
A Common Network Interface
for Interprocess Communication

TR90-030

July, 1990

Debashish Chatterjee

"1i','"

I

I
I

The University of North Carolina at Chapel Hill
!'

' '
I I

Department of Computer Science I !

CB#3175, Sitterson Hall I
I

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

A COMMON NETWORK INTERFACE
FOR INTERPROCESS COMMUNICATION

by

Debashish Chatterjee

A thesis submitted to the faculty of the University of North Carolina at

Chapel Hill in partial fulfillment of the requirements

for the degree of Master of Science in the

Department of Computer Science.

Chapel Hill

July 1990

Approved by:

@1990

Debashish Chatterjee

ALL RIGHTS RESERVED

Debashish Chatterjee. A Common Network Interface for

Interprocess Communication

(Under the direction of F. D. Smith)

ABSTRACT

This thesis describes a new programming interface to provide interprocess

communication services independent of the network architectures and proto

cols available to support them. The common interface can be implemented

using existing interfaces for a specific environment. The interface user is

unaware of the specific protocol being used, even in a multi-protocol envi

ronment. This approach solves some problems of portability and interoper

ability. An implementation of this design on two network architectures has

been completed. The performance and the limitations of this implementation

are discussed. Future work in this area will also be discussed.

Acknowledgement

My special thanks to Don Smith for his help and encouragement through the

course of this research;

to Peter Calingaert and Dean Brock for taking time to serve on the thesis

committee and for their comments on the text;

and to Ashit Patel, Don Stone and Zhenxin Wang who helped in testing

the design and implementation by building a messaging library using this

interface.

Contents

List of Figures

1 Introduction

1.1 The Problem

1.2 Related work

1.3 Common network interface approach

2 Common Network Interface Design

2.1 Existing models

2.2 Naming and binding

2.3 The common network interface features

3 Common Network Interface Calls

3.1 Creation, destruction, management

3.2 Data transfer and multiplexing

3.3 Utilities

3.4 Directory service

4 Results and Conclusions

4.1 Results

4.2 Conclusions and future work

Bibliography

v

vii

1

1

5

7

9

9
10
12

16

17
22

26
27

28

28
30

33

A Network Interface Implementation 36

A.l Some connection-oriented protocols . 0 •••• 36

A.l.l Transmission Control Protocol (TCP) 36

A.1.2 OSI Transport Layer (TP4) 37

A.1.3 APPC 38

A.2 Data objects 38

A.3 Code outline 44

B Compiling and Linking the Interface Calls 50

c An Example Responder 51

D An Example Initiator 58

E Source Code Listing 63

E.l Include files and global declarations 63

K2 Creation, destruction, management 76

E.3 Data transfer and multiplexing 164

E.4 Utilities •••••••• 0 0 ••••• 220

VI

List of Figures

1.1 A heterogeneous environment

4.1 Average timings

4.2 Best and worst timings .

VII

3

28

29

Chapter 1

Introduction

1.1 The Problem

Software designed for a networked computing environment typically con

sists of several processes. The processes do not necessarily execute on or

use resources of a single machine. They do, however, need to communicate

and synchronize among themselves to achieve the functions of the software.

A software developer typically uses a set of services which provide reliable

communication management and synchronization among independently ex

ecuting processes. A programming interface provides primitives which give

the programmer access to services.

The programming interfaces available depend upon the operating system,

the network architecture, and the network protocols. A network architecture

is a specific design for interconnecting computers. It defines the protocols

to be used between the members of the network for meaningful informa

tion exchange, the data representation for the information exchange, and

the addressing mechanism used to unambiguously reference a member. The

operating system may support one or more network architectures and a net

work architecture, in turn, may support one or more protocols. Protocols

supported are always specific to a network architecture.

Consider the Unix operating system. The Berkeley version of Unix sup-

1

ports a programming interface using sockets, while System V provides an

interface called Transport Library Interface (TLI) [1] . Both support the

Internet network architecture [14]. In addition, they may also support ar

chitectures like Open Systems Interconnection (OSI) [11, 12], Xerox XNS

[7], Appletalk and others. Internet network architecture supports two proto

cols, Transmission Control Protocol (TCP) [15] and User Datagram Protocol

(UDP) [13].

In a homogeneous environment, where the network architecture and the

programming interface supported are uniform, processes use exactly this in

terface and protocol to achieve interprocess communication. The design is

not complicated at all. However, consider the following heterogeneous sce

nario (See Fig. 1.1).

o Process A1 running on machine Mt uses interfaces It, I2 and I3 .

o Process A2 running on machine M 2 uses interfaces It and I 2•

o Process A 3 running on machine M 3 uses interfaces It and I 3•

o Process A4 running on machine M 4 uses an interface I3 •

Let us assume interfaces It, I 2 and I 3 provide accesses to services provided

by protocols Px, Py and Pz respectively. Mutual exchange of information be

tween processes is possible if and only if they use a common protocol using

the interface(s) available at their machine. For processes not having access to

a common protocol, protocol conversion has to take place before communi

cation can be established. Protocol conversion is the provision of augmented

services to establish meaningful exchanges between two incompatible sets of

rules, where each set by itself defines a format for meaningful exchange.

If processes At and A2 decide to interact, they may do so using either

protocol Px or Py. When At communicates with A 3 , Px or Pz may be used.

Process A 3 can communicate with either of A 2 or A 4 using only one specific

protocol, which is again different for the two pairs. Processes A2 and A4 will

2

p
y

p
y

SNA

12

I 1

INTERNET

p
z

OSI

I 1

I
3 A I M

3 3

I
3

A
4

I M
4

Figure 1.1: A heterogeneous environment

3

not be able to communicate unless protocol conversion takes place. Even if

processes can communicate, the design of the programs will vary from one

to another if the programming interfaces differ.

Consider the set of processes, shown in Figure 1.1, to make up an ap

plication. The scenario defines an environment where an individual process

of the application explicitly uses a specific protocol and interface to talk to

another process. The application designer has a complicated design at hand,

depending upon the number of different interfaces available and the network

architectures supported by these interfaces.

Very often the interface design is influenced by the design of a network

architecture and the protocols supported by that architecture. This makes

it unique and different from other network programming interfaces. The

syntax of the programming interface defines the use of interface primitives;

its semantics defines the services offered. Any substantial difference in syntax

and the semantics of programming interfaces does not allow an application

using a particular interface to use another without significant modification to

the design of the application. If however, the syntactic flavor of the interfaces

is done away with, many of these sets of primitives are quite similar in their

semantics.

In this thesis, we give an interface definition providing a uniform set

of external behaviors, irrespective of the actual protocol used to support

the interface. This simplifies application design and development. It also

solves some of the problems of portability and interoperability. Portability

is affected by the available programming interfaces at the machines, while

interoperability is affected by the available protocols between the machines.

Our interface definition, called a common network interface in the thesis,

provides a uniform set of services regardless of the actual connection-oriented

transport protocols used to implement semantics of the interface.

4

1.2 Related work

This section describes the various approaches that have been taken to pro

vide interoperability between network architectures or to provide a uniform

interface to different protocols.

For processes to communicate across network architectures, protocol con

version has to take place to accommodate the differences between them.

Some of the known solutions [8] provide interoperability between network

architectures by

• defining useful partial resolution of protocol mismatches,

• complementing one or both protocols with missing services,

• or using an intermediary in the conversion process.

Protocol mismatches are classified by degrees of non-interoperability. Hard

mismatch is a degree of mismatch that makes communication impossible.

It results in situations like noncompletion of paths or deadlocks. Soft mis

match is an intermediate degree, while zero mismatch allows interoperability.

Soft mismatches cause poor reliability in data transfer, missequenced data,

buffer overflow and lower security. A probable cause for a soft mismatch

is non-standard or incomplete implementations of the protocols. Protocol

complementation is the provision of a set of functions that convert a hard

mismatch between protocols to a soft mismatch. This enlarges the available

set of protocol functions and makes it more interoperable. Use of an interme

diary as a gateway reduces the number of solutions necessary for I< different

protocols from 0(1{2) to O(I<). Conversion between a common subset of

two different protocols provides some interoperability. Such an approach has

been discussed by Groenbak [9] for protocols TCP and ISO Class 4.

The solutions discussed do not, however, alleviate the n:tisery of a software

developer using different interfaces to each protocol.

5

Auerbach (2] describes a toolkit called Transport Abstract Conversion

Toolkit, or TACT, developed to provide conversion between, as he puts it,

"services which the program wants to use and the set of services actually

available between itself and the desired partner". TACT claims to provide

true "transport abstraction conversion" by inserting protocol logic which was

previously absent. It provides a set of small, modular, mutually compatible

tools which can be combined to provide solutions to a larger problem. A

TACT library is composed of

• a Transport Interface Package for every distinct network architecture.

It is a set of functions which syntactically provides a interface called

"extended sockets". It may be directly used by new applications for

portability.

• a Programming Interface Package for every distinct programming in

terface. It translates the specifics of a programming language interface

to the extended sockets interface.

• Abstraction converters to provide TACT abstraction of any protocol

type.

AT&T's Transport Library Interface (TLI) is a uniform interface for the

network application writers in Unix System V release 3. It provides access to

various protocols that are supported by the TLI. The interface is uniform but

the services vary depending upon the protocol invoked using the interface.

Each transport provider, a protocol (e.g. TCP or OSI TP4), is r~quired to

adhere to a transport provider interface (TPI) that defines how the transport

protocols interact with the TLI. The Unix kernel boundary separates the

protocol modules that use the TPI from the user processes that use the TLI.

TLI thus provides a uniform interface but different services.

The socket is the basic building block for interprocess communication

(IPC) in the Berkeley version of Unix. The combination of a specific ar-

6

chitecture and a protocol defines a communication domain in the IPC im

plementation. Some of the domains suppbrted are Unix, Internet TCP, In

ternet UDP and Xerox XNS. Depending upon the domain used, the IPC

services are different. The programmer makes a specific choice of the desired

communication domain when requesting a socket1 to be allocated. The im

plementation then associates a domain type with any further activity using

this socket. This restricts the available services to the set provided by this

selected domain. IPC thus provides a uniform programming interface but

different services by associating a domain type to the socket.

1.3 Common network interface approach

The common network interface provides a uniform interface and a uniform

service to all applications. It defines its own set of services that is sufficient

to provide the basic goal of interprocess communication. It is similar to the

extended socket interface provided in TACT for new applications. Whereas

TACT also provides abstraction converters to convert every distinct interface

into the extended socket interface, the common network interface does not

have any provisions for automatically converting the existing interfaces to

itself.

The common network interface is also useful when computing platforms

support more than one protocol. The common network interface determines

the common protocol(s) in a multiple-protocol environment, and provides the

services defined by the common network interface using this (these) protocols.

If no common protocol exists, attempts to establish communication fail. The

common network interface thus provides limited interoperability because no

protocol conversion or complementation is attempted. The interface masks

the underlying specific protocols without greatly compromising reliability

and efficiency. To support the claim, we will present performance results of

1an endpoint to which a name may be bound

7

an implementation of this interface design supporting TCP protocol from the

Internet domain and the Class 4 protocol [16, 3] from the OSI domain.

The common network interface is designed as a package of subroutine calls

or library that can be generated and configured for a particular operating

environment. The application writer links this library with his or her code.

The package is generated separately for each platform to reflect the different

network architecture available. The implementation of the package takes

care of the underlying protocols and provides the interface services by using

underlying facilities judiciously.

8

Chapter 2

Common Network Interface
Design

A brief overview of the existing interfaces is introduced in section 2.1. Section

2.2 discusses the issues involved in locating remote peers for the purpose of

communication and synchronization. Section 2.3 describes the other services

that an interface should provide for purpose of interprocess communication.

2.1 Existing models

There exist several models for interprocess communication in different com

munication domains.

• Local Interprocess Communication.

For processes on the same machine, interprocess communication is pro

vided by the use of

- queues, semaphores or shared memory as in System V Unix and

OS/2,

- an interface, called IUCV, on VM/CMS that permits data ex

change between VM address spaces,

- pipes in Unix BSD version.

9

• Remote Interprocess Communication

Such communication is provided to the user by interfaces supporting

specific protocols depending on the network architecture available.

- Berkeley Sockets

This interface provides the following services depending upon the

domain (network architecture) that is supported at the host site.

* Datagrams are unreliable, connectionless delivery schemes

using User Datagram Protocol (UDP) on the Internet archi

tecture.

* Streams are full-duplex connection-oriented reliable byte

stream delivery protocols using Transport Control Protocol

(TCP) on the Internet architecture.

* Sequenced packets are also full duplex and reliable. They

are, however, packet sequenced. They are available in the

Xerox Network Server (NS) domain.

Conversation verbs

They are half-duplex, orderly and variable-length exchanges across

machines. They can be byte mode or record mode. They are sup

ported in SNA network architecture by its APPC (LU 6.2 Type)

protocol (10].

2.2 Naming and binding

For a process to communicate with a remote one, the local process must have

knowledge of the address of the remote process. The address is specific to the

domain1 which the remote process uses. It is a value that uniquely identifies

the host machine and the process on that domain. This reference mechanism

is architecture or protocol dependent. An interface definition that expects

1a network architecture and a protocol within that architecture

10

users to be aware of the domain desired requires this kind of address. When

an interface provides a uniform service and the user is not aware of the actual

domain being used by the service provider, a level of indirection has to be

introduced by a mapping from the process to the address.

When two processes want to establish an association, one of the two has

to initiate the association establishment procedure. Because of the asym

metry at the establishment phase, only the responder needs to advertise its

existence. Choosing and advertising one's identity is a naming issue. The

identity has to be unique to be unambiguously located by others. Mapping

the identity to a physical location on the system is a binding issue. Naming

and binding are tricky. Ideally the processes, using our common network

interface, would like to communicate with their peer by name, e.g a system

wide unique identifier.

This introduces the need for a service that maps such a name to a ma

chine/protocol specific address. It would typically be a directory service or

a nameservice whose existence is universally known and is easily accessible.

The common network interface assumes the existence of a nameservice and

uses its capabilities to provide the naming and binding services. The services

expected of the nameservice are

• to store a sequence of user defined values using a string as a key. The

number and type of such values may vary.

• to retrieve the values associated with it using a string as a key.

• to delete or modify an entry specified by the key.

• to determine whether the key already exists as an entry.

This common network interface requires the user process or application

to provide a symbolic name for that process. A symbolic name is best rep

resented as an alphanumeric character string. This symbolic name serves as

the key for other processes to reference this process. Representation of real

11

addresses of machines in the implementations of the protocols are hardly that

simple. They can, however, be constructed from more meaningful attributes

like a machine name or a session identifier. For example, the address on a

TCP transport provider can be constructed from the Internet address of the

machine and the port at which the process is running. Existing interfaces to

TCP can convert these attributes to a TCP-specific address. Similarly the

address in OSI can be transformed from the OSI-specific jargon to a string

and vice versa. The mapping from the symbolic name to protocol specific

addresses for the common network interface is simply an association of the

symbolic name to a sequence of groups, one each for a supported domain. A

group may contain one or more attributes for that domain.

In the present case, such domain specific attributes for the nameserver are

represented by strings. Assuming the above services are available from the

nameservice. Mappings can be established between the symbolic name and

the attributes. The naming and binding are then transparent to the user.

Since designing the naming and binding service is a significant work in itself,

this implementation uses a system-wide accessible file to store the sequence

of strings. The symbolic name of the process should be unique because the

current implementation does not check whether the name is already in use.

In the future it could be possible to use a directory server like X.500 that

is general enough to maintain any such mappings.

2.3 The common network interface features

A distributed application design involves communication between at least two

peer entities. Communication between the peer entities may be connection

oriented or connectionless. A connectionless design adds the address infor

mation of the destination to every message exchanged. It involves no setup

time and communication can be routed through different paths each time.

Typically the order of the delivered messages is not guaranteed to be the

12

order of generation.

On the other hand, a connection-oriented protocol has a finite cost to set

up an association between the peers. Once the association has been estab

lished data may be exchanged reliably without having any routing informa

tion attached to it. The ordering of the messages is preserved when delivered

to the remote user. Our common network interface is connection-oriented

with a reliable and ordered delivery scheme. Henceforth, an association to

exchange information in this model will be called a conversation.

The conversation being modeled by the interface resembles a data pipe

into which one process stuffs data at one end to be retrieved at the other

end by its peer. The pipe has a finite volume and it is quite possible for the

pipe to be filled up faster than it is emptied. Data could be delivered as a

byte st·ream or segmented into packets or records. Byte mode is better than

record-mode because it does not impede the development of any further layers

using this interface. A record mode delivery imposes a format and is useful

when layers adhere to a protocol which offers services other than basic data

transfer. The common network interface promises sequenced data delivery

and adopts byte stream as the network input and output model. There is no

segmentation or concatenation at the common network interface level.

Dialogue control and expedited flow are two other protocol functions of

this interface. These two features are not guaranteed by the interface; they

serve as hints to the implementation. The interface uses these hints to decide

which transport protocol options to be used to provide these services. If the

functions cannot be possible with the available protocols, the interface uses

default options. At the conversation establishment phase, the user provides

the functions as desired characteristics of the conversation.

• Dialogue control. A conversation can be established to provide data

flow in both directions, henceforth called full-duplex, or in one direc

tion at a time, called half-duplex, or in one direction all the time, called

monologue. The full-duplex connection is more costly to establish and

13

maintain. A full-duplex connection needs two separate paths, one in

each direction. For each path, system buffers are allocated to maintain

the incoming and outgoing data. Half-duplex requires each side to agree

on whose turn it is to send data. This involves dialogue management

calls. Monologue presupposes an irreversible agreement and cannot be

changed subsequently. When communicating entities are simultane

ously transmitting and receiving data the cost incurred in establishing

a full-duplex connection could be worth it. Half-duplex is useful when

data flows in one direction for some interval of time before switching di

rection. Then the overhead in exchanging turns is minimal. Monologue

is useful for applications that log data without requiring synchroniza

tion or acknowledgements. Only options for full-duplex and half-duplex

are provided. The default is full-duplex.

• Expedited flow. This allows some data to be marked as urgent. Such

data may be delivered before the normal data already queued but al

ways after any other queued urgent data. Delivery of only a small

number of bytes is permitted. When a sender elects to transmit urgent

data, an indication of such pending data in the internal buffers of the

receiving host is passed on to the peer at this host. The default is no

urgent delivery.

When a choice is provided at the interface level to the user processes, it is

possible that the choices made by the cooperating processes do not match.

On mismatches, the common network interface does not provide for further

exchange of messages between processes to negotiate and reach a consensus.

Instead, the default options are used.

Multiplexing of read and write on conversations is an important primi

tive for application developers. When an application maintains several con

versations, it is not possible to read or write these conversations in a pre

deterrn'ned sequence. This is because of the asynchrony of events happening

in a distributed environment. It may then be necessary for the application

14

to test conversations prior to any read or write activity on them to avoid

unnecessary calls. If an event (e.g. arrival of data) is pending on the con

versation, then an operation may be carried out. Write may not be possible

on a conversation because the conversation buffers may be full (analogous to

full pipe). Multiplexing services allow the program to select conversations

on which activities are pending or are free to be used. Although a single call

could select all the conversations ready for read or write, this interface has

separate calls to select ready conversations for read and write. It is intended

to simplify design of the application. An application user who may need to

selectively disable conversations to multiplex, can use utility calls that mark

a conversation unusable and then unmark it on demand.

Most primitives provide both blocking and non-blocking options. A block

ing call returns only on complete success or failure (an error condition). A

non-blocking call guarantees that the call will return. If some event was

pending or the· desired activity could be carried out, even partially, status is

returned. A non-blocking call allows users to do other chores without waiting

for an event that is yet to happen or is in progress. Although non-blocking

calls are provided, multiplexing is useful to avoid the costs of launching a

call when no activity is pending or can be carried out on it. Multiplexing

allows a programmer to avoid making non-blocking or blocking calls on in

active or busy conversations. A programmer may even make a blocking call

to synchronize with the remote process once the multiplexing services detect

an activity on this conversation.

The common network interface is targeted to be used in a multi-thread

or light-weight process environment. Specifically it has been used with the

C Threads [6] package but extensions to other thread environments should

be straightforward. This requires use of non-blocking semantics at the im

plementation level. Access to shared data must be mutually exclusive.

15

Chapter 3

Common Network Interface Calls

This chapter describes the interface library so that the users may use it

in their programs. The parameters and the completion semantics of each

interface call are described in detail. This chapter should serve as a reference

for· the users.

Of the two peers that establish a conversation1, the one which initiates

the process of establishment is called the initiator and the other is the re

sponder. There is a notion of a name to be registered that creates an entry

for the responding process entity in the nameserver. The responder needs to

register itself to advertise its existence. It is up to the process to choose a

string2 which then becomes the "well known name" or symbolic name for this

responder. The responder calls config..rsrc which creates an entry for the

responder in the nameserver as well as allocating communication endpoints

on the available protocols.

An initiator process establishes a conversation directly with a responder

using the "well known name" of the responder. Once a responder and an ini

tiator have established a conversation, a "conversation identifier" is returned

to each of the callers involved. Now either the initiator or the responder may

1 Refer to section 2.3 .
2 A string, in C, is an array of chac~cters with a null character (hex value 0) as the last

one.

16

transmit data or receive data on this conversation using ewri te or ere ad calls

respectively. The conversation is continued until either or both terminate the

conversation normally or abnormally.

OK is returned if any call is successful. Otherwise the call returns an

error code. Calls may be blocking or non-blocking. Blocking calls wait

indefinitely until they complete with success or error. Non-blocking calls

return immediately with success, error or status report. They may have to

be retried later.

3.1 Creation, destruction, management

• int config_rsrc(my_name,handle)

- char *my-name; I* in parameter *I
A string (name) used to register the calling entity with the name

server. The name must be unique3.

- NA-rsrc *handle; I* out parameter *I
A pointer to NA_rsrc is passed as a parameter. The handle is

initialized and returned to the caller. The handle is subsequently

used when the caller issues an accept request.

The call returns OK if successful. It returns NO..RESOURCE if the user

process has reached the maximum number of endpoints per process

that the current implementation allows. It returns CONFIG ..FAILED

if an internal error occurred while completing this call. It returns

REPEAT ..LATER if C Threads was being used and a resource handle could

not be obtained immediately.

3 Currently the nameserver does not check to see whether a name is already registered.
When two different users use the same name, the one who registers last masks out the
other.

17

• int delete_rsrc(handle)

Deallocates an interface endpoint and frees up allocated memory.

- NA_rsrc handle; I* in parameter *I
The handle to the endpoint to be deallocated 4•

Returns OK.

• int eaccept(handle, blocking, conv_type, Cv_id,

partner, sz_prtn)

Allows a responder to rendezvous with an initiator sometime in the

future.

- NA_rsrc handle; I* in parameter *I
The handle returned when the caller registers itself with the name-

server.

- int blocking; I* in parameter *I
If this parameter is BLOCKING, the call blocks until it succeeds or

has an error. If the parameter is NON..BLOCKING the call returns

immediately.

- struct conv-<:har conv_type; I* in parameter *I
where struct conv_char is defined as

struct conv_char {

#define NI_HDX 0

#define NI_FDX 1

int mode;/* HDX or FDX

#define NI_NORMAL 0

#define NI_EXPEDITED 1

int expedited;

4ImplementatioP of this call is incomplete; it does not delete the symbolic name from
the nameserver.

18

I* expedited message delivery allowed or not *I
};

The conversation characteristics are not guaranteed by the imple

mentation. The characteristics are provided by the user as a hint

to the implementation.

The option mode defines the type of exchange desired to be done

on this conversation. If half-duplex is supported by specific trans

port protocols and the mode is HDX then protocols supporting half

duplex will be first tried to establish a conversation. The same is

true for full-duplex. If the option is not available, any supported

protocol will be used. This feature is not implemented and all

conversations are full-duplex.

The option expedited allows for priority data transfer if defined

as NI..EXPEDITED. As in the case of mode it is used only as a hint.

If priority data transfer is sought, protocols supporting this fea

ture will be tried first. If such a protocol is used to establish a

conversation, then during the establishment phase this option is

matched with partner's option. In case of a disagreement between

them, the implementation does not allow for a negotiation and

silently sets it to the default value. If, however, no such proto

col can establish the conversation, the implementation uses the

default option.

The default mode is full-duplex (NI...FDX). The default expedited is

no urgent support (NI..NORMAL). The conversation characteristics

are assumed to have been agreed upon by the communicating

peers. Since it is not guaranteed, these characteristics should be

used with care.

NA_conv *Cv_id; I* out parameter *I
A pointer to NA_conv, this parameter is returned to be used sub

sequently to refer to this conversation for any activity on this

19

conversation.

char **partner; I* out parameter *I
This parameter is filled up with the "name", a string, of the ini

tiator of the conversation. The parameter should be a pointer to

a pointer to a char because size of the string returned depends

upon the actual string received. This parameter is not an entry

in the nameserver. It is provided for use by the application-level

processes and is not used for conversation management in any way.

- int *sz_prtn; I* out parameter *I
A pointer to an integer that specifies the size of the string m

parameter partner if the call is successful.

OK is returned if the call is successful and a connection has been made.

If the call fails, ACCEPT ..FAILED is returned when some error occurred

while the attempt was made. If REPEAT .LATER is returned, the caller

should try again. A possible reason for REPEAT .LATER to be returned is

when the internal timer expired and there is no pending request from

any initiator. In the BLOCKING mode, the call does not return until a

conversation is established or an error occurs. A NON-BLOCKING call

returns if no initiator request is waiting.

• int econnect(my~ame, partner~ame, blocking, conv_type,

Cv.J.d)

Initiates a connection to a remote application to exchange information.

- char *my~ame; I* in parameter *I
A string which may be null. It reflects a "name" this application

would like the responder to know it by. It is passed on to the

remote peer entity. It does not affect the connection establishment

in any way. It is not registered with the nameserver either.

char *partner~arne; I* in parameter *I

20

A string. This parameter is the "well known name" of the remote

application to which the caller wants to connect. partner ..name

is used to look up in the nameserver to resolve the binding issue.

This must be non-null.

int blocking; I* in parameter *I
When BLOCKING, the call blocks until it succeeds or has an error.

When NON .BLOCKING, the call returns immediately with success or

a return code.

struct conv.char conv_type; I* in parameter *I
As described in eaccept.

NA_conv *Cv_id; I* out parameter *I
A pointer to NA_conv, this parameter is returned to be used sub

sequently to refer to this conversation for any activity on this

conversation.

If the call is successful and a connection has been made, OK is re

turned. If the call fails and CONNECT ...FAILED is returned, then some

error occurred while attempt was made. If REPEAT .LATER is returned

the caller should try again. REPEAT .LATER is returned when the internal

timer expired or when it is likely the call may block and the option is

non-blocking. If IN...FROGRESS is returned due to a NON .BLOCKING call,

retry _connect should be used for confirming completion of this call.

This status reflects that the call will complete in the near future with

success or error.

• retry_connect(Cv_id)

Checks the status of an econnect call that has been issued earlier as

NON .BLOCKING.

- NA_conv Cv_id; I* in parameter *I
Input parameter is the conversation to be checked for completion.

21

Returns OK if completed. If still in progress IN...FROGRESS is returned.

CONNECT ...FAILED is returned if an error occurred and the call could not

complete normally.

• int eclose(Cv..id)

Deallocates a conversation and frees up allocated memory.

- NA_conv Cv..id; I* in parameter *I
The conversation to be deallocated.

Returns OK.

• int eabort (Cv..id)

Not provided yet.

3.2 Data transfer and multiplexing

• ewrite(Cv..id, blocking, priority, data, data~en)

Call to transfer data to remote peer.

- NA_conv Cv_id; I* in parameter *I
The parameter identifies the conversation on which the data is to

be transmitted. This is the same identifier that was returned as a

parameter during eaccept or econnect call.

- int blocking; I* in parameter *I
If this parameter is BLOCKING, the call blocks until it succeeds or

has an error. If it is NON ..BLOCKING, the call returns immediately.

int priority; I* in parameter *I
If it is priority data, use NI~XPEDITED otherwise use NI..NORMAL.

Default is NI..NORMAL. The priority is not guaranteed and is tried

if and only if NI..EXPEDITED was specified at conversation estab

lishment phase.

22

- char *data; f* in parameter *I
A pointer to a buffer containing the data to be transmitted. When

the call is successfully returned, the buffer may be reused.

- int *data-len; f* in out parameter *f
The size of the data to be transmitted on input. If the parameter

priority is NI...EXPEDITED, only data up to a size MAX_URG....SZ can

be written. On return, the parameter contains the value of the

data actually transmitted if return code is OK.

If the call is successful and some data has been transferred, OK is re

turned. If the call fails and WRITE...ERROR is returned, then some error

occurred while attempt was made. If REPEAT .LATER is returned, the

caller should try again as no data could be .transferred. If expedited

· transfer was attempted and disallowed, NLBAD.PRIORITY is returned.

If defined BLOCKING, the call returns when all data has been transferred

or an error occurred; NON...BLOCKING makes a single or no attempt to

transfer data depending on the condition of the conversation. The

returned value may be equal to or less than size requested.

• eread(Cv.id, blocking, priority, data, data-len)

Call to accept data from a remote peer entity.

- NA_conv Cv_id; f* in parameter *f
The conversation on which the data is to be transmitted. This

is the same identifier that was returned as a parameter during

eaccept or econnect call.

int blocking; f* in parameter *f
If this parameter is BLOCKING, the call blocks until data-len bytes

has been read or the conversation has been closed or an error has

occurred. If it is NON ...BLOCKING the call returns immediately.

- int priority; f* in parameter *f

23

priority should be NI...EXPEDITED, if NLURG..PENDING was re

turned by the previous eread. Otherwise it should be NI..NORMAL.

Default is NI..NORMAL.

- char *data; I* out parameter *I
A pointer to a buffer where the data is read in. The buffer should

have sufficient space allocated as specified by the next parameter.

When the call is successfully returned, the buffer may be reused.

- int *data.len; I* in out parameter *I
The size of the data to be read on input. Only data up to a size

MALURG...SZ is read if priority is NI...EXPEDITED. The parameter

on return contains the size of the data actually read if return code

is OK.

If the call is successful and some data has been transferred, OK is re

turned. If th., call is terminated because the conversation was termi

nated or broken, NI...EOT is returned. If NLURG..PENDING is returned,

urgent data is (still) pending and the next eread call should have

NI...EXPEDITED priority. If NLBAD..PRIORITY is returned, either nor

mal read was attempted with urgent data pending or urgent read

was attempted with no urgent data pending. If the call fails and

READ ...ERROR is returned, some error occurred while attempt was made.

If REPEAT ..LATER is returned, the caller should try again. BLOCKING

call returns when the size of data requested has been read or an error

occurred. NON..BLOCKING makes a single or no attempt to read data

depending on the condition of the conversation. The returned value

may be equal to or less than size requested.

• rselect (arr ..of _conv, wait, rnax_elern, arr ..selected)

Selects, within the specified time wait, conversations ready to be read

among the conversations specified in the arr£y arr _of_conv. Some ele

ments of the array of conversation identifiers may be masked by using a

24

mark..conv call. Later these conversation identifiers may be unmasked

for use by using the unmark_conv call. The mark..conv and unmark_conv

calls are described in the Section 3.3 . The masked conversation iden

tifiers are ignored.

- NA_conv arr_of_conv[]; I* in parameter *I
This parameter is an array of conversation identifiers. All these

conversations are tested for ready read condition. Any improper

conversation identifier is ignored.

- int wait; I* in parameter *I
Specifies the time in seconds for which the call waits and tests for

each conversation identifier.

- int max_elem; I* in out parameter *I
On input, specifies the number of conversation identifiers in the

arr _of _conv and arr _selected. On return, specifies the number

of conversations selected.

- int arr _selected[] ; I* out parameter *I
This array has a one-to-one correspondence with the arr _of_conv.

For each ready conversation in arr_of_conv, the corresponding

entry in arr _selected is 1. Ignored or non-selected conversations

have a entry 0 in arr _selected.

Returns OK if one or more conversations have been selected. Returns

TIMED...OUT if the timer ran out and no element was selected. Returns

R_sELECT...FAILED if there is an error.

• wselect(arr_of_conv, wait, max_elem, arr_selected)

Exactly like rselect except that it is used for writing and not for .
reading. It returns w_sELECT...FAILED if there is an error.

25

3.3 Utilities

• error2str(error_code,error_str)

Converts numeric error _code to a more meaningful diagnostic mes

sage.

- int ·error_code; I* in parameter *I
Error code returned by any of the foregoing function calls.

- char *error_str; I* out parameter *I
Declare error_str as a character array of size MAXERRSTRLEN and

pass the pointer to it as the parameter. On return contains a

diagnostic string.

• void mark_conv(Cv_id)

Marks the conversation identifier so that it is ignored for further activity

on this conversation.

- NA_conv *Cv_id; I* in out parameter *I
A pointer to the conversation identifier that is to be marked.

If the parameter is already marked, the call does nothing. There is no

return code.

• void unmark_conv(Cv_id)

It unmarks the conversation identifier so that it may be used for further

activity on this conversation.

- NA_conv *Cv_id; I* in out parameter *I
A pointer to the conversation identifier that is to be unmarked.

If the parameter is already unmarked, the call does nothing. There is

no return code.

26

• nLinitO

Available only if user is using C Threads package. If C Threads is being

used, this call must be invoked before any other call to the common

network interface library. No input or output parameters.

3.4 Directory service

This has not yet been implemented, and will depend on the design of the

nameserver. It is assumed now that the application designer knows the sym

bolic names of the various cooperating processes.

27

Chapter 4

Results and Conclusions

Providing a new interface definition and using exisiting interfaces to imple

ment a new one might degrade the performance severely and be less reliable.

Comparative performance measurements were carried out using the native

interfaces and the new interface. Results from the tests and inferences are

discussed in section 4.1. Section 4.2 discusses the future work and the possi

ble uses of common network interface.

4.1 Results

Data Size Common Existing
TCP I OSI TCP OSI

bytes seconds seconds
100 0.22 0.24 0.05 0.21

1,000 0.23 0.28 0.06 0.21
10,000 0.23 0.42 0.13 0.22

100,000 1.01 1.45 0.86 1.23
1,000,000 8.75 10.63 8.81 9.07

Figure 4.1: Average timings

28

Data Size Best Worst
Common Existing Common Existing
TCP OSI TCP OSI TCP OSI TCP OSI

bytes seconds seconds
100 0.21 0.20 0.04 0.20 0.25 0.36 0.06 0.25

1,000 0.21 0.21 0.05 0.20 0.37 0.45 0.06 0.22
10,000 0.21 0.38 0.12 0.20 0.29 0.53 0.14 0.28

100,000 0.97 1.29 0.84 1.18 1.21 1.70 0.96 2.00
1,000,000 8.19 9.96 8.78 8.78 9.16 13.14 10.13 15.39

Figure 4.2: Best and worst timings

Test programs (stubs) were developed to establish a conversation, transfer

a fixed amount of bytes in each direction and then close the conversation.

They were coded using the interface calls and also the protocol specific calls

directly. Each stub executed the above test a hundred times. The timings

were obtained for message lengths in powers of ten. Twelve such readings

were obtained per case. The best and the worst were deleted before the

average was obtained. The test provides two results. It gives the average,

the best and the worst case times for short conversation periods, typically

seen in remote procedure call environments (See Fig. 4.1 and Fig. 4.2). It is

also a measure of a certain amount of reliability. The repeated execution of

the tests did not fail and gave expected results. The data transferred were

in order and without any missing bytes.

The time taken to establish a conversation, transfer bytes in both direc

tions and then close a conversation is no worse than four times the time taken

by using native protocol calls. In fact the difference between the timings ob

tained using the interface and the native code differs only when the messages

transferred in both directions are shorter than a few kilobytes.

The reasons for degradation of services by using this interface are

29

• use of the nameservice (only at the establishment phase),

• additional exchange between the two peers to transfer initiating part

ner's symbolic name (only at the establishment phase),

• the initialization of data objects within the implementation (only at

the establishment phase),

• and referencing the data objects using the conversation identifier (dur

ing other phases).

When the messages are short, the data transfer time and the connection set

up time are comparable in the native case. Additional time is required for

set-up when using the interface because of the reasons above. In most cases

it is dictated by the time taken by the initiating side to resolve the address of

the remote side by looking it up in the nameserver and to exchange setup in

formation. Overheads due to the other two reasons are minimal and often not

noticeable. This also explains the reason why for large amounts of data the

timings for the interface and the native calls are nearly equal. A significant

finding from the tests is that the performance of the common network inter

face depends critically on the speed of retrieval from the nameserver using

the symbolic name as the key.

The above timings reflect only TCP and ISO stacks because they are

supported on the Sun machines in the department. A "proof-of-concept"

implementation has been designed (but not tested) for SNA on the OS/2

operating system.

4.2 Conclusions and future work

Implementation of the common network interface has been developed sup

porting TCP and OSI. The support of such an interface using APPC has

been designed and the implementation is in progress. The implementation

30

does not degrade the performance severely. This has been discussed in the

. previous section. The implementation is also reliable because a messaging

layer to provide the communication protocol for a remote procedure call

(RPC) mechanism has been built successfully over this interface by others.

This messaging layer provides additional specialized functions for the RPC

mechanism using the interface calls. The two layers, messaging and RPC,

are to be used as a tool for students in a first course in distributed systems

to develop and learn the concepts of messaging and RPC.

A major limitation to the use of our interface for interoperability in any

kind of network is the absence of protocol conversion. There must exist a

common protocol between hosts for any meaningful exchange to take place.

The static nature of generation of the package does not allow for portable

applications at the binary level among platforms having different transport

protocol support.

The common network interface is, however, a good run-time design to

be used for developing distributed applications. Whenever the application

has to be ported to a new platform with a transport protocol not currently

supported, it can be added transparently to the application. This makes it a

versatile support for distributed applications without greatly compromising

any desirable functions and speed.

Certain improvements can be made in the current implementation.

• Currently if the initiating side issues a protocol-specific call to initiate

a conversation which returns with a status indicating that the call is

in progress, the implementation does not bother to try out the remain

ing supported protocols to determine whether a conversation can be

established faster using them.

• As discussed above, a high performance nameserver is needed to im

prove the current implementation results.

• An array of integers is currently used to store and reference the identi-

31

fiers returned to the user. Since the implementation does not handle a

large number of conversations or resource identifiers, a long word with

bits representing used or unused identifiers should suffice. This is an

implementation optimization for speedup.

• Further, the implementation should always guarantee an endpoint on

each available protocol stack on the responder side. If an endpoint

could not be allocated for a protocol when config..rsrc was called,

but later became available, the endpoint should then be allocated and

added to the interface endpoint details in the nameserver.

An extension of this implementation could provide protocol conversion.

Assume host A supports protocol Px, host B supports protocol Py and there

is a third host C that is to provide the conversion by supporting both Px
and PY. The applications on A and B which wish to communicate with each

other talk instead to special processes S. and Sb on A and B respectively.

These processes S. and Sb route the exchange between A and B through a

process Sc running on C. The Sc acts as an intermediary process that reads

user data from S. and writes it back for Sb. Such a group of processes m

tandem could provide a gateway and thus conversion.

32

Bibliography

[1] AT&T.

Network Programmer's Guide, 1988.

UNIX System V /386.

[2] J. Auerbach.

A Protocol Conversion Toolkit.

IBM T.J Watson Research Center, Yorktown Heights, New York,

November 1988.

[3] Transport Protocol Specification for Open Systems Interconnection

(OSI) for CCITT Applications.

International Telegraph and Telephone Consultative Committee, Octo

ber 1984.

Recommendation X.224.

[4] Transport Service Definition for Open Systems Interconnection (OSI)

for CCITT Applications.

International Telegraph and Telephone Consultative Committee, Octo

ber 1984.

Recommendation X.214.

[5] D.E. Comer.

Internetworking with TCP /IP.

Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1988.

[6] E.C. Cooper and R.P. Draves.

33

C threads.

CS 88-154, Carnegie Mellon University, 1988.

[7] Xerox Corporation.

Internet Transport Protocols, Report XSIS 028112.

Office Products Division, Network Systems Administration Office, 3333

Coyote Hill Road, Palo Alto, California, 1981.

[8] P.E. Green.

Protocol Conversion.

IEEE Transactions on Communications, COM-34(3):257-268, March

1986.

[9] I. Groenbaek.

Conversion between the TCP and ISO Transport Protocols as a method

of achieving Interoperability between Data Communication Systems.

IEEE Journal of Selected Areas in Communication, SAC-4(2):288-296,

February 1986.

[10] IBM.

OS/2 Version 1.1 APPC Programming Reference, 1988.

[11] Information Processing Systems- Open Systems Interconnection: Ba

sic Reference Model.

International Organization for Standardization and International Elec

trotechnical Committee, 1984.

Interational Standard 7 498.

[12] Information Processing System5 - Open Systems Interconnection: Ser

vice Conventions.

International Organization for Standardization and International Elec

trotechnical Committee, 1987.

Technical Report 8509.

[13] Jon B. Postel.

User Datagram Protocol.

34

Request for Comments 768, DDN Network Information Center, SRI

International, August 1980.

[14] Jon B. Postel.

Internet Protocol.

Request for Comments 791, DDN Network Information Center, SRI

International, September 1981.

[15] Jon B. Postel.

Transmission Control Protocol.

Request for Comments 793, DDN Network Information Center, SRI

International, September 1981.

[16] M.T. Rose.

The Open Book.

Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1989.

35

Appendix A

Network Interface
Implementation

This appendix describes the specific protocols supported in the current im

plementation, the data structures used and how each interface call provides

the semantics described in Chapter 3 using these protocols. The network

interface implementation supports two transport protocols. The protocols

themselves support varying services which are described in Section A.l. Data

structures to provide the network interface semantics using these protocols

are described in Section A.2. They are called data objects throughout the

entire document. The code outline for each call is provided in Section A.3

and is meant to be used as a reference for any further modifications on this

implementation.

A.l Some connection-oriented protocols

A.l.l Transmission Control Protocol (TCP)

TCP [15, 5] is a communication protocol of the Internet protocol suite [14, 5]

that provides reliable stream delivery. At the application level interface, the

TCP provides the following features.

36

o Stream Orientation. The data is treated as a stream of bits, divided

into 8-bit bytes or octets.

o Virtual-Circuit Connection. Protocol software modules, through mu

tual exchange of information, provide to the application a connection

that emulates a dedicated hardware circuit, hence virtual-circuit.

o Buffered Transfer. The protocol software uses a different size for trans

mission efficiency than the size of data passed down by the application.

So the software buffers data, rather than transmitting immediately.

• Unstructured Stream. This model does not honor record boundaries or

any kind of structuring in the stream.

• Full Duplex. It provides simultaneous two way-data flow.

A.1.2 OSI Transport Layer (TP4)

The ISO Transport Layer (16, 4, 3] closely parallels the TCP services. How

ever, the TP4 differs from TCP in some features like:

o OSI Transport is packet-oriented, providing better buffer management

when the user data is bigger than packet size. But user data buffers,

smaller than a packet size, cannot be compressed into a single packet.

o OSI Transport does not provide for a graceful release. It is always

destructive. Graceful release ensures all data buffered on the releasing

side are transmitted before the connection is severed. The TCP also can

selectively shut down conversations in a direction. When the release is

destructive some data may be lost.

o It provides an expedited data delivery of limited size.

37

A.1.3 APPC

APPC (SNA LU TYPE 6.2 support) (10] is the representative of the conver

sation type of communication model. It provides synchronous program-to

program communication with the following features.

• Flow of data in one direction with implicit change of direction if nec

essary.

• Buffering of data.

• Data can be transferred in records or unstructured format.

• Synchronization level of confirm. A request for confirm does not com

plete until the responding side has confirmed this request. All other

calls in this model complete without any explicit acknowledgement from

the other side.

Logical Unit (LU) is a communication product handling a set of atomic

protocol functions. Before a conversation can be established between two

processes, the respective L Us on each host supporting the processes must be

connected to form a session. Conversations in the processes then use a session

for their exchange of information using calls called conversation verbs.

A.2 Data objects

This section describes the data-structures, called objects, used in the im

plementation. Several objects are used internally to maintain the protocol

specific details hidden from the user and to facilitate certain aspects of con

nection management and data transfer. They are globally defined and are

active throughout the duration of the process.

• Connection Resource. This object has several fields, two for each

protocol supported. The first field is the address detail of the protocol

38

and the second field indicates whether the first field has been initialized.

The addresses, specific to each transport provider, are obtained when

a user issues a config..rsrc or connect call to the interface and the

Connection Resource is initialized to these addresses. The last field

stores the well known name associated with the process. It is used

later to delete the entry of this object in the name-service.

typedef struct conn_rsrc{

#ifdef TCP_SUPPORTED

struct tcp_endpoint{

struct sockaddr_in in_socket;

int sock_id;

} tcp_ep; ·/* 1 TCP address structure

#endif TCP_SUPPORTED

unsigned short tcp_allocated;

I* 1 if TCP socket allocated *I
#ifdef SNA_SUPPORTED

struct sna_endpoint{

char *lu_alias;

char *tp_name;
} sna_ep; I* SNA address structure

#endif TCP_SUPPORTED

unsigned short sna_allocated;

I* 1 if SNA tp started *I
#ifdef ISO_SUPPORTED

struct TSAPaddr *tsap_ep;

I* OSI transport address ptr *I
#endif ISO_SUPPORTED

unsigned short osi_allocated;

I* 1 if OSI resource allocated*/

39

char *well_known_name;

I* name with which it is

f* registered. needed while

f* deleting the entry from

f* name-server

} NA_conn_rsrc;

• Connection Resource Table. This is an array of pointers to Con

nection Resource objects that have been allocated. The Connection

Resource Identifier returned to the user on the responding side indexes

to this table to reference one of the Connection Resource objects that

will be used for establishing a conversation. Currently it has a maxi

mum size MAx_CQNVERSATIDNS.

NA_conn_rsrc *rsrc_arr[MAX_CONVERSATIONS];

• Connection Resource Identifier. This is an index to two tables

- Resource Identifier Table and Connection Resource Table. It is re

turned to the user and identifies a particular communication endpoint

allocation on one or more protocol suites.

• Resource Identifier Table. The table is used to search for the next

unallocated index to be returned to the user as a Resource Identifier.

The table is an array of integers of maximum size MAx_coNVERSATIDNS.

Resource identifiers returned range from 1 · · · MAX-CONVERSATIONS.

Non-zero values in the table indicate that the indexes reference cur

rently valid end points.

40

int ep_avail[MAX_CONVERSATIONS];

• Conversation Object. This object has nine fields. The first three

are for a protocol-specific conversation handle returned by any of the

stack that establishes the connection. Only one of them is valid at any

time and this is reflected in the fourth field. The fifth and the sixth

fields are relevant for non-blocking connects, as they store the status of

the call in progress. The seventh field stores the priority, used later to

send, accept or refuse priority data. The last two fields maintain the

history of the kind of data sent or received over the conversation prior

to this call.

typedef struct conv_info{

int tcp_conv_id; I* TCP connectio·n descriptor *I
unsigned long sna_conv_id;

I* SNA connection descriptor *I
int tsap_conv_id;/* OS! transport layer *I

I* conversation descriptor *I
int network_ type;/* = NI_TCP if TCP *I

I* = NI_SNA if SNA *I
I* = NI_OSI if OS! *I

/*Only one kind of conversation may exist at a time *I
int connected; I* = NI_DONE if non-blocking or*/

I* blocking call complete. *I
I* = NI_INPROGRESS if non- *I
I* blocking call is in progress*/

char *my_name; I* Caller's name for exchange *I
I* after initial establishment *I

int priority; I* priority type permitted

41

int recv_mode; I* toggle between urgent and *I
'* normal receive mode *I

int send_mode; I* toggle between urgent and *I
I* normal send mode *I

} NA_conv_info;

• Conversation Identifier. This is an index to two tables- Conversa

tion Table and Conversation Identifier Table. It is returned to the user

and references the conversation for any further activity desired on it.

• Conversation Table. This is an array of pointers to Conversation

Objects. When a Conversation Object is initialized, the.pointer to this

object is stored in the entry indexed by the Conversation Identifier

returned to the user. Currently the· table has a maximum size of a

predefined value MAX-CONVERSATIONS.

NA_conv_info *conv_arr[MAX_CONVERSATIONS];

• Conversation Identifier Table. The table is used to search for the

next unallocated entry. The index of this entry is returned to the user as

a Conversation Identifier. The table is an array of integers of maximum

size MAX-CONVERSATIONS. Hence conversation identifiers returned range

from 1 · · · MAX-CONVERSATIONS. Non-zero values in the table indicate

that the indexes reference currently valid conversations.

int conv_avail[MAX_CONVERSATIONS];

42

• Stream Object. This emulates a read-only data stream of bytes. The

object has three fields.

1. Pointer to the stream.

2. Size of the stream.

3. Position from which the next read operation is effective.

The pointer to the current read position advances only. Once the end

has been reached, the object may be deallocated. It is used to con

vert packet sequenced data to stream type. It is used to maintain the

sequenced packets that have been read internally but not by the user.

struct pkt2stream {

char *data; I* the byte stream

int size; I* size of the byte stream

int curr_ptr;l* the current pointer to the *I
I* data unread at the user level *I

};

I* this defines the structure to reference received *I
I* data after converting from a buffer queue of

I* structure to stream type
DSI *I

*I

• Stream Table. This is an array of stream objects, one for each po

tential conversation.

struct pkt2stream recv_data_arr[MAX_CONVERSATIDNS];

I* array of unread data as a stream *I

43

A.3 Code outline

A conversation normally passes through three phases in its lifetime. The

duration of each phase is totally application dependent.

• An establishment phase.

• A data transfer phase

• A release phase.

The establishment phase is asymmetric. The following calls, used in this

phase, are implemented as described below. The parameters and the return

codes are described in detail in Appendix A.

• config...rsrc

1. Allocate an address on each transport provider supported by the

implementation e.g. by issuing sock and bind calls on TCP or

TNetListen in OSI.

2. Initialize a Connection Resource and enter it in the Connection

Resource Table for any future activity on it.

3. Store the sequence of strings representing the allocated addresses

indexed by the user supplied name in the name-server. The first

two strings in the sequence represent the hostname and port of a

TCP address in the Internet domain. The next string is the OSI

transport address. The remaining two strings are the LU name

and the TP name and constitute the SNA address. A string is left

null if the corresponding transport provider is unable to allocate

a communication endpoint or is not supported.

4. Terminate with OK and a resource identifier if any endpoint 1s

allocated and registered. Otherwise return appropriate error.

44

• eaccept

1. Reference the Connection Resource Table for the proper Connec

tion Resource object with the resource identifier passed.

2. From the conversation characteristics, decide the order of polling

among the protocols available which best fits the hints.

3. Poll to check for any pending initiator request for every endpoint

allocated in the Connection Resource object. This polling action

is a non-blocking protocol-specific call on each allocated endpoint.

4. Allocate and initialize a Conversation Object if a request is ac

cepted internally by one of the endpoints.

5. Get partner's symbolic name and exchange priority if required. In

some protocols, priority may be a part of the establishment phase

primitives. In others, the implementation may have to exchange

messages to establish this.

6. Update Conversation Identifier Table and Conversation Table.

7. Return with a Conversation Identifier or error as appropriate.

• econnect

1. Retrieve the sequence of strings that constitute the endpoint de

tails from the name-server with the partner's symbolic name.

2. From each non-null string, construct the addresses of the com

munication endpoints, i.e. the Connection Resource object of the

peer.

3. From the conversation characteristics, decide the order of polling

among the protocols available which best fits the hints.

4. Try asynchronously to connect to the peer with the protocol spe

cific addresses. If the protocol-specific call to connect is success-

45

fully launched for that protocol stack then this call either com

pletes or is in progress. If the interface call is blocking continue

until protocol-specific call completes. If the interface call is non

blocking and the protocol specific call returns a status that it is in

progress, set "connected" field of the Conversation Object to be

IN_FROGRESS and return after other updates of the Conversation

Object. A protocol-specific "initiate a conversation" call cannot

block on that endpoint. So non-blocking protocol-specific calls are

used to simulate blocking and non-blocking at the interface level.

5. Allocate and initialize a Conversation Object if the initiate call

on an endpoint is accepted by the remote peer.

6. Transmit own symbolic name for user level interaction. Can be

null if desired. Exchange priority if required. In some protocols,

priority may be a part of the establishment phase primitives. In

others, the implementation may have to exchange messages to

match priorities.

7. Update Conversation Identifier Table and Conversation Table.

8. Return with a Conversation Identifier or error as appropriate.

• retry _connect

1. Retrieve Conversation Object from the Conversation Object Table

using the conversation identifier.

2. Test for completion using calls specific to the active protocol.

3. Update field "connected" of the Conversation Object.

4. Transmit own symbolic name for user level interaction. Can be

null if desired.

5. Return with a Conversation Identifier or error as appropriate.

The data transfer phase uses the following calls.

46

• eread

1. Retrieve the Conversation Object associated with the conversation

from the Conversation Table with the Conversation Identifier.

2. Issue appropriate calls to get data sent by the peer depending

upon the protocol in use.

3. Get data until exactly the size desired has been fetched if mode is

blocking. Convert from records or packets to stream if required.

If more data has been fetched than required by the interface user,

allocate the remaining data in the Stream Object of the corre

sponding entry in the Stream Table indexed by the Conversation

Identifier.

4. Return with the data fetched by the protocol-specific call if the

size is less than or equal to the data size requested by a non

blocking interface call. Fetch more data until desired size is read

if the interface call is blocking. Allocate the remaining data in

the Stream Object of the corresponding entry in the Stream Table

indexed by the Conversation Identifier if the data read by protocol

specific calls is more than requested by the user.

• ewrite

1. Retrieve the Conversation Object associated with the conversation

from the Conversation Table with the Conversation Identifier.

2. Issue appropriate calls to send data to the peer depending upon

the protocol in use.

3. Send data until exactly the size desired has been sent even if it

needs more than one protocol-specific call when the user requests

non-blocking.

4. Try one internal call to send as much data as possible if mode is

non-blocking. Before sending the data, select to see if data can be

47

sent on the conversation. This will avoid blocking the call if the

pipe is full.

• read..mpx

1. Get unmarked conversations.

2. Create the read masks for the conversations if the protocol is TCP

orOSI.

3. Issue the protocol-specific calls and return the selected conversa

tions when they complete.

• write..mpx

1. Get unmarked conversations.

2. Create the write masks for the conversations if the protocol IS

TCP orOSI.

3. Issue the protocol-specific calls and return the selected conversa

tions when they complete.

The last phase is connection release. When a conversation is closed, the

associated memory has to be deallocated and the tables have to reinitialized.

A Communication Object may be deleted too. The calls are

• eclose

1. Issue protocol-specific calls to close the conversation.

2. Flush internal buffers if necessary.

3. Deallocate the Conversation Object.

4. Reset entries in the Conversation Table and the Conversation

Identifier Table.

• delete..rsrc

48

1. Issue protocol-specific calls to delete the communication endpoints

allocated on the protocol stacks.

2. Delete the entry in the name-server.

3. Deallocate the Address Object.

4. Reset entries in the Address Table and the Resource Identifier

Table.

49

Appendix B

Compiling and Linking the
Interface Calls

One include file and one library are necessary to use this code. The include

file is na. h and contains all the necessary declarations and definitions. The

library is generated as libna.a.

The following is a sample of a make-file which shows how the common

network interface can be used. server. c is a source file using the common

network interface and the executable file generated is server.

INCLUDE = .. /include

OBJ = .. /obj

LIB = . ./lib

CFLAGS= -c -g -!$(INCLUDE)

LIBFLAGS = -L$(LIB)

server: server.o $(LIB)/libna.a

c_c $(LIBFLAGS) -o server server.o -lna

server.o: server.c $(INCLUDE)/na.h

cc $(CFLAGS) server.c

50

Appendix C

An Example Responder

This appendix lists an example responder code using the common network in

terface. The responder accepts conversations from an initiator, selects ready

conversations and then readey data on these conversations. If the initiator has

terminated the conversation, then the conversation is closed. The responder

is in an infinite loop accepting requests for a conversation.

!***
* RESPONDER *
* *
* Author Debashish Chatterjee *
* Date 19th July 1990 *
* *
* This is an example of a process that accepts many *
* conversations and also selectively reads data from *
* them. *
***!

standard include file

#include "na.h"

51

I* maximum number of conversations

#define max_elem 20

main(argc, argv)

int argc;

char *argv[];

{

int ret_code,

len,

I* return code from interface calls

I* length of data

mode, I* blocking or non-blocking calls

arr_of_sel[max_elem]; I* array to reflect

/*selected conversations

int i = 0;

NA_rsrc handle; I* handle to refer a configured

I* resource

NA_conv a_conv, I* a conversation identifier

arr_of_conv[max_elem]; I* array to keep *I

int wait; I*
I*

char *partner; I*
int sz_prtn, I*

sel_no,

curr_conv = 0;

int status = 0;

int accepted = 0;

char *buf;

time in

I* conversation

I* identifiers

seconds to wait for the

event to occurby the call

name of the peer

size in bytes of the partner

struct conv_char conv_type; I* conversation

52

int sz_2_rx;

I* characterstics

I* bytes to be received

command line arguments to the responder

I* adjusts some variable parameters in the code

if (argc != 6)
{

printf("Improper #of args.\n");

printf("Specify <name> <sees> <mode> <urgent>");

printf(" <buf size >\n");

exit(O);
}

I* start of initialization
mode= atoi(argv[3]);

if (mode)

mode = BLOCKING;

else

mode = NON_BLOCKING;

/* qualify the conversation characterstics

conv_type.mode = NI_FDX;

conv_type.expedited = atoi(argv[4]);

sz_2_rx = atoi(argv[5]);

wait= atoi(argv[4]);

for (i = 0; i < max_elem; i++)

arr_of_conv[i] = 0;

I* end of initialization *I

53

I* register my EXUname with the nameserver

I* and use the returned handle for accepting

I* a conversation on it

status= config_rsrc(argv[1], &handle);

if (status == OK)

I* EXUname properly registered
{

do
{

if (accepted < max_elem)

I* not more than max-elem converstions
{

status = eaccept(handle, mode, conv_type,

&a_conv, &partner, &sz_prtn);

I* accept a conversation

if (status == OK)
{

printf("%d :partner exu is %s\n",

a_conv, partner);

I* print the returned

I* partner EXUname

for (i = 0; i < max_elem; i++)

if (arr_of_conv[i] -- 0)

{

I* housekeeping

arr_of_conv[i] = a_conv;

accepted++;

break;

54

*I

}

}

}

if (accepted == 0)

continue; I* no active conversation *I

I* first select for read *I
sel_no = max_elem;

ret_code = rselect(arr_of_conv, &sel_no,

arr_of_sel, wait);

if (ret_code == R_SELECT_FAILED)

I* error while selecting
{

}

printf("select returned error\n");

exit(-1);

if (ret_code == OK)

I* some conversation is ready to be read *I
{

for (i = 0; i < max_elem; i++)
{

if (arr_of_sel[i] == 1)

I* this is ready to be read
{

len = sz_2_rx;

buf =(char*) malloc(len);

if (errno == ENOMEM)

55

{

}

printf("could not allocate");

printf(" buffer\n");

exit(-1);

ret_code = eread(arr_of_conv[i],

BLOCKING,

NI_NORMAL,

buf, &len);

I* read data on the conversation *I
if (ret_code == OK)
{

}

if (len > 0)
{

I* some data was read
printf("#\(d,size\(d\n",

arr_of_conv[i], len);
}

else if (ret_code == NI_EOT)
{

I* conversation has terminated *I

}

else
{

eclose(arr_of_conv[i]);

arr_of_conv[i] = 0;

accepted--;

printf("\(d:read error:\(d\n",

56

}

else

}

}

}

}

arr_of_conv[i], ret_code);

fflush(stdout);

} I* for *I
free(buf);

printf("done\n");

fflush(stdout);

I* else timed out so keep trying

} while (1); I* infinitely

printf("error on allocation l(d\n", status);

57

Appendix D

An Example Initiator

This appendix lists an example initiator code using the common network in

terface. The initiator requests a conversation from a responder and transfers

some data before closing the conversation.

!***

*
*
*
*
*
*
*
*
*

INITIATOR

Author Debashish Chatterjee

Date 19th July 1990

This is an example of a process that initiates an

association with a remote responder. It transfers some

data several times and then terminate the association.

*
*
*
*
*
*
*
*
*

***!

standard include files

#include "na.h"

#include <sys/types.h>

#include <sys/time.h>

58

main(argc, argv)

int argc;

char *argv[];

{

int i,

j,

ret_code, '* return code from interface calls *I
urgent, '* priority level for data *I
len, '* length of data *I
mode; '* blocking or non-blocking calls *I

NA_conv a_conv; '* a conversation identifier *I
char *send_buf; '* data to be sent *I
struct conv_char conv_type; I* conversation *I

I* characteristics *I
int sz_2_s; I* number of bytes to send

I* command line arguments to the responder

I* adjusts some variable parameters in the code

if (argc != 8)
{

}

printf("Improper #of args.\n Specify <partner>");

printf(" <self> <delay> <mode> <urgent> <times> ")

printf("<data size>\n");

exit(O);

I* start of initialization

len= atoi(argv[7]);

59

sz_2_s = len;

send_buf =(char*) malloc(len);
if (errno == ENOMEM)
{

printf("could not allocate buffer\n");

exit(-1);
}

printf("start grind \n");

for (i = 0; i < len; i++)

send_buf[i] = '0' + (i r, 10);

send_buf[i- 1] = '\0';

printf("Oh! what a relief!\n");

mode= atoi(argv[4]);

if (mode)

mode = BLOCKING;

else
mode = NON_BLOCKING;

j = atoi(argv[6]);

urgent= atoi(argv[5]); I* in this example the priority*/

is ignored *I I*
conv_type.mode = NI_FDX;

conv_type.expedited = urgent;

do

ret_code = econnect(argv[2], argv[i],

mode, conv_type, &a_conv);

while (ret_code == REPEAT_LATER);

I* try to connect to the server

60

while ((ret_code == IN_PROGRESS) &&

(mode == NON_BLOCKING))

ret_code = retry_connect(a_conv);

if (ret_code != OK)
{

}

printf("error on connect

exit(-1);

''d\n" ret code)· ,. ' - '

while (j--)

{

I* transfer data as many times as desired by the command*/

I* line argument <times> *I

len = sz_2_s;

while ((i = ewrite(a_conv, mode, NI_NORMAL,

send_buf, &len))== REPEAT_LATER);

I* write data on the conversation

if (i != OK)
{

}

#ifdef DEBUG

printf("error on write Y.d\n", i);

break;

printf("data size is Y.d\n", len);

printf("done\n");

#endif DEBUG

61

sleep(3);
}

eclose(a_conv);
}

62

Appendix E

Source Code Listing

E.l Include files and global declarations

I***

*
*
*
*
*
*

localconfig.h

Author Debashish Chatterjee

Date 19th July 1990

*

*
*
*
*
*

* Contains all the definitions that can be changed upon *
* choice of the generator of the library *
***!

#define WAIT_SEC 1

I* specify time in seconds the implementation has to wait *I
I* while selecting or multiplexing *I
#define WAIT_U_SEC 1

I* specify time in micro seconds the implementation has to *I
I* wait while selecting or multiplexing *I

63

#define LOCAL_TSAP_PORT_RANGE 10000

I* define this value if OSI available and 10000+ should be *I

I* used only by this library *I

64

I***
*

*
*
*
*
*

na.h

Author Debashish Chatterjee

Date 19th July 1990

* Contains all the global structure definition

* Data structure internal to implementation

*
*
*
*
*
*
*
*

***!

#ifndef _NA_CONFIG

#define _NA_CONFIG

#include "localconfig.h"

I* defines the local configuration choices *I

Unix related include files

#include <stdio.h>

#include <signal.h>

#include <syslfile.h>

#include <syslparam.h>
#include <fcntl.h>

#include <syslioctl.h>

#include <sysluio.h>
#include <syslerrno.h>

#include <sysltime.h>

TCP related include files for sockets
#ifdef TCP_SUPPORTED

65

#include <sysltypes.h>

#include <syslsocket.h>

#include <netinetlin.h>

#include <arpalinet.h>

#include <netdb.h>

#endif TCP_SUPPORTED

ISDDE include file

#ifdef ISO_SUPPORTED

#include "tsap.h"

#endif ISO_SUPPORTED

C THREADS include file

#ifdef CTHREADS_SUPPORTED

#include "cthreads.h"

#endif CTHREADS_SUPPORTED

#ifndef OK
#define OK 0

#endif OK

#define TRUE 1

#define FALSE 0

I* these are used internally should be moved to global.h *I
#define MAXDIGITS 6

#define MAX_CONVERSATIONS 20

#define MAX_EXUNAME 20

66

#define NONE 0

#define NI_OSI 2

#define NI_SNA 3

#define NI_TCP 4

#define OSI_SNA 5

#define OSI_TCP 6

#define SNA_TCP 7

#define ALL 9

#ifdef ISO_SUPPORTED

#define OSI_available 1
#endif

#ifndef ISO_SUPPORTED

#define OSI_available 0

#end if

#ifdef TCP_SUPPORTED

#define TCP_available 1

#endif

#ifndef TCP_SUPPORTED
#define TCP_available 0

#end if

#ifdef SNA_SUPPORTED

#define SNA_available 1

#end if

#ifndef SNA_SUPPORTED

#define SNA_available 0

#end if

I* blocking options for users

#define BLOCKING 1

67

#define NON_BLDCKING 0

error codes

#define RSRC_ERRDR -101 I* error while using protocol(WUP)

#define DATA_UNAVAILABLE -102 I* no data

#define WRITE_ERRDR -103 I* internal error WUP

#define CONFIG_FAILED -104 I* error of nameservice or WUP

#define NO_RESDURCE -105 I* all handles allocated

#define READ_ERRDR -106 I* internal error WUP */
#define REPEAT_LATER -107 I* activity not possible now *I
#define ACCEPT_FAILED -108 I* internal error WUP *I
#define CONNECT_FAILED -109 I* internal error WUP

#define R_SELECT_FAILED -110 I* internal error WUP */
#define W_SELECT_FAILED -111 I* internal error WUP *I
#define NO_SUCH_PARTNER -112 I* partner does not exist *I
#define TIMED_OUT -113 I* no activity possible *I
#define BAD_C_HANDLE -114 I* messed up conversation id *I
#define BAD_R_HANDLE -115 I* messed up resource handle *I
#define IN_PRDGRESS -116 I* connection in progress *I
#define NI_BAD_OPERATIDN -117 I* bad/inconsistent params *I
#define NI_EOT -100 I* end of termination *I
#define NI_BAD_PRIDRITY -118 I* bad/disallowed priority *I
#define NI_URG_PENDING -118 I* urgent data in queue *I

I* urgent data size *I
#ifdef ISO_SUPPDRTED

#define MAX_URG_SZ TX_SIZE

#else

#define MAX_URG_SZ 16

#endif ISO_SUPFJRTED

68

I* connection resource handle and conversation identirier *I
typeder int NA_rsrc;

typeder int NA_conv;

I* conversation characteristics *I
struct conv_char {

#derine NI_HDX 0

#derine NI_FDX 1

int mode; I* Monologue, hal£ duplex or rull duplex *I
#derine NI_NORMAL 0

#derine NI_EXPEDITED 1

int expedited; I* expedited message delivery allowed? *I
};

#endir _NA_CONFIG

69

'***

*
*
*
*
*
*

global.h

Author Debashish Chatterjee

Date 19th July 1990

* Contains all the global structure definition

* Data structure internal to implementation

*
*
*
*
*
*
*
*

***'

#include "na.h" I* standard declaration file

#ifdef ISO_SUPPDRTED

#define TSAP_IN_PDRT LDCAL_TSAP_PORT_RANGE

I* start allocating internet

I* layer from this

#endif ISO_SUPPDRTED

#define NI_DONE 1

#define NI_INPRDGRESS 2

char *malloc();

typedef struct conn_rsrc{

#ifdef TCP_SUPPDRTED

struct tcp_endpoint{

port for ISDDE emulation of TP *I

*'

struct sockaddr_in in_socket;

int sock_id;

} tcp_ep; TCP allocation structure

70

#endif TCP_SUPPORTED

unsigned short tcp_allocated;/* 1 if TCP allocated *f
#ifdef SNA_SUPPORTED

struct sna_endpoint{

char tp_id[8];

char tp_name[64];

} sna_ep; f* SNA allocation structure

#endif SNA_SUPPORTED

unsigned short sna_allocated;

#ifdef ISO_SUPPORTED

struct TSAPaddr *tsap_ep;

f* 1 if SNA tp started *f

f* OS! transport access point address ptr

#endif ISO_SUPPORTED

unsigned short osi_allocated;

f* 1 if OS! resource allocated *L
char *well_known_name;

f* name with which it is registered *f
f* needed while deleting resource *f

} NA_conn_rsrc;

f* The above structure is the reference structure to the *f
f* various endpoints established for different suites. It is*/

f* used while establishing a conversation between processes.*/

f* It cannot be a union as it is possible for a machine to *f
f* support more than one network architecture.

typedef struct conv_info{

int tcp_conv_id;

unsigned long sna_conv_id;
f* TCP connection descriptor*/

f* SNA conversation id *f

f* OS! conversation id int

int

tsap_conv_id;

network_type; f* = NI_TCP if TCP , = NI_SNA if SNA ,*/

71

I* = NI_OSI if OSI . Only one kind */

I* of conversation may exist at any *I
I* time *I

int connected; I* NI_DONE if actually connected else *I
I* NI_INPROGRESS if still in progress *I

char *my_name; I* initiator's name for exchange while *I
I* connecting *I

int priority; I* priority data send or read supported?*/

int recv_mode; I* toggle between urgent and normal *I
I* receive mode *I

int send_mode; I* toggle between urgent and normal *I
I* send mode *I

} NA_conv_info;

I* This contains the details of the physical connection *I

struct osi_stream {

char *data; I* the byte stream *I
int size; I* size of the byte stream *I
int curr_ptr; I* the current pointer to the data *I

I* unread at the user level *I
};

I* this defines the structure to reference received data *I
I* after converting from a packet queue of OSI structure *I

#ifdef CTHREADS_SUPPORTED
mutex_t na_rsrc_lock,/* to lock resource identifiers while *I

I* looking for a free one *I
na_conv_lock;/* to lock conversation identifiers *I

I* while looking for a free one *I
#end if CTHREADS_SUPPOl.TED

72

!***

*
*
*
*
*
*

shared.h

Author Debashish Chatterjee

Date 19th July 1990

*
*
*
*
*
*

* Contains all the global structure declarations to be *
* shared by all modules *

* Data structure internal to implementation *

***'
extern int ep_avail[MAX_CONVERSATIDNS];

I* array of assigned and unassigned resource handle *I
extern int conv_avail[MAX_CONVERSATIDNS];

/*array of assigned and unassigned conversation identifiers *I

extern NA_conn_rsrc *rsrc_arr[MAX_CONVERSATIDNS];

I* array of pointers to resource structure

extern NA_conv_info *conv_arr[MAX_CONVERSATIDNS];

I* array of pointers to conversation structure

extern struct osi_stream recv_data_arr[MAX_CONVERSATIDNS];

I* array of data as a stream unread by the user application *I

73

'

'***

*
*
*
*
*

names.h

Donald L. Stone

nameservice include file

*
*
*
*
*

***'

extern short init_narnes();

extern short register_narne();

extern short lookup_narne();

74

I***

* global.c *
* *
* Author Debashish Chatterjee *

* Date 19th July 1990 *

* Contains all the global data structures for the library *

***I

#include "global.h" I* data structure declaration file *I

int ep_avail[MAX_CONVERSATIONS];

I* array of assigned and unassigned resource handle

int conv_avail[MAX_CONVERSATIONS];

I* array of assigned and unassigned conversation cookies *I

NA_conn_rsrc *rsrc_arr[MAX_CONVERSATIONS];

I* array of pointers to resource structure

NA_conv_info *conv_arr[MAX_CONVERSATIONS];

I* array of pointers to conversation structure

struct osi_stream recv_data_arr[MAX_CONVERSATIONS];

I* array of data as a stream unread by the user application *I

75

E.2 Creation, destruction, management

!***

* *
* configure.c *
* *
* Author Debashish Chatterjee *
* Date 19th July 1990 *
* *
* Contains all the configuration related routines. *
* The routines are config_rsrc and rtrv_prtnr_rsrc. *

***!

define the include files

#include "global.h"

#include "names.h"

#include "shared.h"

#define MAXSTRLEN 132

I* maximum expected length when OS! specific protocol is *I
I* expressed as a string *I

struct hostent *lookup(name)

I* return the real address of the machine "name"

char *name;
{

struct hostent *gethostbyname();

struct hostent *address;

address= gethostbyname(n~e);

return address;

76

}

int register_rsrc(my_name, ep_info)

I* registers the allocated protocol endpoints as *I
I* strings in the name-server *I
I* uses a basic implementation of the name service *I
I* maybe some day a high performance name service *I
NA_conn_rsrc *ep_info; I* the protocol endpoints *I
char *my_name; I* the key for the name-server *I

{
I* also the symbolic name *I

int i,

len,
fd,"

offset;

char *values[5];

I* the array of strings associated with the well *I
I* known name *I
I* in the nameserver. 2 for TCP, 1 for OSI, 2 for SNA *I
I* in that order *I

values[O] = malloc(MAXHOSTNAMELEN); I* TCP hostname *I
values[1] = malloc(MAXDIGITS);

values[2] = malloc(MAXSTRLEN);

I* TCP portnumber

I* OSI address as

I* string

values[3] = malloc(MAXSTRLEN); I* SNA tp name

77

values[4] = malloc(MAXSTRLEN); I* SNA LU Name

for (i = 0; i < 5; i++)

strcpy(values[i], "");

#ifdef TCP_SUPPORTED

if (ep_info->tcp_allocated)
{

I* port # allocated by host to be extracted

len= sizeof(ep_info->tcp_ep.in_socket);

if (getsockname(ep_info->tcp_ep.sock_id,

&(ep_info->tcp_ep.in_socket), &len)== -1)
{

#ifdef DEBUG .

perror("getting socket name");
#endif DEBUG

}

close(ep_info->tcp_ep.sock_id);

ep_info->tcp_allocated = 0;

else
{

#ifdef DEBUG

#endif DEBUG

if (gethostnarne(values[O], MAXHOSTNAMELEN) < 0)
{

perror("getting current hostname");

78

}

else

}

}

close(ep_info->tcp_ep.sock_id);

ep_info->tcp_allocated = 0;

I* both calls succeed

sprintf(values[1], "Y.d",

ntohs(ep_info->tcp_ep.in_socket.

sin_port));

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

if (ep_info->osi~allocated)
{

I* convert transport address to string for

I* registering

values[2] = taddr2str(ep_info->tsap_ep);

#ifdef DEBUG

printf("TSAP address is Y.s\n", values[2]);

#endif DEBUG
}

#endif ISO_SUPPDRTED

if (ep_info->tcp_allocated I I ep_info->osi_allocated I I
ep_info->sna_allocated)

{

if (register_name(my_name, values, 5) < 0)

79

I* call to the name-server to register the sequence *I
{

#ifdef DEBUG

printf("register error \n");

#endif DEBUG

return (-1);
}

else

return (0);
}

else

return (-1);
}

80

!***

*
*
*
*

int rtrv_prtnr_rsrc(partner_name,ep_info)

Input: "partner_name" is the symbolic name to be used

as the key to retrieve the addresses

*
*
*
*

* Output: "ep_info" is the communication resource endpoint *

* *
*
*
*

Returns 0 if successful else returns -1

This is used internally by econnect
*
*
*

***!

int rtrv_prtnr_rsrc(partner_narne, ep_info)

NA_conn_rsrc *ep_info;

char *partner_name;
{

int len,

fd,

offset;

char *my_name;

struct hostent *address;

char *values[5];

I* an array of strings associated with my_name in the *I
I* nameserver. 2 for TCP, 1 for OSI, 2 for SNA 1n *I
I* that order

values[O] = malloc(MAXHOSTNAMELEN);

values[!] = malloc(MAXDIGITS);

81

if (lookup_name(partner_name, values, 5) < 0)

I* call to name-server to retreive the sequence
{

#ifdef DEBUG

printf("read error on directory lookup \n");

#endif DEBUG

return (-1);
}

#ifdef TCP_SUPPORTED

if ((strcmp(values[O], "") == 0) &&

(strcmp(values[1], "") == 0))

I* No TCP protocol available

ep_info->tcp_allocated = 0;

else
{

address= lookup(values[O]);

bcopy((char *) address->h_addr,

(char*) &(ep_info->tcp_ep.in_socket.sin_addr),

address->h_length);

ep_info->tcp_ep.in_socket.sin_port =

htons(atoi(values[1]));

ep_info->tcp_allocated = 1;
}

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

ep_info->osi_allocate~ = 0;

82

I* Convert string to transport address if non-null *I
if ((strcrnp(values[2], "") != 0))
{

}

if ((ep_info->tsap_ep =
str2taddr(values[2])) != NULLTA)

ep_info->osi_allocated = 1;

#endif ISO_SUPPORTED

}

if (ep_info->tcp_allocated I I ep_info->osi_allocated I I
ep_info->sna_allocated)

I* At least one protocol exists between them *I
return (0);

return (-1);

83

'***

*
*
*
*
*
*
*
*
*

int config_rsrc(my_name,handle)

Input: "my_name" is the symbolic name it wishes to be

known in the world.

Output: "handle" is a nonnegative integer returned if

call returns OK.

Returns OK if successful else returns negative integer
denoting CONFIG_FAILED or NO_RESOURCE.

*
*
*
*
*
*
*
*
*

***I
int config_rsrc(my_name, handle)

char *my_name;

I* The symboli€ name which uniquely identifies the process *I

NA_rsrc *handle;

I* this is the information to be returned for

I* accepting future conversations
{

struct hostent *in_mc_info; I* TCP specific host info *I
int s,

i; I* local variables

NA_conn_rsrc *ep_info; I* communication resource *I
I* object *I

I* find a free slot in the data my data structure *I
#ifdef CTHREADS_SUPPORTED

84

if (mutex_try_lock(na_rsrc_lock) -- FALSE)

return REPEAT_LATER;

#endif CTHREADS_SUPPORTED

for (i = 0; i < MAX_CONVERSATIONS; i++)
if (!ep_avail[i])

break;

#ifdef CTHREADS_SUPPORTED

mutex_unlock(na_rsrc_lock);

#endif CTHREADS_SUPPORTED

if (i == MAX_CONVERSATIONS)
return NO_RESOURCE;

ep_avail [i] = 1;

(*handle) = i + 1; I* handle ranges from
I* l .. MAX_CONVERSATIONS

ep_info = (NA_conn_rsrc *) malloc
((unsigned) sizeof(NA_conn_rsrc));

ep_info->tcp_allocated = 0;

ep_info->sna_allocated = 0;

ep_info->osi_allocated = 0;

#ifdef TCP_SUPPORTED

if (TCP_available)
{

s = socket(AF_INET, SOCK_STREAM, 0);

85

if (s > 0) I* only if socket allocated deleted *I
I* return NO_RESDURCE *I

ep_info->tcp_ep.sock_id = s;

ep_info->tcp_ep.in_socket.sin_family = AF_INET;

ep_info->tcp_ep.in_socket.sin_addr.s_addr =
INADDR_ANY;

ep_info->tcp_ep.in_socket.sin_port = 0;

if (bind(s,

{

(struct sockaddr *)

& (ep_info->tcp_ep.in_socket),

sizeof(ep_info~>tcp_ep.in_socket))

-- -1)

#ifdef DEBUG

perror("bind:");

#endif DEBUG

}

else
{

ep_info->tcp_allocated = 0;

close(s);

I* startup listen for TCP

if (listen(ep_info->tcp_ep.sock_id,

5) == -1)

I* hacked to 5 ; it ib the BSD4.2 limit

86

*I

*I

{
close(ep_info->tcp_ep.sock_id);

ep_info->tcp_allocated = 0;

}
else

ep_info->tcp_allocated = 1;

}

}

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (SNA_available)

{

I* do something
}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (OSI_available)

{

char buffer[BUFSIZ];

int tsap_in_port;

struct TSAPdisconnect *td;

isodetailor(rny_narne, 1);

tsap_in_port = TSAP_IN_PORT;

I* defined in the include file,it is needed because *I

87

I* ISODE emulates OSI over TCP and

I* are to be provide explicitly

the port numbers *I

*I
td = (struct TSAPdisconnect *)

do
{

malloc(sizeof(struct TSAPdisconnect));

(void) sprintf(buffer, "Internet=%s+%d",

TLocalHostName(), tsap_in_port);

I* convert internet address to OSI transport *I
if ((ep_info->tsap_ep = str2taddr(buffer))

== NULLTA)
{

#ifdef DEBUG

printf("error in address translation \n");
#endif DEBUG

#ifdef DEBUG

#endif DEBUG

}

ep_info->osi_allocated = 0;

break;

if (TNetListen(ep_info->tsap_ep, td) == NOTOK)
{

printf("TSAP error in listen, %s\n",

TErrString(td->td_reason));

88

}

else
{

if (td->td_reason == DR_CONGEST)

I* internet port already in use
{

}

tsap_in_port++;

free(ep_info->tsap_ep);

continue;

#ifdef DEBUG

printf(" TSAP listen done successfully\n");

#endif DEBUG

}

}

ep_info->osi_allocated = 1;

break;

} while (TRUE);

#endif ISO_SUPPDRTED

if (ep_info->tcp_allocated I I ep_info->sna_allocated I I
ep_info->osi_allocated)

{

I* at least one communication endpoint has been

I* allocated

if (register_rsrc(my_name, ep_info) < 0)

89

}

{

}

}

(*handle) = -1;
free(ep_info);

return CONFIG_FAILED;

if (ep_info->tcp_allocated I I ep_info->sna_allocated I I
ep_info->osi_allocated)

{

rsrc_arr[*handle - 1] = ep_info;

return OK;
}

(*handle) = -1;

free(ep_info);

return CONFIG_FAILED;

I* for lack of a communication endpoint

90

!***

*
*
*
*
*
*
*
*

eaccept.c

Author Debashish Chatterjee

Date 19th July 1990

This is the implementation of the call "eaccept"

*
*
*
*
*
*
*
*

* int eaccept(handle, blocking, conv_type, Cv_id, partner, *
* sz_prtn) *
* "eaccept" accepts a connection from a remote process *
* in a blocking or non-blocking mode. *
* Input: The "handle" returned when the communication *
* endpoint has been allocated. *
* Blocking or non-blocking mode "blocking" *
* Kind of conversation by the server and client *
* using "conv_type" *
* Output : The conversation identifier "Cv_id" of *
* type NA_conv *
* The symbolic name "partner" of the partner *
* it accepted from. *
* "sz_prtn" is the size of the partner name *
* Returns OK if successful. Else ACCEPT_FAILED if failed *
* while trying to accept due to invalid partner name or *
* non-existing partner. *
* If maximum allowable resources have been used up *
* NO_RESOURCE is returned. *
* If the mode is non-blocking and the call could not be *
* launched REPEAT_LATER is returned. The caller should *

91

*
*

try again. *
*

***!

I* include files from the include directory

#include "global.h"

#include "shared.h"

92

I***

* *

* This function gets the initiator's name once the *

* the association has been established *

* Returns the partner's name and length of the name *

* If there is an error, the size is -1 *

* *

***!
char *get_prtnr_name(Cv_id, status)

NA_conv Cv_id; I* conversation identifier

int *status; I* size of the string returned
{

int sz_prtn; I* size of the partner name

int j,

bytes_2_read; I* bytes to be read *I
char *part1;1er; I* partner's name is filled up here *I

I* read an integer telling how many bytes of partner *I
I* name to be read next *I
j = sizeof(int);

if (eread(Cv_id, BLOCKING, NI_NORMAL, &sz_prtn, &j) == OK)
{

if (j == sizeof(int))
{

#ifdef DEBUG

printf("eaccept
#endif DEBUG

partner length :t.d\n", sz_prtn);

93

received the correct size

bytes_2_read = sz_prtn;

partner= (char*) malloc(sz_prtn);

if (eread(Cv_id, BLOCKING, NI_NORMAL,

{

partner, &sz_prtn) -- OK)

if (sz_prtn == bytes_2_read)
{

}

*status = sz_prtn;

return partner;

#ifdef DEBUG

printf (" eaccept
#endif DEBUG

partner length not as should be\n");

}

#ifdef DEBUG

printf("eaccept

#endif DEBUG
size of partner name not received \n");

}

}

}

*status = -1;

return ((char*) 0);

94

#ifdef TCP_SUPPORTED

!***

* *
* This function exchanges with the initiator the *
*
*
*

priority once the association has been established *

This is required only for TCP protocol. *

Sets the priority of the conversation apppropriately*

* If there is an error, -1 is returned *
* If there is a match 1 is returned else 0 *
* *
***!
int recv_send_priority(Cv_id, priority)

NA_conv Cv_id;

int priority;
{

int j,

prtnr_pr;

j = sizeof(int);

I* receive prtnr's priority

if (eread(Cv_id, BLOCKING, NI_NORMAL,

{

if (j -- sizeof(int))
{

#ifdef DEBUG

printf("eaccept

#endif DEBUG

&prtnr_pr, &j) == OK)

partner's priority is %d\n",
prtnr_pr);

95

}

}

}

I* send own priority *I
if (ewrite(Cv_id, BLOCKING, NI_NORMAL,

{

}

if (j == sizeof(int))
{

&priority, &j) -- OK)

if (priority == prtnr_pr)

return 1; I* both agree *I
return 0; mismatch

}

return -1; error in protocol

#endif TCP_SUPPORTED

96

!***

* the eaccept call *
***!
int eaccept(handle, blocking, conv_type, Cv_id,

partner, sz_prtn)

NA_rsrc handle;

int blocking;

I* communication resource object identifier *I
I* the mode i.e BLOCKING or NON-BLOCKING *I

struct conv_char conv_type; I* conversation characteristics *I
NA_conv *Cv_id; I* the identifier to be returned to the user*/

I* to reference the conversation once done *I
char **partner; I* the partner name to be filled up *I
int *sz_prtn; I* the size of the partner's name returned *I

{
I* Find out on which networks communication endpoint *I
I* have been allocated *I

I* If blocking, return only if a connect is requested

I* from remote site or error occurred

I* If non-blocking, return immediately if no pending

I* connects

#ifdef TCP_SUPPORTED

TCP specific declarations

struct sockaddr_in *partner_addr;

fd_set read_template;

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

97

*I
*I
*I
*I

OS! specific declarations

struct TSAPstart *ts;

struct TSAPdisconnect *td;

#endif ISO_SUPPORTED

struct timeval wait;

int len;

int status,

curr_conv_index;

NA_conv_info *conversation; I* a conversation object *I
NA_conn_rsrc *ep_info; I* the communication resource *I
int tcp_urg,

osi_urg,

sna_urg;

if ((handle < 1) I I (handle > MAX_CONVERSATIDNS))

return BAD_R_HANDLE;

I* communication endpoint identifier invalid range *I
handle--; I* handle is decremented as table indexes *I

I* are from zero to MAX_CONVERSATION - 1 *I
if (ep_avail[handle] == 0)

return BAD_R_HANDLE;

I* the handle does not reflect an allocated resource *I

#ifdef CTHREADS_SUPPORTED

if (blocking == BLOCKING)

mutex_lock(na_conv_lock);

I* blocks thread till success
else

{

98

}

if (mutex_try_lock(na_conv_lock) == FALSE)

return REPEAT_LATER;

#endif CTHREADS_SUPPORTED

for (curr_conv_index = 0;
curr_conv_index < MAX_CONVERSATIONS;

curr_conv_index++)

if (!conv_avail[curr_conv_index])

break;

#ifdef CTHREADS_SUPPORTED

mutex_unlock(na_conv_lock);

#endif CTHREADS_SUPPORTED

if (curr_conv_index == MAX_CONVERSATIONS)

return NO_RESOURCE;

conversation = (NA_conv_info *)

malloc((unsigned) sizeof(NA_conv_info));

I* Initialize *I

#ifdef ISO_SUPPORTED

ts = (struct TSAPstart *)

malloc(sizeof(struct TSAPstart));

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

#endif ISO_SUPPORTED

99

conversation->tcp_conv_id = 0;

conversation->sna_conv_id = 0;

conversation->network_type = 0;

conversation->connected = 0;

conversation->send_rnode = NI_NORMAL;

conversation->recv_rnode = NI_NORMAL;

conversation->priority = NI_NORMAL;

wait.tv_sec = WAIT_SEC;

I* configuration parameter defined in localconfig.h *I
wait.tv_usec = WAIT_U_SEC;

I* configuration parameter defined in localconfig.h *I

ep_info = rsrc_arr[handle];

I* end of initial~azation

#ifdef TCP_SUPPORTED

if (ep_info->tcp_allocated)
{

if (conversation->priority == NI_EXPEDITED)
{

#ifdef DEBUG

int toggle = 1;

if (setsockopt(ep_info->tcp_ep.sock_id,

SOL_SOCKET, SO_OOBINLINE, (char *) &toggle,

sizeof(int)) == -1)
{

perror("set socket option");

100

#endif DEBUG

tcp_urg = NI_NORMAL;
}

tcp_urg = NI_EXPEDITED;
}

}

#endif TCP_SUPPORTED

if (blocking)
{

#ifdef DEBUG

printf("Mode is BLDCKING\n");

#endif DEBUG

do
{

#ifdef TCP_SUPPDRTED

if (ep_info->tcp_allocated)
{

I* do a read select to check for any *I
I* pending connection *I
FD_ZERO(&read_ternplate);

FD_SET(ep_info->tcp_ep.sock_id,

&read_ template);

status = select(FD_SETSIZE, &read_ternplate,

101

(fd_set *) 0, (fd_set *) 0, &wait);

if (status > 0)

{

if (FD_ISSET(ep_info->tcp_ep.sock_id,

&read_ template))
{

status =

accept(ep_info->tcp_ep.sock_id,

(struct sockaddr *) 0,

(int *) 0);

if (status > 0)

{

int j,

bytes_2_read;

I* fill up the conversation *I
I* object for future activities*/

conversation->tcp_conv_id =

status;

conversation->network_type =
NI_TCP;

conversation->connected =
NI_DDNE;

conv_arr[curr_conv_index] =
conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

I* add 1 to conversation index *I

102

#ifdef DEBUG

printf("eaccept

#endif DEBUG

I* get partner's name

*partner =
get_prtnr_narne(*Cv_id,

sz_prtn);

if (*sz_prtn > 0)
{

int status;

conversation->connected

= NI_DONE;
status =

recv_send_priority(*Cv_id,

conv_type.expedited);

if (status == 1)
{

}

conversation->priority =

conv_type.expedited;

return OK;

else if (status -- 0)
{

}

conversation->priority =
NI_NORMAL;

return OK;

partner priority not received\n");

103

}

#ifdef DEBUG

printf("eaccept partner info not received or\n");

#endif DEBUG

}

}

}

#endif TCP_SUPPDRTED

#ifdef SNA_SUPPORTED

}

else
{

}

conv_avail[curr_conv_index] = 0;

free(conversation);

return ACCEPT_FAILED;

perror ("accept") ;

free(conversation);

return ACCEPT_FAILED;

if (ep_info->sna_allocated)
{

do something
}

#endif SNA_SUPPORTED

104

#ifdef ISO_SUPPORTED

if (ep_info->osi_allocated)

{

char *vec[4];

I* the implementation does not need more *I
I* than 4 although never mentioned *I
I* anywhere. Sort of hack!! *I

int veep,

nfds = 0;
fd_set rfds,

wfds,

efds;

if (TNetAccept(&vecp, vee, nfds, NULLFD,

NULLFD, NULLFD, OK, td) == NOTOK)
{

#ifdef DEBUG

printf("OSI error in accept, %s %s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

}

free(conversation);

return ACCEPT_FAILED;

105

#ifdef DEBUG

if (veep > 0)
{

int expedited;

if (Tinit(vecp, vee, ts, td) -- NDTDK)
{

printf("DSI :error in init, %s\n",

TErrString(td->td_reason));
#endif DEBUG

#ifdef DEBUG

}

free(conversation);

return ACCEPT_FAILED;

if ((conv_type.expedited == NI_EXPEDITED)

&& (ts->ts_expedited))

expedited = 1;

I* both sides want expedited support *I
else

expedited = 0;

if (TConnResponse(ts->ts_sd, NULLTA,

expedited,

((char *) 0),

0, NULLQOS, td)

== NDTDK)
{

106

printf("OSI :error in connection response, Y.s\n",

TErrString(td->td_reason));

#endif DEBUG

#ifdef DEBUG

}

else
{

free(conversation);

return ACCEPT_FAILED;

int j;

printf("OSI :connection established");

printf(",getting partner's name\n");

#endif DEBUG

conversation->tsap_conv_id =
ts->ts_sd;

conversation->network_type =
NI_OSI;

conversation->connected = NI_DONE;

if (expedited)

conversation->priority =
NI_EXPEDITED;

else

conversation->priority =

NI_NORMAL;

conv_arr[curr_conv_index] =

conversation;

conv_avail[curr_conv_index] = 1;

107

*Cv_id = curr_conv_index + 1;

I* add 1 to conv index *I

I* get partner's name *I

#ifdef DEBUG

*partner =
get_prtnr_name(*Cv_id, sz_prtn);

if (*sz_prtn > 0)

return OK;

printf("eaccept OSI: partner name not received \n");

#endif DEBUG

}

}

}

#endif ISO_SUPPORTED

} while (TRUE) ;
}

else
{

#ifdef DEBUG

conv_avail[curr_~onv_index] = 0;

free(conversation);

return ACCEPT_FAILED;

end of blocking

printf("Mode is NON BLOCKING\n");

#endif DEBUG

108

*I

#ifdef TCP_SUPPORTED

if (ep_info->tcp_allocated)

{

do a read select to check for any

I* pending connection
FD_ZERO(&read_template);

FD_SET(ep_info->tcp_ep.sock_id, &read_template);

status = select(FD_SETSIZE, &read_template,

(fd_set *) 0, (fd_set *) 0, &wait);

if (status > 0)

{
I* a pending request for connection *I
if (FD_ISSET(ep_info->tcp_ep.sock_id,

{

&read_ template))

status = accept(ep_info->tcp_ep.sock_id,

(struct sockaddr *) 0, (int *) 0);

if (status > 0)

{
int j;

conversation->tcp_conv_id = status;

conversation->network_type = NI_TCP;

conv_arr[curr_conv_index] =
conversation;

conversation->connected = NI_DONE;

conv_avail[curr_conv_index] = 1;

109

#ifdef DEBUG

printf("eaccept

#endif DEBUG

*Cv_id = curr_conv_index + 1;

get partner's name

*partner =
get_prtnr_name(*Cv_id, sz_prtn);

if (*sz_prtn > 0)
{

int status;

conversation->connected = NI_DONE;

status =

recv_send_priority(*Cv_id,

conv_type.expedited);

if (status == 1)
{

}

conversation->priority =
conv_type.expedited;

return OK;

else if (status -- 0)
{

}

conversation->priority =
NI_NORMAL;

return OK;

partner priority not received\n");

110

}

#ifdef DEBUG

printf("eaccept TCP:size of partner name not received\n");

#endif DEBUG

#ifdef DEBUG

#endif DEBUG

}

else
{

}

else
{

}

}

conv_avail[curr_conv_index] = 0;

free(conversation);
return ACCEPT_FAILED;

else
{

}

perror("TCP accept");

free(conversation);
return ACCEPT_FAILED;

free(conversation);

return REPEAT_LATER;

free(conversation);

111

return REPEAT_LATER;
}

}

#endif TCP_SUPPDRTED

#ifdef SNA_SUPPORTED

if (ep_info->sna_allocated)
{

}

#endif SNA_SUPPDRTED

#ifdef ISO_SUPPORTED

if (ep_info->osi_allocated)
{

char *vee [4] ;

I* the implementation does not need more *I
I* than 4 although never mentioned *I
I* anywhere. Sort of hack!! *I
int veep,

nfds = 0;
fd_set rfds,

wfds,

efds;

struct TSAPdisconnect *td;

112

struct TSAPstart *ts;

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

ts = (struct TSAPstart *)

malloc(sizeof(struct TSAPstart));

if (TNetAccept(&vecp, vee, nfds, NULLFD,

NULLFD, NULLFD, OK, td) == NOTOK)
{

#ifdef DEBUG

printf("DSI error in accept, r.s\n",

TErrString(td->td_reason));
·#endif DEBUG

#ifdef DEBUG

}

free(conversation);

return ACCEPT_FAILED;

if (veep > 0)
{

if (Tinit(vecp, vee, ts, td) -- NOTOK)
{

printf("DSI :error in init, r.s\n",

TErrString(td->td_reason));
#endif DEBUG

113

#ifdef DEBUG

}

free(conversation);

return ACCEPT_FAILED;

else
{

int expedited;

if ((conv_type.expedited ==
NI_EXPEDITED) &&
(ts->ts_expedited))

expedited = 1;

I* both sides want expedited *I
else

expedited = 0;

if (TConnResponse(ts->ts_sd, NULLTA,

expedited, ((char *) ·o), 0,

NULLQOS, td) == NDTDK)
{

printf("OSI :error in connection response, %s\n",.

#endif DEBUG

}

else
{

TErrString(td->td_reason));

free(conversation);

return ACCEPT_FAILED;

int j;

114

#ifdef DEBUG

printf("OSI :connection established");

printf(",getting partner's name\n");

#endif DEBUG

conversation->tsap_conv_id =
ts->ts_sd;

conversation->network_type =
NI_OSI;

conversation->connected =
NI_DONE;

if (expedited)

conversation->priority =
N!_EXPEDITED;

else

conversation->priority =
NI_NORMAL;

conv_arr[curr_conv_index] =
conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

I* add 1 to conversation index *I

*partner =
get_prtnr_name(*Cv_id, sz_prtn);

if (*sz_prtn > 0)
{

return OK;
}

115

#ifdef DEBUG

printf("eaccept OS!: partner name not received \n");
#endif DEBUG

conv_avail[curr~conv_index] = 0;

free(conversation);

return ACCEPT_FAILED;

} I* TConnResponse *I
} I* Tinit *I

} I* veep > 0 *I
free(conversation);

return REPEAT_LATER;

} I* if ep_info->osi_allocated *I
#endif ISO_SUPPORTED

} I* else if non blocking *I

}

116

!***

*
*
*
*
*
*
*

econnect.c

Author Debashish Chatterjee

Date 19th July 1990

int econnect(my_name, partner_narne, blocking,

conv_type, Cv_id)

*
*
*
*
*
*
*

* "econnect" connects to a remote process in a blocking or *
* non-blocking mode over a conversation *

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Input: The symbolic name of this process, a string
''rny_name''

Blocking or non-blocking mode "blocking"

*
*
*

The symbolic name of the partner "partner_name", *
advertised already by the partner *
Kind of conversation by the server and client

using "conv_type"

Output : The conversation identifier "Cv_id" of type
NA_conv

Returns OK if successful. Otherwise CONNECT_ERROR if

failed while trying to connect due to invalid partner

name or non existing partner.

If maximum allowable resources have been used up

NO_RESOURCE is returned.

*
*
*
*
*
*
*
*
*

* If the mode is non-blocking and the call could not be *
* launched REPEAT_LATER is returned. The caller should try *

* again. *
* *
***!

117

I* include files from the include directory

#include "global.h"

#include "shared.h"

extern int rtrv_prtnr_rsrc();

extern int ewrite();

118

#ifdef TCP_SUPPORTED

'***

*
*
*
*
*
*
*
*

*
This function exchanges with the responder the *
priority once the association has been established *
This is required only for TCP protocol. *
Sets the priority of the conversation apppropriately*

If there is an error, -1 is returned *
If there is a match 1 is returned else 0 *

*
***!
int send_recv_priority(Cv_id, priority)

NA_conv Cv_id; I* the conversation active

· int priority;

{
I* priority sought by the caller

int j,
prtnr_pr; partner's priority

j = sizeof(int);

I* send own priority

if (ewrite(Cv_id, BLOCKING, NI_NORMAL,

{

if (j == sizeof(int))

{

&priority, &j) -- OK)

I* receive prtnr's priority *I

if (eread(Cv_id, BLOCKING, NI_NORMAL,

&prtnr_pr, &j) == OK)

{
if (j == sizeof(int))

119

{

#ifdef DEBUG

printf("econnect: partner's priority is %d\n", prtnr_pr);

#endif DEBUG

}

}

}

}

-return -1;

}

#endif TCP_SUPPORTED

if (priority == prtnr_pr)

return 1;

return 0;

I*

both agree

mismatch

error in protocol

120

'***
* This procedure sends own name to the remote process *
***'
int send_my_name(Cv_id, my_name)

NA_conv Cv_id; I* active conversation identifier *I
char *my_name; I* my name to be sent to the partner *I
{

int max_j,

j '
sz_j;

max_j = strlen(my_name) + 1;

j = max_j;

sz_j = sizeof(j);

#ifdef DEBUG

printf("j ,sz_j ,max_j: Y.d, Y.d, Y.d \n", j, sz_j, max_j);

#endif DEBUG

I* first transmit the size of partner name
if (ewrite(Cv_id, BLOCKING, NI_NORMAL, &j, &sz_j)
{

if (sz_j

'* {

sizeof(int))

successfully transmitted

now the actual name
if (ewrite(Cv_id, BLOCKING, NI_NORMAL,

*I
OK)

my_name, &j) -- OK)

121

{

}

#ifdef DEBUG

if (j == max_j)

return 0;

printf("econnect/retry my name could not sent \n");

#endif DEBUG
}

#ifdef DEBUG

printf("econnect/retry:name length could not sent\n");

#endif DEBUG
}

return -1;
}

122

!***

* the econnect function *
***!
int econnect(my_name, partner_name, blocking,

conv_type, Cv_id)

char *my_name, name of the local process

partner_name; I
int blocking; I*

name of the remote process *I
BLOCKING or NON_BLOCKING mode *f
I* conversation characteristics*/

conversation identifier returned*/

struct conv_char conv_type;

NA_conv *Cv_id; I* the

{

I* Finds out physical address of the partner to *I
I* connect from nameserver *I
I* From the physical address use appropriate network *I
I* protocol to connect *I

I* If more than one common network is supported both *I
I* at local and remote machine , try to connect to *I
I* any one by *I
I* 1) allocating a communication endpoint *I

I* 2) If blocking,return if an accept is acknowledged *I
I* from remote site *I
I* 3) If non-blocking issue a protocol specific call. If*/

I* the call does not complete and is in progress return *I

I* On a proper connect, returns conversation id and *I
I* OK *I

123

fd_set write_template; I* write mask for select calls *I
struct timeval wait; I* structure for passing time *I
NA_conn_rsrc *ep_info; I* a communication resource *I
NA_conv_info *conversation; I* conversation object *I
int cycle_sel = 0; I* to select the order in which to *I

I* the protocols *I

#ifdef TCP_SUPPORTED

struct sockaddr_in conn_to; I* TCP specific address *I

#endif TCP_SUPPORTED

int sock,

status,

curr_conv_index;

int which_net = NONE;

#ifdef ISO_SUPPORTED

OS! specific declarations

struct TSAPconnect *tc; I* connection structure *I
struct TSAPdisconnect *td; I* disconnect structure *I

#endif ISO_SUPPORTED

I* Initialize *I
#ifdef CTHREADS_SUPPORTED

if (blocking == BLOCKING)

mutex_lock(na_conv_lock);

I* blocks thread till success *I

124

else

{

}

if (mutex_try_lock(na_conv_lock) == FALSE)

return REPEAT_LATER;

#endif CTHREAOS_SUPPORTED

for (curr_conv_index = 0;
curr_conv_index < MAX_CONVERSATIONS;

curr_conv_index++)

if (!conv_avail[curr_conv_index])

break;

#ifdef CTHREADS_SUPPORTED

mutex_unlock(na_conv_lock);

#endif CTHREADS_SUPPORTED

if (curr_conv_index == MAX_CONVERSATIONS)

return NO_RESOURCE;

conversation = (NA_conv_info *)

malloc((unsigned) sizeof(NA_conv_info));

conversation->tsap_conv_id = 0;

conversation->tcp_conv_id = 0;

conversation->sna_conv_id = 0;

conversation->network_type = 0;

conversation->connected = 0;

conversation->send_mode = NI_NORMAL;

conversation->recv_mode = NI_NORMAL;

conversation->my_name = malloc(strlen(my_name) + 1);

125

strcpy(conversation->my_name, my_name);

wait.tv_sec = WAIT_SEC;

I* configuration parameter defined in localconfig.h *I
wait.tv_usec = WAIT_U_SEC;

I* configuration parameter defined in localconfig.h *I

ep_info = (NA_conn_rsrc *)

malloc((unsigned) sizeof(NA_conn_rsrc));

#ifdef ISO_SUPPORTED

isodetailor(my_name, 1);

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

tc = (struct TSAPconnect *)

malloc(sizeof(struct TSAPconnect));

#endif ISD_SUPPORTED

I* from the network directory ,retrieve using

I* partner_name the real network & the physical

I* address ie partner_name ---> NA_conn_rsrc of

I* partner ; then proceed

if (rtrv_prtnr_rsrc(partner_name, ep_info) < 0)
{

#ifdef DEBUG

printf("Partner look up in nameserver failed \n");

#endif DEBUG

126

}

free(ep_info);

free(conversation);

return NO_SUCH_PARTNER;

#ifdef TCP_SUPPORTED

if (TCP_available && ep_info->tcp_allocated)

{

sock= socket(AF_INET, SOCK_STREAM, 0);

if (sock < 0)
{

#ifdef DEBUG

printf("TCP socket failed\n");

#endif DEBUG
}

else
{

int toggle = 1;

I* set socket option to receive urgent data *I
if (setsockopt(sock, SOL_SOCKET, SO_OOBINLINE,

(char*) &toggle, sizeof(int)) == 0)
{

conn_to.sin_family = AF_INET;

bcopy((char *)

&(ep_info->tcp_ep.in_socket.sin_addr),

(char *) &conn_to.sin_addr,

sizeof(ep_info->tcp_ep.

127

#ifdef DEBUG

#endif DEBUG

}

else
{

#ifdef DEBUG

in_socket.sin_addr));

conn_to.sin_port =

ep_info->tcp_ep.in_socket.sin_port;

I* asynchronous call to connect *I
if (fcntl(sock, F_SETFL, FNDELAY) < 0)
{

}

else

perror("fcntl F_SETFL,FNDELAY");

which_net += NI_TCP;

setsockopt

perror("set socket option");

#endif DEBUG
}

}

}

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (SNA_available && ep_info->sna_allocated)
{

which_net += NI_SNA;

128

}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTEO

if (OSI_available && ep_info->osi_allocated)
{

which_net += NI_OSI;
}

#endif ISO_SUPPORTED

#ifndef DEBUG1

#ifdef TCP_SUPPORTED && ISO_SUPPORTED

if (which_net == DSI_TCP I I which_net == ALL)

cycle_sel = random() & 01;

./* if cycle_sel is 0 then the order is TCP-->DSI-->SNA *I
I* if cycle_sel is 1 then the order is OSI-->TCP-->SNA *I

#endif TCP_SUPPORTED && ISO_SUPPDRTED

#end if DEBUG1

if (blocking)
{

#ifdef TCP_SUPPDRTED

#ifdef ISO_SUPPDRTED

if (cycle_sel)

go to L1;
#endif ISO_SUPPDRTED

129

#endif TCP_SUPPORTED

do
{

#ifdef TCP_SUPPORTED

#ifdef ISO_SUPPORTED

L2:

#endif TCP_SUPPORTED

#endif TCP_SUPPORTED

#ifdef TCP_SUPPORTED

if (which_net == NI_TCP I I

{

#ifdef DEBUG

#endif DEBUG

which_net == OSI_TCP I I
which_net == SNA_TCP I I

which_net == ALL)

printf("TCP blocking\n");

protocol specific connect call

status =

connect(sock, &conn_to, sizeof(conn_to));

if (status == 0)
{

130

int j,

max_j,

sz_j;

char temp[2];

I* since a connection has been done *I
I* initialise the conversation object *I
conversation->tcp_conv_id = sock;

conversation->network_type = NI_TCP;

conversation->connected = NI_DONE;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

I* transmit own name
if (send_my_name(*Cv_id,

conversation->my_name) == 0)
{

int status;

conversation->connected = NI_DONE;

/*exchange priority to be supported *I
status = send_recv_priority(*Cv_id,

conv_type.expedited);

if (status == 1)
{

conversation->priority =
conv_type.expedited;

return OK;

131

}

}

else if (status -- 0)
{

}

conversation->priority =
NI_NORMAL;

return OK;

conv_avail[curr_conv_index] = 0;

free(conversation);

return CONNECT_FAILED;

} I* status == 0 *I
switch (errno)
{

case EINPROGRESS:

do
{

I* connection is still in progress *I
FD_ZERO(&write_template);

FD_SET(sock, &write_template);

I* select to find if complete *I
status = select(FD_SETSIZE,

(fd_set *) 0, &write_template,

(fd_set *) 0, &wait);

if (status > 0)
{

if (FD_ISSET(sock,

&write_ template))
{

if (sock == -1)

132

{

continue;

}

conversation->tcp_conv_id =
sock;

conversation->network_type =
NLTCP;

conversation->connected =
NLDDNE;

free(ep_info);

conv_arr[curr_conv_index] =
conversation;

conv_avail[curr_conv_index] =
1•

'
*Cv_id = curr_conv_index + 1;

I* transmit own name *I
if (send_my_name(*Cv_id,

conversation->my_name)

== 0)

{

int status;

conversation->connected =

NI_DDNE;
status =

I* exchange priority *I

133

send_recv_priority(*Cv_id,

conv_type.expedited);

if (status == 1)

#ifdef DEBUG

#endif DEBUG

}

}

}

{

}

conversation->priority

= conv_type.expedited;

return OK;

else if (status == 0)
{

}

conversation->priority

= NI_NORMAL;

return OK;

conv_avail[curr_conv_index] =
0;

free(conversation);

return CONNECT_FAILED;

} while (TRUE);

case EALREADY:

break;

default:
{

perror("connect:");

free(conversation);

return CONNECT_FAILED;

134

}
}

}
#endif TCP_SUPPDRTED

#ifdef SNA_SUPPDRTED

if (which_net == N!_SNA I I

{

I*
}

#endif SNA_SUPPDRTED

#ifdef TCP_SUPPDRTED

#ifdef ISO_SUPPDRTED

Ll:

#endif ISO_SUPPDRTED

#endif TCP_SUPPDRTED

#ifdef ISD_SUPPDRTED

which_net == DSI_SNA I I
which_net == SNA_TCP I I

which_net == ALL)

do something

if (which_net == NI_DSI I I

{

which_net == DSI_TCP I I
which_net == DSI_SNA I I

which_net == ALL)

int expedited;

135

#ifdef DEBUG

#endif DEBUG

#ifdef DEBUG

printf("OSI blocking\n");

if (conv_type.expedited == NI_EXPEDITED)

expedited = 1;

else

expedited = 0;

I* protocol specific non-blocking connect *I
if ((status =

{

TAsynConnRequest(NULLTA,

ep_info->tsap_ep,

expedited,

((char*) 0), 0,

NULLQOS, tc, td, 1))

== NDTDK)

printf("OSI error in Connection Request, Xs\n",

TErrString(td->td_reason));
#endif DEBUG

}

else
{

free(ep_info);

free(conversation);

return CDNNECT_FAILED;

I* TConnRequest == NDTDK

136

#ifdef DEBUG

I* connection request in progress

int i,

j '
max_j,

sz_j;

int trans_d;

trans_d = tc->tc_sd;

while (status == CONNECTING_! I I

{

int nfds;

fd_set mask,

*rmask,

*wmask;

status == CONNECTING_2)

nfds = 0;
FD_ZERO(&mask);

if ((status =

{

TSelectMask(trans_d, &mask,

&nfds, td)) == NOTDK)

printf("error in TSelect 1, Y.s, Y.s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

free(ep_info);

137

#ifdef DEBUG

}

free(conversation);

return CONNECT_FAILED;

I* set the read and write masks *I
rmask = (status == CONNECTING_2) ?

&mask : NULLFD;

wmask = (status == CONNECTING_2)

? NULLFD : &mask;

if ((xselect(nfds, rrnask, wrnask,

NULLFD, 1)) == NOTOK)
{

printf("error in xselect 1, Y.s, Y.s\n",

TErrString(td->td_reason),

td->td_data);
#endif DEBUG

}

if

free(ep_info);

free(conversation);

return CONNECT_FAILED;

((rrnask &&

FD_ISSET(trans_d,

II (wrnask &&

FD_ISSET(trans_d,

continue;

138

rrnask) -- 0)

wrnask) -- 0))

#ifdef DEBUG

·I* still in progress; not ready *I
I* for read and write activities *I

if ((status =
TAsynRetryRequest(trans_d,

tc, td))

== NOTOK)
{

printf("error in TAsynRetryRequest, Y.s, Y.s\n",
TErrString(td->td_reason),

td->td_data);

#endif DEBUG

}

I*
I*
I*

}

I*

fill

free (ep_infq);

free(conversation);

return CONNECT_FAILED;

while

conversation established

conversation object for future

references

conversation->tsap_conv_id = trans_d;

conversation->network_type = NI_OSI;

conversation->connected = NI_DONE;

if (tc->tc_expedited)

*I
*I
*I
*I

conversation->priority = NI_EXPEDITED;

139

}

}

else
conversation->priority = NI_NORMAL;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

if (send_my_name(*Cv_id,
conversation->my_name) -- 0)

return OK;
ConnRequest == OK

conv_avail[curr_conv_index] = 0;

free(conversation);

return CONNECT_FAILED;

I* which net
#endif ISO_SUPPORTED

} while (TRUE);
}

else
{

#ifdef TCP_SUPPORTED

#ifdef ISO_SUPPORTED

if (cycle_sel)

goto L1a;

L2a:
#endif ISO_SUPPORTED

start non-blocking code

140

#endif TCP_SUPPORTED

#ifdef TCP_SUPPORTED

if (which_net == NI_TCP I I

{

#ifdef DEBUG

which_net == OSI_TCP I I
which_net -- SNA_TCP I I

which_net == ALL)

printf("TCP nonblocking\n");
#endif DEBUG

I* TCP specific connect call
status= connect(sock, &conn_to, sizeof(conn_to));

if (status == 0)
{

int j;

int rnax_j,

sz_j;

conversation established

conversation->tcp_conv_id = sock;

conversation->network_type = NI_TCP;

conversation->connected = NI_DONE;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

141

}

if (send_my_name(*Cv_id,

conversation->my_name) == 0)
{

}

int status;

conversation->connected = NI_DONE;

status = send_recv_priority(*Cv_id,

conv_type.expedited);

if (status == 1)
{

}

conversation->priority =
conv_type.expedited;

return OK;

else if (status -- 0)
{

}

conversation->priority = NI_NORMAL;

return OK;

conv_avail[curr_conv_index] = 0;

free(conversation);

return CONNECT_FAILED;

switch (errno)
{

case EWOULDBLOCK:
{

free(ep_info);

free(conversation);

142

#ifdef DEBUG

#endif DEBUG

return REPEAT_LATER;
}

case EINPROGRESS:

conversation->tcp_conv_id = sock;

conversation->network_type = NI_TCP;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

conversation->connected = NI_INPROGRESS;

conversation->priority =

return IN_PROGRESS;

case EALREADY:
free(ep_info);

free(conversation);

return REPEAT_LATER;

default:

perror("connect:");

conv_type.expedited;

free(ep_info);

free(conversation);

return CONNECT_FAILED;
}

}

#endif TCP_SUPPORTED

143

#ifdef SNA_SUPPDRTED

if (which_net == NI_SNA I I
which_net == DSI_SNA I I

{
}

#endif SNA_SUPPDRTED

#ifdef TCP_SUPPDRTED

#ifdef ISO_SUPPDRTED

if (cycle_sel)

goto L3a;

L1a:
#endif ISO_SUPPDRTED

#endif TCP_SUPPDRTED

#ifdef ISO_SUPPDRTED

which_net == SNA_TCP I I
which_net == ALL)

if (which_net == NI_OSI I I

{

which_net == OSI_TCP I I
which_net == DSI_SNA I I

which_net == ALL)

struct TSAPconnect *tc;

struct TSAPdisconnect *td;

int expedited;

144

#ifdef DEBUG

printf("OSI nonblocking\n");

#endif DEBUG

#ifdef DEBUG

td = (struct TSAPdisconnect *)
rnalloc(sizeof(struct TSAPdisconnect));

tc = (struct TSAPconnect *)

rnalloc(sizeof(struct TSAPconnect));

if (conv_type.expedited == NI_EXPEDITED)

expedited = 1;

else

expedited = 0;

I* osi specific non-blocking call

if ((status =

{

TAsynConnRequest(NULLTA, ep_info->tsap_ep,

expedited, ((char*) 0),

0, NULLQOS, tc, td, 1))

== NOTOK)

printf("OSI error in Connection Request, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

free(ep_info);

free(conversation);

return CONNECT_FAILED;

145

} /* TConnRequest == NOTOK

else if (status == DONE)
{

int j,

rnax_j,

sz_j;

conversation established

conversation->tsap_conv_id = tc->tc_sd;

conversation->network_type = NI_OSI;

conversation->connected = NI_DONE;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

if (send_rny_narne(*Cv_id,

conversation->rny_narne) == 0)
{

}

if (tc->tc_expedited == 1)

conversation->priority =

else

NI_EXPEDITED;

conversation->priority = NI_NORMAL;

free(tc);

free(td);

return OK;

conv_avail[curr_conv_index] = 0;

free(conversation);

146

}

return CONNECT_FAILED;

}

else
{

}

conversation->tsap_conv_id = tc->tc_sd;

conversation->network_type = NI_OSI;

conversation->connected = status;

conversation->priority = conv_type.expedited;

free(ep_info);

conv_arr[curr_conv_index] = conversation;

conv_avail[curr_conv_index] = 1;

*Cv_id = curr_conv_index + 1;

free(tc);

free(td);

return IN_PROGRESS;

#endif ISO_SUPPORTED

#ifdef TCP_SUPPORTED

#ifdef ISO_SUPPORTED

if (cycle_sel)

goto L2a;

L3a:

#endif ISO_SUPPORTED

#endif TCP_SUPPORTED

return REPEAT_LATER;

147

}

}

148

'***

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

retry.c

Author Debashish Chatterjee

Date 19th July 1990

int retry_connect(Cv_id)

retries a nonblocking econnect that has returned

IN_PROGRESS

Input: Cv_id the conversation identifier returned from

non_blocking econnect call.

returns OK if connected else CONNECT_ERROR if failed

while trying to connect due to invalid partner name· or

non existing partner.

IN_PROGRESS if connection establishment is still in

progress.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

***'

I* include files from the include directory

#include "global.h"

#include "shared.h"

extern int rtrv_prtnr_rsrc(); I* defined

extern int eread(); I* defined

extern int ewrite(); I* defined

extern int send_my_name(); I* defined

149

in configure.c *I
in eread.c *I
in ewrite.c *I
in econnect.c *I

extern int send_recv_priority();/* defined in econnect.c *I

150

!***

* retry_connect function *
***I
int retry_connect(Cv_id)

NA_conv Cv_id;

I* conversation identifier of the conversation in progress *I

{

fd_set write_template;

struct timeval wait;
NA_conv_info *conversation;

#ifdef DEBUG

printf("module retry\n");
#endif DEBUG

if ((Cv_id < 1) II (Cv_id > MAX_CONVERSATIDNS))

return BAD_C_HANDLE;

Cv_id--;

if (conv_avail[Cv_id] == 0)

return BAD_C_HANDLE;

I* messed up or masked

I* handle does not reference any active conversation *I

conversation= conv_arr[Cv_id];

if (conversation->connected -- NI_DONE)

return OK;

#ifdef TCP_SUPPDRTED

if (conversation->connected != NI_INPRDGRESS)

return NI_BAD_OPERATIDN;

151

#endif TCP_SUPPORTED

#ifdef TCP_SUPPORTED

wait.tv_sec = WAIT_SEC;

wait.tv_usec = WAIT_U_SEC;

I* configuration parameter defined in localconfig.h *I

if (conversation->network_type == NI_TCP)
{

int status;

FD_ZERO(&write_template);

FD_SET(conversation->tcp_conv_id, &write_template);

I* select to find if conversation is connected *I
status = se1ect(FD_SETSIZE, (fd_set *) 0,

&write_ template,

(fd_set *) 0, &wait);

if (status > 0)

{

if (FD_ISSET

{

(conversation->tcp_conv_id, &write_template))

int j;

int max_j,

sz_j;

I* transfer own name to partner
conversation->connected = NI_DONE;

if (send_my_narne(Cv_id + 1,

152

}

{

}

conversation->my_name) == 0)

int status;

conversation->connected = NI_DONE;

I* exchange priority *I
status = send_recv_priority(Cv_id + 1,

conversation->priority);

if (status == 1)

{
return OK;

}

else if (status == 0)
{

}

conversation->priority = NI_NORMAL;

return OK;

if FD_ISSET

conv_avail[Cv_id] = 0;

free(conversation);

return CONNECT_FAILED;

} /* if status

return IN_PROGRESS;

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type -- NI_OSI)

{
struct TSAPconnect *tc;

struct TSAPdisconnect *td;

153

int nfds,

status;

fd_set mask,

*rmask,

*wmask;

#ifdef DEBUG

printf("OSI retry\n");

#endif DEBUG

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

tc = (struct TSAPconnect *)

malloc(sizeof(struct TSAPconnect));

status = conversation->connected;

if (status == CONNECTING_l I I

{

#ifdef DEBUG

#endif DEBUG

status == CONNECTING_2)

nfds = 0;
FD_ZERO(&:mask);

I* set mask for conversation

if ((status =

{

TSelectMask(conversation->tsap_conv_id,

&:mask, &:nfds, td)) == NOTOK)

printf("error in TSelect, Y,s, Y.s\n",

TErrString(td->td_reason),

td->td_data);

154

#ifdef DEBUG

#endif DEBUG

free(conversation);

return CONNECT_FAILED;

set read and write mask

rmask =
(status -- CONNECTING_2) ? &mask NULLFD;

wmask =
(status -- CONNECTING_2) ? NULLFD : &mask;

I* select to see if read/write permissible *I
if ((xselect(nfds, rmask, wmask, NULLFD, 1))

{

== NOTOK)

printf("error in xselect, Y.s, Y.s\n",

TErrString(td->td_reason),

td->td_data);

free(conversation);

return CONNECT_FAILED;
}

if ((rmask && FD_ISSET(conversation->tsap_conv_id,

rmask) == 0) II
(wmask && FD_ISSET(conversation->tsap_conv_id,

wmask) == 0))

return IN~PRDGRESS;

I* check to see if conection completed

if ((status =

155

{

TAsynRetryRequest(conversation->tsap_conv_id,

tc, td)) == NDTOK)

#ifdef DEBUG

printf("error in TAsynRetryRequest, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

}

else

free(conversation);

return CONNECT_FAILED;
}

if ((status== CONNECTING_!) I I
(status == CONNECTING_2))

{

conversation->connected = status;

return IN_PROGRESS;
}

conversation->connected = NI_DONE;
if (tc->tc_expedited)

conversation->priority = NI_EXPEDITED;

else

conversation->priority = NI_NORMAL;

if (send_my_name(Cv_id + 1,

conversation->my_name) -- 0)

return OK;

conv_avail[Cv_id] = 0;

free(conversation);

return CONNECT_FAILED;

156

return NI_BAD_OPERATION;

}
#endif ISO_SUPPORTED
}

157

!***

*
*
*
*
*
*
*
*

terrninate.c

Author Debashish Chatterjee

Date 19th July 1990

Describes all the association release calls

*
*
*
*
*
*
*
*

***!

define the include files

#include "global.h"

#include "shared.h"

158

!***

*
*
*
*
*

function "eclose" closes a conversation normally and

frees up associated memory

Input : a conversation identifier

*
*
*
*
*

* Output: OK if conversation identifier was correct other- *
* wise BAD_C_HANDLE *

* *
***!
int eclose(Cv_id)

NA_conv Cv_id; I* a conversation identifier
{

NA_conv_info *conversation;

if ((Cv_id < 1) I I (Cv_id > MAX_CONVERSATIONS))

return BAD_C_HANDLE;

Cv_id--;

if (conv_avail[Cv_id] == 0)

return BAD_C_HANDLE;

conversation= conv_arr[Cv_id];

#ifdef TCP_SUPPORTED

if (conversation->network_type == NI_TCP)
{

close(conversation->tcp_conv_id);

conv_avail[Cv_id] = 0;

free(conv_arr[Cv_id]);

159

return OK;
}

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conversation->network_type == NI_SNA)
{

}

conv_avail[Cv_id] = 0;

free(conv_arr[Cv_id]);

free(conversation);

return OK;

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type == NI_OSI)
{

struct TSAPdisconnect *td;

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

if (TDiscRequest

(conversation->tsap_conv_id,

{

I*
#ifdef DEBUG

NULLCP, 0, td) == NOTOK)

ignore

printf("OSI :error in disconnect req, %s %s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG
}

conv_avail[Cv_iJ] = 0;

160

}

free(conv_arr[Cv_id]);

free(conversation);

free(td);

return OK;

#endif ISO_SUPPORTED
}

161

'***

*
*
*
*

function "delete_rsrc" deletes a name mapping and

frees up associated memory

*
*
*
*

* Input : a handle; communication resource *

* Output: OK if communication resource was correct other- *

* wise BAD_R_HANDLE *

* *
***!
int delete_rsrc(handle)

NA_rsrc handle; I* a handle; communication resource *I
{

#ifdef ISO_SUPPORTED

struct TSAPdisconnect *td;

#endif ISO_SUPPORTED

if ((handle < 0) I I (handle > MAX_CONVERSATIDNS))

return BAD_R_HANDLE;

handle--;

#ifdef ISO_SUPPORTED

if (rsrc_arr[handle]->osi_allocated)
{

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

if (TNetClose(rsrc_arr[handle]->tsap_ep,

{

#ifdef DEBUG

printf("OSI

td) == NOTOK)

error in TNetClose, %s\n",

162

#endif DEBUG

}

}

free(td);

#endif ISO_SUPPORTED

free(rsrc_arr[handle]);

ep_avail[handle] = 0;

return OK;
}

TErrString(td->td_reason));

163

E.3 Data transfer and multiplexing

!***

*
*
*
*
*

eread.c

Author Debashish Chatterjee

Date 19th July 1990

*
*
*
*
*

* int eread(Cv_id, blocking, priority, data , data_len) *
* "eread" reads data in a blocking or non-blocking mode *

* over a conversation *

* Input : The conversation identifier "Cv_id" of type *

* NA_conv referencing a conversation that has *
* already been established *

* Blocking or non-blocking mode "blocking" *

* Pointer to a buffer "data" where the data is to *

* read *

* "priority" is kind of data expected to be read. *

* The priority is usually NI_NORMAL. If willingness*

* to receive expedited data has been hinted and the*

* previous read has returned status NI_URG_PENDING,*

* then the priority HAS to be NI_EXPEDITED. *

* NI_EXPEDITED can ONLY be used with blocking mode.*

* Input/output : "data_len" contains the size of the buffer*

* "data" on input, and actual no of bytes read is *

* returned on output. *

* BLOCKING Semantics: *

*
*
*
*

The call returns only if the requested number of bytes

"data_len" has been read or an error occurs or urgent

data was received.

If it returns OK then it was successful in reading all

164

*
*
*
*

* the data requested. *
* If "data_len" is less than specified at input and NI_EOT *

* was returned, the conversation has been closed. The bytes*

* read prior to termination is returned as "data_len". *

* If there was internal problem, READ_ERROR is returned. *

* NI_URG_PENDING indicates urgent data has been received, *

*
*
*
*
*

and the next read should be a blocking call to read

urgent data with priority set to NI_EXPEDITED.

If priority was NI_EXPEDITED, then the "data_len" on

return reflects the bytes of urgent data read. On no

account will it be more than MAX_URG_SZ.

*
*
*
*
*

* If it returns OK, no more urgent data is pending. If *

* NI_URG_PENDING is returned once again, some more urgent *
* data has arrived or is pending. *

* NON-BLOCKING Semantics: *

* If the mode is non-blocking and the call returns OK then *

*
*
*
*
*
*

some data was read and the actual size is specified by
11 data_len".

If NI_EOT was returned, then end of data transmission;

conversation has been closed by partner.

If the no data was available immediately, REPEAT_LATER

is returned.

*
*
*
*
*
*

* The caller should try again. *
* NI_URG_PENDING indicates urgent data has been received, *
*
*
*

and the next read should be a blocking call to read

urgent data with priority set to NI_EXPEDITED.
*
*
*

* For both the modes, NI_BAD_PRIORITY indicates wrong use *
* of priority, NI_BAD_OPERATION indicates conversation has *
* not been established as yet, BAD_C_HANDLE indicates a *

165

* messed up or masked conversation identifier *
* *
***!

I* include files from the include directory

#include "global.h"

#include "shared.h"

I***
* translates a packet queue to a data stream for OSI reads *
***I

#ifdef ISO_SUPPORTED

· rd_buf_q(recv_buf, qb)

char *recv_buf;

struct qbuf *qb;

I* a stream of bytes when it returns *I
I* data received as packets and queued *I
I* in that order *I

{

}

int i = 0;

while (qb->qb_len > 0)
{

bcopy(qb->qb_data, &(recv_buf[i]), qb->qb_len);

i += qb->qb_len;

qb = qb->qb_forw;
}

166

#endif ISO_SUPPDRTED

167

!********************************~****************************

* the eread function *
***!
int eread(Cv_id, blocking, priority, data, data_len)

NA_conv Cv_id; I* Conversation identifier *I
int blocking; I* Blocking or Non-blocking read operation *I
int priority; I* NI_NORMAL or NI_EXPEDITED *I
char *data; I* Pointer to buffer where the data is read *I
int *data_len; I* Size of data to be read; also the size *I

I* of the buffer "data"

{

NA_conv_info *conversation;

I* the conversation structure referring to Cv_id

#ifdef TCP_SUPPORTED

int tcp_status; I* status returned by TCP calls

int expect_urg, I* when

return_urg; I* when

fd_set read_template,

true checks for urgent data

true returns urgent data

I* socket read mask for

*I
*I
*I
*I

urg_template;

I* multiplexing

I* socket exceptional

I* data

*I
maskfor urgent*/

*I
struct timeval wait; I* UNIX time structure

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

168

struct TSAPdisconnect *td;
struct TSAPdata *tx_recv;

#endif ISO_SUPPORTED

if ((priority== NI_EXPEDITED) &&
(blocking== NON_BLDCKING))

return NI_BAD_PRIDRITY;
if ((Cv_id < 1) I I (Cv_id > MAX_CONVERSATIDNS))

return BAD_C_HANDLE;
Cv_id--;
if (conv_avail[Cv_id] == 0)

return BAD_C_HANDLE;

conversation= conv_arr[Cv_id];

if (conversation~>connected != NI_DONE)
return NI_BAD_OPERATIDN;

switch (conversation->priority)

{
case NI_EXPEDITED:

if (priority== NI_NORMAL)
{

I* conversation not

I* established yet *I

if (conversation->recv_mode == NI_EXPEDITED)

return NI_BAD_PRIORITY;

I* with urgent data pending normal read not *I
I* permitted *I

169

#ifdef TCP_SUPPORTED

expect_urg = TRUE;
return_urg = FALSE;

#endif TCP_SUPPORTED
}

else if (priority== NI_EXPEDITED)
{

#ifdef TCP_SUPPORTED

expect_urg = TRUE;
return_urg = TRUE;

#endif TCP_SUPPORTED

}

else
{

return NI_BAD_PRIORITY;
}

break;

case NI_NORMAL:

if (priority != NI_NORMAL)
{

return NI_BAD_PRIDRITY;
}
else

{

#ifdef TCP_SUPPDRTED

expect_urg = FALSE;
return_urg = FALSE;

#endif TCP_SUPPORTED

170

}
}

#ifdef TCP_SUPPORTED

wait.tv_sec = WAIT_SEC;

I* configuration parameter defined in localconfig.h *I
wait.tv_usec = WAIT_U_SEC;

I* configuration parameter defined in localconfig.h *I
#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

tx_recv = (struct TSAPdata *)
malloc(sizeof(struct TSAPdata));

#endif ISO_SUPPORTED

if (blocking)
{

#ifdef TCP_SUPPORTED

if (conversation->network_type == NI_TCP)
{

int d_buf_ptr = 0;

I* pointer to the position in the data *I
I* buffer for subsequent reads *I
int sz_2_b_read;

I* size of data to be read for that call *I

I* initialise the data len to be read *I

171

#ifdef DEBUG

sz_2_b_read = *data_len;

*data_len = 0;

do
{

FD_ZERD(&read_ternplate);

FD_ZERD(&urg_ternplate);

FD_SET(conversation->tcp_conv_id,

&read_ternplate);
if (expect_urg == TRUE)

FD_SET(conversation->tcp_conv_id,

&urg_ template);

I* check to see if data pending

tcp_status = select(FD_SETSIZE,

&read_ template,

(fd_set *) 0,

&urg_ternplate,

&wait);

if (tcp_status > 0)
{

int urg_mark = 0;

is this the urgent byte

if (ioctl(conversation->tcp_conv_id,

SIOCATMARK,

(char *) &urg_mark) < 0)
{

172

#endif DEBUG

#ifdef DEBUG

#endif DEBUG

perror("ioctl:");

return READ_ERRDR;
}

if ((urg_mark == 1) &&

(FD_ISSET(conversation->tcp_conv_id,

&urg_ template)))
{

char c;

if (return_urg == FALSE)

return NI_URG_PENDING;

if (conversation->recv_mode ==

NI_EXPEDITED)

I* the delimiter marking end of urgent data *I
{

tcp_status =
read(conversation->

tcp_conv_id,

&c, 1);

if (tcp_status != 1)

{

perror("urg marker ends read error");

return READ_ERRDR;

173

#ifdef DEBUG

#endif DEBUG

}

}

conversation->recv_mode =
NI_NORMAL;

return OK;

else
{

I* first urgent read request *I
I* after NI_URG_PENDING was *I
I* returned *I
tcp_status =

read(conversation->

tcp_conv_id,

&c, 1);

if (tcp_status != 1)
{

perror("urg marker begins read error");

}

}

return READ_ERRDR;
}

conversation->recv_mode =
NI_EXPEDITED;

if ((urg_mark != 1) &&

(FD_ISSET(conversation->tcp_conv_id,

&read_ template)))

174

{

#ifdef DEBUG

tcp_status =
read(conversation->

tcp_conv_id,

&(data[d_buf_ptr]),

sz_2_b_read);

if (tcp_status > 0)
{

}

*data_len += tcp_status;

if (sz_2_b_read == tcp_status)

required data
if (conversation->recv_rnode

="' NI_EXPEDITED)

return NI_URG_PENDING;

else

return OK;
sz_2_b_read -= tcp_status;

I* read fewer bytes *I
d_buf_ptr += tcp_status;

I* advance data buffer pointer *I

else if (tcp_status -- 0)
{

I* eof *I

return NI_EOT;
}

else if (errno 1= EWDULDBLDCK)
{

perror("read");

175

#endif DEBUG

return READ_ERROR;
}

}

}

if (tcp_status < 0)

some error in select

return READ_ERROR;

timer expired so continue

} while (TRUE);
}

#endif TCP_SUPPORTED

#ifdef SNA_SUPPDRTED

if (conversation->network_type == NI_SNA)
{

do something
}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type == NI_OSI)
{

int asked_sz,

nxt,

recv_sz;

int i,

j '
k;

176

asked_sz = *data_len;

j = nxt = 0;
j = recv_data_arr[Cv_id].size

recv_data_arr[Cv_id] .curr_ptr;

if (j > asked_sz)

I* there is more data in the buffer than asked *I
j = asked_sz;

if (j > 0)

I* some data already in the buffer
{

bcopy(&(recv_data_arr[Cv_id].

data[recv_data_arr[Cv_id].

curr_ptr]), &(data[nxt]), j);

recv_data_arr[Cv_id].curr_ptr += j;

if ((recv_data_arr[Cv_id] .curr_ptr) ==
recv_data_arr[Cv_id] .size)

{

free(recv_data_arr[Cv_id] .data);

recv_data_arr[Cv_id] .curr_ptr = 0;

recv_data_arr[Cv_id] .size = 0;

I* back to no reserve data in

I* implementation buffer

if (conversation->recv_mode -

NI_EXPEDITED)
{

}

conversation->recv_mode = NI_NORMAL;

*data_len += j;

return OK;

177

#ifdef DEBUG

}

}

asked_sz -= j;

nxt += j;

if (conversation->recv_mode -- NI_EXPEDITED)
{

}

I* more urgent data left

*data_len = nxt;

return NI_URG_PENDING;

while (asked_sz > 0)

I* requested data is more than already buffered *I
I* or read
{

if (TReadRequest(conversation->tsap_conv_id,

tx_recv, NOTOK, td) == NOTOK)
{

int err;

printf("OSI error in read request 1, %s %s\n",

TErrString(td->td_reason), td->td_data);

#endif DEBUG

err = td->td_reason;

free(td);

*data_len = nxt;

if (err == DR_NETWOR~ I I

178

#ifdef DEBUG

{

}

else

err == DR_NORMAL)

free(recv_data_arr[Cv_id].data);

recv_data_arr[Cv_id] .size = 0;

recv_data_arr[Cv_id].curr_ptr = 0;

return NI_EOT;

return READ_ERRDR;

} /* TReadRequest == NOTDK *I

printf(" OSI data received, size Y.d \n",
tx_recv->tx_cc);

#endif DEBUG

if ((conversation->recv_rnode == NI_NORMAL)

&& (tx_recv->tx_expedited))
{

}

rd_buf_q(recv_data_arr[Cv_id].data,

tx_recv->tx_qbuf.qb_forw);

recv_data_arr[Cv_id] .size =
tx_recv->tx_cc;

recv_data_arr[Cv_id] .curr_ptr = 0;

TXFREE(tx_recv);

conversation->recv_rnode = NI_EXPEDITED;

return NI_URG_PENDING;

if (asked_sz < tx_recv->tx_cc)

179

I* requested size is less than received *I
I* size so store the received data in buffer*/
{

}

recv_data_arr[Cv_id] .data =
'

(char*) malloc(tx_recv->tx_cc);

rd_buf_q(recv_data_arr[Cv_id].data,

tx_recv->tx_qbuf.qb_forw);

bcopy(recv_data_arr[Cv_id] .data,

&(data[nxt]), asked_sz);

recv_data_arr[Cv_id] .size =

tx_recv->tx_cc;

recv_data_arr[Cv_id] .curr_ptr = asked_sz;

I* set pointer to first unread byte *I
nxt += asked_sz;

asked_sz = 0;

TXFREE(tx_recv);

else if (asked_sz == tx_recv->tx_cc)

I* requested size is equal to received size *I
I* so read the received data into the user *I
I* data buffer

{

rd_buf_q(&(data[nxt]),

tx_recv->tx_qbuf.qb_forw);

nxt += asked_sz;

asked_sz = 0;

TXFREE(tx_recv);

180

}

}

}
else

I* else requested size is greater than *I
I* received size so increment the user data *I
I* pointer *I
{

}

rd_buf_q(&(data[nxt]),

tx_recv->tx_qbuf.qb_forw);

nxt += tx_recv->tx_cc;

asked_sz -= tx_recv->tx_cc;

TXFREE(tx_recv);

while *I
*data_len = nxt;

free(td);

return OK;

#endif ISO_SUPPDRTED

}

else

{

#ifdef TCP_SUPPDRTED

if (conversation->network_type == NI_TCP)

{

FD_ZERO(&read_ternplate);

FD_SET(conversation->tcp_conv_id, &read_ternplate);

181

tcp_status = select(FD_SETSIZE, &read_template,

(fd_set *) 0, (fd_set *) 0, &wait);

I* wait should be a configuration parameter *I

if (tcp_status > 0)
{

}

if (FD_ISSET(conversation->tcp_conv_id,

&read_ template))
{

}

tcp_status =
read(conversation->tcp_conv_id,

data, *data_len);

if (tcp_status > 0)
{

*data_len = tcp_status;

some data is read

return OK;
}

else if (tcp_status == 0)
{

}

*data_len = 0;

return NI_EOT;

if (errno == EWDULDBLDCK)

return REPEAT_LATER;

return READ_ERRDR;

I* eof

if (tcp_status < 0)

182

}

return READ_ERROR; I* some error in select *I
return REPEAT_LATER;

I* else timer expired so repeat later *I

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conversation->network_type -- NI_SNA)
{

}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type -- NI_OSI)
{

int askE>d_sz,

nxt,

recv_sz;

int i,

j'
k;

asked_sz = *data_len;

nxt = 0;

j = recv_data_arr[Cv_id] .size -

recv_data_arr[Cv_id] .curr_ptr;

if (j > asked_sz)

I* there is more data in the buffer than asked *I
j = asked_sz;

if (j > 0)

183

I* some data already in the buffer *I
{

bcopy(&(recv_data_arr[Cv_id].

data[recv_data_arr[Cv_id].

curr _ptr]), &(data[nxt]), j) ;

recv_data_arr[Cv_id].curr_ptr += j;

if ((recv_data_arr[Cv_id].curr_ptr) ==
recv_data_arr[Cv_id] .size)

{

free(recv_data_arr[Cv_id] .data);

recv_data_arr[Cv_id] .curr_ptr = O·
'

recv_data_arr[Cv_id] .size = 0·
'

I* back to no reserve data in *I
I* implementation buffer *I

}

asked_sz -= j;

nxt += j;

}

if (asked_sz > 0)

I* requested data is more than already buffered *I
I* or read
{

int nfds,

status;

fd_set mask;

nfds = 0;

FD_ZERO(&mask);

184

#ifdef DEBUG

#endif DEBUG

#ifdef DEBUG

#endif DEBUG

if ((status =

{

}

TSelectMask(

conversation->tsap_conv_id,

&mask, &nfds, td)) == NOTOK)

printf("error in TSelect, %s, %s\n",
TErrString(td->td_reason),

td->td_data);

free(td);

*data_len = nxt;
return READ_ERROR;

if ((xselect(nfds, &mask,

{

NULLFD, NULLFD, WAIT_SEC)) == NOTOK)

printf("error in xselect, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

free(td);

*data_len = nxt;

return READ_ERRDR;

185

#ifdef DEBUG

}

if (FD_ISSET(

{

}

conversation->tsap_conv_id, &mask) == 0)

free(td);

*data_len = nxt;

if (*data_len)

return OK;

else
return REPEAT_LATER;

if (TReadRequest(conversation->tsap_conv_id,

tx_recv, OK, td) == NOTOK)
{

int err;

printf("OSI error in read request 2, Y.s Y.s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

err = td->td_reason;

free(td);

*data_len = nxt;

if (err == DR_NETWORK I I
err == DR_NORMAL)

{

free(recv_data_arr[Cv_id] .data);

186

#ifdef DEBUG

}

else

recv_data_arr[Cv_id] .size = 0;

recv_data_arr[Cv_id] .curr_ptr = 0;

return NI_EDT;

return READ_ERRDR;

} I* TReadRequest == NDTDK *I

printf(" OSI data received, size Y.d \n",
tx_recv->tx_cc);

#endif DEBUG

if (asked_sz < (tx_recv->tx_cc))

I* requested size is less than received *I
·I* size so store the received data in buffer*/

{

recv_data_arr[Cv_id].data =
(char*) malloc(tx_recv->tx_cc);

rd_buf_q(recv_data_arr[Cv_id] .data,

tx_recv->tx_qbuf.qb_forw);

bcopy(recv_data_arr[Cv_id] .data,

&(data[nxt]), asked_sz);

recv_data_arr[Cv_id] .size =

tx_recv->tx_cc;

recv_data_arr[Cv_id].curr_ptr = asked_sz;

I* set pointer to first unread byte *I
asked_sz = 0;

nxt += asked_sz;

187

}

}

TXFREE(tx_recv);
}

else if (asked_sz == (tx_recv->tx_cc))

I* requested size is equal to received size *I
I* so read the received data into the user *I
I* data buffer
{

}

rd_buf_q(&(data[nxt]),

tx_recv->tx_qbuf.qb_forw);

asked_sz = 0;

nxt += asked_sz;

TXFREE(tx_recv);

else

I* else requested size is greater than recvd*l

I* size so increment the user data pointer *I
{

rd_buf_q(&(data[nxt]),

tx_recv->tx_qbuf.qb_forw);

nxt += tx_recv->tx_cc;

asked_sz -= tx_recv->tx_cc;

TXFREE(tx_recv);

if asked_sz > 0

*data_len = nxt;

I* data secured so far is the same as value *I
I* of the nxt pointer *I
free(td);

return OK;

188

#endif ISO_SUPPORTED
}

}

189

!***

*
*
*
*
*
*
*
*

ewrite.c

Author Debashish Chatterjee

Date 19th July 1990

int ewrite(Cv_id, blocking, priority, data , data_len)

"ewrite" sends data in a blocking or non-blocking mode

over a conversation

*
*
*
*
*
*
*
*

* Input : The conversation identifier "Cv_id" *
* blocking or non-blocking mode "blocking" *
* "priority" is kind of data transfer expected. If *
* priority is NI_EXPEDITED, this data transferred *
*
*

as urgent. Only available with Blocking call.

Default is NI_NORMAL.
*
*

* pointer to the data buffer "data" *
* Input/output : "data_len" contains the size of the data *

* to be sent on input, and actual no of bytes *

* transmitted on return *

*
*
*
*

Blocking Semantics:

If it returns OK then it was successful in reading in

some data.

*
*
*
*

* If "data_len" is less than specified at input end of data*

* transmission has been reached and data_len specifies the *

* actual bytes read. *

* Else there was internal problem in reading reflected by *

* WRITE_ERROR. *

* Non-blocking semantics: *

* If the mode is non-blocking and the call returns OK then *

190

* some data was written and the actual size is specified by*

*
*
*

"data_len". If no data could be sent immediately,

REPEAT_LATER is returned. The caller should try again.

If NI_BAD_PRIORITY is returned, caller tried to send

*
*
*

* urgent data in a non-blocking call or the agreed mode at *

* the conversation establishment time was NI_NORMAL. *
* *
***!

I* include files from the include directory

#include "global.h"

#include "shared.h"

191

I***

* the ewrite function *
***I

int ewrite(Cv_id, blocking, priority, data, data_len)

NA_conv Cv_id; I* Conversation identifier *I
int blocking; I* Blocking or Non-blocking data write *I
int priority; I* NI_NORMAL or NI_EXPEDITED *I
char *data; I* Pointer to Data buffer

int *data_len; I* Size of Data to be transmitted;on return *I
I* actual value transmitted *I

{
NA_conv_info *conversation;

I* the conversation structure referring to Cv_id

#ifdef TCP_SUPPORTED

int tcp_status; I*
fd_set write_template;

status returned by TCP calls

I* socket write mask for

struct timeval wait;

int d_buf_ptr = 0;

int sz_2_rite;

#endif TCP_SUPPORTED

multiplexing

I* UNIX time structure

I* pointer to the position in

I* the data buffer for subsequent

I* writes

I* size of data to be written

I* for that call

I* Transmits data to partner on the connection *I
I* established for it *I
I* returns OK if write is successful else error code *I

192

#ifdef DEBUG

printf("cv_id,data,datalen %d,%s,%d\n",
Cv_id, data, *data_len);

#endif DEBUG

if ((blocking== NON_BLOCKING)
&& (priority== NI_EXPEDITED))

return NI_BAD_PRIORITY;

if ((Cv_id < 1) I I (Cv_id > MAX_CONVERSATIONS))
return BAD_C_HANDLE;

Cv_id--;

if (conv_avail[Cv_id] == 0)

return BAD_C_HANDLE;

conversation= conv_arr[Cv_id];

if (conversation->connected != NI_DONE)
return NI_BAD_OPERATION;

if ((conversation->priority == NI_NORMAL) &&
(priority == NI_EXPEDITED))

{

return NI_BAD_PRIORITY;

I* cannot use urgent if not declared at *I
I* connection time or if partner does not accept *I
I* urgent data *I

}

if ((priority== NI_EXPEDITED)

return NI_BAD_OPERATION;
#ifdef TCP_SUPPORTED

wait.tv_sec = WAIT_SEC;

&& (*data_len > MAX_URG_SZ))

193

I* configuration parameter defined in localconfig.h
wait.tv_usec = WAIT_U_SEC;

I* configuration parameter defined in localconfig.h
#endif TCP_SUPPDRTED

if (blocking)
{

I* choose transmission mode

#ifdef TCP_SUPPDRTED

if (conversation->network_type == NI_TCP)

I* is the network TCPIIP
{

I* initialise the data len to be written

sz_2~rite = *data_len;

*data_len = 0;

do
{

*I

*I

FD_ZERD(&write_template);

FD_SET(conversation->tcp_conv_id,

&write_template);

tcp_status = select(FD_SETSIZE,

(fd_set *) 0, &write_template,

(fd_set *) 0, &wait);

if (tcp_status > 0)
{

if (FD_ISSET

(conversation->tcp_conv_id,

&write_ template))

194

{

#ifdef D.EBUG

if (priority== NI_EXPEDITED)
{

char c = 'y' ;

if ((d_buf_ptr == 0) &&

(conversation->send_rnode

-- NLNORMAL))

I* start of urgent data transfer*/
{

tcp_status =

send(conversation->

tcp_conv_id,

&c, 1, MSG_OOB);

if (tcp_status < 0)
{

perror("urg mark start error");

#endif DEBUG

return WRITE_ERROR;
}

#ifdef DEBUG

printf("transrnitted urg start rnarker\n");

#endif DEBUG

conversation->send_rnode =

NI_EXPEDITED;

continue;
}

else if ((sz_2_rite == 0) &&

(conversation->send_rnode -

NI_EXPEDITED))

195

#ifdef DEBUG

I* end of urgent data transfer *I
{

tcp_status =

send(conversation->

tcp_conv_fd,

&c, 1, MSG_OOB);

if (tcp_status < 0)
{

perror("urg mark end error");

#endif DEBUG

return WRITE_ERRDR;
}

#ifdef DEBUG

printf("transmitted urg end marker\n");

#endif DEBUG

}

}

conversation->send_mode =

NI_NORMAL;

I* toggle priority to normal*/
return OK;

tcp_status =
write(conversation->

tcp_conv_id,

&(data[d_buf_ptr]),

sz_2_rite);

I* standard TCP call for data send *I
if (tcp_status > 0)
{

196

}

}

else

}

}

*data_len += tcp_status;

if ((sz_2_rite == tcp_status)

&& (conversation->send_mode

-- NI_NORMAL))

return OK;

I* required data written *I
sz_2_rite -= tcp_status;

I* transmit remaining bytes *I
d_buf_ptr += tcp_status;

I* advance data buf ptr *I

else if (errno != EWOULDBLOCK)

{

}

perror("read");

return WRITE_ERROR;

return WRITE_ERROR;

if (tcp_status < 0)

I* select failed for some reason

return WRITE_ERROR;

I* else timer expired, keep trying

} while (TRUE);

I* repeat this loop until all the data is sent *I

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conversation->network_type -- NI_SNA)

197

{

do something
}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type -- NI_OSI)
{

int more_tx,

tx_sz,

nxt;

struct TSAPdisconnect *td;

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));
more_tx = *data_len;

nxt = 0;

do
{

if (more_tx > 65400)
{

}

tx_sz = 65400;

more_tx -= 65400;

else
{

}

tx_sz = more_tx;

more_tx = 0;

if (priority== NI_EXPEDITED)
{

198

#ifdef DEBUG

if (TExpdRequest

(conversation->tsap_conv_id,

&(data[nxt]), tx_sz, td)

== NOTOK)
{

printf("OSI could not transmit expedited data, %s %s\n",

TErrString(td->td_reason), td->td_data);

#endif DEBUG

#ifdef DEBUG

}

else
{

}

free(td);

*data_len -= (more_tx + tx_sz);

return WRITE_ERRDR;

if (TDataRequest

(conversation->tsap_conv_id,

&(data[nxt]), tx_sz, td) ==
NOTOK)

{

printf("OSI could not transmit data, %s %s\n",

TErrString(td->td_reason), td->td_data);

#endif DEBUG

}

}

free(td);

*data_len -= (more_tx + tx_sz);

return WRITE_ERRDR;

199

}

nxt += tx_sz;

} while (rnore_tx > 0);

return OK;

#endif ISO_SUPPORTED

}
else
{

I* this loop is necessary because the communication *I
I* is non-blocking at this level *I

#ifdef TCP_SUPPORTED

if (conversation->network_type == NI_TCP)

{
FD_ZERO(&write_ternplate);

FD_SET(conversation->tcp_conv_id,

&write_ternplate);

tcp_status = select(FD_SETSIZE,

(fd_set *) 0, &write_ternplate,

(fd_set *) 0, &wait);

if (tcp_status > 0)

{
if (FD_ISSET(conversation->tcp_conv_id,

&write_ template))

{
tcp_status =

write(conversation->tcp_conv_id,

data, *data_len);

if (tcp_status > 0)

{

200

}

}

else

}

*data_len = tcp_status;

I* some data could be written *I
return OK;

}
if (errno == EWOULDBLOCK)

return REPEAT_LATER;

I* no data could be written

return WRITE_ERROR;

return WRITE_ERROR;

if (tcp_status == 0)

return REPEAT_LATER;

I* timer expired and no data could be written *I
return WRITE_ERROR;

I* some other error, invalid time etc

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conversation->network_type == NI_SNA)

{
}

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conversation->network_type -- NI_OSI)

{
int more_tx,

tx_sz;

struct TSAPdisconnect *td;

201

int nfds;

fd_set mask;

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

if (*data_len > 65400)

*data_len = 65400;

nfds = 0;
FD_ZERO(&mask);

if (TSelectMask(conversation->tsap_conv_id,

&mask, &nfds, td) == NOTOK)
{

#ifdef DEBUG

printf("error in TSelect, Y.s, Y.s\n",

TErrString(td->td_reason),

td->td_data);
#endif DEBUG

}

free(td);

*data_len = 0;

return WRITE_ERROR;

if (xselect(nfds, NULLFD, &mask,

NULLFD, WAIT_SEC) == NOTOK)
{

#ifdef DEBUG

printf("error in xselect, Y,s, Y.s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

202

}

free(td);

*data_len = 0;

return WRITE_ERROR;

if (FD_ISSET(conversation->tsap_conv_id,

&mask) == 0)

{

}

free(td);

*data_len = 0;

return REPEAT_LATER;

if (TDataRequest(conversation->tsap_conv_id,

data, *data_len, td) == NOTOK)
{

#ifdef DEBUG

printf("OSI could not transmit data, 'l.s 'l.s\n",

TErrString(td->td_reason, td->td_data));

#endif DEBUG

free(td);

return WRITE_ERROR;
}

return OK;
}

#endif ISO_SUPPORTED

}

}

203

'***

*
*
*
*
*
*

read_mpx.c

Author Debashish Chatterjee

Date 19th July 1990

"rselect" selects conversations for reading data

*
*
*
*
*
*

* Input: An array of conversation identifiers "arr_conv_id"*

*
*
*
*
*
*
*
*
*
*
*
*

Timeout "wait" in seconds *
Output: An array of

indicate the

integers

selected

of size "max_elem" to *
conversations. Each element*

if 1 indicates that the corresponding conversation*

is selected. *
Input/Output: On input "max_elem" contains size of the *

above array. On output it contains total number of*

selected conversations

Returns OK if successfully returned else returns

R_SELECT_FAILED.

*
*
*
*
*

***!

I* include files from the include directory

#include "global.h"

#include "shared.h"

204

'***

* the rselect function *
***!

int rselect(arr_conv_id, max_elem, arr_selected, wait)

NA_conv arr_conv_id[]; I* array of conversation identifiers*/

int *max_elem; I* number of elements in the array *I
int arr_selected[]; I* array which returns the selected *I

I* conversations *I
int wait; I* time in seconds to wait for check*/
{

#ifdef TCP_SUPPORTED

fd_set read_template;

struct timeval timeout;

#endif TCP_SUPPORTED

int i,

j '
selected,

status,

curr;

int tcp_set,

sna_set,

osi_set;

#ifdef ISO_SUPPORTED

fd_set rmask;

int nfds;

struct TSAPdisconnect *td;

205

#endif ISO_SUPPDRTED

initialize

for (i = 0; i < *max_elem; i++)

arr_selected[i] = 0;

tcp_set = sna_set = osi_set = FALSE;

#ifdef TCP_SUPPORTED

timeout.tv_sec = wait;

timeout.tv_usec = 0;

#endif TCP_SUPPORTED

#ifdef ISO_SUPPORTED

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

#endif ISO_SUPPORTED

end of initialize

I* first set the masks for selecting

for (i = 0, j = 0; i < *max_elem; i++)
{

if (arr_conv_id[i] < 1 I I
arr_conv_id[i] > MAX_CONVERSATIONS)

continue;

Ignore silently 1mproper conversations

curr = arr_conv_id[i] - 1;

#ifdef TCP_SUPPORTED

if (conv_arr[curr]->network_type -- NI_TCP)

206

{

}

if (! tcp_set)
{

}

tcp_set = TRUE;

FD_ZERO(&read_template);

I* set a condition to indicate at least one *I
I* conversation is of TCP type and zero the *I
I* mask for TCP select call

FD_SET(conv_arr[curr]->tcp_conv_id,

&read_ template);

I* standard set call prior to select in TCP *I

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conv_arr[curr]->netYork_type == NI_SNA)
{

}

if (! sna_set)

sna_set = TRUE;

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conv_arr[curr]->netYork_type == NI_OSI)
{

if (! osi_set)
{

osi_set = TRUE;

FD_ZERO(&rmask);

207

#ifdef DEBUG

#endif DEBUG

I* set a condition to indicate at least one *I
I* conversation is of OS! type and zero *I
I* the mask for OS! xselect call *I

}

if ((status =

TSelectMask(conv_arr[curr]->tsap_conv_id,

&rmask, &nfds, td)) == NOTOK)
{

printf("error in TSelect, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

free(td);

return R_SELECT_FAILED;

}

}

#endif ISO_SUPPORTED

}

selected= 0;

I* number of selected conversations out of max_elem *I

I* now select the calls using protocol specific calls *I

#ifdef TCP_SUPPORTED

if (tcp_set)

I* if any of the conversations is of tcp type
{

208

status = select(FD_SETSIZE, &read_template,

I*
if
{

(fd_set *) 0, (fd_set *) 0, &timeout);

standard tcp call *I
(status > 0)

I*
for
{

(i = 0;

select was ok

i < *max_elem; i++)

if (arr_conv_id[i] < 1 I I
arr_conv_id[i] > MAX_CONVERSATIDNS)

continue;

curr = arr_conv_id[i] - 1;

if ((conv_arr[curr]->network_type == NI_TCP)

&& (FD_ISSET(conv_arr[curr]->tcp_conv_id,

&read_ template)))
{

arr_selected[i] = 1;

I* set the corresponding index to 1 *I
selected++;

}

}

}

if (status < 0)

return R_SELECT_FAILED;
}

#endif TCP_SUPPORTED

#ifdef SNA_SUPPDRTED

I*
#endif SNA_SUPPORTED

similarly for sna

209

#ifdef ISO_SUPPORTED

if (osi_set)
{

if ((xselect(nfds, &rmask, NULLFD, NULLFD, wait))
== NOTOK)

{

#ifdef DEBUG

printf("error in xselect, %s, %s\n",
TErrString(td->td_reason),

td->td_data);

#endif DEBUG

}

free(td);

return R_SELECT_FAILED;
}

for (i = 0; i < *max_elem; i++)
{

}

if (arr_conv_id[i] < 1 I I
arr_conv_id[i] > MAX_CONVERSATIONS)

continue;

curr = arr_conv_id[i] - 1;

if ((conv_arr[curr]->network_type == NI_OSI) &&

(FD_ISSET(conv_arr[curr]->tsap_conv_id,

&rmask)))
{

}

arr_selected[i] = 1;

selected++;

I* end of osi specific multiplex calls

210

#endif ISO_SUPPORTED

*max_elem = selected;

if (selected == 0)

return TIMED_OUT;

return OK;

} rselect

211

!***

*
*
*

write_mpx.c

"wselect" selects conversations for sending data

*
*
*

* Input: An array of conversation identifiers "arr_conv_id"*

*
*
*
*
*
*
*
*
*
*
*
*

Timeout "wait" in seconds *
Output: An array of integers

indicate the selected

of size "max_elem" to *
conversations. Each element *

if 1 indicates that the corresponding conversation*

is selected.

Input/Output: On input "max_elem" contains size of the
*
*

above array. On output it contains total number of*

selected conversations

Returns OK if successfully returned else returns
W_SELECT_FAILED.

*
*
*
*
*

***!

I* include files from the include directory

#include "global.h"

#include "shared.h"

212

!***

* the wselect function *
***!
int wselect(arr_conv_id, max_elem, arr_selected, wait)

NA_conv arr_conv_id[]; I* array of conversation identifiers*/

int *max_elem; I* number of elements in the array *I
int arr_selected[];

int wait;

I* array which returns the selected *I
I* conversations *I
I* time in seconds to wait for check*/

{

#ifdef TCP_SUPPORTED

fd_set write_template;

struct timeval timeout;

#endif TCP_SUPPORTED

int i,

j '
selected,

status,

curr;

int tcp_set,

sna_set,

osi_set;

#ifdef ISO_SUPPORTED

fd_set wmask;

int nfds;

struct TSAPdisconnect *td;

213

#endif ISO_SUPPORTED

initialize

for (i = 0; i < *max_elem; i++)

arr_selected[i] = 0;

tcp_set = sna_set = osi_set = FALSE;

#ifdef TCP_SUPPORTED

timeout.tv_sec = wait;

timeout.tv_usec = 0;

#endif TCP_SUPPDRTED

#ifdef ISO_SUPPORTED

td = (struct TSAPdisconnect *)

malloc(sizeof(struct TSAPdisconnect));

#endif ISO_SUPPORTED

end of initialize

first set the masks for selecting

for (i = 0, j = 0; i < *max_elem; i++)

{
if (arr_conv_id[i] < 1 I I

arr_conv_id[i] > MAX_CONVERSATIDNS)

continue;

Ignore silently improper conversations

curr = arr_conv_id[i] - 1;

#ifdef TCP_SUPPORTED

if (conv_arr[curr]->network_type == NI_TCP)

{

214

}

if (!tcp_set)
{

}

tcp_set = TRUE;

FD_ZERO(&write_template);

I* set a condition to indicate at least one *I
I* conversation is of TCP type and zero the *I
I* mask for TCP select call *I

FD_SET(conv_arr[curr]->tcp_conv_id,

&write_template);

I* standard set call prior to select in TCP *I

#endif TCP_SUPPORTED

#ifdef SNA_SUPPORTED

if (conv_arr[curr]->network_type == NI_SNA)
{

}

if (!sna_set)

sna_set = TRUE;

#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

if (conv_arr[curr]->network_type -- NI_OSI)
{

if (! osi_set)
{

osi_set = TRUE;

FD_ZERO(&wmask);

I* set a condition to indicate at least one *I

215

#ifdef DEBUG

#endif DEBUG

I* conversation is of OSI type and zero *I
I* the mask for DSI xselect call *I

}

if ((status =

TSelectMask(conv_arr[curr]->tsap_conv_id,

&wmask, &nfds, td)) == NDTDK)
{

printf("error in TSelect, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

free(td);

return W_SELECT_FAILED;
}

}

#endif ISO_SUPPORTED
}

selected= 0;

I* number of selected conversations out of max_elem *I

I* now select the calls using protocol specific calls *I

#ifdef TCP_SUPPDRTED

if (tcp_set)

I* if any of the conversations is of tcp type
{

status = se~ect(FD_SETSIZE, (fd_set *) 0,

216

}

&write_template, (fd_set *) 0,

&timeout);

I* standard tcp call

if (status > 0)
{

}

if

select was ok

for (i = 0; i < *max_elem; i++)
{

}

if (arr_conv_id[i] < 1 I I

arr_conv_id[i] > MAX_CONVERSATIONS)

continue;

curr = arr_conv_id[i] - 1;

if ((conv_arr[curr]->network_type == NI_TCP)

&& (FD_ISSET(conv_arr[curr]->tcp_conv_id,

&write_template)))
{

arr _selected [i] = 1;

I* set the corresponding index to 1
selected++;

}

(status < 0)

return W_SELECT_FAILED;

#endif TCP_SUPPDRTED

#ifdef SNA_SUPPORTED

'* similarly for sna
#endif SNA_SUPPORTED

#ifdef ISO_SUPPORTED

217

if (osi_set)
{

if ((xselect(nfds, NULLFD, &Ymask, NULLFD, Yait))

== NOTOK)
{

#ifdef DEBUG

printf("error in xselect, %s, %s\n",

TErrString(td->td_reason),

td->td_data);

#endif DEBUG

free(td);

}

return W_SELECT_FAILED;
}

for (i = 0; i < *max_elem; i++)
{

}

if (arr_conv_id[i] < 1 I I
arr_conv_id[i] > MAX_CONVERSATIDNS)

continue;

curr = arr_conv_id[i] - 1;

if ((conv_arr[curr]->netYork_type == NI_OSI) &&

(FD_ISSET(conv_arr[curr]->tsap_conv_id,

&Ymask)))
{

}

arr_selected[i] = 1;

selected++;

I* end of osi specific multiplex calls
#endif ISO_SUPPDRTED

*max_elem = selected;

218

}

if (selected == 0)

return TIMED_DUT;

return OK;

wselect

219

E.4 Utilities

'***
* util.c *

* *
* Author Debashish Chatterjee *

* Date 19th July 1990 *

* *

* contains all the utility routines *

* *

***!

define the include files

#include "global.h"

#include "shared.h"

!***

* mark_conv(Cv_id) *
* mark a conversation identifier. Ignore if already marked.*

***I
void mark_conv(Cv_id)

NA_conv *Cv_id;
{

#ifdef DEBUG

printf("util.c

#endif DEBUG

conversation to be marked is %d\n",

*Cv_id);

I* Conversation identifiers are always between 1 and *I
I* MAX_CONVERSATIONS. Ignore beyond this range *I
if (*Cv_id < 1 I I *Cv_ii > MAX_CONVERSATIDNS)

return;

220

I* Conversation identifier is in range

*Cv_id = -(*Cv_id);

I* negate the conversation identifier

#ifdef DEBUG

printf("util.c

#endif DEBUG

return;

}

marked conversation as %d\n", *Cv_id);

221

*I

!*********-**
* unmark_conv(Cv_id) *
* unmark a conversation identifier if negative and between *
* -1 and -MAX_CONVERSATIONS. Else ignore. *
***!

void unmark_conv(Cv_id)

NA_conv *Cv_id;
{

#ifdef DEBUG

printf("util.c

#endif DEBUG

conversation to be unmarked is %d\n",

*Cv_id);

I* Marked conversation identifiers are always between

* -1 and -MAX_CONVERSATIONS. Ignore beyond this

* range *I

if (*Cv_id < -MAX_CONVERSATIONS I I *Cv_id > -1)

return;

I* Marked conversation identifier 1s 1n range *I
*Cv_id = -(*Cv_id); I* negate the conversation

* identifier to unmark it *I
#ifdef DEBUG

printf("util.c

#endif DEBUG

unmarked conversation as %d\n", *Cv_id);

return;

}

222

!***

*
*

ni_init
initialises if threads are being used

*
*

***!
#ifdef CTHREADS_SUPPORTED
void ni_init()
{

na_rsrc_lock = mutex_alloc(); /*initialize resource lock*/
na_conv_lock = mutex_alloc(); /*same for conversation *I

}
#endif CTHREADS_SUPPORTED

223

