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Abstract — The design of a synchronous system having a global clock must
account for the phase shifts experienced by the clock signal (clock skew) in its
distribution network. As clock speeds and system diameters increase, this re-
quirement becomes increasingly constraining on system designs. Two currently
used approaches to this problem are to minimize skew by equalizing electrical
path delays, and to re-cast system designs into an asynchronous (clockless)
form. This paper describes a method that exploits fundamental wave prop-
agation properties to minimize clock skews due to unequal path lengths for
distribution system diameters typically up to several meters. The basic princi-
ples are developed for a loaded transmission line, then applied to an arbitrarily
branching tree of such lines to implement a clock distribution network. Ex-
tension of this method to two- and three-dimensional distribution media is
discussed.

I. INTRODUCTION

Synchronous system design methodology, while well developed and widely used, is
limited by signal propagation delays [1]. For system diameters that are small, signal inter-
connections can be considered equi-potential at any given instant. But the trend towards
higher clock speeds and more system function are increasingly forcing designers to deal
explicitly with time delays inherent in the propagation of signals on their interconnecting
structures.

Some synchronous system organizations constrain data signal paths to be local, in an
attempt to avoid propagation delay problems. The global clock signal, however, must be
propagated across the entire system in a manner that preserves the correct ordering of
events throughout the system. Considerable work has been done to address this problem,
ranging from investigation of various clocking disciplines [2] to tuning the distribution
network conductor lengths and amplifier delays [3], [4], [5] to minimize clock skew across
the system.

A fundamentally different approach is to abandon the synchronous methodology al-
together, in favor of self-timed and asynchronous delay-insensitive [6], [7], [8] disciplines.
These techniques appear to promise scalability to any system size and speed, at the ex-
pense of additional hardware. For large future designs, these disciplines may become the
mainstream methodology of choice. They are, however, substantially different from syn-
chronous design methodology, and are neither widely understood nor practiced today.

This paper addresses the minimization of clock skew for moderately large synchronous
systems, i.e., systems having clock distribution network diameters ranging up to several
meters. This regime is seen as particularly applicable at the circuit board, backplane, and
system levels rather than at the IC level. The results may be applied to clock distribution

V. L. Chi 20 June 1990 Page 1



DalplliaslC DISUIIDULIONn Ol UIOCK Olgllals

network design either alone, or in conjunction with other skew-minimizing techniques to
further improve performance.

The method developed depends on properties of electromagnetic waves propagating on
conducting bodies; in particular, on the general behavior of standing waves. As such, this
method is potentially quite general, applying in principle to two- and three-dimensional
conducting geometries as well as to wires. This paper presents an analysis of the useful
special case of (one-dimensional) loaded transmission lines, and tree structured networks
composed of such lines; and discusses the extension of the method to multi-dimensional
conductor geometries.

Section II presents the theoretical groundwork for an ideal lossless transmission line
and load. The mechanism whereby salphasic behavior (characterized by extended regions
of constant phase with discontinuous phase jumps between regions) arises from standing
waves is described, and the conditions are derived under which a finite loaded transmission
line exhibits nearly salphasic behavior.

In section III, a canonical branch circuit is described which satisfies these conditions,
and is used to show that an arbitrarily branching tree composed of such circuits also
satisfies these conditions, thereby demonstrating the salphasic behavior of the entire tree.

Section IV describes the extension to multi dimensional distribution geometries such
as “clock planes”.

Section V contains a summary and conclusions, and a brief discussion of future re-
search needed to develop salphasic technology into a useful design methodology.

IT. PHYSICAL PRINCIPLES

In an infinite lossless uniform linear transmission line, two waves Vy and V. of equal
frequencies propagating in the forward and reverse directions, respectively, are character-
ized as follows:

Vi = Vysin(wt — fz), (1)
V. = Vpsin(wt + px), (2)

where V4 and Vg represent the amplitudes, w represents the angular frequency, ¢ represents
time, x represents position along the transmission line, and 3 represents the phase constant
or angular spatial frequency of the waves. Letting Vp = V4 and adding the two waves at
location x and time ¢ on the transmission line provides an instantaneous voltage

V = Va(sin(wt — Bz) + sin(wt + fz)) = 2Vasin(wt)cos(Sx). (3)

According to this relationship, the temporal phase wt of the instantaneous voltage V'
is independent of location x. Thus, for any given value of x, only the amplitude of the
sinusoidal wave is affected, while the phase remains constant.

This behavior, which we will call salphasic, provides that the phase of such a wave
distribution is equal for all values of x within any region in which the sign of cos(fx)
remains constant. Salphasic behavior depends upon the equality of both the amplitudes
and the frequencies of the forward Vy and reverse V. traveling waves. These also happen to
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be the requisite conditions to produce a pure standing wave wherein the resulting voltage
distribution on the transmission line varies sinusoidally in time but appears to remain
stationary along the line. Therefore, any purely standing wave exhibits purely salphasic
behavior.

Fig.1 shows a finite lossless uniform linear transmission line having characteristic
impedance Z;, driven at location x = 0, and terminated by a load of impedance Z;, at
location x = [. If the transmission line and the load are both lossless, then the characteristic
impedance Zy has no reactive component, i.e., Zop = Ry + j - 0, and the load impedance
Z; has no resistive component, i.e., Z; = 0 + jX;. Accordingly, the voltage reflection
coefficient is [9]

_Zi—Z0 _ _Ro—3X (@)
Z1+ Zy RO"‘le,

p

which shows that |p| = 1. This satisfies the desired condition for a purely standing wave
wherein the magnitude of the reflected wave Vg is given by

Ve =|p|-Va=Va. (5)

Therefore, a finite transmission line which is lossless and loaded by a pure reactance
exhibits purely salphasic behavior.

On the other hand, if the finite transmission line and its load are lossy, in general
Zy = Ro+ jXo and Z; = R; + jX;. Along a lossy transmission line, the voltage varies
according to the more general relationship [9]

Ve =Vae 7% + Vge'®, (6)

where V. is the voltage at any given location x, v = o + j is known as the propagation
constant, and V4 and Vg are amplitudes of the forward and reverse waves, respectively.
In this case, the following boundary conditions apply:

At the driven end z = 0,

Vo=Va+VB (7)
and at the loaded end z =1 [9],
Vpe’®
= —. 8
P= Vet (8)

Equations (6) through (8) can be solved for the load voltage, i.e., Vi =V,, = =1[:

1
V=Vt —.
pe~ 7 + e

(9)

If we let p = e#t3¥) as a notational convenience, it is clear that the low-loss load
condition |p| ~ 1 is satisfied by an equivalent condition p ~ 0. Note also that the low-loss
transmission line condition is a &~ 0. In the limit as both losses become small, equation
(9) becomes
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Vi <cos(1/ - pl) + cos(ﬁl)) +j<a(sz’n(y — Bl) — sin(Bl)) + p sin(ﬁl)) X
Vo cos(v —201) +1 ' 10

As a and p approach zero, the imaginary component becomes negligible showing that in
the limit V; and Vj are nearly salphasic. In particular with |p| = 1, as the real part «
of the propagation constant v becomes smaller, salphasic behavior holds for increasingly
greater transmission lengths. Thus it follows that a lower loss line can maintain salphasic
behavior over greater lengths.

To demonstrate salphasic behavior for a slightly lossy transmission line, a 12.7 Meter
length of RG58/U type coaxial cable (Belden #9201) driven by a 100 MHz sine wave and
terminated by a short circuit was simulated according to equation (9). Fig.2 is a graph of
the signal phase along the cable, computed from equation (9) as

¢ = tan™' (Im{Vi/Vo}/Re{Vi/Vo}). (11)

Since the short circuit termination dissipates no energy, the reflected, or reverse-traveling
wave has the same amplitude as the incident, or forward traveling wave at the termination.
This closely satisfies the pure standing wave condition which results in strongly salphasic
behavior near the termination. This is illustrated in Fig. 2 by the marked step-like shape
of the phase plot near the termination (i.e., the lower right hand portion of the graph).

Due to the slight lossiness of the cable, however, the reverse traveling wave decreases in
amplitude with increasing distance from the termination, while the forward traveling wave
decreases in amplitude with increasing distance from the driving point. Thus the standing
wave condition becomes progressively less well satisfied with increasing distance from the
termination, resulting in progressively weaker salphasic behavior. This is illustrated in
Fig. 2, where the step-like behavior becomes progressively softer with increasing distance
from the termination.

For a very long cable, the phase-distance plot would approach a purely linear behavior
far from the termination. On the other hand, for an ideal lossless cable, a perfectly sharp
stair-step phase behavior would persist over the entire length of the cable because the
traveling waves would remain of the same amplitude at all locations.

ITI. TREE TOPOLOGY AND ITS CANONICAL BRANCH CIRCUIT

Consider a lumped constant L-section having input series impedance Z, and output
shunt admittance Y),. Output voltage V,,; is related to input voltage V;,, by

1

Vou = ‘/;n7~
! ZY, + 1

(12)
Under the condition Im(Z,Y,) = 0, the behavior of the L-section is salphasic, i.e., V5, and
Vin are of equal or opposite phase. If Z;, = R;+j X and Y, = G, +j B, are nearly lossless,
ie, R; < X, and G, < B, then Z,Y, ~ —X B, + jR:B, + jX;G),. As R, — 0, the
second term becomes negligible, and as G, — 0, the third term becomes negligible, leaving
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only the purely real first term. Thus, for nearly lossless Z, and Y),, a nearly salphasic
relationship between V;, and V,,; is maintained.

Fig. 3 shows a canonical branch circuit comprising a finite linear lossy transmission
line of characteristic impedance Zj, propagation constant v, and length [, loaded by a
circuit comprising a lumped series impedance Z;, a lumped shunt admittance Y, and the
equivalent shunt admittances Y7 ...Y,, presented by n similarly loaded canonical branch
circuits connected to Z,.

The equivalent admittances Y;, i > 0 are determined using the following formula [9]
for calculating the input admittance presented by a loaded transmission line expressed in
terms of its characteristic impedance Zj, its propagation constant v, and the reflection
coefficient p due to its load,

21
Y,, = Lem—p (13)
ZO e2'yl + p
Hence, the aggregate output shunt admittance connected to Z; may be represented in
terms of the true lumped admittance Y, and the input admittances Y;, of each similarly
loaded branch connected to Z,. Thus, the load circuit is electrically equivalent to the
L-section characterized by equation 12 if we let

Y=y (1)
=0

Combining the finite lossy transmission line characterized by equation (9) and the
load circuit characterized by equation (12) provides a voltage transfer function for the
canonical branch circuit depicted in Fig. 3,

(p+1)
(ZsYp + 1)(pe 7 + ')’

Va="o (15)
relating voltage V driving this canonical branch circuit with voltage V; driving the n
canonical branch circuits connected thereto.

Under sufficiently lossless conditions, it was shown in equation (10) that V and V; are
nearly salphasic, and in equation (12) that V; and Vj; are nearly salphasic; hence, V and Vy
are also nearly salphasic. Since this holds true for each canonical branch circuit, it holds for
all voltages in an arbitrarily branching tree composed exclusively of such canonical branch
circuits. Thus the voltages at all loads connected to the branching tree are salphasic with
the driving voltage V; at the root of the tree and thus with each other.

A computer program based on equation (15) was used to simulate a model tree
distribution network shown approximately to scale in Fig.4. The model assumed an
18" x 18" standard multilayer glass-epoxy printed circuit board (PCB) with 2 [0z/ft?]
copper cladding as the implementation medium for this network.

The branch circuit conductors are patterned on one layer of the PCB, separated from
a ground plane by 11.8 mils of FR4 glass-epoxy dielectric. The simulated clock frequency
was 40 MHz. The root branch and the vertical feeder branches were 20 mils wide, while
the remaining branches were 10 mils wide. The loads, represented by a e, were each 10
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pF. The numbers shown adjacent to each load represent the phase and magnitude of the
voltage at the load relative to the voltage at the driving point, which was set to unit
magnitude and zero phase.

These results show that all loads receives the voltage signal in approximately the same
phase, even though their electrical distances from the driving point vary substantially. For
example, the difference between the electrical distances from the driving point to the
nearest and farthest loads is about 11”. This distance would correspond to over 20° clock
skew in conventional systems. However, due to the near salphasic behavior of the signal,
clock skew between any two of the loads is only 1.33° (93 pS).

Moreover, since eliminating signal reflections in a branching tree conductor geometry
is infeasible, this topology is not useful for realizing conventional distribution networks.
Therefore, conventional systems would require a separate conductor to each load, with all
the conductors tuned to nearly the same electrical length, to achieve similar signal skew
performance.

IV. GENERALIZED CONDUCTOR GEOMETRIES

The above development illustrates the fundamental mechanisms whereby standing
waves exhibit salphasic behavior. This development was amenable to a simple mathemat-
ical treatment due to the one-dimensional mathematical nature of conventional electrical
transmission lines, and the considerable body of existing applicable knowledge.

No simple, closed form mathematical methods are known for characterizing inhomo-
geneous wave solutions for the more general two- and three-dimensional cases of standing
waves with arbitrary boundary condition geometries, behaving according to the wave equa-
tion

1 2
2 — 0—2667‘2” = —4rf(Z,1). (16)

Nevertheless, any linear system composed of a bounded, lossless transmission medium,
with lossless linear loads, driven by a sinusoidal source exhibits pure standing wave behavior
in three dimensions, and as special cases, in one and two dimensions. This can be seen
through the following reasoning.

Since the system comprises purely linear components, no harmonics are produced from
the sinusoidal signal. Therefore, the signal energy in the system is contained exclusively
in sinusoidal waves at the signal frequency.

In the steady state, no net signal energy is exchanged between the signal source and
the system, because the system is bounded and lossless. Thus, in the steady state, the
wave propagating from the source into the medium carries an amount of energy which
must be exactly balanced by the amount of energy carried by another wave propagating
back into the source from the medium.

Under any given set of boundary conditions, the wave equation admits of only two
such inhomogeneous solutions, which are identical in all respects except in their opposite
directions of propagation. If the energies carried by these two waves are equal, their
amplitudes must likewise be equal, thereby ensuring a pure standing wave. This remains
true even after an indefinite number of reflections off the loads and boundaries of the
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system because the two waves are everywhere identical except for opposite directions of
propagation.

Since the conditions for pure standing waves are the same as for pure salphasic behav-
ior, the notion of salphasic behavior can be generalized to propagation across surfaces or
through volumes, for signals behaving according to the wave equation, even though closed
form solutions corresponding to the geometric boundary conditions may not be possible.

To demonstrate that salphasic behavior is indeed obtained in a lossless plane with loss-

. . . (TM) .
less loads, two simulations were conducted using the CAzM program to perform finite
element analysis on a model depicted in Fig. 5(a). This model represents a two dimensional
conducting clock plane, adjacent and parallel to but separated from a conducting ground
plane by a dielectric, as in a multilayer circuit board. A sinusoidal voltage is impressed at
an arbitrary driving point, and the loads are connected at arbitrary locations to the clock
plane. The simulated physical parameters for an ideal two-layer PCB and ideal capacitive
loads were chosen as follows:

board dimensions = 16 x 12 [inch]
dielectric thickness = 1/16 [inch]
dielectric constant = 4.5 [€o]
dissipation factor = 0 1]
surface resistivity = 0 (/0

load capacitance (ea.) = 5Fi9-5®) 50(Fig.-5() [pF]
clock frequency = 50(F79-5®) 100 (Fig-5() [MHz]

driving point coordinates = (8, 0) [inch]
load point coordinates = (2, 4), (6, 10), (12, 6) [inch]

One simulation was run with a clock frequency of 50 MHz and loads of 5 pF, the other
with a clock frequency of 100 MHz and loads of 500 pF. The resulting simulated voltage
distributions across the plane are plotted as isometric graphs over their respective zero-
reference planes in Fig. 5(b) and Fig. 5(c), respectively. A contour is plotted in Fig.5(c) to
indicate the locations where the voltage is zero.

Corresponding to the voltage distribution shown in Fig.5(b), the simulated phase is
everywhere zero, i.e., identical with the phase of the driving source, to within the numerical
accuracy of the CAzM program (better than 1 : 10°). The amplitude distribution is not
significantly affected by the presence of the 5 pF loads located as shown in Fig. 5(a).

Corresponding to the voltage distribution shown in Fig.5(c), two isophasic regions
(regions within which the signal phase remains constant) are apparent, separated by the
zero voltage contour. To within the numerical accuracy of the CAzM program, the simu-
lated phase everywhere in the region containing the driving point is 0.00°, while the phase
everywhere in the second region is 180.00°. The presence of even very large (500 pF) loads
affects the amplitude at their locations only slightly, as illustrated by minor peaks in the
graph at these locations.

V. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

The notion of salphasic behavior arising naturally from pure sinusoidal standing wave
signals on transmission lines was described. A canonical branch circuit comprising a low
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loss transmission line with a low loss L-section load was analyzed for overall salphasic be-
havior, and used to recursively implement an arbitrarily branching signal distribution tree.
The salphasic behavior of such a tree was shown to be well approximated by realistically
low loss circuits.

This provides sufficient evidence that salphasic behavior could be exploited to control
clock skews in high speed synchronous systems having diameters such that sufficiently
lossless conditions are preserved. This depends largely on the lossyness of the transmission
lines which make up the clock distribution network.

Using the salphasic approach, it is possible to build low skew clock distribution net-
works with a minimum of attention to adjustments and tuning, although further improve-
ment could be achieved by doing so. Indeed, a model of an 18" x 18" PCB with thirty-six
10pF loads predicts a clock skew of less than 93pS between any two loads at a clock
frequency of 40 MHz, with no tuning or adjustments whatsoever.

The arbitrarily branching tree clock distribution topology allows the use of geometries
which are infeasible to implement in conventional technology, due to the requirement for
impedance matching to control undesired signal reflections. This allows for far simpler
clock distribution trees since stub length design violations need not be considered.

Clock planes similar to power and ground planes embedded in a multilayer circuit
board appear feasible and very attractive as far as design simplicity is concerned.

Further research is needed to develop the salphasic notion into a useful design method-
ology. Thorough quantitative experimental verification of the theory has yet to be per-
formed, both for commercial transmission lines and for PCB runs. Effects of crosstalk from
signal lines to the clock network should be investigated, as should effects of non-linear loads.
For widespread application, suitable standard cells for IC clock inputs need to be devel-
oped to implement amplitude-insensitive comparators for sinusoidal clock inputs. If larger
system diameters are to be used, mechanisms for dealing with phase inversions between
regions may be necessary, and design tools for tuning sub-trees to avoid the phase-inversion
transition regions are needed.
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