOARDS 

AND BALLS SPIRALS 

NUMBER OF OBJECTS 53 401 

NUMBER OF RAYS TRACED 884.413 532 036 

CHILDREN PER VOXEL 8 20 

NUMBER OF VOXELS 101 169 

OLD NUMBER OF INTERSECTIONS 46.830.111 212.713.658 

NEW NUMBER OF INTERSECTIONS 6.149.864 13.789.597 

AVERAGE !NTERSECTIONS PER RAY 6 9 25 9 

OLD TIME rHR MIN) 822 8 53 

OCTREE BUILD TiME (HR MIN) o-o4 0 02 

~JEW TIME •HR-MIN) 2 23 0 40 

Figure a. Two perfectly reflecting, intersecting spheres sit be· 
tween a pair of checkerboards. 

Figure 9. Two inteiWeaving spirals of spheres. Note the shadows 
on the distant balls. 

20 

RECURSIVE GEODESIC SINC GREAT 
PYRAMID CUBE FUNCTION CIRCLES 

1.025 1.536 3.656 7 681 

352.322 597 245 -<148 177 466.524 

30 8 30 21 

473 2.889 2.897 3 009 

320.825.000 915.439. 104 1' 636.286.600 3.553.061 000 
rESTiMATEl (ESTIMATE! 

9.008 077 9 848.255 10.615 831 17.298 . .'343 

25 6 16.5 23 7 31 1 

17'41 42'12 .. sJ·oo "'"1 ~ 1 00 
iES'IMATEl rESTIM.t..TEi 

0 02 0 08 0 12 0 21 

2"25 ~ 49 3 22 .: ~j 
··-------

Figure 10. A procedurally generated model, similar to a kite 
designed by Alexander Graham BelL 

Figure 11. Two different (4, 4, 3), tilings of a geodesically pro
jected cube share the surface of a sphere. 
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minimum length of the side of that box. That minimum 
length is Minlen, as stored when we built the octree. 

Thus, if we travel some fraction of Minlen (say 
Minlen/2) from t + in each necessary direction, perpen
dicularly to the faces of the current voxel, we have a point 
within the next voxel encountered by the ray. 

As long as we know that the point we finally end up with 
is within this smallest possible voxel, we're guaranteed that 
it is within the smallest voxel on the other side whatever the 
resolution over there might be. For if the resolution isn't 
fine enough to have created this smallest voxel, it is cer
tainly within the volume of the voxel that would have been 
its parent, or the parent of that voxel, and so on. 

Timing and sample pictures 

The timing figures in Table 1 are based on statistics 
gathered from runtime profilers and timers. The timing 
statistics are used with code written in C, executed under 
the Unix operating system, and run on a Vax-11/780. 

All the measurements were made running the same 
code. The old technique measurements were made using 
the new technique and just one huge Voxel containing 
everything; thus there was a very slight amount of addi
tional overhead (less than 0.01 percent). The overall execu
tion time for the new algorithm is the sum of the octree
creation time and the image synthesis time. Of course, 
once the octree is built, multiple points of view can be 
generated without performing another setup. Note that 
due to the nature of naive ray-tracing techniques, the order 
in which the database is created (and thus the order in 
which the objects are intersected) can heavily influence the 
number of intersections necessary to render a complete 
picture with the traditional method. 

The code runs the reflection model introduced by Cook 
and Torrance.l1 All color calculations are produced on a 
16-wavelength visible light spectrum and are converted 
first to the CIE color coordinates XYZ and then to mon
itor RGB values when the final picture is displayed. 

Figures 8-13 show ray-traced pictures of increasing com
plexity. Each scene was illuminated with ICI standard il
luminant A. The light yellow, orange, and dark purple ob
jects posess the spectral characteristics of a desaturated
yellow gladiolus petal, bright orange gladiolus petal, and 
wine-colored gladiolus petal, respectively. The red objects 
reflect as red felt, and the green objects are leaf green. All 
these colors are found in Evans. !8 The blue backgrounds 
are different shades of Carolina Blue, the usual color of 
the sky in Chapel Hill. 

Figure 8 demonstrates reflection and shadowing in a 
standard ray-tracing test environment. Figures 9 and 10 
show shadowing from large numbers of spheres and poly
gons. 

Figure 11 was made by subdividing a cube and then pro-
jecting it onto the surface of a sphere. 19 Each resulting 
patch of the sphere was tiled with one of two patterns 
made of four triangles. 

Figure 12 shows several thousand spheres following the 
function sin (x) I x, or sine, rotated about they axis. 

~igure 13 is also a projected, subdivided cube. In this 
case, the tiling consisted of an over-and-under pattern, 

October 1984 

which was rotated and colored appropriately for each level 
of subdivision. The result is a set of bands that surround 
the sphere. 

Note that the octree needs to be created only once per 
static database. Thus we need only make the octree once to 
produce multiple pictures from different points of view. 
Another point to note is that most machines have a restric
tion on the number of digits we can store in an integer. If a 
node is heavily-populated and has used all the digit resolu
tion the machine can afford, the node name can be split in
to low and high fields with a separate integer for each. This 
step requires extra work, but shrewd programming can 
keep the extra computing down to only those nodes with 
expanded names. 

Figure 12. A large number of spheres follow the function 
sin(x)/x for several hatf.periods. 

Figure 13. A single overlap pattern recursively applied to a 
subdivided cube of frequency 3 and then projected onto a 
sphere. 
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Figure 14. It Is possible that a given ray may be tested 
against the same object several times. 

In contrast to the naive techniques, it is possible that a par· 
ticular ray may have to be tested against a single object sever
al times. This uncommon event is pictured in Figure 14. 

Conclusions 

We have seen that the infamous slowness of ray-tracing 
techniques is caused primarily by the time required for ray
object intersection calculations. We have also seen a new 
way of tracing the ray through small subsets of space at a 
speed that reduces the number of ray-object intersections 
that must be made, thereby cutting the overall ray-tracing 
time considerably. 

This new algorithm makes possible the ray tracing of com
plex scenes by medium- and small-scale computers. It is 
hoped that this will enable the power of ray tracing to be em
braced by more people, helping them generate pictures at the 
leading edge of computer graphics. • 
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Abstract 

We introduce an adaptive, iterative technique for ob
taining texture samples of arbitrary precision when synthe
sizing a computer-generated image. The technique is an 
improvement on the sum table texturing method. To mo
tivate the technique we analyze the error properties of the 
sum-table method. Based on that analysis we propose us
ing a combination of tables independently or together to 
obtain a better estimate, and analyze the error properties 
of such methods. We then propose a new technique for 
obtaining texture samples whose accuracy is a function of 
the texture and the image. As part of this technique we 
propose the use of an auxiliary table which contains local 
estimates of the texture variance. We show how the iter
ation of a given sample may be controlled by values from 
this table. We then analyze the error in this method, and 
present images which demonstrate the improvement. 

General Terms: Algorithms, Graphics 
Keywords: Textures, Sum Tables, Iteration, Adaptive Re
finement, Variance 
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1.0 Introduction 

Synthetic texturing was first introduced by Catmull 
jCatm75]. Since that time there has been considerable in
terest in the correct and efficient appiication of texture to 
surfaces. 

A popular use of texturing has been to apply color de
tail to surfaces. In this sense, textures have been used to 
simulate painted images jBlin76]. Another use of textures 
has been to simulate shape detail that would be inefficient 
or difficult to model directly, either through normal pertur
bation [Blin78), or displacement mapping [Cook84). 

Some techniques for generating textures that have been 
discussed in the literature are stored look-up tables [Blin76], 
procedural routines [Gard84], and multi-dimensional meth
ods [Peal85]. Texture has also been incorporated into syn
thesized images as a post-process, either to enhance the 
understanding of shapes [Schw83], or to generate special 
effects [Perl85]. 

Many image synthesis systems build an image by ren
dering pieces of surface (such as a polygon) one at a time. 
The pieces may be combined with previous pieces as they 
are rendered in a Z-buffer [Suth74) or an A-buffer [Carp84). 
Alternatively, entire images may be merged after rendering 
[Port84], [Duff85]. In all of these schemes, the texturing 
process is usually one of inverse mapping [Feib80]. 

The problem of texturing may be expressed in many 
ways, with varying degrees of theoretical and practical con
siderations. A popular model which is theoretically incom
plete but often visually acceptable is to assign a texture 
value to a pixel based on the average value of the texture 
within the surface region seen by that pixel. This is the 
model we use in this paper. 

In general, a pixel may be considered to be a small 
window looking onto a surface. When texture is applied 
to that surface, the inverse viewing transform is invoked to 
find the projection of the pixel onto the surface (in practice, 
we usually project only the four corners of the rectangular 
pixel). We now want to know where those surface points sit 
in the texture. Often, the axes of two-dimensional textures 
are referred to as ( u, v). These four ( u,v) pairs (one for each 
pixel corner) then describe a quadrilateral in that table. 
If we are rendering a very warped surface, it is possible 
that this quadrilateral will not be convex; in such a case we· 
usually use the convex hull for the rest of the process. We 
then find an average texture value inside that quadrilateral. 
This average value is returned to the renderer as the average 
particular property of that surface seen from that pixel. 



In [Will83] Williams described the mip map, which pre
computed averages of square regions of texture at a variety 
of different resolutions. In !Crow84] Crow described the 
sum table, which can provide the average value in any rect· 
angle oriented parallel to the texture axes. The sum table is 
usually used to find the average texture value in the small
est oriented rectangle enclosing the mapped pixel. The tex
ture value returned by a sum table is usually more accurate 
than that from a mip map, due to its ability to sample a 
region that more tightly encloses the texture-space image 
of the pixel. Sum tables have been studied in the field of 
probability theory as joint cumulative probability distribu
tion funetions on two variables [Ross76j. 

Both mip maps and sum tables provide a great speedup 
over direct averaging for every pixel, especially when the 
texture area covered by the pixel is large. Although sum 
tables are superior to mip maps, they can still present arti
facts. In particular, texture outside the pixel but within the 
enclosing rectangle is included in the average. It is possi
ble that the area inside the pixel is very small compared to 
its bounding rectangle; thus texture from outside the pixel 
may dominate the final average. If this extraneous texture 
contributes substantially to the final average, the texture 
value applied to a pixel may be substantially wrong. 

The texture-sampling problem can be expressed math
ematically by writing the average value g as a nonlinear 
convolution of a filter kernel h with a texture function f 
[Andr77]. If we knew the correct filter to apply to the 
texture for a given sample, we could simply convolve the 
texture and the filter to obtain: 

""'''" ~ jjh(x- <,y-")!(o,")dod" 

The assumption behind sum tables is that the filter h can 
be approximated by a unit-height filter which is 1 inside 
the bounding box of the texture-space image of the pixel, 
and 0 outside of that box (see Figure la). 

Figure 1 

(a) The filter used in 
rectangular sum 
tables has unit height 
over the bounding 
box of the pixel's 
texture-space image. 

(b) We suggest a bener 
filter would have unit 
height only over the 
texture-space pixel 
itself. 

In this paper we present an .improvement on the sum 
table technique which allows us to compensate for errors 
that arise from the inclusion of texture which lies outside 
the pixel. We will give methods to construct a filter which 
is 1 only inside the transformed pixel, and 0 everywhere else 
(see Figure lb). Our conjecture is that this filter will pro
vide superior results over the standard sum table bounding 
box filter. We present methods for obtaining this improved 
filter to different degrees of precision. Our technique is also 
iterative and adaptive, allowing us to perform only as much 
extra work as the image requires. 
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2.0 Terminology 

When we refer to texture space, we mean that co
ordinates are to be interpreted as positions in the texture 
function. If the function is two dimensional, we call the 
axes u and v. When we transform a screen pixel into a cor
responding quadrilateral in texture space, we call the new 
quadrilateral the pixel's texture-space image. The convex 
hull of this quadrilateral we will call the inverse-mapped 
pixel, or for convenience simply the mapped pixel. The four 
points that comprise a mapped pixel may form a quadrilat
eral, triangle, line, or single point. For simplicity, we will 
call the shape formed by a mapped pixel a general quadri
lateral. 

For a given region R in texture space, we will designate 
its area by Ra., the sum of all its values (its integral) by R:r;, 
and its average value Rr:./ Ra. as Rv. 

We will sometimes illustrate texture operations by de
termining a color for a pixel, but the texture may actually 
be supplying any surface parameter. When we do speak of 
color from textures, we imply that three texture tables are 
accessed simultaneously (holding the red, green, and blue 
components of the texture color). 

3.0 Fixed Polygon Approximation 

When we build a sum table, each entry receives the 
summation of all the values in the original texture within 
some fixed region, oriented with reference to that entry. 
The traditional region used in a sum table is a rectangle. 
In a rectangular sum table each table entry contains the 
sum of the texture values between its corresponding posi
tion in the texture and the texture origin. We may eX· 
tend the utility of the sum table by integrating under other 
shapes. The sum table is valuable because of its ability to 
provide the average value under a fixed region of variable 
size and position. However, the orientation and shape of 
the region must remain fixed throughout the table. Thus, 
we may quickly find the average value within any fixed re
gion with a sum table, but each change in the desired shape 
or orientation of the region will require a new table. We 
will call the integration region provided by a sum table that 
table's fundamental region. Note that the region we inte
grate under to build a sum table is of the same shape as 
the fundamental region provided by the table. 

The values returned by a sum table may be composed 
with one another to create an average value for a region 
with a shape other than the table's fundamental region. 
This may be achieved with simple linear combinations of 
the values returned by the table and the areas of the queried 
regions. Figure 2 shows an example of finding the average 
value in the region bounded by a letter E in a sum table 
with a rectangular fundamental region. The desired region 
is E, the enclosing rectangle is R, and the extra spac~ are 
A, B, and C. \Ve can express E~, the average value Ill E. 

E _ Er; = Rr; - A:r; - Br:, - Cr; 
v - E, Ra.- A... Ea. Ca. 

which may be generalized as 

" Rr:;- L (region,)E 
Ev = ---''~-c'~---

R,- t (region;)a 
•=I 
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We will investigate a variety of techniques for finding 
the average value in regions other than a table's fundamen
tal region. To compare these techniques it is helpful to have 
a measure of how much error may exist in the final value. 
To compare these different techniques we use the relative 
error measure: 

_ 1 desired value- obtained value I 

€relative - I desired value : 

It is a bit inore difficult to decide what we ought to 
measure. It would be nice to include the texture data itself 
in our comparison of texture estimation schemes. However, 
the only aspect of the different techniques that remains un
changed over different textures is the area averaged by that 
technique for a given mapped pixel. Thus, our measured 
values will be the area we want in our final region (whose 
contents are averaged to obtain a final value), and the area 
of the region we actually get from each technique. 

Let us first analyze the area errors from the rectangu
lar sum table. Figure 3a shows a screen pixel which has 
mapped into a diamond in texture space. The bounding 
box encloses twice as much area as the interior of the dia
mond. Let us call the side of the bounding box L. Then 
the length of one side of the diamond is L..fi/2, so the di
amond's total area is £ 2 /2. The relative area error in this 
case is 

I 
£2/2 ~ £2 I 

f~ecta.ngle-tab/e = I £Z 12 I = 1 

One solution to this problein is to augment the rectangular 
sum table with a diamond sum table. This is simply a 
rectangular sum table built at a 45"' angle relative to the 
standard rectangular sum table. When this combination 
is presented with a mapped pixel, based on the geometry 
of the pixel we determine which of the two tables to use 
for the texture estimate. Consider this combination of sum 
tables applied to Figure 3b, which shows a rectangle canted 
at a 22.5° angle to the table sides. We want the area inside 
the rectangle; this is the area of the bounding box minus 
the four outer triangles: 

des1red area= L - 4 - -L X -L = -L . 2 "1'(3) '] s, 
L2 4 4 8 

(5/8)L 2 
- L2

1 3 
fdia.mond-tab/e = (5/ 8)£2 = 5 

We can easily combine elements from a 
sum table to find the average of a shape 
other than the table's fundamental region. 

Figure 2 
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For comparison with the other techniques analyzed in 
this paper, let us find the relative error of the ·worst cases 
for these tables. Figure 3c shows the worst case for the 
rectangular table (a thin quadrilateral at 45"), and Figure 
3d shows the worst case for the combined tables (a thin 
quadrilateral at 22.5°). Under the combined tables, if the 
mapped pixel's bounding box is not square, we call the 
shorter side Land the longer side nL. The respective errors 
are: 

IL- L'l frecta.ng/e = 
1
--L- = ]1 - £] 

freda.ng/•-o~-diamand = I nL :Ln£
2

1 = II- Ll 
Note that the errors in the worst case are the same, so 

the addition of the diamond table hasn't really earned us 
anything in generaL 

We have just seen one approach to improving estimates 
provided by a rectangular sum table: maintain a table with 
a different fundamental region and use it where the rect
angular table's estimates would be at their worst. Another 
way to improve a texture estimate is to remove regions 
of texture we don't want included in our sample. We are 
not limited to a rectangular fundamental region for these 
subtracted regions. If we maintain a S£:Cond table with a 
different shape, we may find it easier to remove unwanted 
areas. 

(a) A bad case for 
rectangular sum tables. 

(b) A bad case for combined 
rectangular and diamond 
tables. 

(c) A worst case for 
rectangular sum 'tables: 
a degenerate quadrilateral 
at 45 degrees. 

(d) A worst case for combined 
rectangular and diamond tables: 
a degenerate quadrilateral 
at 22.5 degrees. 

Figure 3 
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Let us choose triangles as the fundamental region for 
such an auxiliary sum table. Recalling the above state
ments on sum tables, we may pick any fixed shape of trian· 
gle we like, but we may only have one such shape per table. 
Let's choose 45° right triangles, with the sides adjacent to 
the right angle lined up parallel to the sides of the sum ta· 
ble. It may appear that we need four sum tables, one for 
each orientation of the right angle. However, we can get by 
with just two triangle tables and the rectangle table. The 
trick is that when we want a triangle we don't have we can 
find its bounding box and subtract the triangle we do have. 
The ability to remove these triangular regions allows us to 
draw a generalized octagon around a mapped pixel, and 
obtain the average within this octagon, as shown in Figure 
4a. 

The worst case for the rectangle-plus-triangles scheme 
is when the sides of the mapped pixel make 22S angles 
with the sides of the bounding box. Figure 4b demonstrates 
the degenerate form of this worst ca.se, whose error may be 
expressed a.s: 

. _lnL- (nL' -z(tL'))I-1 , 'I 

€t~•"ngl~ -~ nL - 1- zL 

(a) A general case. (b) A worst case: all 
triangles are 45-45-90. 

Mapped pixels approximated by 45 degree octagons. 

Figure 4 

This error is still linear in L, but grows half a.s quickly 
as for the combined rectangle-or-diamond table error. 

We might want to improve our texture estimate further 
by iteratively removing more triangles of smaller size from 
the unwanted region. However, we would need to know 
when to stop. We would also like to be able to stop as 
soon as practical; that is, remove no more regions than the 
image and the texture require to provide acceptable results. 
In the following section we examine a method to provide a 
stopping point for such an iteration. 

We should also mention that one can interpolate to 
sub-table values in the sum table, using techniques such as 
bilinear interpolation. Indeed, this interpolation is required 
to generate alias-free images. It does not save us from the 
kinds of oversampling errors mentioned above, however, un
less carried to an extreme (as briefly discussed in Section 5). 
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4.0 Estimation of Local Texture Complexity 

We have seen that we can improve the texture esti
mate (or at least the area sampled) by iteratively removing 
extraneous regions from the first approximation made with 
the bounding box. However, we noted that a stopping point 
is required that will enable us to stop iterating when the 
sampled value is sufficiently accurate for that pixel. 

To achieve this goal we create a new table: the vari
ance table. Th,; variance table contains a local estimate of 
the variance of the texture at each texture position in the 
table. For a color texture, we can estimate local variance 
by looking at the 3 x 3 neighborhood around each texture 
entry, finding the mean color (r,g,b), and computing: 

est. variance= 
,t, [r,,- t)' + (g,- g)'- (b,- b)'] 

8 

To use the variance table, first convert it into a rectan
gular sum table. \Vhen a pixel is mapped into image space, 
we estimate the variance in that pixel before computing the 
texture value. We estimate the average variance by finding 
the total variance inside the bounding box of the mapped 
pixel and dividing by the area of the bounding box. 

Using this technique, we can find an est. -~te of the 
average amount of high-frequency information mside the 
mapped pixel, and use that information to control how 
much work we need to do to get a good texture estimate. 
Figure 5 shows a sample texture (before conversion into a 
rectangular sum table), along with some sample mapped 
pixels. Note that mapped pixel A is in a region with no 
local variance; the average value inside the bounding box 
is exactly the same as the average value inside the mapped 
pixel. In this case we should do no more work than that in
volved in looking up the bounding box. However, mapped 
pixel 8 is in a very busy area. We would like a very careful 
estimate of the area inside the mapped pixel in this case. 

In the next section we will show how to use the es
timated variance to control the accuracy of the sampled 
pixel. 

We can approximate A coarsely, but we 
will want a very careful estimate for B. 

Figure 5 

5.0 Adaptive Polygon Approximation 

In the texturing operation we desire an estimate of the 
average value within a genera! quadrilateral. One way to 
derive this estimate is to approximate a non-rectangular 
shape with rectangles. There are at least tWo ways to do 
this: additive and subtractive synthesis. We will briefly 
discuss additive synthesis, and then focus on subtractive 
synthesis for the remainder of this paper. 
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The image of the pixel in texture space is usually some 
form of quadrilateral. This quadrilateral- cmild be scan
converted in texture space, creating a set of spans defined 
by one constant co-ordinate and a pair of the other co
ordinates defining the endpoints. Each such "scan line" can 
be looked up in the sum table. This would require one sum 
table access for a.s many lines as one cares to generate. If 
the quadrilateral is enclosed in a box with height L, this 
would require L table lookups. Alternatively, one may ap
proximate the actual region with a set of smaller rectangles. 
Let us use K rectangles and apply them to the worst case 
(Figure 4c). Each rectangle would beL/ K high by nLjK 
wide. Thus, the error would be 

1nL-K(f?-x"L)I I £1 
fa.ddititJe-synthesis =! nL K ·1 = ~1- J( (1) 

Let us now look at subtractive synthesis. We will call 
the area within the quadrilateral representing a mapped 
pixel the internal region, while the total area outside the 
quadrilateral but within the bounding box is the external 
region. We may obtain an estimate of the average value in 
a general quadrilateral by first estimating the average value 
in its bounding box, and then removing rectangles from the 
exterior region. We call each removed rectangle a bite. 

To maximize the benefit of removing bites from the 
exterior region we should insure that we remove the largest 
possible bite remaining at each step. We must also be able 
to identify this largest bite quickly and efficiently, since it 
is an operation we may perform many times for every pixel. 

Bite identification is a two-step process. The first step 
partitions the exterior region into a set of geometric primi· 
tives, or fragments. The second step finds the largest avail· 
able rectangular region and removes it from the set. The 
first step is performed once per pixel, while the second step 
is executed once each time we want to refine our texture 
estimate for a given pixeL 

We chose rectangles and right·angled, table·aligned tri
angles for the fragments. These shapes are attractive be
cause the area of their largest bite is easy to compute, and 
their extents require the storage of only four co-ordinates. 
The largest bite in a rectangle is the entire rectangle, and it 
may be stored by just its two diagonal corner points. The 
largest bite in a triangle is the rectangle with one corner 
at the right angle and the other at the midpoint of the hy
potenuse, and it may be stored by its right-angle vertex 
and two side lengths. When a rectangle is removed it is 
simply deleted from the set. When a triangle is removed 
it is deleted from the set, and the two smaller remaining 
triangles are added, as shown in Figure 6. 

When we take a bite out of a triangle, we remove the 
largest rectangle it encloses. Two smaller triangles 
remain. 

Figure 6 
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We have developed an iterative technique that parti
tions the exterior region into rectangles and triangles. At 
several points in this approach we need to find the orien
tation of a point with respect to a line. We can find which 
side of the line the given point is on by examining the sign 
of the line equation when solved for the point. We can com
pute this efficiently for a point A and a line from PO to Pl 
by finding the sign of 

d ~ (PI, -PO,)( A,- PO,)+ (PI, -PO,)(PO,- A,) 
We first tag each point of the quadrilateral with a bit 

field indicating whether it lies on each of the four edges or 
its bounding box (points on a comer are marked by both 
edges). We look for three special cases before proceeding 
farther. Special case 1 holds if no points are corner points; 
then we must have the case illustrated in Figure 7. Special 
case 2 holds if all points are corner points; then the quadri
lateral is a rectangle or a single point, and we have one of 
the two cases illustrated in Figure 8 (either way there is no 
exterior region to be partitioned). Special case 3 holds if 
we only have corners on a diagonal, and the other points lie 
along this line. We check for this case by first looking at all 
the cOTnern; if we only have diagonally opposite corners we 
then find the sign of the distance of the other two points 
from that line. If the sign of both distances is 0, then they 
all lie along a line, and the partitioning is as illustrated in 
Figure 9. 

If all 4 corners of the mapped 
pixel are on the edges of the 
bounding box, then the pixel 
must have this form: a right 
triangle in each corner of the 
bounding box. 

Figure 7 

If all four corners of the pixel are on 
the comers of the bounding box, there 
are only these two situations: 

(a) when the mapped pixel is a 
rectangle with non· zero area. 

(b) holds when the mapped pixel 
degenerates into a single texture point. 

Figure 8 

\Vhen the mapped pixel 
is a degenerate line 
across the diagonal of 
its bounding box we 
panition the bounding 
box into two triangular 
regions of equal size, 
indicated A and B. 

Figure 9 
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L'"; ·«d---g~enerated 
fragment 

If the 2-span forms a diagonal of the bounding 
box we examine a third point (A); if possible this 
point is chosen to lie off the line formed by the 
2-span. Based on the direction of the 2-span 
and the postition of A, we can tell which triangle 
to create as a fragment. 

(a) Figure 10 

D 
If the 2-span travels from edge to edge, then it 
must cut off a comer. We can deduce from the 
rules that created the 2-span that the rest of the 
polygon must lie away from that comer. We thus 
create the fragment triangle between the corner 
and the 2-span. 

(b) 

sl =sign of distance from (E.T) to A 
s2 =sign of distance from (T,G) to A 

"'T~:r s3 = sign of distance from (UL,LR) toT 

if (s3 > 0) then 

if ((sl = 0) AND (s2 = 0)) then 

else if ((sl <= 0) AND (s2 <= 0)) then 

else 

if (( sl = 0) AND (s2 = 0) AND (s3 != 0)) then 

else if ((s 1 > 0) AND (s2 > 0)) then if (s3 != 0) then 

else * An asterisk indicates this partition is 
complete at this step and no funher 
spans should be processed 

LL Gl LR 

When we process a 3-span, we need a variety of values to help us create the fragments. We compute 
the sign of the distance from the middle point of the 3-span (denoted T) to each of the two corners not 
included in the 3-span. We also want to know if the fourth point A is on the same side of both segments 
of the 3-span. To this end we compute lhe distance from A to each of the two line segments. We then 
process the 3-span as shown above. The same process is followed for 3-spans on the other diagonal, 
with appropriate re-labelling. On each partitioning diagram we show the location of the fourth point A, 
determined by the algorithm, to show how the convex hull is automatically determined as we process 
the span. 

Figure 11 
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If none of these special cases holds, we p2.rtition the 
region with an iterative procedure. We start with a corner 
point and fix a direction to pick up the remaining points 
(clockwise around the original pixel works fine). We then 
look at the edge information for next point around the 
quadrilateral. 

If this second point is on an edge, we call this pair of 
points a 2-span. We pick one of the other two points as an 
auxiliary point and call it point A; if possible, we pick A to 
lie off the line formed by the 2-span. We then find the sign 
of the distance from this point to the line formed by the 
2-span. If both points of the 2-span are corner points, then 
we create partitions as shown in Figure lOa, otherwise we 
create partitions as shown in Figure lOb. 

If this second point is not on an edge, then we examine 
the next point in turn. If this third point is on an edge, 
we call the trio a 9-span, and A is assigned the remaining 
point. If the first and last points of the 3-span are corners 
we create partitions as shown in Figure 11, otherwise we 
re-label the points as shown in Figure 12 and then create 
the partitions shown in Figure 11. 

If this third point is not on an edge, we then take the 
fourth point and call the quartet a 4-span, and partition it 
as shown in Figure 13. 

G G 

[J '[J, D 
G G 

If the endpoints of a 3-span are not comers, 
then we label them according to these conven
tions and use the algorithm of Figure 11. 

Figure 12 

A 4-span necessarily spans opposite 
diagonals of the bounding box. If 
both of the other points are on the 
same side of the diagonal we parti
tion the box into these 6 fragments. 

If the two non-corner points in a 
4-span are not on the same side of 
the diagonal, then we derive the 
convex hull and partition the 
regions outside it into 6 fragments 
using this scheme. 

Figure 13 
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If the point at the end of the most recently classified 
span is not the same point we started with, we use last 
that point as the start of a new span and continue walking 
around the points of the quadrilateral. When we return 
to our starting point, we will have walked around the en
tire outside of the mapped pixel, partitioning the region 
between its convex hull and its bounding box into triangles 
and rectangles. The partitioning algorithm is summarized 
in the Appendix. 

We are then prepared to remove bites from the external 
region, as guided by this partitioning. The process is reca
pitulated in Figure 14. Figure 14a shows a mapped pixel, 
14b shows its decomposition into triangles and rectangles, 
14c shows the removal of the first bite, a.nd 14d shows the 
removal of the first six bites. 

IOIUI 
rEJ"Ifil 
(c) the largest bite (d) the first six bites 

Figure 14 

It is informative to compute the area error left after 
each step in the refinement of the estimate. A worst-case 
general quadrilateral consists of a line from one comer of 
its bounding box to its diagonal opposite. Let us label the 
shorter side (if there is one) as L, and the longer side as 
nL. Both regions around L have equal area; let us take the 
largest bite out of one of them. The area left after this bite 
is now 

. , (L nL) 3nL2 

de.stred = nL - 2 x Z = -
4
-

Th us the relative error is 

'•"'-'"' ~ lnL- ~;L'f•)l ~ 1'- ~L~ 
Similar reasoning for other numbers of bites leads us 

to a piecewise-linear approximation to the curve 2-n, with 
exact matches where n is an integer. We thus arrive at the 
general formula for the error after k bites: 

I (3(21'''''1)-k-I) I 
Ea.d<tpti<>~(k) ::::: 1- 4llog2 kj L (2) 

This formula gives us a relationship (albeit a little complex) 
between the number of rectangular bites taken from the 
area and the resulting relative area error. Since this anal
ysis was carried out for the worst case, if we take enough 
bites to meet this error for any situation we are guaranteed 
a maximum bound on the relative error. 

The variance table and the results of Equation 2 are 
used to determine a maximum bound on the number of 
bites we need to take from a sample. We simply use a 
linear relationship between the range of variance and the 
range of error, adjusted to err on the side of over-refining. 
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6.0 Implementation and Results 

The implementation of the technique was written to 
run in either of two environments: on a VAX·ll/780 run
ning UNIX BSD4.2, or within the Adagejlkonas RDS-3000 
raster graphics engine. To this end, the code was written 
in gia2 :Bish82], a dialect of C. 

The implementation used to generate the pictures par
titions the external regions with the iterative span classi
fication technique. The generated rectangles and triangles 
(or fragments), are kept in a doubly-linked Jist. Each entry 
in the list contains the co-ordinates needed to describe the 
fragment, the area of the largest bite it contains, and a pair 
of forward and backward pointers. Bites are taken from the 
sample until no fragments with non-zero area remain, or the 
maximum number of bites (as determined from the average 
variance) have been taken. 

It is most efficient to pre-allocate memory for storage 
of the fragment list. An upper bound on the size of the list 
is the maximum number of starting fragments (6) plus the 
maximum number of bites (because each triangle bite adds 
one triangle to the list). When there are no more entries 
left to fill in the list we simply discard the fragments we 
can't accommodate. The maximum number of bites can be 
found from the last entry in the error/bite correspondence 
table (discussed below). In the current implementation an 
upper limit of 80 bites is imposed, so the fragment list has 
86 entries. 

Equation 2 expresses the allowable error, in terms of 
the number of bites taken. We want the opposite relation, 
i.e. how many bites to take given a particular error. To 
compensate for this problem we create a table indexed by 
tolerable error. When we have a maximum allowable error 
(derived from the variance map) we scan this table for the 
first entry with an error value less than the atlowable er
ror. The associated number of bites is the value we use to 
terminate the refinement. 

It is interesting to note that the three color tables and 
the variance table can all be stored in a singie square array. 
We used 256 x 256 tables, arranged in a 512 frame buffer 
as a two-by-two matrix. 

As a demonstration of the new technique case we pre
sent Figure 15, which shows images of a black·and·white 
checkerboard in perspective. In the lower-left is the image 
generated by standard sum tables. As the checkerboard 
nears the horizon the sum table image blurs into a grey 
band. In the lower-right is the image generated by the 
technique described in this paper. The black and white 
squares of the checkerboard near the horizon are stili re· 
solvable, especially as we sight along the diagonals. Above 
each checkerboard is an enlargement of the square region 
indicated in red. 

Figure 16 is an image which was generated along with 
the bottom·right image of Figure 15. It shows how many 
bites were taken on a pixel basis. Black indicates no bites 
were taken; a whiter entry indicates a larger number of 
bites. Pure white indicates 21 bites for this image. Note 
that the iterative technique only executes where the stan
dard sum table would not provide a good estimate. 

Figure 17 shows the same checkerboard receding at a 
45"' angle to the axes of the pixels. 

Table 1 summarizes the number of rectangular sum 
table samples taken for the two images. Recall that the 
division operation needed to derive an average from a sum 
and an area is still executed only once per pixel in the new 
technique. 
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Figure 15 

Figure 16 

Figure 17 

Figure 15 Figure 17 / 

Rectangle samples 
in standard sum table 50,176 65,536 

Rectangle samples 76,942 88,774 
in new technique 

Relative increase 1.5334 1.3545 

Experimental Costs of New Technique 
and Sum Tables 

Table I 
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7.0 Discussion and Future Work 

The use of the variance map to determine how many 
bites to take in an estimate seems to be a good approxima~ 
tion, but it's not ideal; in fact it can lead to estimates which 
are much higher than they ought to be. A better way to 
determine which bite to take would be to take the Fourier 
transform of all the possible bites at each step, and choose 
the bite with the maximum energy under its transform. 
The drawback to this scheme is clearly the high computa
tional cost involved in taking the transforms and evaluating 
their energy. It would be interesting to examine techniques 
to get a quick estimate on these values. 

It would be nice if we could remove bites from the con
cave portions of concave mapped pixels, rather than work 
with their convex hulls. It would be interesting to look for 
other fr-agment shapes that had the storage and simplicity 
characteristics of oriented rectangles and oriented right tri
angles, but could also give us a handle on approximating 
concave mapped pixels. 

It should be noted that there is an inherent limit on 
the theoretical precision of this technique. As mentioned 
in Section 1.0, we are not performing an ideal filtering of 
the texture when we derive our estimate. Our first ma
jor assumption was to use rectangular, abutting "Fourier 
windows" to control our examined texture region. Our sec
ond assumption was to effectively sample the texture with 
a delta function, instead of a proper filter. These assump
tions usually produce good results in synthesized images. 
However, after a certain point further refinement of the 
texture estimate by the techniques presented here will not 
come closer to a theoretical value. This theoretical draw
back does not seem to detract from the general usefulness 
of the technique. 

It is true that the complexity measure described in 
this paper is best for textures with large homogeneous ar
eas (such as checkerboards!). Complex textures will have 
very high values throughout the variance map. This isn't 
too bad, since we will usually will want very accurate esti
mates of complex textures. But this is another reason that 
a better complexity estimator than the variance would be 
valuable. 

We have investigated another way to determine the 
partitions of a mapped pixel and its bounding box. \Ve 
haYe found that there are 25 types of box-bounded convex 
quadrilaterals. If we can quickly determine to which of the 
25 types a given mapped pixel corresponds, we can have 
the entire partitioning immediately. We hope to follow this 
line of thought farther. 

The techniques described in this paper can be extended 
in a straightforward way to sum tables of 3 or more dimen
sions. In the 3d case we would remove right pyramids and 
right parailelpipeds from our bounding right parallelpiped 
to refine the texture estimate. The fragmentation code 
would be considerably more complex. 
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Appendix: derivation of the partitioning algorithm 

The figure below shows the possible spans that may arise in a mapped pixel. When we 
consider edge infonnation some spans become unrealizable; these are marked X. For 
example, the fifth span on the first row must have the given partitioning; if the quadri
lateral had any points inside the shaded triangle the endpoints of the span would be cor
ners. Sometimes we need another point of the polygon to decide which side of the span 
to partition. This point is chosen to lie off the line(s) formed by the span, if possible. 
and is marked e in this diagram. 
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Supporting Animation in Rendering Systems 

In my opinion, one of the most important issues facing the rendering system designer 

today is the integration of animation concepts into the rendering package. Traditional 

rendering systems have produced instantaneous "snapshots" of the world they imaged. 

Thus, each object in the database could be described by a single, static set of parameters 

that described the shape, orientation, surface characteristics, and other features of the 

object. 

It is well known that motion blur enhances the apparent fluidity of animation. I believe 

that motion blur is sufficiently attractive that all future high-quality animation systems will 

provide it as a standard rendering feature. 

But when we try to incorporate motion blur into standard rendering systems we find 

that there are severe difficulties. The crux of the problem is that time is no longer a 

constant throughout the rendering pipeline (see Figure 1). It is well known that any regular 

sampling of an unfiltered signal may lead to aliasing, but that stochastic sampling can 

replace this aliasing with the less objectionable artifact of noise [Cook84], [Dippe85], 

[Lee85], [Kajiya86]. In a stochastic sampling system, the hidden-surface resolver 

(usually near the end of pipeline) is now deciding at what time to sample the database, and 

these decisions must be supported by the object transformation software (usually near the 

start of the pipeline). A naYve approach would be to connect the time output from the 

renderer to the time input for the object transformer, which would then transform the entire 

database to position it at the requested time. Not only must the database transformer 

perform standard matrix operations, but it must also perform all of the other operations 

needed to support the database transformations designed by the animator, including the 

determination of the position of objects along control splines, and the interpolation of 

various shape and surface control parameters. 

This is clearly a lot of work, and will involve the wasted effort of transforming many 

objects that don't even participate in this sample. For large databases this wasted effort 

will dominate the rendering time. For this reason I believe that the standard rendering 

pipeline is inappropriate for rendering animation with motion blur. 

Other alternatives include distributed ray tracing and solving the rendering equation. In 

these approaches, rays at different times enter the database looking for intersections. 

Various algorithms may be used to prune the number of objects to be intersected, or replace 
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groups of objects with simpler objects, but still at some point in the process some objects 

must be transformed to the appropriate position, orientation, shape, and so forth to test for 

intersection with the ray. This is the same task performed by the object transformer in the 

traditional pipeline. Note that the determination of the position and shape parameters for 

the ray may be as complex as the animation system itself, requiring moving objects along 

splines, interpolating shape parameters, and so on. 

But observe that this is also the exact same task performed by the animation editing 

system. When an animator sits in front of an interactive animation system, the animator is 

interacting with an animation database through a set of controls and displays. In effect, the 

animator specifies operations to be performed on the animation database, the results of 

which are then displayed. The animation system must then support all the same object 

transformation and distortion operations on objects that are performed when testing a ray 

for intersection. 

Thus I propose using a single set of routines for accessing the animation database. The 

database itself is composed of object-oriented modules which may communicate; this is a 

very powerful paradigm for developing databases, both static and moving [Amburn86]. 

The animation system and the renderer both speak to the database only through its 

interface. 

The animation system interacts with the database with two commands: 

SetParameters(object, time, parameter-list) 
Represent(object, time, representation, controls) 

SetParameters associates a parameter list with an object for a given time. The 

parameters may describe a transformation matrix, a texture map index, a shape distortion 

control, a force vector, or any other information that the object may find useful. This 

information is stored internally by the object and may be used as traditional keyframe 

control, or for more complex purposes such as parameters that affect how the object 

animates itself (e.g. electric charge in an electromagnetic field). 

Represent causes an object to represent itself in some way, usually for display. 

Possible representations may include vectors, polygons, patches, and so forth. The 

controls determine other object-related properties affecting the representation, such as level 

of detail. 



The rendering system interacts with the database with two commands: 

lntersect(object, ray, time) 

Complete(object, ray, time) 

Intersect determines the intersection of a given object with a given ray at a given time. 
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The result of such an operation is either a notification of a miss, or the ray position (e.g. the 

scalar s in the ray equation R = R0 + R1s for ray R). 

When the nearest intersection has been found, Complete finishes the job for the desired 

object. The result of complete is a description of the intersection containing all information 

for which the object is responsible (e.g. Complete will return surface color, reflected and 

refracted rays (for distributed ray tracing), surface physics co-efficients (specular, diffuse, 

highlight, etc.), and other shading and geometrical information). 

This system places the responsibility for uniform sampling on the objects, rather than 

on the ray generator. For example, an object may subdivide its generic reflection 

hemisphere into n solid angles. Each time a reflected ray needs to be generated, the object 

selects one of the solid angles not chosen before. The reflected ray is generated to fall 

somewhere within that solid angle, and the angle is marked as used In this way 

successive requests will receive reflected rays distributed over the hemisphere, no matter 

where on the object the intersections actually occur; see Figure 2. When all angles are 

used, they are all cleared and the process begins anew. I believe that this method of 

distributing rays is as effective as methods controlled by a ray generator. Some 

experiments with distributed light sources and rough surfaces have produced good images, 

which lends support to this view. 

The composite system is shown in Figure 3. The animation database is insulated by its 

access routines. The animator interacts with controls that adjust and query the animation 

database. The rendering system contains a module which queries the database for 

intersection events and processes those events to form an image. 

In summary, I advocate the incorporation of ray-object intersection routines into a 

protected animation database system. Under this scheme, as more sophisticated and 

involved animation and motion control techniques are presented to the animator, the 

rendering system remains unchanged but capable of rendering the new animation 

immediate! y. 
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When a reflected ray is needed, the reflection hemisphere is 
searched for an unused solid angle. When such an angle is 
found, it is marked as used, and the reflected ray is built to 
pass through it. The sizes of the various solid angles and the 
order through which they are searched is weighted by the 
shape of the reflection distribution function. 

The next time this object needs to generate a reflected ray, it 
searches its reflection hemisphere for an unused solid 
angle. This new angle is marked used, and the new 
reflected ray is constructed. Similar book-keeping is used 
by all objects with sampled parameter spaces. For 
example, an area light source subdivides itself into several 
smaller areas. Each time a shadow ray is generated, the 
light source is asked for one of these peieces. This is the 
location on the light source towards which the shadow ray 
is directed. 

Figure 2 

33 



ray 
descriptions 

ray 
generator 

viewing 
information 

sphere 

house 

camera 

intersection 
requestor 

polygon 

road 

tree 

Object -Oriented 
Animation Database 

Interface Routines 

object intersections, 
surface descriptions 

ray 
requests 

surface 
physics 

generated 
picture 

Rendering System 

Figure 3 

patch 

light 

fence 

0 
Display 

Animation 
Editor 

+tl 

34 

Animation System 



Template Parameterization for 3d Pose 
Interpolation 

Abstract 

Many 3-dimensional animation systems use hierarchical transformation trees to 

describe articulated 3-d models. These models may be animated by 

interpolating keyposes created (either explicitly or implicitly) by the animator at 

different times. Correct keypose interpolation demands that all model trees 

involved in the interpolation have the same topology. A second, more difficult 

condition for interpolating keyposes is that corresponding nodes in the 

transformation trees must be composed of the same transformations in the same 

order (called a template). We believe that a model designer should be free to 

specify arbitrary transformations at each node; somehow these transformations 

must be converted into the template form necessary for interpolation. This 

raises the template parameterization problem: how to find the parameters for the 

transformations in a given template from the composite matrix at a node. We 

present a new template composed of six transformations in twelve parameters, 

and show how it may be efficiently computed with standard numerical 

algorithms. 

Introduction 

Hierarchical modeling is a powerful and popular technique for constructing and 

animating complicated objects. The general idea is to build a tree of transformations and 

primitives, where each node in the tree represents a linear transformation, and each edge 

represents one or more primitive objects. TI1e model description is recovered by 
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processing the tree from the root to the leaves, accumulating transformations and placing 

(and perhaps rendering) objects as they are encountered. 
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This method may be used to construct a powerful modeling language [Duff84]. In this 

context, the designer prepares a text script which contains the transformations and 

primitives that describe the model. The modeling language itself imposes no restrictions on 

the structure of the tree described by such a script; it is perfectly possible that some nodes 

have many branches while others have none. Similarly, the transformations at the nodes 

are usually unrestricted; any number of transformations may be specified in any order. The 

transformations are simply accumulated into a current modeling matrix that is used for all 

objects placed at that node. That matrix is also propagated to all child nodes. 

This hierarchical structure is ideal for parametric animation. In such a system the 

designer builds a sequence of instances of the modeling tree either explicitly (in a keypose 

system, such as [Stern83)), or implicitly (in an event-driven system, such as [Gomez84)). 

For simplicity, we will assume in this paper that the keyposes are available explicitly. At 

moments for which a keypose was specified, the pose completely describes the object. At 

all other moments in the animation the object is described by a transformation tree 

interpolated from these keys. In order to build an interpolated tree, all trees involved in the 

interpolation (2 trees for linear interpolation, 3 for quadratic, and so on) must have the 

same topological structure, as shown in Figure la. This is usually not a severe problem for 

articulated figures such as humanoid shapes and mechanical systems of rigid parts, since 

the topology of these structures doesn't change much over time. When the tree structure of 

a model must change over time, the modeling language may include constructions that 

allow the user to describe the time and form of the topological change. 



1a 
These two trees cannot be interpolated since they have different topologies 

A 

1b 
Both trees have the same topologies, but nodes A-A' and B-B' 

cannot be interpolated directly as given, since their transformation 
sequences are different. 

Figure 1 
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A more difficult restriction to meet, however, is that the topological structure of the 

transformations at corresponding nodes must also be the same, as shown in Figure 1 b. 

Parametric transformation interpolation requires that we decompose the matrix into a 

sequence of primitive modeling transformations, each a function of one or more 

parameters. If we attempt to avoid this decomposition and instead interpolate the elements 

of the composite transformation matrix at each node we get very poor results: the in

between matrices are shears of the key matrices, and objects are distorted by even a simple 

rotation. 

A particular, fixed set of transformations in a node structure is called a template . In a 

template we only allow the "primitive transformations" of translation, rotation, shear, and 

uniform scaling (the last is a special case of shear). For notational convenience, we extend 

the term "primitive" to include the 3-d composite matrices combining similar, commutative 

elements (for example, a single transformation that applies translations to all 3 axes is also a 

"primitive" matrix of 3 parameters). 

We refer to the problem of converting an arbitrary modeling matrix into a fixed 

sequence of parametric primitive transformations the template parameterization problem. In 

the next section we summarize previous work on this problem, and then in following 

sections we present our new solution. 

Previous Work 

Consider the following transformation template B, used in the bbop animation system 

[Stern83]: 

(B) Translate_XYZ (tx, ty, tz) 

Rotate_XYZ (rx, ry, rz) 

Scale_XYZ (sx, sy, sz) 

where Translate_XYZ(tx, ty, tz) means the three transformations Translate_X(tx), 

Translate_ Y(ty), and Translate_Z(tz) in that order. Rotate_XYZ and Scale_XYZ have 

similar meanings. So B consists of 3 transformations in 9 parameters. The parameters 

which determine template B may be found by symbolically composing these 3 matrices, 



and then simultaneously solving the 16 equations relating the symbolic matrix containing 

the nine parameters and the numerical matrix which is to be matched. 

The problem of extracting the parameters for template B from a particular numerical 

matrix has been studied by Greene [Greene83] [Greene86]. He developed a variety of 

identities which show the relationships between various sets of transformations. Using 

these identities, we find that template B is not completely general. 

One way to see this is to consider the following identity from [Greene83]: 

shear_XY (a)= Rotate_Z (b) 

Scale_X (c) 

Scale_Y (d) 

Rotate_Z (e) 

where 
tan(a) ±--/ 4 + tan2(a) 

c= 2 
1 n 

d=c' e=tan·l(c), b=e-:z 

From this we can see that shear transformations are equivalent to differential scaling 

(scaling by different amounts along the principal axes) nested between rotations. Since 

template B contains only a single rotation node, that template cannot match a matrix that 

includes shear. 
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This is a serious restriction, since it means not only that designers cannot use shear 

explicitly, but they also may not scale along just one axis when modeling (since that can 

introduce shear if nested between rotations). This problem can be somewhat alleviated by 

the animation system, since after the modeling matrix has been decomposed the animator 

may apply differential scaling to particular keyposes. Nevertheless, we would prefer to 

allow the designer to build the desired model in the script, rather than relying on hand 

adjustement when animating. This preference becomes a necessity when scripts are 

generated by a simulation program, which may need to include shear and differential 

scaling to correctly model some deformations. 

An improved approach due to Greene involves using templates of higher complexity. 

Not all such templates are practical; for example, Greene states that computing the 

parameters for the transformations in his template T6 presents "an intractably difficult 

algebra problem." A "solvable" system is given by the following template G: 



(G) Perspective (90, 1, c) 

Translate_XYZ (tx, ty, tz) 

Shear_ YZ (syz) 

Shear_ZY (szy) 

Shear_ZX (szx) 

Shear_XZ (sxz) 

Shear_XY (sxy) 

Shear_ YX (syx) 

Scale_XYZ (sx, sy, sz) 
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G consists of 9 transformations in 13 parameters. Greene suggests that to find the 

parameters in G we again write the composite matrix symbolically and then fmd the 

solution of the 16 equations describing this matrix for the 13 unknowns corresponding to a 

particular numerical matri.x. 

Greene's approach represents one solution to the parameter extraction problem. In the 

next section we present a new approach, using a new template based on the techniques of 

matrix transformations. 

Singular Value Decomposition 

A well-established technique in the field of numerical linear algebra is the computation 

of the singular value decomposition (SVD) of an arbitrary matrix [Golub71]. SVD was 

developed to solve problems in linear algebra, for which more direct routines fail from 

numerical instability. 

The use of SVD for linear algebra problems is very much like the use of the adjoint 

matrix in modeling problems, where the adjoint is often used where the theory requires the 

inverse. The adjoint of a matrix differs from the inverse by only a constant factor (the 

inverse of determinant of the matrix), but it always exists, even when the matrix is 

singular. The adjoint is also easier to compute. In cases where the scaling is critical, we 

can always divide the result by the determinant (if it is non-zero). 

Similarly, SVD is useful for inverting linear algebra problems involving a singular 

matrix. Suppose we have a singular transformation A and two vectors x and b, related by 

Ax=b, and we wish to fmd x given A and b. The normal solution is to invert A and solve 

x=A-lb. Unfortunately, if A is singular then A-1 doesn't exist, so this technique is not 



useful. But if we use the SVD technique, then we can compute a vector x which is the 

"closest" correct answer, in the least squares sense that it minimizes the residual lAx - bl. 
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The input to SVD is a matrix; the output is three new matrices, which when multiplied 

together reconstruct the original matrix. S VD is useful for our purposes because of the 

form of the matrices it produces. Given a square, real matrix A, the singular value 

decomposition of A results in the three real matrices U, W, and V, such that A= UWVt, 

where V1 is the transpose of V. Some properties of the three SVD-generated matrices U, 

W, and V will prove to be important to us. First, the entries along the diagonal of W 

(called the singular values of A) are closely related to the eigenvalues of A. Second, U and 

V are both orthonormal matrices (the columns of U for which the diagonal element in the 

corresponding column of W is nonzero form an orthonormal basis for the range of the 

transformation A; the columns of V for which the diagonal element in the corresponding 

column of W is zero also form an orthonormal basis, this time for the nullspace of A). 

One reason SVD is popular is because from the singular values we can find when A suffers 

from rank degeneracies. Isolating the particular singular values that are nearly zero can 

help us analyze A, and perhaps modify it for some other purpose. We will not be using 

SVD in this analytic capability; we are only interested in using the equivalent matrix 

representation it generates. 

A New Template 

Our goal is to decompose a modeling matrix A into some sequence of primitive 

transformations whose parameters we may interpolate. Recall that a square orthonormal 

matrix may be interpreted as a rotation, a mirror, an inversion, or some combination of the 

three. We will find it useful to replace orthonormal matrices with an equivalent "MR-pair" 

- two matrices, where the first (M) includes any mirroring or inversion, and the second (R) 

includes any pure rotation. Recall also that a diagonal matrix may be interpreted as 

representing pure scaling (i.e. no shear). 

Let us consider applying SVD directly to a 4-by-4 modeling matrix A. Then U and V1 

will be 4-by-4 orthonormal matrices, and W a 4-by-4 diagonal matrix. We may consider 

U and VI to represent MR pairs in a 4-dimensional space, and W to represent a 4-d scaling 

vector. Note that in this context the fourth row and column of each matrix is not 

homogeneous information; they have the same spatial interpretation as the first three rows 

and columns. We may thus create a sequence of the form (MR)S(MR), which is formed 

from A by direct application of SVD; this is illustrated in Figure 2. 
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SVD 
A .. ~ X 

M x R X s X M x R 

Singular Value Decomposition converts a square matrix into three new 
matrices: a diagonal matrix flanked by two orthonormal matrices. 
We may consider each orthonormal matrix to be a product of a 

mirror-inversion matrix and a pure rotation matrix. 

Figure 2 

The drawback to this form is that these 4-dimensional transformations carry little 

intuitive meaning for us. On the other hand, 3-dimensional transformations are well 

understood and easily implemented. For example, recent work for rotations has shown 

how to smoothly interpolate composite 3-d rotations without resorting to Euler angles 

[Shoemake85]. We know of no similar work which applies to 4d rotations. 

Rather than develop a new body of techniques for 4d transformations, we can use SVD 

to generate 3-d transformations if we are willing to add one more transformation to our 

template. We will fmd it notationally convenient to introduce a "promotion" operator P(B), 

which accepts as argument a 3-by-3 matrix B and promotes it into a 4-by-4 matrix by 

substituting B into the upper-left corner of a 4-by-4 identity matrix. The inverse operator 

P·l(B) "demotes" a 4-by-4 matrix B into a 3-by-3 matrix by stripping off the bottom row 

and rightmost column. 

To make SVD more useful we first note that no combination of primitive modeling 

transformations (rotation, translation, scaling, and shearing) alters the rightmost colunm of 

a composite transformation matrix; it is always [0 0 0 1]1• We then note that A may be 



written as A'•T, where A'=P(F-1(A)), and Tis an identity matrix augmented with the 

translation components. In diagram form, this is 

A=(:= ~~J= (~~HJ(~ r ~~J= A'·T. 
txtytzl 0001 txtytzl 

[

abc] 
p·l(A) = de ~ 

g hI 
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If we now run A' through SVD, we get three new 3-by-3 matrices U, W, and V, 

which represent a sequence of 3-d transformations in the order (MR)S(MR), that together 

make up A'. 

To convert each of the orthonormal matrices U and V into MR-pairs, we follow a 

practical procedure. For each matrix we first compute the cross product of the upper two 

rows. We then compare the six possible sign and position permutations of that result with 

the third row of the matrix. The correct mirroring opetation is easily deduced from the 

permutation that aligns the two vectors, and is summarized in Table 1. Pre-multiplying U 

or V with the correct M yields the associated pure rotation matrix. In degenerate cases, it 

is possible that more than one mirrot matrix will align the two vectors; it is therefore 

important that we always exanline the mirror matrices in the same order and use the first 

one that matches. 



Given a matrix A with rows AI> A2, and A3, we compute B = A1 x A2. 

We then find the permutation of B that makes it the same vector as A3; each permutation 

has an associated mirror-inversion matrix M. In this table, l23 means the identity matrix 

with rows 2 and 3 interchanged; -I is the identity matrix multiplied by -1. 

Pe1 mJ.H;U.iQn Qf B that ma~b!:~ A.1 MatrixM 

( bx, by, bz) I 

(-bx, -by, -bz) -I 

( by, bx, bz) I12 

(-by, -bx, -bz) -I12 

( bx, bz, by) I23 

(-bx, -bz, -by) -I23 

( bz, by, bx) I13 

(-bz, -by, -bx) -Il3 

Table 1 

44 

If we multiply these the (MR)S(MR) matrices together, promote the result, and then 

compose this with the translation matrix T computed above, we recover the original matrix 

A. Alternatively, we may promote each of the five matrices first, and then compose the 

promoted matrices together with the T matrix. 

Thus SVD allows us to match the (MR)S(MR)T template: 

((MR)S(MR)T) Mirror-Inversion 

Rotate_XYZ (rx, ry, rz) 

Scale_XYZ (sx,sy, sz) 

Mirror-Inversion 

Rotate_XYZ (rx, ry, rz) 

Translate _XYZ ( tx, ty, tz) 

which consists of six transformations in 12 parameters. 



We can summarize the parameter extraction algorithm for (MR)S(MR)T with the 

following steps: 

l. A' = p-l(A) 

2. T=I+A-P(A') 

3. Compute SVD(A'), generating 3-by-3 matrices U, W, and Vt 

4. Decompose U = M1' • Rt' 

5. Decompose V = Mz' • Rz' 

6. M1 = P(M1'), R 1 = P(Rt'), Mz = P(M2'), R2 = P(R2'), S = P(W) 

7. A= M1 • Rt • S • Mz • Rz • T 

A' 

A = r-
I 

I +A- P(A') 

• T 

w 

P(W) 

• [;Jx@x[Jx[;Jx~x 

Using SVD and MR pairs to match a matrix A 
with the (MR)S(MR)T template. 

Figure 3 

T 

~ 
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This technique is diagrammed in Figure 3. Note that step 5 needs the matrix V, but 

SVD in step 3 generates V1. Since the promotion operator adds the right row and bottom 

column of the (symmetric) identity matrix, it doesn't matter if we transpose before or after 

the promotion, but we must not forget to transpose before working with V. 

Step 7 expresses our original matrix A in the (MR)S(MR)T template. We may now 

convert every matrix in our tree into this form when we wish to interpolate. If we wish to 

interpolate Euler angles for rotation, we may extract the three angles corresponding to a 

given order of axes from the elements of Rt and R2. Equations for the zyx order are 

given in [Shoemake85]; equations for other orders are easily derived. If we use 

quatemions for rotations, then we may extract the quatemion directly from the matrix 

elements in Rt and R2 using the equations in [Shoemake85]. 

To understand the motion produced by interpolating the (MR)S(MR)T template for an 

object we need to look at the operation of the component transformations. We can see that 

the first MR-pair rotates the object to align its eigenvectors with the environment's co

ordinate system, the S matrix then scales the object along its eigenvectors, the second MR 

pair rotates the object back into the desired orientation, and finally the T matrix positions 

the object in space. Thus smoothly interpolating each of these transformations will produce 

smooth components that together make sensible motion for the object. 

Note that the two Mirror-Inversion matrices have no parameters. This embodies the 

natural requirement that all nodes involved in an interpolation reside in co-ordinate systems 

with the same handedness. Happily, since SVD seeks out the eigenvalues that make up W 

in decreasing order, matrices U and V will normally have the same chirality for all nodes. 

They may differ if an animator deliberately changes the sense of the modelling co-ordinate 

system between successive poses. Regardless of the interpolation scheme, such motion is 

sure to be somehow degenerate; perhaps the best thing to do is to allow the object to pass 

through itself with an inversion. Probably the best solution to this problem is to always 

model with consistent chirality. 

Computation of SVD 

The SVD algorithm is not easy to briefly summarize in detail. Consider the case of 

Numerical Recipes [Press86], an excellent 818-page book on numerical methods. In 

Chapter 2.9 they discuss SVD, and after a high-level summary they say, "As much as we 

dislike the use of black-box routines, we are going to ask you to accept this one, since it 
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will take us too far afield to cover its necessary background here." And this is from a book 

written expressly to explain numerical algorithms! But this is not a disaster, since SVD is a 

popular algorithm, and actual code is available from several sources. 

Fortran and Pascal programs for computing SVD are given in [Press86], and C code is 

available in [Press88], both of which are also available in diskette form. Computation of 

SVD is also provided as part ofLINPACK [Dongarra79], a linear algebra package, in the 

routine SSVDC; pages C.!22 through C.129 present the Fortran source (also available 

from netlib [Dongarra87] at no cost: to get the Fortran source (for SVD only) send the mail 

message send ssvdc from linpack to either net lib@anl-mcs. arpa on the 

Arpanet, or research! net lib on the uucp network, or use send linpack to get all 

the support code as well). An Algol listing for SVD is given in [Golub?!], which also 

discusses the algorithm; this program is useful for study, but the algorithms from 

Numerical Recipes and LINPACK are slightly more numerically sophisticated. 

We have attempted to build a "streamlined" version of SVD particularly for matching 

the (MR)S(MR)T template. This version was hard-coded for 3-by-3 matrices, and unrolled 

most of the loops for efficiency. Unfortunately, the resulting code was far more complex 

than that presented in the above sources, and almost no faster; it's the computations of SVD 

that dominate the run time, not the flow control. 

For those who are inclined to understand the technique of SVD, discussions may be 

found in [Golub?!], [Dongarra79], and [Press86], along with references to the component 

algorithms which work together to compute the singular value decomposition. Most of this 

material is rather dense due to concerns of efficiency and error in a digital computer; the 

algebraic manipulations at the heart of the algorithms are themselves quite clean and 

elegant. 

Comparison 

The central differences between the approach presented here and [Greene86] are the 

cost and stability of the parameter extractions. 

The two templates are very similar in complexity, which is no surprise since they both 

are rather compact solutions to the problem. The (MR)S(MR)T template contains 6 

transformations in 12 parameters. The G template contains 9 transformations in 13 

parameters. The discrepancy in parameter count is because G includes the perspective 

transform, which we do not. 
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We wanted to compare the time required for the computation of the templates in the two 

approaches. Unfortunately, using Vax Macsyma [Macsyma79] we were unable to solve 

the system of simultaneous equations required to extract the parameters for template G; this 

was in fact the original motivation for this work. 

Determination of the parameters for the (MR)S(MR)T template is performed by the 

singular value decomposition, a carefully studied and tuned algorithm which is extremely 

stable. Our experience with SVD has been that it runs quickly enough for modeling work. 

On our VAX-11nso we can compute a 3-by-3 SVD in 850 microseconds, using the Pascal 

code of [Press86]. We have not tried it yet in an interactive animation environment, 

although we are incorporating it into an animation system under development. 

Summary and Conclusions 

We have presented a solution to the template parameterization problem. We have 

proposed the (MR)S(MR)T template which consists of 2 composite rotations, 1 composite 

translation, 1 composite homogeneous scale, and 2 parameter-free mirror transforms. 

Parameterization of this template from an arbitrary 4-by-4 modeling matrix is accomplished 

by trivially extracting the T matrix, executing the SVD algorithm, and separating the 

resulting orthonormal matrices into MR-pairs. 

Our experience with this template is that its parameterization is efficient and numerically 

stable. 
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Late Binding Images 

Abstract 

We have developed a high-quality Z-buffer based rendering system which allows users 

to quickly change the surface properties and illumination of objects in a 3d scene. We use 

standard scan-conversion techniques for each primitive to produce a surface description 

packet for each relevant pixel on the screen. When rendering is complete, these packets 

are depth-sorted at each pixel and stored on disk. The user then binds shading co

efficients, textures, and colors to the objects, and also positions light sources to illuminate 

the scene. Because the expensive scan conversion step has been separated from the 

shading calculation, we can produce images with new surface properties and illumination 

more quickly than with a standard rendering pipeline. Storing all potentially visible 

surfaces at a pixel also enables us to support transparency. 

The system is easily described with a group algebra, which supports the 

implementation, provides a convenient user interface, and also serves as a succinct but 

exact manual of operation. We have used the system extensively for almost two years and 

have found it to be a robust and practical tool. 
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Introduction 

Part of our ongoing research at UNC-Chapel Hill is the application of computer 

graphics to medicine. In particular, we work on developing tools to assist physicians with 

the interpretation of radiographic images (such as those obtained from a CAT or NMR 

scanners), as well as planning radiation therapy (such as burning away a tumor with 

focused beams of radiation). Some of our tools create a 3d database of surface primitives 

which we then render with traditional shaded surface techniques. For these images to be of 

value to the physician, they must be of high quality, free ofrendering artifacts, and quickly 

produced. 

For the last few years we have created our shaded images using rendering programs 

that we already had running in the lab. But we recently decided that we needed to generate 

our fmal, medically useful 3d images more quickly. We felt that the best way to make 

pictures faster would be to speed up those portions of the image generation pipeline where 

users were spending most of their time. I watched users prepare several complete 

radiological studies, and noted which steps were the slowest. 

The first step was viewpoint selection. The user loaded a small subset of the database 

into a program that could generate near-real-time images of scenes composed of several 

hundred polygons. The user then interacted with that program to select an eyepoint, gaze 

direction, clipping planes, and perspective information. 

This viewing information was then fed into the polygon rendering system. This 

program produced images at a fixed 2048-by-2048 resolution (filtered down to 512-by-512 

for display). Users would typically run this expensive rendering program over and over 

again, changing the surface parameters of the objects and the positions of the lights 

between runs. It turned out that although specular highlights were desirable in the final 

images, highlights on a transparent surface often occluded important details behind it; this 

meant the lights had to be moved and the image re-rendered. The degree of transparency of 

different objects would also have to be adjusted time and again; our images typically have 

several transparent objects nested within one another, and too much or too little 

transparency on any one surface can ruin the illusion of nesting. Colors and surface 

reflectivity coefficients were also adjusted, in response to the changes in lighting and 

transparency. 

This rendering program was quite slow; it often took many hours to complete an image. 

When I observed users running the program repeatedly to tune colors, surface properties, 

and illumination parameters, it became clear that this iterative re-rendering was the slowest 

step in our system. 
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From these observations we constructed the goals for our new rendering system. We 

knew that our users did not change the viewing information between renderings; we 

wanted to exploit this fact. Given a viewing transformation, we wanted to be able to 

quickly change the illumination and all surface characteristics of all elements in the scene -

this would be the essential new feature of our system. Additionally, the system should be 

capable of handling large databases (many tens of thousands of primitives), a wide variety 

of primitives (not just polygons), and transparency. 

Although our system was motivated by the medical application discussed above, this 

list of criteria is independent of its medical origins, and the result was a general purpose 

renderer. 

Our solution was to separate the scan conversion of an image from its display. Given a 

viewpoint, the database is scan convened, with the information produced by the scan 

convener placed into a disk file. To display the image, the user specifies surface attributes 

and light sources, and then shades the image. The user can then adjust the illumination and 

any surface properties andre-render the image quickly, since the very costly scan

conversion step has been eliminated from each iteration of the cycle. Because the surface 

and lighting attributes of an image are bound to objects after scan conversion, we have 

named the rendering system the Late Binding Image, or LBI, renderer. 

Previous Approaches 

The literature contains several previous approaches to generating images with different 

surface parameters without necessarily repeating the scan conversion. A common theme is 

to encode surface information into frame buffer pixels, and then adjust the colormap to 

achieve the desired effects [Shoup79]. 

For example, [Holmes85] describes a system where the user could interactively change 

the apparent direction of a light source illuminating a shaded scene. 

The problem with such approaches is the quantization due to storing bulky geometric 

information in memory designed to hold color information. One simply runs out of bits 

very quickly. Additional hardware enhancements like crossbars [Ikonas82] and wide 

colormaps can ameliorate the problem, but they still cannot provide us with enough bits to 

encode all the geometric information we need, since we must see color, transparency, and 

localized highlights simultaneously. 



[Perlin85] describes a system for exploring textures based on manipulation of pixel 

streams. Scenes were built from 2d digital composition, not rendering, so it would be 

difficult to provide for more than one surface at a pixel. 

The LBI Process 
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In this section we give an overview of the process of building and modifying LBI 

images (see Figure 1). The essence of the project is that we have separated the scan 

conversion step from the rest of the image generation pipeline. After scan conversion, the 

system performs specular shading and then supersampled Z-buffer hidden surface removal, 

with transparency. 

The first step in building an image is the selection of the viewing parameters. The user 

specifies an eyepoint, a viewing angle, gaze direction, an up vector, the desired size and 

location of the image on the screen, the size and location of a viewing window into that 

image, and whether or not the fmal image should be anti-aliased. 

The viewing parameters and database of surface primitives are then given to the 

viewing transformation program, whose output is sent to the scan conversion program, 

where each primitive is scan converted using standard techniques. We must be sure that 

this step generates all the information we will need further down the image generation 

pipeline. To accomplish this the scan converter generates a list of packets for each pixel, 

one packet for each surface. If more than one surface is visible at a particular pixel, the 

system maintains all of the packets at that pixel in a list 

The Packet Structure 

The first part of each surface description packet is an object tag: a small integer that 

specifies to which larger, composite object this primitive belongs. This tag is given to the 

scan converter as part of the surface description. All polygons that are part of a lung, for 

example, will have the same object tag; all patches that are part of the nearby heart will 

share a different object tag. In general, each surface to which we want to assign unique 

surface properties will have a unique object tag. 

Let us assume for a moment that we have turned off anti-aliasing and texturing in the 

interests of speed. Then for a given primitive, the scan converter will only produce packets 

for pixels whose centers are covered. For such pixels the scan converter will produce a Z 

depth and a surface normal for that primitive at the center of the pixel. The tag, depth, and 



normal comprise the complete packet for an image with no anti-aliasing or textures; see 

Figure 2a. 
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If anti-aliasing is enabled, we also include a coverage bitmask as in the A-buffer 

[Carpenter84]. The surface normal and depth are computed at the pixel center; if the 

primitive does not cross the pixel center we estimate the surface normal and Z depth as if it 

did, by extending the geometry of the surface. Figure 2b shows a packet including this 

bitmask. As in the A-buffer, packets which have a common tag and Z but disjoint bitmasks 

are merged into a single packet by OR'ing their bitmasks, and averaging their colors 

weighted by relative coverage. 

Texture information is included by adding a texture list to the packet. The texture list is 

preceded by a texture count, stating how many textures are to follow. Textures are saved 

as the center and side lengths of the smallest box in texture space ~ontaining the projection 

of the associated pixel. Each individual texture is represented by a texture tag, and the co

ordinates of the texture space box. If there are several textures, they are simply listed one 

after the other, as in Figure 2c. 

After all primitives have been scan converted, the packets at each pixel are depth sorted, 

merged if necessary, and then written to disk. 

Image Generation 

The next step is to shade the surfaces at each pixel. Shading requires going through 

each packet list at the pixel, evaluating the incident and reflected light, and computing 

(perhaps partially) hidden surfaces. 

To compute the shade we use a slightly modified version of Phong's shading model. 

We specify a surface by color (RGB), transparency, diffuse reflectivity, specular 

reflectivity, and highlight exponent. Surfaces are defmed in one of the input flies to the 

shader, called the Surface Property Binding (SPB) file, which can specify a unique surface 

description for the inside and outside of every object. The SPB file contains a list ofthe 14 

surface properties (7 each for inside and outside) for each object tag in the scan converted 

file, as well as a background color for the object world. If we have textures in the system, 

the SPB file associates each texture tag with an actual texture (by giving its file name), and 

a texturing operation (bump, color, transparency, diffuse or specular reflectivity, or 

highlight exponent). Thus, it is perfectly possible to apply a transparency map, a picture 

map, and a bump map to the same primitive. 

The other input to the shader is a list of the (infmitely far away) light sources in the 

illumination Binding (!B) flle. Each light is specified by its color and direction of 
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illumination. As an aid to the user, the direction may be specified in either object space or 

screen space. The light color is modulated by a single intensity parameter, which scales the 

color of the light more conveniently than by adjusting the three ROB color values. The 

color of an ambient light source may also be specified. 

To sh~de a pixel, we start with the nearest packet, and search in increasing Z for a 

primitive that is fully opaque and covers the pixel. We search until we fmd such a primitive 

or reach the end of the list (an opaque, fully covered pixel of the background color is 

assumed at the end of each list). We then work backwards, packet by packet, returning to 

the head of the list. At each step we first shade the current primitive (this includes 

texturing). If we are anti-aliasing with bitmasks, we scale the color contribution of this 

pixel by the coverage of its bitmap. We then adjust the color by the primitive's 

transparency factor and add in any light passing through the surface from behind. We then 

step back to the next nearest packet in the list, incrementally accumulating the fmal color for 

the pixel. 

The Algebra of the LBI Group 

The LBI rendering system may be usefully described with a simple group algebra. The 

advantages of writing this algebra are threefold: first, the requirements of the algebra 

guided our selection of data structures for implementation of the system; second, the 

algebra provides a simple and consistent user interface for describing operations on LBI 

files; third, the algebra provides an exact, unambiguous description of what user actions 

will do and what the result will be. In effect, the algebra is a complete and precise user's 

manual for the file composition part of the system. 

The elements of the algebraic group are the LBI files themselves (the files produced by 

the scan conversion process). These files contain a depth-sorted list of packets at each 

pixel. Operations on LBI files cause operations on their lists, so we will focus our 

attention in this section on these lists and the individual packets they contain. Nevertheless, 

it is the files themselves that are the group elements. 

The group operation is file addition. When two files are added, the sorted lists at each 

pixel are merged and the result is sorted by Z. If two individual data structures are identical 

except for Z depths of opposite sign, they cancel and both data structures are eliminated 

from the sum. A data structure with a Z depth of 0 would be exactly in the image plane, 

and we must make some arbitrary decision about how to handle it. We will see in a 

moment that a good choice is to simply ignore such data structures: they never appear in the 



result of an LBI operation. If any pixels in the file have no list associated with them, we 

define that empty list to be equivalent to a data structure with every field equal to 0. 
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We now see why we chose to ignore data structures with a depth of 0: they are our 

identity element More precisely, an LBI file with every pixel containing a data structure at 

a Z depth of 0 (or, equivalently, no pixel lists at all) is the identity, since adding it to any 

LBI file leaves that file unchanged 

Since two packets that are identical except for opposite depths (one positive, one 

negative, of equal magnitude) cancel and leave behind nothing (or an empty list, equal to 

the identity), two such data structures are inverses of each other. Thus the inverse of a 

complete LBI me is another LBI file with the same contents, except every packet has a Z 

value of opposite sign. 

Clearly the sum of two LBI files results in another LBI file: it may only contain a list of 

packets at each pixel. Thus file addition is a binary operation, and the set of LBI files is 

closed under file addition. 

Because the contents of individual packets in a pixel list are never altered (they may be 

entirely deleted, but the values are never changed), imprecisions of computer arithmetic do 

not affect the associativity of LBI operations. If Z values are stored as exactly 

representable integers then all comparisons are associative; thus file addition is also 

·associative. Incidentally, the act of binding and displaying an LBI f:tl.e is considered an 

interpretation of that file, and does not enter into the gtoup description. 

We have shown that the set of LBI flies under me addition forms a gtoup: every 

element has an inverse, the gtoup has an identity, it is closed, and it is associative. It is 

interesting to note that me addition is also commutative. 

This algebra gives us a simple user interface, a clean description of the system, and an 

unexpected, powerful operation: object subtraction. Let's say that several LBI files have 

been added together into one, very large f:tl.e containing many objects. Upon rendering, the 

user decides that one or more objects are not needed in this particular image. 

One way to remove those objects is to make them fully transparent. The drawback here 

is that the specification of scene attributes followed by rendering is an iterative process 

repeated many times. Each time the image is bound and displayed those transparent objects 

will still need to be processed when computing shading and visibility, costing some time. 

If this time is large then we will have some significant overhead in repeatedly waiting for 

the processing of invisible objects! The image will be correct, but slow. 

A faster alternative is to subtract the unwanted objects from the LBI file. The user 

simply adds to the composite file the inverses of the original LBI f:tl.es of the unwanted 

objects. The result is a new composite LBI f:tl.e different from the first only in lacking the 



undesired objects. Figure 3 illustrates another situation where the LBI algebra proves 

useful. 
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From this discussion we can see one useful way to use the system. A user scan 

converts all objects that might be in the final image, placing each object into a separate LBI 

file. These files are then added and subtracted to build a composite LBI file containing only 

the desired objects. This approach of adding and subtracting scan-converted (but un

shaded) object may be considered a kind of 3-dimensional "matting" operation [Porter84], 

[Duff85]. We thus also have the unusual "un-matting" operation supported by the 

subtraction operator. 

An issue on the border between theory and practice is repeated elements: what is the 

result when two identical LBI files are added together? There are many solutions that 

preserve the group properties. We chose to accumulate both file~, in exactly the same way 

as if they were different. Thus if the user takes a composite file, adds in some new file 

three times, and subtracts it twice, the result still contains one copy of the new file. 

Since the operations of image addition and subtraction are associative, the user is freed 

from any concern about the order of the addition and subtraction operations used to build 

an image. 

The implementor may augment and enhance the LBI algebra with other operators, 

applied immediately to a file given as an argument. For example, such operators may 

implement windowing and clipping (applied to intensity, depth, and the screen image), or 

the simulation of fog (depth cuing). 

Implementation 

In this section we will describe the practical choices we made in our implementation of 

this system. The choices were influenced by the nature of our computing environment and 

the needs of our users. In fact, we have written two complete systems. The earlier system 

does not include anti-aliasing or textures, and has a primitive user interface. This system 

has been in regular use for almost two years, and has proven robust as our standard 

renderer. Our more recent research system supports anti-aliasing, textures, and a more 

complete algebra as described above. 

Our main rendering hardware consists of a V AX-llnso with 6 megabytes of processor 

memory. The VAX runs UNIX 4.2 BSD, which incorporates virtual memory. We also 

have an Ikonas/Adage RDS-3000 bit-slice microprogrammable graphics engine and frame 



buffer. The Ikonas is supported by the gia2 language [Bishop82] and various local 

libraries and debugging aids [Glassner86]. 

Scan Conversion 
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We wrote a new polygon scan converter specifically to produce LBI files in a fast and 

efficient manner. An important consideration was the effective allocation of storage for the 

packet lists at each pixel. The simplest technique would be to allocate a 2d array equal to 

the size of our picture times the size of a packet, and place the first element in each list into 

this array, as in Figure 4a. Subsequent packets in the list would be dynamically allocated. 

The list would be singly- or doubly-linked to ease the depth sorting, though those links 

would be discarded when the writing the file to disk. 

Unfortunately, this straightforward approach is very inefficient. The VAX page size is 

512 bytes. A typical picture in our environment is 512-by-512 pixels. We know that 

polygons can arrive in any order, starting at an arbitrary scanline on the screen. Thus, even 

if our 2d array consisted solely of (4-byte) packet pointers, in a simple 2d array each time 

we move to a new scanline we would get a page fault, which would cost us time. 

A better organization is to arrange the virtual frame buffer into a 2d array of smaller 2d 

arrays of pointers, each 16 by 8, as in Figure 4b. Since this smaller array contains 128 

entries, and each pointer consumes 4 bytes, exactly one of these smaller arrays fits on each 

page. Thus, if a polygon is enclosed within a bounding box of 45 pixels wide by 45 pixels 

high, we will at worst have 18 page faults, instead of 45. This is illustrated in Figure 5. 

We have observed typically about an 8-fold reduction in page faults when rendering many 

small polygons. 

Each entry in this 2d virtual frame buffer is a pointer to a data structure created at the 

same time that the pointer is allocated. We do use forward and backward-pointing links to 

ease the job of sorting the list when we create the output file. When we need to create 

additional pointers and storage for new packets, we create entire 16-by-8 blocks at a time. 

We try to keep all the packets for a given polygon within the same block, which can 

sometimes cause small holes in our packet list. The scan conversion is faster due to this 

technique, but memory consumption is slightly increased (typically about 4-6% for our 

images). This statistic is kept down by searching for an appropriately sized, existing hole 

for a polygon before allocating new memory for it. 
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File Format and Shading 

The LBI file itself begins with a header, which provides information about the file for 

the system and the user. The header contains text fields containing creation time and date, 

and any descriptive text the user wishes to associate with the file. There then appear fields 

containing the image origin and window size, the smallest and largest Z values in the file, 

the smallest and largest object tags in the file, and flags indicating the presence of anti

aliasing and texture information. 

Each of the individual data structures uses 8 bits (1 byte) for the o~ect tag. This limits 

us to a maximum of 256 individually bindable objects in any LBI file. In our environment, 

this is a reasonable upper bound. 

We store the Z depth as a 16 bit integer (recall the identity value Z=O). 

Surface normals are used to compute shading. The diffuse shading from a collection of 

infinite light sources may be looked up in a table indexed by two of the (normalized) 

surface normal components [Greene86]. The illumination color from the table is then 

scaled by the diffuse reflection surface color of the object Specular shading is handled 

with another set of tables, one for each light source. All of these tables are built by the 

binder, which knows both the eye position and the light directions. The values in the 

specular tables are exponentiated appropriately for each surface when we shade. 

Our light tables are 64 by 64, and provide good shading if the values are linearly 

interpolated. Experimentation with real images has convinced us that we routinely produce 

images for which 32 steps of interpolation is insufficient to prevent contours and Mach 

banding. We thus compute the two light table addresses (derived from the normal 

components) to 12 bits (6 bits each of integer and fraction), but store these addresses in the 

least significant bits of a pair of bytes; this keeps us nicely aligned on byte boundaries. In 

an efficiency hack, we encode the sign of the Z component of the surface normal in the 

high-order bit of the Y address. 

Anti-aliasing requires adding a coverage bitmap to every data structure. We have found 

that we get good results with a bitmap that is 8 bits wide by 4 bits high (as in the A-buffer), 

requiring 4 additional bytes per data structure. 

Texture information is more complex. Our research system uses a variety of system

dependent hacks to reduce storage. In general, each primitive will require one byte for 

texture count. Then each texture needs a map tag (1 byte), U and V indices (2 bytes each), 

and texture sample width and height values (2 bytes each), for a total of 9 bytes per texture. 
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Thus the full LBI f!le contains 12 bytes per primitive per pixel, plus another 9 bytes for 

each texture applied to that primitive at that pixel. Without anti-aliasing or texturing, each 

LBI packet contains 7 bytes. 

The actual scan conversion of surface primitives into LBI files is performed by a C 

program on the VAX. Binding is performed by Ikonas microcode. 

Results 

Figures 6, 7, 8, and 9 shows various models rendered with the LBI system. Each 

model was scan converted once, and then shaded with a variety of surface parameters. 

Figure 6 shows several heads seen from above, built from radiographic data. Because the 

CAT scans did not continue all the way to the top of the skull, the top of the brain is 

missing; this makes the brain appear as a donut when seen from above. The rows show 

the head and brain with different colors and reflectivities, the columns show different 

amounts of transparency. 

Figure 7 shows four icosahedra, tesselated with a variety of tiles. 

Figure 8 was built from NMR scans of the pelvis of a 59 year-old man. The main 

visible bones are the pelvic girdle and the spine. At the lower left and right the tops of the 

femurs are shown where they fit into the pelvis. The bladder is yellow, the prostate is 

purple, and the rectum is colored red. The bladder should have a rounder shape; it has 

been distorted by cancer. This study shows a possible treatment of the bladder by radiation 

therapy. The dark shape surrounding the internal organs is a 90% isodosage surface. The 

radiation has been shaped to also irradiate the lymph system, above the bladder but not 

rendered in this image. 

Figure 9 shows two views of a section of a male chest containing a stomach, spine, 

esophagus, lung, skin, bones, and 16 different radiation isodosages computed for treating 

a tumor on the esophagus. In each of these images one of the isodosage contours has been 

made opaque, and the others have been left transparent 

The LBI rendering system has been in daily use since May 1986. In that time it has 

produced many images useful in the medical imaging research we pursue with our 

radiotherapy colleagues. The system has also been used to produce several animations. 

The production of an anintation of a rotating pelvis with internal bones and organs 

identified an interesting use of the LBI system. The script for the film (each frame of 

which was rendered at 512-by-512 pixels) specified a spinning pelvis, displaying just the 

bones. Then various organs would fade in, appear for several cycles of rotation, and then 
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fade out, to be replaced by other collections of organs. Thus, viewers could see the 

relationships of various body parts with other parts by viewing a succession of small 

collections of the objects. The plan was to scan convert the spinning pelvis once with all 

the objects. Then the different parts of the film could be generated by making the unwanted 

parts partially transparent (when fading in and out), or by subtracting them entirely from 

the file (when invisible). Thus the entire fllm could be generated by one set of scan 

conversions, and then many bindings. Unfortunately, because of the size of the rendered 

image the data flles grew beyond the virtual memory limits of our machines, so each frame 

was individually scan-converted and rendered. 

By reducing the image size and thus virtual memory consumption, this approach was 

used successfully to create the film shown in Figure 10. In this film we see 4 different 

views of the same chest as in Figure 9. Reading from left-to-right, top-down, we see 

increasing levels of radiation dosage converging on the esophagus (the three beams are 

most clearly visible in the upper-right image of each set). This film was made from only 4 

LBI files, one for each view. By keeping the image size to 256-by-256, we were able to 

hold all of the internal structure and radiation contours in virtual memory simultaneously. 

Each of these flles was then bound 16 times, each time with different surface parameters, to 

produce the animation. 

It is interesting to note the performance of the LBI system for these frames. Our old 

rendering system required an average of 105 minutes of system time to produce each 

individual image (about 58,000 polygons each). The LBI system scan-converted each of 

the 4 views in about 17.2 minutes, and produced a bound image in about 1.1 minutes. 

Thus, creation of the 64 images by the old system would have required 64 * 105 = 
6720 minutes, or about 4 days and 14 hours. The LBI system required (4 * 17.2) + (64 * 
1.1) = 139.2 minutes, or just over 2 hours and 20 minutes, which shows dramatic 

improvement. Note that these are system times; our clock times can be found by 

multiplying by 3.2, compensating for the performance degradation on our heavily time

shared machine. 

Encouraged by the success of this "one-scan, many-binds" approach, we would like to 

modify the scan converter so that the entire image need not reside in virtual memory at 

once. Instead, full (or nearly-full) packet blocks will be written to disk and their memory 

freed. This will require some pre-sorting of the polygons after the viewing 

transformations, but will enable us to generate images with many more primtives at high 

resolutions, limited only by disk capacity. 
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Discussion 

An interesting comparison between the LBI technique and the radiosity approach to 

image synthesis [Immel86] was suggested by Marc Levoy [Levoy86]. Radiosity 

effectively. pre-computes the shading in a 3d scene, but calculates visibility on the fly. This 

allows it to generate multiple viewpoints of a fixed model quickly. Our technique pre

computes visibility, but calculates shading on the fly, allowing the fast selection of shading 

parameters. The two techniques effectively span a wide range of applications, each 

focusing on one end of a well-defined spectrum. 

Our final medical images are now produced in far less time than required by our more 

traditional image rendering tools. Each medical image must be carefully (and usually 

iteratively) tuned to emphasize important structures and guarantee that all objects are easily 

differentiable. The fast generation of images with adjusted surface propenies and 

illumination has provided an effective solution to this otherwise time-intensive problem. 

The LBI rendering system has shown itself to be 'robust, useful, pleasant to use, and 

fast. In addition to medical imaging, we have used the system for many standard computer 

graphics projects, including the display of curved surfaces and solid modelling. 
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These examples show the construction of two composite LBI files in a medical 
environment. We assume that a scan conversion program has produced 
LBI-format files called skin, bones, heart, lungs, and stomach. The first image 
we want to produce will contain the skin, bones, heart, and lungs: 

file1 = skin +bones +heart+ lungs 

When we frrst build the second image we specify that we want the skin, bones, 
heart, and stomach. One approach is to build a new composite file from these 
three smaller files: 

file2 = skin + bones + heart + stomach 

A better approach is to take the fust composite file, subtract the lungs, and add 
the stomach: 

file2 = file1 - lungs+ stomach 

Let's now say that we want to see the tumor unobscured by the lungs: no lung 
data closer to us than Z=3000 should be rendered. We also want the skin to appear 
only above and below the lungs (scanlines 100 and 350, respectively). File 
windowing commands can help us accomplish this goal 

file3 =bones +tumor+ hitherClip(lungs,3000) + 
topClip(skin, 100) + bottomClip(skin, 350): 

Examples of LBI Commands 

Figure 3 
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(a) 

one page 

Here is a vinual screen that contains packets. The screen is a rectangular 
array large enough to hold one packet and a pointer to the next packet at that 

pixel, which is located elsewhere in memory. Because very few of these packets 
can fit in a page, polygons which cover several pixels horizontally will page fault 

on every new scanline. 

- (b) 

--
Here we've allocated the screen as blocks of pointers. Each block fits onto 

one page. When a primitive is scan converted, transitions from one scanline to 
another in the same block don't cause page faults. The actual packet 

records are allocated in a similar manner. 

Figure 4 
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A polygon with a 45-by-45 bounding box, cornered on the origin of a page. In this 
example, we get 18 pages faults when finding the pointers for the packet lists 
(18 blocks of pointers are accessed). If we allocated the memory as a single 

large 2d array, we'd get 45 faults, one for each scanline. 

Figure 5 



A head and brain, from CAT scan data. The colors, diffuse reflection, and specular 

reflection change across the rows. Opacity changes across the columns. 

The hole in the brain is in the data, because the scanning process was stopped 

before the entire head had been scanned. 

Figure 6 
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Several tiled icosahedra rendered with polygons, illuminated by colored lights. 

Figure 7 
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A pelvis with internal organs. The large bones are the pelvic girdle. Fitting into 

sockets at the bottom left and right of the girdle are the tops of the femurs. The 

red shape is the rectum, the purple is the prostate. The yellow bladder is cancerous, 

and is a candidate for radiation therapy. The darker surface surrounding the 

organs is a surface of 90% radiation dosage. 

Figure 8 



This data was generated from '\\!R scans of a male chest. The long blue tube is 

the esophagus, which leads to the stomach. This esophagus has a tumor which is 

to be treated with focused raclicttion beams. The spine is yellow. The lungs, 

skin, and vertebral bodies are mostly transparent. The scanned LEI file contains 16 

isodosage surfaces. On the left, all surfaces but the 55% radiation surface are 

transparent: on the right, all but the 80% surface are transparent. 

Figure 9 
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This 16-frame film was built from the same data as Figure 9. 

Each frame shows 4 different views of the chest, and is labelled with 

the particular isodosage surface made visible in that frame. 

The 4 views were each scan converted once, and then bound with a 

different set of surface parameters for each frame. Note that as the 

radiation dose increases, the surface changes from light blue to red. 

Figure 10 
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Spacetime Ray Tracing for 
Animation 

Andrew S. Glassner 
Univers'ity of North Carolina at Chapel Hill 

Ray tracing is a powerful and popular technique for 
image synthesis. When first introduced for computer 
graphics, 1•

2 ray tracing was comparable in power to 
scan conversion, but less attractive because of its high 
computational cost. 

Survey 
The effects of reflections, refractions, and shadows 

were estimated by adding recursion to the original ray-

tracing algorithm.3.4 Unfortunately, some notable com
binations of these effects were incorrect. 

Image synthesis and ray tracing 
For example. if a shadow-testing ray encountered a par

tially transparent sphere, there was no proper single 
direction in which to send the ray after passing through 
the sphere's surface. Either this shadow was rendered as 
though blocked by an opaque object, or the modeler 
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introduced ad hoc techniques into the algorithm to han· 
die particular situations correctly. 

A solution to some of these problems was introduced 
in the form of distributed ray tracing. 5 Whenever there 
was no single correct value for a ray parameter (such as 
the direction of the shadow ray discussed above), the 
domain of useful values was searched for an "appropri· 
ate" choice. This choice was made on the basis of the 
shape of the parameter space being sampled and the 
expected number of samples to be taken. Soft shadows 
and antialiasing in all dimensions were now available in 
a single, conceptually elegant algorithm. A technique for 
dynamically optimizing the number of rays cast when 
generating an image was presented by Lee and Uselton.6 

The ray-tracing algorithm was theoretically unified 
and extended again by Kajiya. 7 Ray tracing was formal
ized as a technique for solving the "rendering equation," 
which describes light distribution and energy balancing 
in an environment This work suggested ways to include 
caustics and diffuse interreflections in a ray-tracing envi
ronment 

Unfortunately, a straightforward implementation of 
ray tracing is prohibitively expensive in computer 
resources and time. Finding efficient techniques to 
implement ray tracing is an active research area. 

A brief survey of single-image rendering 
speedup techniques 

Efforts to improve the efficiency of the technique have 
taken place on two major fronts: bounding volumes and 
space subdivision. Both of these efforts have seen inves
tigation of important subissues: hierarchies for bound
ing volumes and the style of decimation for space 
subdivision. 

A central idea behind bounding volumes is that it is 
often cheaper to intersect a ray with several mathemati
cally simple objects than a single complex one. So com
plex objects are surrounded by simple objects (the 
bounding volumes), and these are recursively grouped 
together and enclosed within larger bounding volumes, 
forming a hierarchy. Rays that miss a bounding volume 
save a lot of work: they needn't examine any object 
within. Rays that do strike a bounding volume must then 
be intersected with everything inside the volume (which 
might include smaller bounding volumes). Such rays suf
fer the penalty of having computed the bounding volume 
intersection; the details of this intersection are useless 
except to signal that the internal objects must be tested. 
Bounding volume approaches to ray tracing are 
described in a number of works.8

•
14 

A different approach to speeding up ray tracing is 
called space subdivision. The central idea here is to deci
mate space into a collection of disjoint simple volumes 
{often boxes), which are chosen so that each encloses 
only a small number of objects. When a ray enters a given 
box, it is intersected only with the objects within that 
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box. If no objects are hit within the box, the ray moves 
to the next box on its path and repeats the procedure. 
Several approaches that use space subdivision have been 
published.15•18 

Both techniques address the issue of rendering a sin
gle image. In this article we propose combining these 
methods and extending them into the realm of animated 
sequences. 

A hybrid technique combining 
adaptive space subdivision and 

bounding volumes 
In this section we present a technique for the creation 

of efficient bounding volume hierarchies. The technique 
is a hybrid of adaptive space subdivision and bounding 
volume techniques. 

The advantages of bounding volume techniques lie in 
their ability to easily avoid computing ray-object inter
sections for all objects within a bounding volume not 
penetrated by a particular ray. If the volume is entered, 
then all of its immediate children must be intersected. 
If the bounding volumes can overlap, then it is not suffi. 
cient simply to proceed with the nearest of these chil
dren, since the nearest bounding volume may not 
contain the nearest object. 9 In this context, the biggest 
drawback to bounding volume techniques is that some
times ray-object intersections are ignored; such compu
tations {which may be very expensive for complex 
objects) are unnecessary. A recent paper14 presents 
some techniques for measuring and building a hierarchy, 
but the definition and construction of good hierarchies 
is still poorly understood. 

The other popular speedup technique is space subdi
vision. Many space subdivision schemes use rectangu
lar prisms (called cells) for the unit element of space. The 
hierarchy created by adaptive space subdivision tech
niques is excellent: No cells at any given level overlap, 
and-cells are dense only where the database is dense. On 
the other hand, rectangular prisms can perform poorly 
as bounding volumes compared to sets of slabs and other 
techniques. 

To summarize, bounding volumes offer tight bounds 
but poor hierarchies, while adaptive space subdivision 
offers poor bounds but very good hierarchies; the 
approaches are complementary in their strengths and 
weaknesses. Our technique is to use the excellent hier
archy created by space subdivision as a guide to control 
the structure of the tighter bounding volume hierarchy. 
We will now present an overview of the algorithm, and 
then discuss some variations. 

The general theme of our approach can be summa
rized as constructing a bounding volume hierarchy in 
the order "space subdivision down, bounding volumes 
up." For simplicity, we will often refer to a bounding vol
ume simply as a "bound." 
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Figure 1. The subdivision of a rectangular prism into 
eight smaller prisms. On the left is the prism showing 
the locations of the cutting planes. On the right is an 
exploded view of the subdivided prism showing the 
labels of the eight smaller prisms. 

We begin by finding an enclosing box for the entire 
database, including light sources and the eye. We then 
evaluate a subdivision criterion (discussed below) for 
that box and its contents. If we decide to subdivide, then 
that box is split into eight new, smaller boxes, as shown 
in Figure 1. It is important to note that these boxes do not 
overlap. We then examine each new box in turn, deter
mining which objects within the parent box are also 
within each child. We then evaluate the subdivision 
criterion for each child box, and recursively apply the 
subdivision procedure for each box that must be split. 
The recursion terminates when no boxes need to be sub
divided. 

This concludes the "space subdivision down" step. We 
now build the bounding volume hierarchy as we return 
from the recursive calls made by the space subdivision 
process. Each node is examined, and a bounding volume 
is built which encloses all the objects contained within 
that node, within the bounds of that node. One way to 
visualize this process is to consider building a bounding 
volume for all objects within a node, and then clipping 
that volume to lie within the walls of the space subdivi
sion box, as shown in Figure 2 (note that implementa
tions may use a simpler and more direct method). As we 
work our way back up the space subdivision tree, we 
build bounding volumes that contain the bounds and 
primitives of the child boxes at each node. We note that 
if a cell has only one child, then we may replace that cell 
by its child to improve efficiency when rendering. 

This completes the "bounding volume up" step. The 
result is a tree of bounding volumes that has both the 
nonoverlapping hierarchy of the space subdivision tech
nique and the tight bounds of the bounding volume tech
nique. Thus the new hierarchy shares the strengths of 
both approaches while avoiding their weaknesses. The 
result is that when we trace a ray, we can always exam
ine the nearest bounding volume at all levels in the hier
archy. If we find an intersection in that volume then we 
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Figure 2. On the top is an object surrounded by a sin
gle bounding volume (for clarity the bounding 
volumes are rectangular prisms in this figure). On the 
bottom is the same object after the surrounding 
bounding volume has been subdivided. Note that the 
new, smaller bounding volumes are contained within, 
but not equal to, the smaller prisms created by the suf>.. 
division of the original bounding volume. 

a b 

c d 

Figure 3. (a) shows a scene of 10 objects. (b) shows an 
adaptive space subdivision grid placed on those 
objects, subdividing any cell that contains more than 
two objects. (c) shows octagonal bounds (four slabs) 
placed around each primitive. (d) shows the final 
bounding hierarchy formed by the bounds in (c) and 
the subdivision tree in (b). 

can immediately stop. Figure 3 summarizes the hierar
chy creation process. 

If no intersection is found, we then proceed to the next 
bounding volume, using either the bounding volume or 
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Figure 4. This diagram shows a 3D spacetime. The 
two space axes are labeled X and Y. Each slice of this 
spacetime volume parallel to the X and Y axes selects 
the world at a particular instant of time. Inhabitants 
of this world would experience the flow of time if they 
were moving along the time axis at a steady rate. 

space subdivision structure to guide the ray propagation. 
It is important to note that since our bounding volumes 
might not completely enclose their objects, we must 
check that the intersection is indeed within the limits of 
the current bound. 

There are many ways to apply adaptive space subdi· 
vision and bounding volumes; we will briefly mention 
some of the variations. The space subdivision cells may 
be axis--oriented,15 or oriented arbitrarily in space.13 The 
adaptive subdivision may be performed by equal cuts .in 
all directions, 15 in a BSP methodology, 17 or with the 
median cut algorithm 19 based on the distribution of 
objects in the cell. The subdivision criteria may be based 
on the amount of projected "void area, " 10 the object 
count in a cell, 15 or on the density ratio of the total val· 
ume enclosed by the objects to the total volume of the 
cell.20 The last technique is useful when working with 
''intelligent'' objects, which may represent themselves 
with different bounding volumes, depending on the level 
of the bounding hierarchy. 

The bounding volume construction may use rectangu· 
lar boxes, 13 polyhedrons, 10 parallel slabs, 9 or surfaces of 
revolution. 21 Because the bounds constructed at each 
cell are a union of the bounds of all child cells and prim· 
itive objects in that cell, the style of bound at each cell 
may be different, enabling one to "tune'' the bounds of 
each object individually. 

Spacetime ray tracing 
The central idea in our solution to the ray tracing of 

animated sequences is to consider the tima.varying 
geometry of the 3D database as a static structure in 4D 
spacetime.22 Since many people find it difficult to 
visualize 4D spaces directly, we will approach the 4D 
spacetime algorithm by analogy with 3D spacetime. 
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a 

b 

Figure 5. (a) To ray trace a frozen instant of 3D space
time, we choose a 2D slice along the space axes. This 
entire slice has the same time value. We then project 
this 2D world onto a 1D image line, with the observer 
at the apex of this 2D viewing pyramid (a triangle). (b) 
To approximate motion blur, different samples in the 
image are taken at different times. This has the effect 
of thickening our sampling plane into a sampling 
volume. 

3D spacetime 
Three-dimensional spacetime can be thought of as a 

3D space, containing a 2D space translated continuously 
in time. 23 Figure 4 shows a 2D world (a section of a 
plane), changing with time. In an animated sequence, 
objects will move about in this 2D space as time 
progresses. 

Most of the rendered animation we usually produce 
consists of the projection of worldly 3D objects onto a 
2D image plane. In a world of one less dimension (the 2D 
world of Figure 4), we render 2D objects onto a lD image 
line, as shown in Figure Sa. Let's say we want to use ray 
tracing to produce a movie of this changing 2D world. 
Our rays that sample the 3D spacetime may start at any 
point (say an intersection with an object) and move in any 
direction. If we want to include motion blur in our 
movie, then these rays may also start at any time during 
a frame, as shown in Figure 5b. 
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The question now becomes one of quickly tracing the 
3D ray in spacetime, intersecting it with each 2D object 
in its spacetime path. Each intersection of a ray and 
object is denoted by the three coordinates (X;Y,I'). Each 
{X,Y) location in pure space is called a space point. Each 
(X,Y,f) location in spacetime is calleO.- a spacetime 
event.24 

To make our movie of the motion depicted in Figure 
4, we could simply shoot rays from the eye, at various 
times and in various directions, into the 3D spacetime 
structure and try intersecting the rays with each object. 
searching for the first event along the ray's path. This 
naive approach would be very expensive computation
ally. Alternatively, we can adapt the bounding volume 
hierarchies described in the previous section. Instead of 
building spatial bounding volumes in 3D space, we will 
build spacetime bounding volumes in 3D spacetime. As 
long as we know the 3D spacetime structure, we can 
rename one of the axes in the 3D space algorithm as time. 
When we subdivide along the time axis, we are actually 
now subdividing the amount of time· for which this 
bounding volume encloses its child objects. 

One way to see this is to envision Figure 1 as bound
ing volume for a 2D object in 3D spacetime. With this 
interpretation, nodes 0 through 3 now contain the first 
half of the time interval, and nodes 4 through 7 contain 
the second half {visualize the time axis as moving from 
the bottom to the top of the page). Now· we can restrict 
our intersection tests only to those objects that occupy 
the same region of space and time that the ray is 
sampling. 

Subdivision in higher dimensions 
So far we have looked at a 3D spacetime containing a 

2D world, rendered onto a lD image line. The techniques 
discussed above extend easily into a 4D spacetime of 
three spatial dimensions plus time. Higher dimensions 
are also straightforward, and may be useful in situations 
where objects change along dimensions that are being 
sampled other than just space and time, such as wave
length. 

Animation in 4D spacetime 
When we pierce a spacetime bounding volume with 

a 4D ray, we don't yet actually have the ray /object inter
section event. Since collections of objects and other 
bounding volumes may reside within a single bounding 
volume, we must look into the volume and test the ray 
against its contents. Because objects may move in com
plicated ways over time, we feel that 4D ray tracing is best 
handled by an object-oriented environment, which 
allows intelligent objects to perform their own intersec
tions. After describing such an environment, we will 
describe how to achieve the same function (though with 
greater effort) from data-driven animation in a proce-
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dural environment, such as a traditional keyframe ani
mation system. 

Bounding volumes and intersection events 
from intelligent objects 

In our technique the bounding volumes are created by 
the objects themselves, in response to requests by the 
hierarchy construction preprocessor. 25 Requests consist 
of asking an object for its enclosing spacetime volume 
within some region of spacetime. Many objects can eas
ily respond with one of the bounding volumes discussed 
earlier. 

An advantage of this intelligent object approach (such 
as described by Amburn, et al. 26

) is that objects can 
determine their own most efficient representations. For 
example, a group of stars may represent itself by a sin
gle bounding volume when the subdivision begins. 
When the bounding volume requests enclose smaller 
spacetime volumes, the star group may improve its rep
resentation by describing itself as several smaller 
clusters, returning several bounding volumes instead of 
one. Another advantage is the simplicity of the program 
itself, and the ease of adding new objects. Objects are 
also able to respond to requests to intersect themselves 
with a particular 40 ray, returning the first such event 
along the ray if one exists. 

If the application environment of the ray tracer does 
not support such intelligent objects, then the work of 
building bounding volumes and finding intersection 
events must be made by the animation manager. For 
example, a keyframe animation system would need to 
construct the bounding volumes for objects in given 
ranges of space and time according to the interpolation 
techniques it used to build the animation. When build
ing a particular bounding volume, such a system needs 
to examine the object carefully throughout the time dura
tion of the request to which it is responding: In a com
plicated animation system objects may move and change 
in complicated ways; one must be careful to insure that 
each bound completely encloses the object for the entire 
time interval. Similar care must also be taken when 
determining intersection events. 

Summary of the 4D spacetime algorithm 
The creation of a piece of animation begins with a 

preprocessing step. This step recursively builds an adap
tive space subdivision tree on the static 4D spacetime 
structure of the moving objects. When we return back up 
the tree, we build bounding volumes that enclose the 
objects at each cell. 

To render this structure we fire 40 rays into the bound
ing volume hierarchy. Because of the nonoverlapping 
nature of the hierarchy, we are guaranteed that we may 
choose the nearest bounding volume at every level. If we 
strike an object in this nearest volume, then we need not 
also test other, further volumes. 
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Motion blur due to camera motion is naturally accom
modated by using different starting times and positions 
for the primary rays. 

The sources of efficiency 
The spacetime rendering algorithm is efficient for ani

mation for the same reason that space subdivision and 
bounding volumes are efficient for single frames. Con
sider that in ray tracing, a ray must find its nearest object: 
This requires searching the entire database. Space sub
division sorts the database almost cbmpletely in a 
preprocessing step. Now each ray need only search the 
objects in a given volume. Any bounding volume hierar
chy in fact does the same thing, although the sorting may 
be more complicated. With these techniques, each ray 
needs only to search through a small number of objects, 
each with a high probability of intersection. In single
frame techniques the bulk of the searching was dis
tributed to the preprocessing sort that built the hierar
chy of space enclosures. 

Space subdivision and bounding volumes speed ren
dering by sorting the database once at the start of the 
frame, instead of for every ray. The technique introduced 
in this article speeds rendering by using a single, nearly 
complete spacetime sort instead of many space sorts. It 
performs this one sort at the start of the animation, 
instead of for every frame. 

Another important source of efficiency is the reduc
tion in the number of object transformation calculations 
that must be performed. When we shoot rays at differ
ent times to approximate motion blur, those rays inter
sect the objects in the database at different times. To 
intersect the ray and each object properly, the object 
must be transformed to the correct position, orientation, 
and shape for that time. If the object motion is complex. 
the transformation may include deformations and other 
sophisticated changes. These transformations may be 
very expensive to compute. Because our bounding vol
ume hierarchy is nonoverlapping, we avoid computing 
intersection events along hierarchy descent paths that 
don't lead to the first intersection. This reduction in the 
number of intersections that we must compute can 
become significant for complex object transformations 
in dense regions of the database. 

Implementation 
The algorithm generating the hierarchy of spacetime 

bounding volumes requires a technique of bounding 
volumes and a technique of adaptive space subdivision. 
In our implementation, we chose slab bounding 
volumes9 and equal subdivision. 15 Both algorithms are 
easily extended to work in spacetime instead of just 
space. 

Spacetime rays are represented by a pair of 4D events 
giving the origin and direction of the ray. When render-
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ing at normal scales, the time component of the direc
tion vector may be set to 0, implying that the light ray has 
infinite speed. At extremely large and small scales, we 
may instead set the time component to a value consis
tent with the speed of light in the database. With suitable 
enhancements to the ray-tracing geometry, we can then 
handle relativistic effects. 24 

In the 3D environment, a good set of bounding planes 
consists of the seven planes generated from the three 
axes and the eight octants they form. 9 The three axes 
give rise to three principal planes (each containing one 
unique pair of axes: XY, XZ, or YZ}, plus four auxiliary 
planes that each diagonally slice two octants. 

In 4D we have four principal axes, which cut space~ 
time into 16 subspaces, which we call hexants. Eight of 
these hexants contain the first half of the time interval, 
while the other eight cover the latter half of the time 
interval. We now have four principal planes {containing 
XYZ, XYT, XZT, YZT), plus eight auxiliary planes that 
diagonally slice half of the hexants, for a total of 12 
planes. 

Our principal planes have normals: 

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) 

Note that these slabs are required if we are using axis
oriented subdivision, since they form the walls that sep~ 
arate adjacent cells. The auxiliary planes have normals 

(.5,.5,.5,.5) (.5,.5,.5,-.5) (.5,.5,-5,.5) 
(.5,.5,-.5,-.5) 

(.5,-.5,.5,.5) (.5,-.5,.5,-.5) (.5,-.5,-.5,.5) 
(.5,-.5,-.5,-.5) 

Using planes formed by these normals we effectively 
enclose each spacetime path in a convex, bounding poly· 
hedron formed by the intersection of 12 slabs, each com
posed of two parallel planes. We may add additional 
spacetime slabs to those above if we desire even tighter 
bounding volumes. 

The cost of the 4D spacetime ray /slab intersection is 
virtually the same as for the 3D case. The difference is 
an extra pair of multiplies and additioris once per ray per 
normal to compute both cif the dot products of the space
time normal with the ray origin and direction.9 But we 
consider that cost negligible, since it is amortized over 
the life of the ray. 

Our system is implemented in the C programming lan
guage under Unix, which is not the most natural envi· 
ronment for object-oriented programming. We thus use 
indirect procedure calls and consistent methodology to 
achieve an object-oriented flavor in the system. For exam
ple, our objects are able to respond to messages request
ing bounding volumes within a given 4D box, 
intersections with a given ray, and intersection comple-
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Figure 6. The upper photo shows a cyclic 64-frame 
animation of six small spheres (''electrons'') spinning 
in different speeds in complicated motion around a 
larger central sphere (the "nucleus"). The lower photo 
is an enlargement of the 25th frame, showing the 
effect of motion blur on the small balls and their 
shadows. 

tions (e.g., determining surface normal). Our objects also 
perform a variety of householding tasks such as main
taining their own motion paths, managing time-varying 
surface deformations and texturing, and so on. 

Results 
Figures 6, 7, and 8 show three animations we have 

produced with ihese techniques. Because of the limita
tions of the print medium. we present the animations by 
grids of fraines equally spaced in time. Read the anima
tion grids as you would read a book: starting at the upper 
left, moving left to right and top to bottom. 

Figure 6 shows 64 samples from a cyclic animation of 
an atomic modeL Six spheres spin about each other and 
about a central nucleus in a complicated ballet. Motion 
blurring is evident in the faster moving balls and their 
shadows. 

Figure 7 shows 16 samples from a cyclic animation of 
a group of spheres, moving on the surface of an 
octagonal prism. This figure was generated with four 
samples per pixel, distributed in space and time. 

Figure 8 is a 64-frame synopsis of the short film Dina's 
Lunch. 
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Tables 1 and 2 summarize the statistics we have mea
sured for Figures 6 and 8. All frames were generated at 
126-by-126 pixels. Each frame of Figure 6 contains seven 
spheres and one polygon, and was sampled with a con
stant 32 eye-rays per pixel. Each frame of Figure 8 con
tains47 spheres and 21 polygons, and was sampled with 
a constant four eye-rays per pixel. All eye-rays were dis
tributed in the 30 spacetime volume occupied by the 
frame. 

The columns labeled "Frame-by-frame" report the 
costs for the entire animation when generating purely 
spatial bounding volumes anew for each frame. These 
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Figure 7. The upper photo shows a cyclic 16·frame 
animation of eight spheres bounding on the surface 
of an octagonal prism in a small box. The lower photo 
is an enlargement of the 12th frame, showing the 
speckled pattern characteristic of Iow·density dis· 
tributed ray tracing with motion blur (each pixel fired 
four rays}. 

bounds were taken to encompass the object for the dura· 
tion of the frame, created and arranged in a hierarchy as 
in Kay and Kajiya.g The column labeled "Spacetime" 
reports the equivalent costs using the techniques in this 
paper. 

Figures 6, 7, and 8 were all computed using a hybrid 
subdivision criterion. At the upper levels of the tree, we 
subdivided until no more than three objects were in a 
cell. After meeting that criterion, we used a density mea· 
sure: If the ratio of the volume enclosed by the objects 
in a cell to the volume of the cell was less than 0.3. the 
cell was subdivided (we used standard numerical inte· 
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gration 'techniques27 to estimate the volumes). The 
column labeled "Spacetime to frame-by·frame ratio'' con· 
tains the ratios of the animation totals for the two tech· 
niques, and is graphed in Figure 9. 

Clock timings are not presented in the tables, since 
actual rendering times are strongly influenced by pro· 
gramming style and code tuning. Specifically, our code 
is not optimized for the algorithms in this article, since 
it performs many other tasks as part of a much larger 
system. 

We have thus normalized all time measurements to an 
arbitrary unit time. Our unit time \Vas the average time 
to render one frame of Figure 8. All measurements below 
the heavy horizontal line in the Tables are reported rela· 
live to this time unit. The proper statistics for com pari· 
son lie not in the elapsed time, but in the other columns, 
reporting the number of bounding volumes made and 
intersected, and the number of ray/object intersections 
with their accompanying expensive object transfer· 
mation. 

Discussion 
The ratios in the comparison columns in Tables 1 and 

2 are encouraging. They reveal that even in animations 
of modest complexity spacetime ray tracing with a 
hybrid hierarchy yields savings over frame·by·frame ren· 
dering. 

From Table 1 we see that spacetime ray tracing was 
able to cut the rendering cost of Figure 6 to about 50 per· 
cent of that required by frame-by-frame techniques. Table 
2 shows that spacetime ray tracing reduced the cost of 
Figure 8 to about 80 percent of frame·by·frame methods. 
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Table 1. Rendering statistics for Figure 6. 

~.sy.fRAME SPACETIME 
Spacewnc: to I ,_ 

lwlna~on """""' Frame-by-Frame 
A- T"" Tool Ratio 

trays 793,637 S0,792,79S 50,792,794 1.0 

I ,to' bounding volumes I built 7.3 "' "' 0.463 

IJit ray/pnm.iti~ 
llllC!le(:IIOil$ 1,825.365 116,823.418 !>6,030,634 0.565 

• rayibounding 
volume inte~tions 2,857,093 182,8S4,062 106,664,869 O.S83 

averoge primitive 
2.3 2.3 Ll 0.565 1mer=uon• per n~y 

!averoge bollnd!ng 
3,6 3.6 2.1 0.583 ~ ~olumc inr.:rsecnons 

per ray 

lbour>ding volume 
hier=hy =•tion ti!nl: 0-011 0.710 0.33 0.465 

' 
' ' j~~:ndeMg time: 34.8 2233 1179 0 768 

' i ~l3J 01\lm.lOO!l genennon arne 35.1 n~ ""' 0.528 

Since spacetime ray tracing builds bounding volumes 
only once at the staft of the animation, we would expect 
that it should generate fewer bounding volumes over the 
course of the animation than frame-by-frame techniques. 
The results show that we indeed observed such an effect 
in both animations. The most important statistic is the 
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... Figure 8. This is a 64-frame sample of the 
short film Dina's Lunch. 

Table 2. Rendering statistics for Figure 8. 

FRAME BY FRAME SPACEJ1ME 

83 

I 
I 

Spao::c!>me to I 
F~ Anirmtion Frame~:ranx Animalion 
A=~ T"" Tool 

trays 22.748 \,43S,876 1.453.876 LO 

i • bo_unding volumes 
boil! 66 "" '" .08 

) • raylpriminve I mter.;cetiO!Is 73,148 4,68U06 4,20!.077 0.90 

I 

vol~ inlersections I'.,..,~""· 273,962 17.661.570 12,841,139 0.73 

lavcragef'runnivc 
mteMC:nons per no.y 3.22 3.22 2.89 0.90 

I 
la•or:tgo bounding 

12.13 11.13 8.81 0.73 •olwne lnlei"SIX"nOIIS 
potrray 

rbound!ng volume 
0' 6A 22 0.34 iu=hyatoi!IOII~ 

' 
I I 

lrtndenng nmo LO " " 0.77 i 
i I 
I 
I'Ot.>l anuna11011 
igonor:>non lime lA 90.2 71.1 0.79 

number of ray-object intersections; this figure also 
decreases in spacetime ray tracing, thanks to the addi
tional information provided by the time component in 
the spacetime bounding volumes. 

Thus even in these simple animations, spacetime ray 
tracing can offer us significant savings in time by reduc-

I 

I 
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1. 

# bounding volumes built 

average primitive object 
intersections per ray 

average bounding volume 
intersections per ray 

bounding volume hierarchy 
creation time 

rendering time Figure 9. Percentage of work 
required by new technique relative 
to frame-by-frame techniques. 
Light shaded boxes are for Figure 
6; dark boxes are for Figure 7. 

total animation 
generation time 

ing the number of complex intersection operations that 
must be performed. 

We note that several factors strongly affect these statis
tics, such as the distribution of objects in the scene, the 
complexity of each ray-object intersection, the complex
ity of the animation and database transformations, and 
the length of the animation in frames. 

Consider a complex object changing in complex ways 
over time, such as a boiling fractal volcano with flowing 
lava. It can be very expensive to intersect such an object 
with a ray at a given time. This is because time
dependent intersections require positioning an object 
along its motion path, interpolation of all object descrip
tion parameters, and then construction of the object 
itself {at least to a level sufficient to reject the ray). With
out spacetime bounds all of this work will have to be per
formed for each object, even for rays that cannot possibly 
hit the object because they are in the wrong place at the 
wrong time. Spacetime bounds eliminate the majority of 
these useless intersection calculations, eliminating also 
their associated complex object positioning and con
struction operations. 

We therefore expect that complex animation, involv
ing many complex objects in sophisticated motion, will 
yield substantially higher savings than the examples 
presented here; indeed, we expect that as the animation 
grows more complex, the savings will become greater. 
This is based on the above discussions about the sources 
of efficiency, and by analogy to the performance of space 
subdivision and bounding volume algorithms. We are 
currently planning an elaborate animation called Dina 
and the Windmill {the sequel to Dina's Lunch) to test this 
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expectation. Dina and the Windmill will also include 
extensive movement of the lights and camera. 

Future work includes lazy evaluations of the bound
ing hierarchy (constructed of only those bounds needed 
as the animation progresses). We also plan to synthesize 
our methods with other multidimensional ray-tracing 
acceleration techniques, such as that described by Arvo 
and Kirk.28 

Summary and conclusion 

We have presented techniques for efficient ray tracing 
of animated scenes. We view the animation problem as 
a spacetime rendering problem. Thus, instead of render
ing dynamically moving 3D objects in space, we render 
static 4D objects in spacetime. To trace rays in spacetime 
efficiently, we developed a hybrid technique of adaptive 
spacetime subdivision and spacetime bounding 
volumes, which generates an excellent hierarchy of 
nonoverlapping bounding volumes. The spacetime sub
division is also used during preprocessing to help intel
ligent objects select the most appropriate bounding 
volume for differently sized spacetime hypervolumes 
built as the subdivision progresses. We then trace 4D rays 
in this static spacetime to find ray-object intersection 
events. 

We are able to ray trace a piece of animation more 
quickly with this spacetime algorithm and bounding 
hierarchy than with straightforward frame-by-frame ren
dering. • 
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Summary 

Introduction 

This dissertation contains six papers written over a span of five years. Each paper 

addresses a topic in the field of computer graphics; the emphasis is on efficient realistic 

image synthesis and animation. 

In this concluding chapter, I will consider the content of each of the six papers 

individually. I will attempt to redress errors and omissions, clarify what is unclear, 

refine what is vague, and set them in the context of subsequent developments. These 

sections should be read as commentary on the papers, not revisions of the papers 

themselves. 

Space Subdivision for Fast Ray Tracing 
IEEE Computer Graphics & Applications, vol. 10, no. 4, October 1984 

Space Subdivision for Fast Ray Tracing was essentially a synthesis paper: it took 

several existing ideas, and combined them with some new techniques to make a 

composite algorithm. 

The thesis of the paper was that a software implementation of ray tracing could 

advantageously use a spatial data structure to speed the process of finding ray-object 

intersections. The data structure chosen was the linear octree, described in 

[Gargantini82]. The new techniques were a hashing scheme for fast voxellookup and 

a mechanism for moving from voxel to voxel along a ray. 

We will now look at the choice of the octree structure, the hashing mechanism, and 

the movement mechanism. 
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Spatial Data Structure 

The choice of linear octree was explained with the following argument: in addition 

to being well understood, octrees have the desirable property that they can change the 

resolution of the subdivided space based on the properties of the objects in that space. 

In this paper, the density of the octree structure followed the density in the enclosed 

space, measured by the number as objects in some volume. 

This was the extent of the defense of the selection of octrees in the paper. Although 

the claims are valid, there was no mention of the problems with octrees, nor 

consideration of alternative spatial data structures. These issues were addressed by a 

variety of later papers [Fujimoto85], [Kaplan85], [Kay85], [Jansen86], [Nemoto86], 

[Amanatides87], [Amaldi87], [Cleary87], [Peng87], which also extended and refined 

some of the algorithms in this article. It now appears that arguments can be made both 

for adaptive and fixed spatial structures, depending on the nature of the database being 

rendered. 

The essence of the tradeoff between the structures is in the cost for the voxel 

traversal mechanism, and the cost of fmding the data structure corresponding to the 

next voxel. Typically the voxel traversal cost is more expensive for adaptive structures, 

since there is some built-in uncertainty about the resolution of the next voxel. The 

algorithm in this paper, for example, requires 6 subtractions, 6 multiplications, four 

comparisons, and an average of k additional multiplications, k additions, and 4k 

comparisons, where k is the average height of the octree. Uniform structures can 

exploit the regularity of subdivision to use simpler, very efficient traversal algorithms. 

For example, the 3DDDA algorithm of [Fujimoto85] requires about 4 truncations and 

additions per step (their paper is sparse on details, so this is an estimate from their 

statement" ... one way to realize 3DDDA is to use two synchronized DDA's ... ",using 

the DDA algorithm in [Newman79]). This measure does not include initialization of the 

DDAs. 

The advantage of an adaptive structure such as the octree, k-d tree, or BSP tree, is 

most evident in a database where the object density is heterogeneous on a large scale. 

Such databases include most human environments: a typical room has a large amount of 

empty space for people to move within, and dense, varied regions such a bookshelf or 

coatstand. The ability of an adaptive structure to conform to the changing spatial 

density of objects can translate to a faster propagation speed of the ray through the 

database; the ray may get from one end of the room to the other by passing through 
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only one or two large, mostly empty nodes. The extra work involved in moving from 

one cell to another may be compensated by the smaller number of cells involved. 

On the other hand, many databases of very small and very large phenomena can be 

rather homogeneous in density, or at least composed of a simple, regularly repeating 

structure. An example of the former is a volume of the ocean; the latter might be a salt 

crystal. In such a database uniform spatial subdivision is attractive, as described by 

[Fujimoto85]. The cost of moving from one voxel to the next is less than for an 

adaptive technique, and the likelihood of striking an object in each voxel is relatively 

high. 

The critical question is the comparison of the total cost of each algorithm. In a 

heterogeneous scene, adaptive techniques appear superior: the high voxel-traversal cost 

is offset by the small number of voxels required to pass through sparse areas. 

Uniform techniques would need to process many empty cells, and though each step 

may be faster than an adaptive step, the overall cost would be higher. In a 

homogeneous scene, uniform subdivision appears superior: movement is cheaper, and 

more likely to result in an intersection. In this case the more expensive voxel 

propagation cost of adaptive techniques would be a burden, since only a small number 

of cells are likely to be traversed until an intersection is found. 

Counting objects in a small volume was a very crude method for measuring the 

local density of space. The reason we want to use some kind of density measure is 

because we want to estimate the chances of hitting an object when a ray enters a cell. 

Better estimates of this probability can come from fmding the ratio of the sum of all 

object volumes compared to the cell volume, or else a ratio of the sum of all surface 

areas compared to the cell's surface area [Weghorst84]. 

Voxel Hashing Technique 

The idea behind the hashing technique was to trade time for space in the storage of 

the octree. The mechanism was to eliminate the eight pointers at each node required to 

explicitly store the octree, and replace them with a number of linked lists. To find a 

node, one hashed its name into a small integer, and then followed a linked list of nodes 

associated with that integer. The claim was made that in the largest limit, each node 

would reside in its own list, so that access was immediate upon hashing. In the 

smallest limit, all nodes would reside in the same, large linked list, so that the whole list 

would need to be searched for each node. 
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To determine whether this was a good approach, we must look at just how much 

memory was actually saved. The result: we indeed save measurable memory, but the 

context in which this approachis used makes it of dubious value. 

To address the first problem, consider that each node still had to contain one pointer 

to the next node in the linked list. Thus in a tree of k nodes, we saved 7k pointers. 

Suppose we had a scene composed of n objects. If each object is a triangle, then we 

will store at least 3 points in 3-space with the object, plus some surface information 

(let's suppose this is just a pointer to a surface description). Then assuming 4 bytes 

each for a floating-point number and a pointer, each triangle will cost 40 bytes, for a 

total of 40n bytes to store the database. Assume the objects are distributed uniformly in 

space, so the tree is as wide as possible. Then the tree will have k levels, where k is 

the smallest integer that satisfies 2k ~ n. Solving for k gives k = r ~~! ~ l· The total 

k-1 

number of nodes that we need to store this tree is t = L 2i (we only sum to k-1 
i=O 

because the leaves have no child pointers). 

Let us assume that each node contains a pointer to an object list, and a byte of local 

information, costing 5 bytes. In the hashed scheme, the cost of the complete tree 

would be 2k (5+4) = 9 * 2k bytes. For the complete tree, each node has 8 child 

pointers, for a total of 5+(8*4) = 37 bytes; thus the tree costs 37 * 2k bytes. The 

relative memory consumption of the hashed scheme is thus 

9t+40n ~1 
i rlog(n)l 

s = 37t + 40n' where t = i :-o 2 , and k = J log (2) 

From this, we can plots as a function of n:, as in Figure 1 (in the Figure, n is 

plotted from 1 to 10000): 
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min: .51 
max: .64 
40 bytes/object 

min: .56 
max: .69 
52 bytes/object 

Relative memory costs for complete tree versus hash table 

Figure 1 

We can see that when we store 40 bytes/object, the ratio of hash-table to full-tree 

memory use ranges from about .51-.64. If we store a surface normal with each object, 

that takes 12 more bytes; the savings per node is less now, increasing the ratio to the 

range .56-.68. Clearly as each object consumes more memory, the relative savings 

from node reduction will continue to decrease. 

We made two assumptions in the above discussion. The first was small object 

sizes; in the spacetime ray tracing system (the last article in this dissertation) each object 

consumes at least 400 bytes; some take much more. The memory savings ratio for 400 

bytes/object is from .88-.94, or a savings between 6-12%. The second was assuming 

a complete tree; typical octrees will have many fewer nodes, and thus will expend 

memory on fewer pointers. 

Unfortunately, we pay a rather large time penalty for these memory savings. 

Consider that when we wish to find the next voxel along a ray's path (using the 

techniques in this paper), we must descend the octree from the root, using the 

mechanism of Figure 3 in the text Thus we examine each voxel along the path from 
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the root to the leaf of our next voxel along the ray's path. If the 8 child pointers are 

stored at that node, then we may simply consult the appropriate pointer to find the next 

child immediately. Using the hash table mechanism, we must hash the name of the 

child and follow the linked list to fmd the child. The irony is that we will descend 

much of the tree in the same order repeatedly (only differing below the lowest common 

parent of the two leaves); each time, for each node, we must go through the hash

lookup step. 

The actual time consumed by this step is dependent on the hashing function and the 

number of lists maintained. 

Is the space savings worth the time cost? Even without experimental data, we can 

make some observations. Virtual memory is now routinely available on most 

computers. With declining memory costs, the number pages that can be active in real 

memory at any given time is increasing. Furthermore, the very spatial locality exploited 

by the octree technique (successive voxels are spatially adjacent) translates into memory 

locality on the pages. In effect, our working set of pages corresponds into a working 

set ofvoxels. I suspect that we can hold enough complete (appropriate) voxels in 

memory at a time that the memory savings from the hash table is not necessary, and 

thus we need not pay its time penalty. 

In conclusion, the hashing table does. provide a savings in memory, but at a cost in 

running time; we probably don't need to save that memory these days, and 

consequently we may dispose of the technique and improve execution time. The 

hashing technique is only attractive when memory is more precious than running speed. 

Movement Mechanism 

When no intersections were found in a particular voxel, the algorithm found the 

next voxel with a three-step process. First, the point was found where the ray left the 

voxel. Second, that point was displaced away from the voxel interior by a small 

amount (carefully determined) perpendicular to each face which shared that point, 

creating a new point in another voxel. Third, the octree was descended from the root to 

find the voxel containing that new point. 

The technique worked. The amount moved was equal to half the length of the 

smallest voxel side in the database, guaranteeing that the point was within the next 

voxel on the ray's path. The displacement simulated the propagation of the ray, and the 

octree descent indeed found the correct voxel. 
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The algorithm was slow. Faster mechanisms have since been found, such as those 

of [Amanatides87] and [Lathrop88]. But it was a reasonable way to proceed, and 

worked correctly. 

Other items 

Several other points in the article bear re-examination. 

The algorithm that constructs the octree only considers the surfaces of objects, not 

their interiors. The article states, "The assumption is that the inside of a transparent or 

translucent object is either empty or else described by other, independently defmed 

objects." This is not wrong, but it is incomplete. What we really are concerned with is 

where a ray might change its direction or color. If an object has a translucent interior of 

varying density, then the interior might well be associated with the enclosing object 

itself, rather than as a separate object. This presents no difficulty to the algorithm, 

since the critical information is which object is influencing the ray, and that is exactly 

the object that the ray is within. So objects may have sophisticated internal structure, 

but as long as that structure is part of the object's description, and has a well-defmed 

boundary or surface, then we may restrict our attention only to the surfaces. 

The mechanism for determining which voxels contain a given object was not 

discussed at all. In fact, the program used to make the pictures did a simple overlap test 

between the object's bounding box and the voxel; this should have been mentioned. Of 

course, more sophisticated tests would be useful and would probably provide for 

sparser trees (and therefore faster image generation). 

The footnote on page 19 is in error; only three planes, not four, need to be tested to 

find the exit point of a ray from a voxel. My opinion in that footnote was wrong; 

determining which three planes lie in the forward direction of the ray can be part of an 

efficient movement algorithm [Arnanatides87]. 

Lastly, the article states that a single object may straddle several cells, and thus the 

ray would need to intersect that object several times. It claims that this is an 

"uncommon" event. Perhaps that was so for the particular images in the paper, but it 

could easily be a common event in the general situation. Consider a dense region of 

space containing many objects; there is no reason to believe that the voxel walls should 

cleanly separate groups of objects without piercing any of them; indeed, such 

penetration appears likely. Multiple intersections with a single object appear to be a real 

drawback. 
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Fortunately, one may simply associate the ray parameter at the intersection point 

with the object, along with the ray id number. Should that ray ever query that object 

again, the intersection parameter may be simply retrieved from this "ray intersection 

cache" without re-solving the intersection problem [Hanrahan86]. 

The article is missing two important literature citations. [Rubin&Whitted80] 

presented one of the few ray-tracing acceleration techniques extant when this paper was 

written. [Murakami83] also discussed ray tracing in the context of a spatially

subdivided world. 

Further work 

Several papers have extended and improved many of the techniques described in 

this paper; others have explored alternatives. Other strategies for subdivision have been 

studied, including uniform subdivision [Fujimoto85], BSP trees [Kaplan85]; the use of 

k-d trees has also been explored [Hultquist87]. Voxel movement algorithms have been 

examined and extended by [Amanatides87] and [Fujimoto85]. Another way to find a 

voxel's address immediately has been proposed by [Lathrop88]. 

Summary 

The main contribution of Space Subdivision for Ray Tracing was not in any of its 

component algorithms. Rather, it was one of the first demonstrations that a simple 

spatial data structure could be applied to the ray tracing problem to achieve speedups of 

more than an order of magnitude. Further work by others focused on other spatial data 

structures, including hierarchies of more general bounding volumes. This paper was 

most useful not for the particular algorithms employed, but for demonstrating the 

power of spatial data structures for accelerating ray tracing. 

Adaptive Precision in Texture Mapping 
Computer Graphics vol. 20, no. 4, Proc. Siggraph '86, August 1986 

This paper isolated one of the approximations used in the sum-table texturing 

technique, and proposed a solution whose cost and effectiveness were proportional to 

an estimate of the error in the approximated texture. 
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The sum-table method is useful in many contexts, but it is most convenient to 

consider it in a traditional pipeline rendering system. In their job of estimating the 

texture appropriate for a given pixel, sum tables incorporate two fundamental 

approximations. First, the texture filter is approximated by a flat filter, with unit 

response inside its footprint, and zero response outside. Second, the image of a pixel 

is approximated by a rectangle oriented to the texture axes. This paper accepted the first 

approximation, but attempted to reduce the errors introduced by the second. Thus the 

final quality of the texture sample is limited by the flat filter response, however accurate 

its footprint. 

The main assumption in the paper is that a better footprint is given by the convex 

hull enclosing the texture-space images of the four pixel corners. Indeed, this filter is 

superior to some arbitrary axis-oriented rectangle, but it is also i~erior to other forms 

of space-variant footprints which allow overlap among pixels. 

The paper begins by analyzing various additive and subtractive schemes among one 

or more sum tables. The quality of a texture estimate was measured by the amount of 

texture included in the sample, yet outside the pixel's texture-space image. This 

measure obviously ignores the values in the texture itself, which is a drawback. The 

analysis of various additive and subtractive schemes is useful and interesting. It is 

surprising that the availability of another sum table at a 45' angle to the first does not 

reduce the extraneous area sampled in the worst case. 

A different error measure is then introduced, based on the local variance of the 

texture. Variance is a reasonable measure of image complexity, and indeed has been 

used to control stochastic sampling schemes [Lee85]. It was later proposed that a better 

measure is contrast, since that is a concept that correlates to our perception of a scene, 

rather than its abstract statistical properties [Mitchell87]. 

To estimate variance, a second table was built containing the variance in the local 

neighborhood of each pixel; this table was then converted into sum-table format. When 

the texture in a pixel was to be estimated, the average variance within the pixel was 

found by consulting the variance sum table. Once the variance was estimated, the 

algorithm removed rectangular pieces from the texture estimate until the sampled area 

was less than a worst-case value, originally computed by formula but stored in a table. 

The texture estimate improved as more pieces were removed. 

A better way to estimate the average variance was suggested by [Heckbert86]. He 

suggested building a sum table of the squares of the texture values Xj, in addition to the 

normal texture sum table. Variance could then be estimated by the following (for a 

sampling region of n texture samples): 
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Comments 

The abstract stated that texture samples could be detennined to arbitrary precision; 

this is wrong. Sample quality was still limited by the flat filter response, and the 

"ideal" footprint assumed by the algorithm (the convex hull of the mapped corners of 

the pixel) is not ideal. But the algorithm could respond with increasing precision up to 

those limits. 

In Section 3.0, a distinction was made between the region summed over in a sum 

table, and the region which could be queried. The former was called the table's 

fundamental region. Although the idea of a fundamental region is important to the 

study of sum tables, in retrospect there seems no reason to distinguish between the 

integration region and the query region. Indeed, the paper goes on to state that both 

regions usually have the same shape. 

The discussion in Section 7.0 repeated a confusion between the approximations in 

the paper. It incorrectly stated that the texture was sampled "with a delta function, 

instead of a proper filter", which is both incorrect and misleading. The error is that the 

f:tlter used was not a Dirac delta function (zero everywhere except for unit height at one 

value), but rather unit-height within the sample and zero elsewhere. The misleading 

part is that this filter shape is not improper, though it certainly is not ideal. 

Supporting Animation in Rendering Systems 
CHI+GI Workshop on Rendering Algorithms & Systems 

Toronto, April 1987 

This short paper has a single major message, and an interesting, though unrelated 

idea. The message is an advocacy of an object-oriented, distributed database for 

animation support; the idea is to let objects help determine efficient sampling strategies. 

Both ideas were implemented in my spacetime rendering system. 

The starting point is an argument that the traditional rendering pipeline is not 

efficient for creating motion-blurred animation. The proposed alternative is a 
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distributed, object-oriented architecture to support both animation design and rendering. 

This is not the first time such an architecture has been proposed, but to my knowledge 

this paper is the first to supply the actual messages required to support such an scheme. 

The arguments in favor of code sharing were also not new, but persuasion is required 

to justify the difficulty of implementing such a system in a system such as Unix, which 

is not friendly to code-sharing. Overall, the paper proposes a very simple and 

straightforward system, but one I had not seen explicitly described before. 

The surprise in the paper is the suggestion of object-oriented parameter space 

sampling schemes for stochastic ray tracing; particularly for path tracing. The idea is 

not fully developed here, but the essence is described. The idea was later crystallized in 

the spacetime ray tracing system in the form of the "deck" data structure. The fmal 

analysis has not yet been completed, but the images appear at least as good as with 

other approaches for efficient path tracing [Kajiya86]. 

In summary, this paper presents a straightforward, though complete architecture for 

animation support It also introduces the barely related concept of object-oriented 

parameter space sampling. 

Template Parameterization for 3d Pose Interpolation 

This paper suggests a technique for allowing a model designer complete freedom in 

specifying the transformations that describe a hierarchical model destined for interactive 

animation. The work came about when I was building an animation system, and 

wished to remove some of the restrictions inherent in many other modeling systems I 

have seen. 

The use of the Singular Value Decomposition is appropriate; the numerical stability 

of the published algorithms of SVD makes this an attractive approach for solving our 

numerically delicate problem of matrix transformation. 

This paper is straightforward; its message and technique are simple and are stated in 

only a few pages. However, one issue is not completely resolved in the paper, and that 

has to do with the conformation of mirror-inversion matrices between two decomposed 

keys. 

The mirror-inversion matrices were introduced because I wanted some way to 

parametrically interpolate the orthonormal matrices created by SVD. From linear 

algebra we know that an orthonormal matrix J may be matched by J=MR, where R is 
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a pure rotation matrix, and M combines a single mirror and a single inversion. R may 

be represented as a function of three Euler angles, or with an equivalent quaternion, 

which respectively provide us with either 3 or 4 components to interpolate. 

But M is not parametric, and therein lies the problem. Consider two matrices 

Jo=MoRo and Jt=MtRJ. We wish to create an intermediate matrix J.s=M.sR.s. 

Since Ro and R1 are described parametrically, we can create R.s by interpolating the 

parameters at the two extremes. But without parametric descriptions for the M 

matrices, it is unclear how to create M.s. 

In the extraction of the original matrix into the (MR)S(MR)T template, two M-type 

matrices are generated. When two keys are to be interpolated, each of the in-between 

matrices is built from interpolated key matrices; the M matrices, though, are not 

parametric, and cannot be interpolated. If they have the same form at both keys then all 

is well, since all intermediate M matrices are the same. But if the endpoint M matrices 

have different forms, then it is unclear how intermediate keys should be built. 

If the modeler does not introduce inversions or mirrors into the model, then I 

believe that both M matrices will always have the same form at successive keys, 

making interpolation easy. I cannot prove this now, but I have run the algorithm on 

several hundred randomly-composed test keys that obeyed the above rules, and I never 

found a pair of mis-matched M matrices. 

But hoping for continued success of an underanalyzed algorithm is a risky 

proposition. A better way to handle the problem is to remove the parameter-free M 

matrices from the template. In the paper, the M matrix is extraCted by considering the 

cross product of the first two rows of the corresponding R matrix and the third row of 

the composite matrix being decomposed. By working instead with columns we may 

match J=RM. If we apply this technique to the ftrst orthonormal matrix from SVD, 

we get the template (RM)S(MR)T, which we may re-write as R(MSM)RT = 
RHRT. In general, H will represent simultaneous shears of all 9 varieties in 3d. 

Since H represents a composite shear matrix we may interpolate its elements directly. 

This technique removes the difficulty of working with the parameter-free M matrices, 

but what kind of motion it would generate is not clear. 

This straightforward paper advocates a simple solution to a common difficulty in 

modeling and animation systems. Test animation produced with this template has 

appeared qualitatively similar to that built from animation derived from templates 

matched by the modeler. 
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Late Binding Images 
Submitted to IEEE Computer Graphics & Applications 

This paper proposes a scheme for separating scan conversion from shading; the 

term shading covers hidden surface removal (with possible transparency) and surface 

coloring. The approach is a classic space/time tradeoff: to reduce the total rendering 

time, the first few steps in a classical rendering pipeline (transformation and scan 

conversion) are performed only once and the results stored in a large file. As long as 

the viewpoint remains unchanged, the contents of this file may be used directly for 

shading, avoiding repetition of those first few pipeline steps. 

This is useful when trying to develop a complex image composed of many objects. 

To make an image informative and visually pleasing, typically one must carefully tune 

the placement and coloring of lights, surface colors and reflectivities, and object 

transparencies. This adjustment is often repeated many times until all these parameters 

are both individually appropriate and collectively harmonious. 

In the paper I make the argument early that separation of scan conversion and 

shading is desirable; the remaining bulk of the paper describes my implementation, 

rather than an argument for the approach. 

Previous work 

Separation of scan conversion and shading is essentially a simple idea. Others have 

previously advocated various approaches to separating the steps of scan-conversion and 

shading; unfortunately many of the appropriate references do not appear in the text 

Probably the first description of the idea was given by [Crow74], who discussed 

hardware implementations for storing multiple objects per pixel. The "raster testbed" in 

[Whitted81] included provisions for storing spans of scan-converted objects. These 

spans could be individually adjusted with external procedures to effectively change the 

description of each object when constructing an image. A system is described 

[Atherton81] which stored several objects at each pixel, principally for determining 

various combinations of CSG operations on the objects. This system allowed very fast 

iterative rendering by avoiding repeated scan conversions. 

Fast interaction of shading parameters and light sources has been implemented 

through colormap modification. Interactive texturing is possible by encoding the 

surface normal of the closest object at a pixel in the pixel's color fields, a process called 

normal encoding, discussed by [Sloan79], [Bass81], and [Heckbert88]. Interactive 
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adjustment of the texture is accomplished by modifying the colormap, which can be 

done very quickly. These latter schemes suffer from the drawbacks of very low 

resolution of the surface normal orientation, and lack of support for transparency. 

Shading in response to a moving light is described in [Holmes85]. 

Point sampling 

In the section on Packet Structure I consider the problem of a point-sampling 

scheme that has some anti-aliasing information. In particular, the LBI system can store 

a bitmask with each packet, giving the surface coverage of that object But the Z 

information is presumed to describe the depth of the surface at the pixel center. 

Addressing this subject, the paper says "The surface normal and depth are computed at 

the pixel center; if the primitive does not cross the pixel center we estimate the surface 

normal and Z depth as if it did, by extending the geometry of the surface." Is this 

justifiable? 

I believe so, but the statement should have been restricted to polygons. Although 

the LBI renderer was developed to handle any primitives after scan-conversion, much 

of the scan-conversion discussion is implicitly focused on polygon rendering. The 

environment in which the system was developed and in which it is mostly used is a 

polygon environment, and some work went into handling polygons efficiently. The 

extension of a polygon's geometry to cover a pixel center involves only linear extension 

of the polygon's surface, which can be performed very accurately. In effect we are 

guessing where the surface would be if it extended as far as the pixel center, but since 

polygons are planar our guess can be excellent. 

An alternate estimate of the surface depth at the pixel center is to use the Z depth of 

the surface at its closest approach to the pixel center. Unfortunately, this can result in a 

choppy, zig-zag edge, particularly where two surfaces interpenetrate. The situation can 

become complex and subtle when dealing with highly curved surfaces. Thus it would 

have been more proper to restrict the earlier statement to polygons. 

Another solution might be to store Z values at each corner of the pixel, rather than 

the center, as in [Duff86]. Of course, this is only a matter of convention and costs no 

more storage, but it has the advantage of giving us four pieces of depth information per 

pixel rather than only one. If all four corners are not covered then we must again 

extend the surface to estimate the depth at those points. 
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Texture and shading 

To handle texture the system saves "the side lengths of the smallest box in texture 

space containing the projection of the associated pixel." This is to facilitate texturing 

with sum tables. 

In the section called Image Generation I refer to a modified version ofPhong's 

shading equation; the difference is that we handle transparency in the manner described 

in the text. 

Light sources are restricted to those "infmitely far away". This is because we wish 

to shade using pre-computed tables, which give illumination intensity as a function of 

surface normal. Such tables are only useful for infinite light sources; local sources 

must have their position included in the shading calculation. 

When discussing the tables, the article states that" ... we routinely produce images 

for which 32 steps of interpolation is insufficient ... "; this is true but not explained. A 

table at 64-by-64 resolution with 32 steps of interpolation gives us up to 2048 unique 

shades when interpolating between two antiparallel normals. We felt that this gave us a 

safe margin when building 512-by-512 images. However, when working with medical 

images users often wanted to zoom in on some structures of interest. Magnifications of 

8- and 16-fold were common in our community, which resulted in normal quantization 

which assigned the same shade to groups of 2 or 4 pixels. These shades would form 

clearly visible bands around the object. Thus we elected to provide 64 steps of 

interpolation, and left the code amenable to changes for further resolution. The issue 

was critical to our timing because each additional bit of interpolation required 

measurable expense in the Ikonas graphics engine. 

The LBI Algebra 

There is some discussion of a group algebra to support the LBI system. I believed 

at the time, and still do, that this is a powerful part of the overall structure of the 

renderer. The algebra is certainly simple, but it is also powerful. Most importantly, it 

is a proof that the system works. I have had many experiences where a plausible 

argument or algorithm has a hidden flaw, only discovered after extensive work. Even 

mere existence of a working program is not a proof; there could still be subtle cases in 

which the program suddenly produces unexpected, wrong results. The group algebra 

proves that no such flaws exist in the system structure. The actual implementation 

programs may have bugs, but the intellectual structure is sound. 
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Implementation Details 

We state that " ... a Z depth ofO would be exactly in the image plane ... "; this is 

because of how we set up the transformation at the start of the pipeline. More precisely, 

we transform 3d objects so that the viewing plane is positioned at Z=O in the 

transformed world. This is useful because we use packets at Z=O as identity elements 

in the algebra. 

The discussion of matting is correct, but incomplete. When composing two LBI 

files, we can invoke a 3d transformation operator, corresponding to one of the 2d 

operators such as Dissolve and Opaque [Porter85]. The simplest is a 3d windowing 

operator that restricts inclusion of the new file to within a volume defined by another 

flle. In this spirit, we can follow the lead of the conceptual structure developed to 

describe the "rgba" [Porter85] and "rgbaz" [Duff86] flle formats, and describe LBI 

files using an "onz" format (for object-tag, normal, z depth). 

When discussing repeated elements, I say that there are other solutions that preserve 

the group properties. Another approach that would work includes a packet count field 

in each packet; rather than duplicating a packet we just increment the count field; 

subtracting a packet decrements the count. This approach does not expand the file 

when the same LBI file is added to itself; the approach in the paper would double the 

flle size in such a situation. 

The fmal sentence in the algebra section might be seen as implying that fog and 

depth cueing are synonymous; they are not. Fog simulation reduces contrast as a 

function of distance from the eye, as a result of scattering due to particulate matter in the 

air. Depth cueing refers to a variety of techniques for representing depth information to 

the viewer; fog is one such technique. In vector and point-plotting displays, fog may 

be inexpensively approximated if one assumes a black background; then contrast 

reduction can be achieved with simple intensity reduction. 

Paging and polygon scan converting 

The scan conversion section explicitly discusses some efficiency techniques I used 

for polygon rendering. Much of the discussion focuses on the notion of page allocation 

and page faulting; unfortunately, some imprecision in the discussion weakens the 

conclusions. As mentioned previously in this chapter, locality on the screen often 

translates into locality in memory. Thus a working set of pages can include the core 

representation of a piece of screen memory. The text implies that each time we change 
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pages we suffer a page fault; of course, this is not true - we fault only when we access 

memory outside of the working set Because polygons affect locally dense regions of 

the screen, it's likely that two polygons adjacent in the model will be adjacent in the 

screen, and thus share some pages. 

Despite the lack of precision in the presentation, the argument presented in the text 

for the allocation of rectangular blocks of screen memory per page is valid. To see this, 

consider the tiling process that generates the polygons in our medical system. It 

generates rings of polygons that surround an object. Now consider viewing an object 

so that one of these rings runs vertically; that is, its central axis is horizontal. Adjacent 

polygons will be vertically adjacent, as in Figure 2. 

Figure 2 

In this figure, the boundaries between polygons are shown as horizontal edges. 

Successive polygons will thus have few scanlines in common. If we store each 

scanline on its own page, then once we have filled the page store, each new polygon 

will require a new scanline, and we will indeed page fault and need to access a new 

page from memory. 

The essence of the problem is that polygons tend not to be oriented wide and short, 

like scanlines, but rather in small regions of the image plane without preferred 

orientation. This has been noted before, and has even served as the basis for hardware 

design [Sproull83]. 

The solution advocated in the paper is similar to the hardware solutions, in that it 

allocates memory in small blocks with comparable side lengths (we use a ratio of 2:1 to 

match our page size; hardware solutions typically use 1 :1). Part of the mechanism of 

accessing these blocks is not well described in the paper. 

Memory for packets is allocated sequentially, although we allocate enough at a time 

to fill one of the 16-by-8 blocks. For each pixel, we maintain a pointer to the head of 
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the packet list, and a pointer to the last packet in the list; the latter lets us inexpensively 

extend the packet list. This is illustrated in Figure 3. 

one pixel 

head 

tai I 

Figure 3 

This is a cheap approach while scan converting, but it becomes expensive when 

writing the complete list out to disk. We prefer this distribution of expenses, since scan 

conversion is repeated many times, while disk writing happens but once. 

The allocation of packets is shown in Figure 4, where for clarity we assume packets 

are allocated in 2-by-2 blocks, rather than the 16-by-8 blocks used in the system: 

necessary 
new packet 

Figure 4 

pixel head pointers 

existing 
packets 

newly-allocated 
"anticpatory" 
packets 
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Here one packet was demanded to extend the list for a particular pixel; we allocated 

an entire block of packets, though, in anticipation of upcoming demands. 

Comments 

The LBI system began as an architecture, file format, and group algebra. From 

these components it turned into a complete rendering system that indeed sped up our 

image production time. The figures reported in the paper show improved rendering 

time for scenes that were rendered multiple times from a single point of view. 

In practice, the size of our images in core (a function of the number of primitives 

and the resolution of the image) becomes very large very fast, and can easily 

overwhelm the virtual memory manager. A working solution would be to write 

sections of the image to disk when virtual memory begins to fill, and then clearing the 

packet lists. The various ftles would then be merged together into a single, larger LBI 

file after scan conversion is complete. This bears similarity to the processing and disk

writing order of the Reyes rendering system [Cook87]. 

The LBI paper describes the design and construction of a rendering system. As a 

case study it presents an interesting discussion of the tradeoffs and efficiency concerns 

encountered. Perhaps the paper's strongest contribution is the group algebra, which 

gives the system a sound theoretical footing. Defining and following this algebra gave 

the project focus and coherency of concept, and gave both the author and users 

confidence in its proper behavior in new situations. 

Spacetime Ray Tracing for Animation 
IEEE Computer Graphics & Applications, vol. 8, no. 3, March 1988 

This is the most recent paper in this dissertation. In fact, this paper is really two 

papers in one: one paper on a new hierarchy structure, and another on four-dimensional 

spacetime ray tracing. I did not see this distinction until the first draft of the paper was 

finished; rather than separate it into two smaller papers, I left them combined. 

This may have been a mistake, since it could give the impression that the two 

methods are linked in some way. In fact, the bounding volume hierarchy and the 4-d 

ray tracing are completely independent ideas, and either one may be used with or 

without the other. 
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Besides this major organizational point, I believe the problems in this paper are 

minor, and mostly in the presentation, not the algorithms. 

Presentation 

The survey of single-image ray tracing acceleration techniques surveyed some of 

the field at the time it was written. Possibly beam tracing [Heckbert84] and cone 

tracing [ Amanatides84] should have been included; for simple databases these 

techniques may produce anti-aliased images more quickly than point sampling. Since 

the time that survey was written, pencil tracing [Shinya87] and ray classification 

[Arvo87]have been presented as additional speedup mechanisms . 

. In the section introducing the hybrid bounding volume technique I state " ... the 

defmition and construction of good hierarchies is still poorly understood." At the time 

of writing I believed this was generally accepted in the field Nevertheless, it should 

have been more clearly labeled as an opinion. 

Figure 3 is missing a horizontal line representing a bound separating the upper third 

of the upper-leftmost object The corrected Figure is given here. The change is the 

addition of a horizontal bound on the concave, star-shaped polygon in the upper left 
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Figure 4 does not show interpenetration of objects. It would have been a good idea 

to show two spacetime prisms passing through one another, indicating that the 

techniques support objects passing through on another in space. 

Both photos in Figure 7 should be flipped horizontally, exchanging left for right. 

Performance 

The performance figures given in Tables 1 and 2 show an increase of modest size; 

the new technique required about 53% and 79% of the time required by other 

techniques. The discussion called these "significant," which is perhaps overstating the 

case. 

Why are the savings so small? I believe this is simple an artifact of the test cases. 

The power of the spacetime algorithm comes from early rejection of intersection events 

with moving, deforming objects. The savings comes about because the object position 

and deformation need not be calculated for each event; the spacetime bounds are built 

up front, one time for the entire animation. The more complex the movement and 

deformation, the greater the savings will be from the pre-processing step that builds the 

bounds. 

106 



In these test cases all motion was linearly interpolated from keyframes. The only 

objects to undergo deformation were most of the spheres in the animation of the 

article's Figure 8 (titled Dino's Lunch), and their only change was a varying radius. In 

the atomic ballet, there was no deformation at ali. With such simple motion and 

deformations, there was no chance for the rejection mechanism to display a savings. 

Had I created an animation with more sophisticated motion or deformations, I expect 

that the savings would have been much greater. To test this I have started work on a 

new animation called Dino and the Windmill, the sequel to Dino's Lunch. 

As discussed in the paper, this expectation of increased performance is supported 

by experience with the space subdivision technique described in the first paper of this 

dissertation; in both cases, the more complex the database, the greater the savings. 

Simple databases will display small savings. Unfortunately for the spacetime paper, I 

did not build a sophisticated test case involving complex (perhaps procedural) motion 

and deformations. 

In retrospect, it might have been wiser to hold off publication until more dramatic 

results had been obtained, since the algorithm appears to have acquired a reputation for 

yielding only modest savings. I believe the reputation is inaccurate. 
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Summary 

These six papers represent several different approaches to different problems in 

computer graphics. The most important papers in terms of new ideas and algorithms 

are the first, Space Subdivision for Fast Ray Tracing; second, Adaptive Precision in 

Texture Mapping;and last, Spacetime Ray Tracing for Animation. Each of these papers 

makes either a theoretical or practical contribution to the field of realistic image 

generation. 

Each of the six papers uses geometry as a solution technique; sometimes the 

geometry is in the data structures, other times it is in the flow of the algorithm. This is 

not very surprising, since most of the problems studied were geometric in nature. 

The analyses have pointed up a lack of precision and rigor in most of the papers. 

The discussion in this chapter has attempted to compensate for that lack, and gives a 

level of analysis I would like to strive for in the future. 

I feel that these papers represent useful and creative approaches to a variety of 

interesting problems in computer graphics; the collection has breadth and depth. 
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About the Type 

This dissertation was prepared on an Apple Macintosh II using 

Microsoft Word 3.01. The main body of the text (and all papers 

not appearing as reprints) is 12 point Times. Figures were created 

with MacPaint 1.5 and MacDraw 1.9.5. Equations were prepared 

with Expressionist 1.11. Camera-ready output was generated on a 

LaserWriter II NTX with a resolution of 300 dots per inch using 

fonts from Adobe. 

Space Subdivision for Fast Ray Tracing and Spacetime Ray 

Tracing for Animation were prepared on a VAX -11nso running 

Unix BSD4.2. The text was entered and edited with the vi display 

editor, and formatting was prepared with nroff. Final typesetting 

for both papers was prepared by the journal. Figures for Spacetime 

Ray Tracing for Animation were printed by the journal directly 

from originals prepared by the author using MacDraw 1.9.5. 

Adaptive Precision in Texture Mapping was also written with 

the V AX/Uttix system, but used the TEX typesetting language for 

formatting. Output was generated at 120% on an Imagen printer, 

and photoreduced for journal publication. Figures were created 

with MacDraw and inserted into the manuscript by hand during 

pasteup. 

All computer-generated images in all papers were shot with a 

tripod-mounted 35mm camera. The monitor was a Tektronix 

69M41, displaying the output of an Adage!lkonas RDS-3000 

graphics system. Gamma correction for all figures was performed 
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