
Bounds on the Costs of 
Register Implementations 

TR90-025 

June, 1990 

Soma Cbaudlmri 
Jennifer L. Welch 

;'1,'1~\~ 

) 
!; 

I I 

The University of North Carolina at Chapel Hill 
I 

' I '' 
Department of Computer Science i ~~ ,, 
CB#3175, Sitterson Hall '' 
Chapel Hill, NC 27599-3175 

..-

UNC is an Equal Opportunity/ Affirmative Action Institution. 



Bounds on the Costs of Register Implementations 

Soma Chaudhuri, University of Washington 

Jennifer L. Welch, University of North Carolina 

June 20, 1990 

Abstract 

A fundamental aspect of any concurrent system is how processes communicate with each 

other. Ultimately, all communication involves concurrent reads and writes of shared memory 

cells, or registers. The stronger the guarantees provided by a register, the more useful it is to 

the user, but the harder it may be to implement in practice. Thus it is of interest to determine 

which types of registers can implement which other types of registers. Algorithms for various 

implementations have been previously developed. These have, for the most part, concentrated 

on the relative computability between different types of registers. In contrast, this paper studies 

the relative complexity of such algorithms, by considering the costs incurred when implementing 

one type of register (the logical register) with registers of another type (physical registers). The 

cost measures considered are the number of physical registers and the number of reads and writes 

on the physical registers required to implement the logical register. Bounds on the number of 

physical operations can be easily converted to provide time bounds for the logical operations. 

The types of registers studied are safe vs. regular, 1-reader vs. n-readers, and binary vs. k

ary. Tight bounds are obtained on the cost measures in many cases, and interesting trade-offs 

between the cost measures are identified. The lower bounds are shown using information

theoretic techniques. Two new algorithms are presented that improve on the costs of previously 

known algorithms: the hypercube algorithm implements a k-ary safe register out of binary safe 

registers, requiring only one physical write per logical writej and the tree algorithm implements 

a k-ary regular register out of binary regular registers, requiring only log k physical operations 

per logical operation. Both algorithms use novel combinatorial techniques. 



1 Introduction 

A fundamental aspect of any concurrent system is how processes communicate with each other. 

Ultimately, all communication involves concurrent accesses to shared memory cells, or registers. 

The stronger the guarantees provided by the shared memory, the more useful it is to the user, but 

the harder it may be to implement in practice. Thus it is of interest to determine which types of 

registers can implement which other types. Many such implementations are known [Blo87, BP87, 

Lam86, NWSi, Pet83, SAG87, VA86). 

The contribution of this paper is to study the costs of implementing one type of register (the 

logical register) out of registers of another type (the physical registers). Cost measures considered 

are the number of physical registers, and the number of operations on the physical registers used to 

perform the operations of the implemented register. Bounds on the number of physical operations 

can be used to obtain time bounds for the logical operations in terms of the time taken by the 

physical operations. 

A register is a shared variable or memory cell that supports concurrent reading and writing by 

a collection of processing entities. The operations of reading and writing are not instantaneous; 

instead, they have duration in time, from a starting point to an ending point. Although each entity 

accessing a register is assumed to issue operations sequentially, operations on behalf of different 

entities can overlap in time. 

A variety of types of registers can be defined, differing in several dimensions, including the number 

of concurrent readers supported, the number of concurrent writers supported, the number of values 

the register can take on, and the strength of the consistency guarantees provided in the presence 

of concurrent operations. Throughout this paper we assume there is only one writer, leaving three 

parameters of interest: the number of readers, the number of values, and the consistency guarantees. 

We distinguish between 1-reader registers and n-reader registers, for n > 1, and between binary 

registers and k-ary registers, for k > 2. (A k-ary register can take on k different values.) 

Lamport [Lam86] defines three kinds of consistency guarantees, called safe, regular, and atomic. 

Roughly speaking, a read of a safe register always returns the most recent value written to the 

register, uuless the read overlaps with a write, in which case any legal value of the register can be 

returned. A read of a regular register always returns the most recent value written, unless the read 

overlaps one or more writes, in which case it returns either the old value or one of the values written 

by an overlapping write. An atomic register provides the illusion, via the values returned by read 
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operations, that each operation happens at a single instant in time within its range, i.e., that the 

operations are totally ordered. In this paper, we only consider safe and regular registers. 

The types of registers defined form a hierarchy of stronger and weaker definitions. For example, 

an n-reader, k-ary, regular register, for n > 1 and k > 2, can "implement" a 1-reader, binary, safe 

register a forliori, simply because the former has a stronger definition than the latter. Lamport 

(Lam86] describes implementations among safe and regular one-writer registers (as well as atomic), 

showing that in many cases weaker register types can implement stronger register types. 

We study the costs incurred by implementations between register types. Let M, R, and W 

be the minima, over all implementations between two particular types of registers, of the number 

of physical registers, the maximum number of physical reads in a logical read, and the maximum 

number of physical writes in a logical write, respectively. 

For implementing a k-ary safe register out of binary safe registers, we show tight bounds of 

R = flogkl, W = 1, and M = flogkl. The upper bound of 1 on W is obtained from a new 

algorithm, which we call the hypercube algorithm. The best previous upper bound on W was flog k l 

(Lam86]. These three optimal bounds are not obtained simultaneously in a single algorithm, and in 

fact, we show some non-trivial trade-offs between the three cost measures. 

For implementing a k-ary regular register out of binary regular registers, we sho)V the tight bound 

that R = flogkl, and the bounds 1 :::; W:::; flogkl, and max{ flogkl + 1, 2(logk) -log log k- 2} :::; 

M :::; min{k- 1, n(3logk + 68)}. The upper bounds on Rand Ware simultaneously achieved by 

a new algorithm, which we call the tree algorithm. We also present some lower bounds on R and 

M that follow if we restrict attention to implementations that use ouly a small constant number of 

physical writes per logical write. 

Our results for binary to k-ary implementations are summarized in Tables 1 and 2. Table 1 gives 

the bounds when all algorithms are considered. Table 2 gives the bounds when certain classes of 

algorithms are considered, as specified by the column labeled S-namely, 1-write algorithms, c-write 

algorithms, and flog k 1-register algorithms. 

For the case of implementing ann-reader register out of 1-reader registers (either safe or regular), 

tight bounds are R = 1, W = n, and M = n. The upper bounds are from (Lam86]. 

For the case of implementing a binary regular register out of a binary safe register, tight bounds 

are R = 1, W = 1, and M = 1. The upper bounds are from (Lam86]. 

All of the lower bounds mentioned above are new. Little previous work has been done concerning 

lower bounds or trade-offs for register implementations. The only such previous result we are aware 
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Regular 

II II lower upper II 
R flogkl flogkl flogkl flogkl 

w 1 1 1 flogkl 

M flogkl flogkl 
max{flogkl + 1, min{k- 1, 

r2logk -loglogkl- 2} n(31ogk + 68)} 

Table 1: Independent Bounds for Binary to k-ary Algorithms 

II 
s 

Rs k-1 k-1 k-1 00 

{AIWA=1} k-1 k-1 k 00 

Mst k 2flogkl _ 1 k 00 

{AiWA=c} Rs (c!k/2)1/c k-1 (c!k/2)1/c 00 

Ms ( c!k/2)1/c k-1 (c!k/2)1/c 00 

{A I MA = flogkl} Ws flogkl flog kl 00 00 

Table 2: Trade-Off Results for Binary to k-ary Algorithms 

of is in [Lam86], where it is shown that in any implementation of an atomic register using regular 

registers, a read of the logical register must involve a write to a physical register. 

In Section 2 we present our model and some results that are true for all implementations. The 

bulk of the paper concerns implementing k-ary registers out of binary registers: Section 3 considers 

safe registers and Section 4 considers regular registers. Section 5 discusses implementing n-reader 

registers out of 1-reader registers, and Section 6 discusses implementing regular registers out of safe 

registers. We conclude in Section 7 with some open questions. 

t top row if k a power of 2, bottom row if k not a power of 2 
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2 Preliminaries 

In this section, we give formal definitions for the types of registers that we will study (n-reader, 

k-ary, safe and regular), describe the rules we impose on implementing one type of register with 

another, and define the cost measures we will use. Then we present some definitions and lemmas 

that are true for implementations between any types of registers. 

2.1 Model 

We model system components using a state machine whose state transitions are labeled with actions. 

If there is a transition from a state labeled with an action, then that action is enabled in that state. 

The state machine is deterministic in that every transition from a particular state is labeled with a 

different action. An execution of an automaton is an alternating sequence of states and actions, 

beginning with an initial state, in which each action is enabled in the previous state and each 

state change correctly reflects the transition relation for the intervening action. A schedule of an 

automaton is the sequence of actions extracted from an execution. 

We model an n-reader, k-ary safe (or regular) register by an automaton X as follows. 

Let V be the value set of the register with lVI = k and initial value v0 E V. Let N be a set 

of size n identifying the n readers. The actions of X are {read( i) : i E N} U {write( v) : v E 

V} U {return(i,v): i E N,v E V} U {ack}. These are the start and finish of the read and write 

operations on the register: a read is terminated by a return and a write by an ack; the i parameter 

of a read identifies the particular reader. 

We restrict the register automaton X to have the following property. Every schedule a of X is 

well-formed, meaning that for all i E N, the restriction of a to reads and returns for i consists 

of alternating reads and returns, beginning with a read, and the restriction of a to writes and acks 

consists of alternating writes and acks, beginning with a write. (This models the sequential nature 

of the individual processing entities that access the register.) Given a sequence a, each read(i) 

instance and the following return(i, v) instance constitute an operation, and the same for each 

write( v) instance and the following ack. The two members of the same operation match each other. 

Every schedule a contains at most one unmatched write and at most one unmatched read for each 

i; these are called pending in a. 

We also require that operations can be initiated at any time, as long as well-formedness is not 

violated, i.e., for every schedule a of X, if no write is pending in a, then a write(v) is a schedule of 
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X for all v, and for all i EN, if no read(i) is pending in<>, then"' read(i) is a schedule of X. We 

call this the free initiation property. 

The automaton X must return correct values for reads, where the notion of correct depends on 

whether the register is safe or regular. Consider any (completed) read operation in any schedule. 

If no write operation overlaps this read operation, then the read must return the value of the most 

recent preceding write; if there is no preceding write, then the read must return the initial value v0 . 

Suppose a write does overlap the read. If the register is safe, then the read can return any value in 

V. If the register is regular, then the read must return either the value of the most recent preceding 

write (or v0 if there is no such write) or some value written by an overlapping write. 

The preceding intuitive discussion is now formalized. We define two kinds of possible values on 

finite sequences<>, denoted PV'afe(<>) and pyregular(<>). Suppose there is no write action in<>. Then 

PV'afe(<>) = PV'""gular(<>) = {v0 }. Suppose"'= <>1 write(v) <:>2 , where there is no write action in <:>2• 

If there is an ack action in <:> 2 (i.e., no write is pending), then PV'afe(<>) = pvregular(<>) = {v}. If 

there is no ack action in <:>2 (i.e., a write is pending), then PV'afe(<>) = V and pvregular(<>) = {v}U 

PV'"egular(<>1). When the superscript "safe" or "regular" on PV is clear from context, it will be 

dropped. We require that for any schedule "' of X, for every read operation in "', the value returned 

is in PV ( <>'), where <>' is some prefix of "' that ends within the range of the operation. 

Finally, we require that the register be wait-free: for every finite schedule "' of X, if operation 

0 is pending in <>, then there is a schedule mr, where 1r is a single action, such that 0 is not pending 

in <>?r. This condition states that at any point in an execution at which an operation is pending, it 

is possible to complete the operation without waiting for any other operation to start or complete. 

We now define the "rules" for implementing one type of register, the logical register, out of 

registers of another type, the physical registers. The type of a register specifies the number of 

readers supported, the number of values it can take on, and whether it is safe or regular. The building 

blocks for an implementation are physical registers, read processes, and write processes. There is 

one write process (since we are only considering 1-writer registers); the number of read processes 

is the number of readers to be supported by the logical register. Each read or write process is an 

automaton that communicates with the outside world via (logical) READ, WRITE, RETURN, and 

ACK actions (the actions of a logical register) and with the physical registers via (physical) read, 

write, return and ack actions. The read and write processes cannot communicate directly with each 

other. Also, in any schedule, no physical operation is pending unless a logical operation is pending, 

at most one physical operation is pending at any point. 
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We proceed more formally. Assume particular logical and physical register types with associated 

value sets V and V' respectively. Let m be the number of physical registers. 

A read process is an automaton RP;, i EN, that has the actions READ(i) and RETURN(i,v), 

v E V (by which it communicates with the outside world), the actions readj(i) and returnj(i, v'), 

v' E V' (by which it reads registers, where j ranges over the physical registers read), and the actions 

writej(v'), v' E V', and ackj (by which it writes registers, where j ranges over the physical registers 

written). 

A write process is an automaton WP that has the actions WRITE(v), v E V, and ACK (by 

which it communicates with the outside world), the actions readj(O) and returnj(O, v'), v' E V' (by 

which it reads registers, where j ranges over the physical registers read), and the actions writej( v'), 

v' E V', and ackj (by which it writes registers, where j ranges over the physical registers written). 

We restrict each read process automaton RP; to have the following property. Exactly one group 

of actions is enabled in each state, where each action is in its own group, except that for each j, 

the set of actions { returnj( i, v') : v' E V'} forms a group. A READ( i) transition leads to a state 

in which either a readj, a write;, or a RETURN(i, v) is enabled. A RETURN(i, v) transition leads 

to a state in which READ(i) is enabled. A readj transition leads to a state in which the returnj 

group is enabled. A writej transition leads to a state in which ackj is enabled. A returnj or ackj 

transition leads to a state in which readr, writer, or RETURN(i, v) is enabled, for some l E Nand 

some v E V. 

The write process has similar restrictions except that READ( i) is replaced with the group 

{WRITE(v) : v E V}, all the RETURN(i, v)'s are replaced with ACK, and the variable i in the 

physical action names is replaced with 0. 

The restrictions specified above makes sure that no physical action is pending unless a logical 

operation is pending, and at most one physical operation is pending at any point. 

We now describe formally how to compose n read processes (RP1 to RP n), one write process 

(WP), and some number of physical registers (X1 to Xm), in such a way as to produce another 

automaton A. First, we require that the readj, returnj, writej, and ackj actions of the read and 

write processes "match up" with the actions of the physical registers, i.e., for each action 1r of a 

physical register, there is exactly one read or write process for which 1r is a (physical) action, and 

vice versa. Note that for all j, the actions with subscript j are actions of register Xj. Therefore 

each logical action is the action of exactly one read or write process, while each physical action is 

the action of one read or write process and one register. For any register Xr, exactly one read or 
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write process has the actions write1 and ackr, i.e., there is a sole writer to the register. 

The state set of the composition A is the cross product of the state sets of the component 

automata; thus each state of A is an (n + m + 1)-tuple. The actions of A are the READ, WRITE, 

RETURN and ACK actions (the "logical" actions) and the readj, returnj, writej, and ackj actions 

of the physical registers (the "physical" actions). Finally, we describe the transition function of A .. 

Suppose s is a state of A. We say that the logical action 1r is enabled ins if it is enabled in the state 

in s of the unique read or write process for which 1r is an action. We say that the physical action 1r 

is enabled in s if it is enabled in the states in s of both the read or write process and the register 

for which 1r is an action. The transition consists of each component automaton for which ,. is an 

action performing the action concurrently, while the remaining components do nothing. 

A register implementation algorithm (or simply algorithm for short) is a composition A 

of n read processes (RP1 to RP n), one write process (WP), and some number of physical registers 

(X1 to Xm) such that the composition is a logical register. This means that the schedules of A, 

when restricted to the logical actions, satisfy the conditions for a register of the logical type. These 

conditions are (1) well-formedness and free initiation, which follow from the restrictions on read 

and write processes, (2) that logical READs RETURN values that are correct according to the 

possible values of the logical register, which must be ensured by the code of the read and write 

processes, and (3) the wait-free property, which also must be ensured by the code of the read and 

write processes. We actually require a stronger condition on the implementation, also called wait

free, which implies that that the logical register is wait-free. This stronger condition states that 

each read or write process can complete a pending logical operation solely through its own actions. 

Formally, for every finite schedule a of A, if operation 0 is pending in a, then there is a schedule 

a/3, where f3 consists solely of actions of O's read/write process, such that 0 is not pending in a/3. 

We need some notation to distingnish the possible values of different physical registers as well 

as the logical register. Let a be a schedule of A. For any physical register X in the composition, let 

PV x(<>) be equal to PV(/3), where f3 is the restriction of a to actions of X. Let PV A(<>) be equal 

to PV(/3), where f3 is the restriction of a to the logical actions of A. 

We now define the cost measures. 

Consider two register types, physical and logical, and let A be an algorithm for a physical-to

logical register implementation. Let MA be the number of physical registers used in A, let RA be the 

maximum number of physical read operations performed during any logical READ in any execution 

of A, and let WA be the maximum number of physical write operations performed during any logical 
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WRITE in any execution of A. Given a setS of physical-to-logical register implementations, let Ms 

be the minimum of MA over all A E S, Rs be the minimum of RA over all A E S, and Ws be the 

minimum of WA over all A E S. Finally, let M = Ms, R = Rs, and W = Ws, where Sis the set 

of all physical-to-logical register implementations (for these two types). (The physical and logical 

register types are implicit parameters toM, R, and W.) 

In the rest of this paper, we derive upper and lower bounds on M, R, and W, and tradeoffs 

between them, for different physical and logical register types. 

These bounds on R and W can be converted into time bounds for performing logical operations as 

follows. Suppose we know bounds Rr, Ru, W1, and Wu such that R1 ::; R::; Ru and W1 ::; W ::; Wu. 

Let r be an upper bound on the time to read a physical register and let w be an upper bound on the 

time to write a physical register. Let s be an upper bound on the time for a read or write process to 

perform an action once it becomes enabled. Our upper bounds on R and W come from algorithms, 

all of which have the property that no logical READ involves a physical write and no logical WRITE 

involves a physical read. Since we assume that all physical operations are enclosed within logical 

operations and that only one physical operation can be pending at a time, we deduce that an upper 

bound on the worst case time to perform a READ of a logical register that is implemented with 

physical registers is Ru(r + 8) + 8. Similarly, an upper bound on the worst case time to perform 

a WRITE of a logical register that is implemented with physical registers is Wu ( w + 8) + 8. Our 

lower bounds on R and W do not assume that logical READs do not involve physical writes, or that 

logical WRITEs do not involve physical reads, and thus they imply analogous lower bounds on the 

worst case times. 

2.2 General Results 

Fix any two physical and logical register types. 

Given a finite schedule 0' of an algorithm A, let the configuration of 0' be the tuple of sets of 

possible values of the physical registers at the end of the schedule, i.e., if X; is the i-th physical 

register, then the i-th element of the configuration is PVx, (0'). A configuration is stable if each 

element of the tuple is a singleton set. Thus it can be represented as x1 .•• Xm, where x; is the 

possible value of register X; for all i. The initial configuration is the (stable) configuration of the 

empty schedule, consisting of the initial value of each physical register. 

Let WO (for "write-only") be the set of all schedules of A in which only WP takes steps and no 

physical write is pending. LetS= {C: Cis the configuration of some 0' E WO}. It is easy to see 
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that all configurations in S are stable. 

Let WOC (for "write-only, completed") be the set of all schedules of A in which only WP takes 

steps and no logical write is pending. Let T = { C : C is the configuration of some q E WOC}. It is 

easy to see that T ~ S. Every configuration inTis defined to be a terminal configuration. 

For each i E N, define Li : S --+ V as follows. Let C E S and q E WO such that C is the 

configuration of u. Then Li(C) = v, where 

u READ(i) a RETURN(i, v) 

is a schedule of A such that a consists solely of actions of RPi and contains no RETURN. That is, 

Li is the logical value returned by RPi when RPi starts in its local initial state and the physical 

registers have the values specified in C. The next lemma shows that Li is well-defined, i.e., that the 

current configuration (values of the physical registers) and nothing else determines the value of the 

logical register (as perceived by RPi)· 

Lemma 1 For any algorithm A, the function Li is well-defined for all i. 

Proof: Fix algorithm A. We must show the following two facts for any q and r in WO with the 

same configuration. 

(1) There exists exactly one schedule of A of the form 

u READ(i) {3 RETURN(i, v), 

where {3 consists only of actions of RPi and contains no RETURN. 

(2) r READ(i) {3 RETURN(i, v) is also a schedule of A. 

(1) Since the read process must be wait-free, there is a schedule of the desired form. Since the 

configuration of u is stable, by the definition of a read process there is no other way to extend q by 

having RP i alone take steps. 

(2) We proceed by induction. Let -y = READ(i) {3 RETURN(i, v), let -y have length/, and let 

"Yi be the first j actions in -y, 0 $ j $ I. We show by induction on j that 

(i) r-yi is a schedule of A, 

(ii) RP i is in the same state after r-yi as it is after u-yi, and 

(iii) PVx(r-yi) = PVx (u-yi) for all physical registers X in A. 
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Basis: (j = 0.) r-y0 = r is a schedule of A. By definition of q and r, RP i takes no steps in q or r, 

and thus RPi is in the same state, namely its initial state, after r-ro = r as it is after q'Yo = (1. Since 

q and r both have the same configuration C, PVx (r'Yo) = PVx(q-yo) for all physical registers X. 

Inductive step: (j > 0.) Suppose r-r;- 1 is a schedule of A , RPi is in the same state after r-r;-t as 

it is after q-y;_1 , and PVx(r-yi_1 ) = PVx(q"Yj-1 ) for all physical registers X. Let 1r be the j-th 

action in .-y, i.e. , "Y;-1 rr = "Yi · In order to show the inductive statement for j, it is sufficient to show 

that 1r is enabled in the state of A following r-r;-1 . Since -y consists entirely of actions of RP i, the 

following three cases are exhaustive. 

Case 1: 1r is an ack action from register X to RPi. By well-formedness of q-y and the definitions 

of read and write processes, there is a write action in "Yi-1 to register X from RPi with no subsequent 

ack. Since an ack from the physical register is enabled as soon as a write occurs, 1r is enabled in the 

state of A after T"Yj-1 • 

Case 2: 1r is a return(y) action from register X to RPi· By well-formedness of q-y and the 

definitions of read and write processes, there is a read action in "Yi-1 to register X from RPi 

with no subsequent return. Since q-y is a schedule of A, and has no pending physical writes, 

PVx(q"Yi-d = {y}. By the inductive hypothesis, PVx(r-r;-1 ) = {y}. Since a return from the 

physical register is enabled as soon as a read occurs, 1r is enabled in the state of A after r-r;-t· 

Case 9: 1r is any other action of RPi. Since q"Yi-1 is a schedule of A, 1r is enabled in the state 

of RPi following q"Yi-1 • Since RPi is in the same state after T"Yj- t as it is after q"Yj-1! 1r is also 

enabled in the state of RPi after r-r;-1 • 

0 

The next lemma states that under certain circumstances, each Li is equal to the possible value 

of the logical register. 

Lemma 2 For any algorithm A, ifq is in WOe with configuration C, then PVA (q) = {Li(C)} for 

all i. 

Proof: Since (1 is in WOe, we know that q = WRITE(v1) a 1 ACK ... WRITE(v1) cx1 ACK for 

some v1, ... , v1, where ai, for all i, consists of physical actions by the write process. It is easy to see 

that the logical possible value of q is {vi}· By Lemma 1 and the safe or regular property, Li(C) = v1• 

0 
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Define L : T-+ V to be L(C) = Li(C) for any i. By the previous lemma, Lis well-defined. It 

is easy to see that for each v E V, there is aCE T such that L(C) = v. 

The next lemma gives lower bounds on R, W, and M. 

Le mma 3 R ~ 1, W ~ 1, and M ~ 1. 

P r oof: Let A be any algorithm. 

Let Co be the initial configuration. So L(Co) = Vo. Let (J' be a schedule in woe with configu

ration C such that L(C) = v for some v =I= v0 • By Lemma 1, C0 =I= C, since v0 =I= v. Thus a, and 

hence a logical WRITE, contains a physical write. Since A was chosen arbitrarily, W ~ 1. 

The fact that M ~ 1 follows from the fact that W ~ 1. 

We show R ;?: 1. We assume RA = 0 and get a contradiction, which implies R ;?: 1 since A was 

chosen arbitrarily. There exists at least one schedule of A of the form 

WRITE(v) a ACK READ(l) f3 RETURN(!, v), 

where v =I= v0 , a consists solely of actions of WP and contains no ACK, and {3 consists solely of 

actions of RP1 and contains no RETURN. An easy induction shows that, since f3 contains no return 

action (recall RA = 0) , 

READ(l ) /3 RETURN(!, v) 

is a schedule of A, violating the safe or regular property since v =/= v0 . 

0 

3 k-a ry Safe R egist er From Binary Safe Regist ers 

We consider the problem of implementing an n-reader, k-ary, safe register out of n-reader, binary, 

safe registers, for any n ;?: 1, where k > 1. Subsection 3.1 is devoted to proving tight, independent 

bounds on R, W and M . In Subsection 3.2, we give some trade-offs between these measures. In 

particular, we show that the independent bounds are not achievable simultaneously. Let the value 

set of the logical register be V = {0, . .. , k- 1}. 
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3.1 Independent Bounds 

Theorem 4 R = nogk1, W = 1, and M = nogk1. 

Proof: The upper bounds on Rand M follow from the binary representation algorithm in (La.m86] 

described below. The upper bound on W follows from our hypercube algorithm presented below. 

The lower bound on W follows from Lemma. 3. 

We now show the lower bound on M . Choose any algorithm A. For each v E V, let Cv be an 

element ofT such that L(Cv) = v. By Lemma. 1, if v-/= w, then Cv-/= Cw. Since there are k distinct 

Cv 's and each is a. bit string of the sa.me length, the length of each bit string must be a.t least nog k 1· 

Thus MA ~ nogkl Since A was chosen arbitrarily, M ~ nogkl 

We now show the lower bound on R. For each v E V , there is a. schedule <rv of A of the form 

WRITE(v) av ACK READ(l) f3v RETURN(!, v), 

where O'v consists solely of actions of WP and contains no ACK, and f3v consists solely of actions of 

RP1 a.nd contains no RETURN. 

By the defulltion of read processes, for all distinct v a.nd w , f3v i= f3w and the maximal common 

prefix of f3v and f3w is immediately followed by a. return(O) action from some physical register X in 

f3v and by a. return(!) action from X in f3w (or vice versa.). I.e., RP1 does the same thing in f3v and 

f3w until it reads a. different value. Let /v be the sequence of physical values read in f3v, for all v. 

Thus, if v i= w, then the sequence lv of physical values read in f3v is not equal to the sequence 

lw of physical values read in f3w· There are k distinct sequences of physical values corresponding 

to the /v's, i.e. , k binary strings. Thus at least one string, say that corresponding to /v, must have 

length at least nog k 1' implying that f3v contains at least nag k 1 physical reads. 

Thus RA ~ nog k 1· Since A was chosen a.rbi tra.rily, R ~ nog k l 

0 

The binary representation algorithm in (La.m86] implements ann-reader, k-a.ry, sa.fe register 

out of nog k 1 n-rea.der, binary, safe registers. The write process writes the binary representation of 

the logical value into the physical registers. Each read process reads all the physical registers and 

returns the logical value whose binary representation was read, as long as the value is less than k. 

12 



Otherwise, it returns any value less thank. This algorithm implies that R $ flogkl, W $ flogkl, 

and M $ flog k l· By Theorem 4, the number of registers and number of physical reads in the binary 

representation algorithm are both optimal. 

The unary re prese ntation algorithm presented next shows that W $ 2. There are k - 1 

physical registers, X 11 ••• , Xv . Logical value 0 is represented when all registers are 0. Logical value 

v =/: 0 is represented when Xv is 1 and the other registers are 0. Each read process reads registers 

x1 I x2, etc., in order, until reading a 1, and RETURNs logical value v, where Xv is the register 

that returned 1. To WRITE logical value v, the write process writes 0 to Xw, where w is the old 

value of the logical register, and writes 1 to X 11 • 

Next we describe our new hy percube algorithm, which shows that W $ 1. For now, assume 

that k is a power of 2. Later we will show how to remove this restriction. We define a function 

f : {0, 1}k- 1 - V for use in the algorithm. For positive integer i < k, let bin(i) be the binary 

representation of i in log k bits. For x E {0, 1} k - 1 , let Xi be the ith bit of x, i.e., x = x 1 x 2 ... xk_1. 

For all x E {0, l}k-1 , we define f (x) to be the element of V whose binary representation is: 

x1 o bin(1) EB x2 o bin(2) EB • • • EB Xk-1 o bin(k- 1), 

where EB represents exclusive-or and o represents multiplication. Since each Xi is either 0 or 1 and 

each bin( i) consists of log k bits, this expression consists of log k bits and thus represents a value in 

the range 0 to k- 1, i.e., a value in V. 

Hypercube Algorithm: 

Physical Registers: xl' .. . 'xk-1, initially Xj = 1 iff j = Vo, for all j 

Read Process RPi, 1 $ i $ n: variables x11 ... , Xk_1 

READ(i): 

for j := 1 to k- 1 do xi := read Xi endfor 

RETURN(J(x1 ••• xk_t)) 

Write process WP: variables x11 ••• , Xk-t. initia lly Xj = 1 iff j = v0 , for all j 

W RITE(v): 

ACK 

if there exists j such that f ( x1 ... Xj-1 x jX i+1 ... x k- 1) = v then 

write Xj to Xi 

Xj := Xj 

end if 

13 
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We notice a.n interesting relationship between the correctness of the hypercube algorithm and 

coloring the nodes of a (k - !)-dimensional hypercube with k colors such that each node has a 

neighbor with each of the k - 1 colors other than its own. The following definition and lemmas 

formalize this idea. (Nodes are labeled with ( k - 1 )-hit strings, the colors are elements of V , and 

the function is the coloring.) 

A function g is said to have the rainbow-coloring property if g: {0, l}k-1 
-+ V such that for 

all x E {0, l}k-1 , and for all v E V, if vI= g(x), then there exists y E {0, l}k-t such that v = g(y) 

and x and y differ in exactly one bit. 

Lemma 5 If function f has the rainbow-coloring property, then the hypercube algorithm is correct. 

Proof: Clearly WP is a write process and each RPi is a read process. Obviously the composition, 

A, has the appropriate actions and satisfies the well-formed and free initiation properties. 

We show the wait-free property. Since each physical register is wait-free, inspecting the code 

shows that any pending logical operation can obviously be completed using only steps of the oper

ation's read/write process. 

We show that logical READs return correct values. Let 

a 1 READ(i) a 2 RETURN(i, v) 

be a schedule of A, where a 2 contains no RETURN(i, *)· 

Suppose there is a pending logical WRITE in a 1 READ(i) {3, where {3 is any prefix of a 2• By the 

safe property, v can be any value in V. Since f has the rainbow-coloring property, no matter what 

xi's RPi obtains from the physical registers in a 2 , f(x 1 •• • Xk-d is in V. Since v = f(x 1 ••• xk_I), 

the value returned is correct. 

Suppose there is no pending logical WRITE in a 1 READ(i) {3 for a.ny prefix {3 of a 2 . Since the 

values of the physical registers are unchanged after a 11 RPi reads the configuration C of a 1 during 

a2 and RETURNs v = f (C). In order to show that v is the correct value to RETURN, according 

to the safe property, it is enough to show that / (C) is the possible value of the logical register after 

at, i.e., that PV A(a) = {!(C)}. 

We proceed by induction on the number of logical WRITEs in at. Let ~i be the maximal prefix 

of at that contains exactly j WRITE actions and their matching ACK actions. We show that 

{! ( C;)} = PVA (Y;), where C; is the configuration of 'Yi. 
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Basis: j = 0. Since there is no physical write in /o, C0 is the initial configuration, in which X; = 1 

if and only if j = v0 • By definition off, f(C0) = v0 , which is the logical possible value of /o· 

Inductive Step: j > 0. Suppose the inductive hypothesis is true for j - 1. Note that 

1; = /j-1 WRITE(u) /31 ACK /3z 

for some u, where /31 and (32 are sequences containing no WRITE or ACK actions. Thus the logical 

possible value of/; is u. Since f has the rainbow-coloring property, there is a neighbor D of C;_1 

such that f(D) = u. Let /be the bit in which D and C;-1 differ. It is easy to see that WP keeps 

track of the current configuration and correctly computes /. Then WP performs the physical write 

that changes the configuration to D. Since no further physical writes occur in/;, D = C;. Thus 

f(C;) = u. 

D 

Lemma 6 The function f defined for the hypercube algorithm (when k is a power of 2) has the 

rainbow-coloring property. 

Proof: The following two facts together show that f has the rainbow-coloring property. 

• For all x, y E {0, l}k-1 which differ in exactly one bit, f(x) # f(y). 

• For all x, y, z E { 0, 1} k-
1 such that y # z and y and z both differ from x in exactly one bit, 

f(y) # f(z). 

We prove the first fact. Let X andy differin biti. Then f(x)EBJ(y) = bin(i). Since bin(i) # oiogk, 

this implies that f(x) # f(y). The second fact can be proved similarly. Let x andy differ in bit 

i, and let x and z differ in bit j. Then y and z differ in exactly two bits, bits i and j. Then 

f(y) Ell f(z) = bin(i) Ell bin(j). Since i # j, bin(i) # bin(j) and, therefore f(y) oJ f(z). 

D 

Figure 1 illustrates how our algorithm works in the simple case where k = 4. Our hypercube is 

then a 3-dimensional cube, whose vertices can be colored with 4 colors, r, b, g and y. Note that the 

coloring satisfies the rainbow-coloring property. 
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Figure 1: An Example lllustrating the Hypercube Algorithm 

Combining Lemmas 5 and 6 shows that the hypercube algorithm is a one-write algorithm (using 

k- 1 registers) if k is a power of 2. To obtain a one-write algorithm for values of k that are not 

powers of 2, we modify the power-of-2 hypercube algorithm for m - 1 physical registers, where 

m = 2flogkl, i.e., m is the smallest power of 2 larger than k. The modification is to change the 

RETURN statement to be RETURN(min{k- 1, f(xl .. . Xm-1)}). Thls implementation of a k-ary 

register by binary registers will not cause the binary registers to take on all possible 2m-l values, 

i.e., no stable configuration of the algorithm will be mapped to a value that is out of the range 

of the logical register. However, a slow read process, whlch overlaps a number of writes, might 

(spuriously) observe a configuration corresponding to a value larger than k- 1, thus necessitating 

the modification. Thus we have shown the following theorem. 

Theorem 7 The hypercube algorithm is correct. 

3.2 Trade-Offs 

We now consider trade-offs between the three cost measures. Theorem 8 concerns bounds on M 

and R for 1-write algorithms. Theorem 13 and Theorem 14 concern bounds on M and R for c-write 

algorithms, i.e., algorithms that use a small bounded number of physical writes per logical WRITE. 

Theorem 15 concerns bounds on W for algorithms that use [log k l physical registers. Theorem 17 

presents bounds on the costs of algorithms that are a hybrid of the binary and unary representation 

algorithms. 
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Theorem 8 LetS be the set of algorithms A such that WA ::; 1. Then Rs = k- 1, Ms = k- 1 if 

k is a power of2, and k::; Ms::; 2floskl - 1 if k is not a power of2. 

Proof: All the upper bounds follow from the hypercube algorithm. 

We now show the lower bounds. Choose A E S. Let c •• be the initial configuration. Then 

L(C.,) = Vo. For all v # Vo, let c. be the configuration of a schedule in woe of the form 

WRITE(v) a. ACK, 

where a. contains no ACK. Lemma 2 implies that L(C.) = v. Lemma 1 implies that for all v # v0 , 

Cv # Cvo. Since O!v only contains one physicai write, C., and C. differ in a single bit, say that for 

physical register x •. Lemma 1 implies that for all distinct v and w (not equal to v0 ), c. # Cw. 

Thus c •• differs from each c. in a different bit, i.e., X.# Xw. 

Since there are k - 1 choices for v # v0 , there are at least k - 1 physical registers. Since A was 

chosen arbitrarily, Ms 2: k- 1. The improved lower bound of k forMs when k is not a power of 2 

follows from Lemmas 9 and 10 below. 

To show Rs 2: k - 1, we assume that RA < k - 1 and get a contradiction; since A was chosen 

arbitrarily, the result follows. Consider the schedule 

READ(l) (3 RETURN(1,v0), 

where f3 consists solely of actions of RP1 and contains no RETURN. f3 contains a sequence of less 

thank- 1 physical reads. Let x. (as defined above) be one of the physical registers not read in (3; 

note that v # v0 . Since c •• differs from C. in the value of register X. and nowhere else, an easy 

induction shows that 

WRITE(v) a. ACK READ(1) (3 RETURN(1, vo) 

is a schedule of A, violating the safe condition since v # v0 • 

0 

We now consider the number of registers when k is not a power of 2. Lemma 9, which is the 

converse of Lemma 5, shows that the existence of a function with the rainbow-coloring property 

is necessary for the existence of a one-write algorithm using k - 1 registers. Lemma 10, which is 

the converse of Lemma 6, shows that when k is not a power of 2, no function with the rainbow

coloring property can exist. Together, these two lemmas imply that if k is not a power of 2, then 

any one-write algorithm must use more than k - 1 registers. 
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Lemma 9 If there is an rilgorithm A with WA = 1 and MA = k- 1, then there exists a function 

with the rainbow-coloring property. 

Proof: We show that L has the ralnbow-coloring property. We know T is not empty. Choose any 

configuration C E T.Let L(C) = v and let O" be a schedule in WOe with configuration C. For all 

w i= v, there is a schedule in woe of the form 

O" WRITE(w) "'wACK, 

with configuration Cw E T,where "'w contains no ACK. 

By Lemma 2, for all w f= v, Cw f= C, and for all distinct wand u (not equal to v), Cw f= Cu. 

Since there is at most one physical write in "'w' each Cw differs from C in exactly one bit and no two 

distinct Cw and Cu differ from C in the same bit. Since there are k- 1 Cw 's, every neighbor of C is 

in T. We now show that L: {0, 1}k-1 --> V, by showing that T = {0, 1}k-1 . Clearly, T ~ {0, 1}k-1 • 

Suppose in contradiction that T f= {0,1}k-1 • Then there exist B,D E {0,1}k-1 such that BET 

and D is not in T, where B and D differ in a single bit. This contradicts our previous statement 

that all neighbors of Bare in T. Therefore, T = {0, 1}k-1 • 

For any C in T, and for all w f= v = L(C), Cw differs from C in exactly one bit and L(Cw) = 

w f= v = L (C). Thus L has the ralnbow-coloring property. 

D 

Lemma 10 If k is not a power of 2, then there is no function with the rainbow-coloring property. 

Proof: Assume in contradiction that there is a function I with the ralnbow-coloring property. Since 

k is not a power of 2, k does not divide 2k-1. Since the hypercube has 2k-1 nodes and there are 

k colors, not all colors are assigned by f in equal numbers. In particular, there is a color, call it 

blue, such that the number of nodes colored blue by I is b < 2k-1 jk. Let B be the set of edges in 

the hypercube that have one endpoint colored blue and one endpoint not colored blue. Since each 

non-blue node is adjacent to exactly one blue node and there are 2k-1 - b non-blue nodes, lEI must 

be 2k-1 -b. However, since each blue node is adjacent to k- 1 non-blue nodes and there are b blue 

nodes, lEI must be b(k- 1). The implication is that 2k-1 - b = b(k- 1), implying 2k-1 = kb, which 

is a contradiction. 

D 
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We give bounds for MA and RA, with respect to k and WA, given that WA = c. This is of 

interest at values of M A between log k and k and small values of W A. We first prove a combinatorial 

lemma, which will be helpful in deriving these lower bounds in Theorems 13 and 14. 

Lemma 11 Given any binary string x of length m, if there are at least k distinct strings of length 

m which differ from x in at most c bits, where c:::; (!ogk}/3, then m;::: (c!k/2)1/c. 

Proof: Let x be a string of length m. The number of distinct strings of length m which differ from 

x in at most c bits is 

(;)+(7)+(;)+ .. ·+(:) 
Since we know that there are at least k such distinct strings, we have the following inequality. 

ta(7);:::k 
• 

We obtain the following upper bound on ( 7 ) , for all i. 

i terms 

( 7) = 
m(m-l}(m-2} .. ·(m-i+1} mi ., ::; -.-, 

z. z. 

To get an upper bound on the entire summation, we need the following claim, which is taken 

from [Tya88]. First, we introduce some notation. Let sm,j denote I;{=o ( 7 ) . Let bm,i denote 

( 7 )· 
Claim 12 If j:::; m/3, then Sm,j < 2bm,j· 
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Proof: We compute a lower bound for bm,;/bm,j-1 = m-j+l. 

larger than 2 for j :0:: m/3. Therefore, for j :0:: m/3, bm,;/bm,j-1 

proof is by induction. 

Inductive Hypothesis: sm,j ::; 2bm,j for j ::; m/3. 

Note that m- i+l is 
J 

> 2. The remaining 

Basis: For j = 1 (assume m 2: 3), sm,o = bm,D = 1 and bm,1 = m. Therefore, Bm,1 = m+1 

and Bm,1 :0:: 2bm,1· 

Inductive step: Let the inductive hypothesis hold for all l such that l < j ::; m/3. We 

show that it holds for j. By the inductive hypothesis, Bm,;-1 ::; 2bm,;-1. Note that 

sm,j = Bm,j-1 + bm,j. This implies that sm,j :0:: 2bm,j-1 + bm,j· Also, we showed earlier 

that 2bm,j-1 :0:: bm,j· Therefore, Sm,j :0:: bm,j + bm,j = 2bm,j· 

0 

The above claim holds for j = c since we know that m 2: log k (it takes log k bits to represent k 

dlstinct values), and this implies that c::; m/3. Now, using the above claim and our previous upper 

bound for ( 7 ) , we have 

t ( ~ ) :S 2 ( m ) ::; 2~c 
i=O Z C C. 

So, k ::; 2m~/c! and by manipulating this inequality, we get the result m 2: (c!k/2)1/c. 

0 

Theorem 13 For all algorithms A, ifWA = c, where c::; (logk)/3, then MA 2: (c!k/2)1/c. 

Proof: Given an algorithm A such that WA = c, where c ::; (logk)/3, let c., be the initial 

configuration. Then L(C.,) = v0 • For all v f v0 , the schedule "• of the form WRITE(v) "'• ACK 

yields the terminal configuration C •. Since each WRITE can initiate at most c physical writes, each 

C. differs in at most c bits from C.,. 

Since there are k values v, there must be at least k terminal configurations C. dlffering in at most 

c bits from C.,. The number of registers used in the algorithm is MA. Eacll terminal configuration 

is therefore a binary string of length MA. Therefore, there are at least k strings oflength MA which 

differ in at most c bits from c.,. Since, c::; (logk)/3, Lemma 11 applies, and we have the result 

MA;?: (c!k/2)1/c. 
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D 

Theorem 14 For any algorithm A, ifWA = c, where c:::; (logk)/3, then RA 2:: (c!k/2) 1/c. 

Proof: For any algorithm A, where WA :::; c, consider the following schedules, for all v, 

WRITE(v) "'• ACK READ(l) f3v RETURN(!, v), 

where "'• and f3v contain only physical actions. We claim that for some v, f3v initiates at least 

(c!k/2) 1 fc physical reads. We prove this by contradiction. 

Suppose, for every v, f3v initiates at most p physical reads where p < (dk/2)1/c. Let Pv be the 

sequence of values read, in order, on accessing any given register for the first time in f3v· Note that 

we don't include values obtained from registers which have been read before or been written before 

in f3v· Clearly, IPv I :::; p. 

Without loss of generality, we assume that the initial configuration is the zero-vector. Therefore, 

the initial values of all the physical registers is 0. Since "'• contains at most c physical writes, there 

can be at most c 1 's in Pv· Clearly, eaclt Pv is distinct. Therefore, {Pv lv E V} is a set of k distinct 

strings of length at most p whiclt differ from the zero-vector in at most c bits. Since p < (c!k/2) 1/c, 

this contradicts Lemma 11. 

Therefore, for some v, f3v initiates at least (c!k/2)1/c physical reads. This gives our lower bound 

for RA· 

D 

The next theorem states that if an algorithm uses only flog k l physical registers, then some 

logical WRITE must use at least flog k l physical writes. 

Theorem 15 For any algorithm A, if MA:::; flogkl, then WA 2:: flogkl. 

Proof: Let A be an algorithm with MA = flogk]. (We have already shown MA cannot be smaller.) 

Since the physical registers are binary, ITI:::; 2flogkl. Recall that for all v E V, there is an x E T 

with L(x) = v. 

Let U be the subset of T such that x is in U if and only if there is no y # x in T such that 

L(y) = L(x). Thus for each configuration x in U, xis the only terminal configuration which has the 

logical value L(x). 
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Claim 16 There is an x E U such that x E T. (X is the binary string that differs from x in every 

bit.) 

Proof: Suppose there is no such x. Let lUI = I. Each element of U corresponds to a 

distinct element of V, accounting for I elements of V. The remaining k -l elements of V 

are represented among the configurations of T that are not in U and are not the inverse 

of an element of U. There are at most 2ilogkl - 21 of these configurations. There are at 

least two of these configurations for each remaining element of V. Thus 

2ilogkl - 21 2': 2(k -l) 

===} 2ilogkl 2': 2k 

===? [logkl 2':logk+1, 

which is a contradiction. Thus the claim is true. 

0 

Choose x E U such that x E T. Let a be a schedule in WOe with configuration x. Suppose 

L(x) = v. Then there is a schedule 1" in WOe of the form 

a WRITE(v) a ACK, 

where a contains no ACK. The configuration of 1" must be x since x E U. Thus a contains at least 

flogkl writes, and WA 2': [logk]. 

0 

The binary representation algorithm yields an upper bound oflogk for R, Wand M. The unary 

representation algorithm brings down the upper bound for W to 2, while pushing up the bounds 

for R and M to O(k). This suggests a trade-off between these measures. We can construct a class 

of algorithms, by borrowing from both algorithms mentioned above, which have bounds on RA and 

MA varyingfrom8(1ogk) to8(k) and bounds on WA varyingfrom8(1ogk) to8(1). 

Theorem 17 For any m, 1 ::; m ::; k, there is an algorithm A such that RA = 8(1ogm + k/m), 

MA = e(Iogm + kjm), and WA = e(logm). 
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Proof: We implement our k-ary register by combining an a-ary register and a b-ary register as 

follows. Let a be the smallest power of 2 which is at least as large as m, i.e., a= 2flogml. Let 

b = lk /a l- We implement an a-ary register by the binary representation method, and a b-ary 

register by the unary representation method. Both these methods have been described earlier. Let 

the values represented by the a-ary register be in A = {1, ... , a} and the values represented by the 

b-ary register be in B = {1, ... , b}. We obtain an ab-ary register by combining these two registers, 

where the ab values represented are in Ax B. Note that ab 2': k, so we have our k-ary register. 

We consider the bounds of our combination register. The a-ary register uses llog m l registers 

and flogml physical operations per logical operation. The b-ary register uses lk/a l registers, lk/a l 

physical reads per logical read, and 2 physical writes per logical write. This gives the combined 

bounds claimed by our theorem. 

0 

4 k-ary Regular From Binary Regular 

We now shift our attention to regular registers. We would like to implement n-reader, k-ary, regular 

registers using n-reader, binary, regular registers. Subsection 4.1 shows our independent bounds on 

R, W, and M. Subsection 4.2 contains our trade-off results. As before, we let V = {0, ... , k- 1}. 

4.1 Independent Bounds 

The following theorem establishes the independent bounds achieved for this problem. 

Theorem 18 The implementation of n-reader, k-ary, regular registers by n-reader, binary, regular 

registers gives the following independent bounds: 

• R = flogkl, 

• 1::; W::; flogkl, and 

• max{flogkl +1,2(logk) -loglogk-2} :s;M :s;min{k-1,n(3logk+68)}. 
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Proof: The lower bound for R follows directly from the same result for safe registers. The lower 

bound for W follows from Lemma 3. The lower bound forM is shown in Lemmas 21 and 22 below. 

The upper bounds on R and W appear simultaneously in the tree algorithm, presented below. 

However, this algorithm uses k - 1 physical registers. Lamport [Lam86] describes a complex com

position of implementations to achieve an algorithm using n(3log k + 68) 1-reader physical registers 

(recall that n is the number of reads for the logical register). It is unknown whether a better result, 

for example without the factor of n, is possible by taking advantage of the additional power when 

the physical registers are n-reader. 

D 

The modified unary algorithm is a simple algorithm in [Lam86] that gives upper bounds of 

W :::; k, R :::; k and M :::; k. Given registers X 0 , ••• , Xk_ 1 , the index of the lowest indexed register 

which has the value 1 determines the k-ary value represented. A READ operation reads X 0 , X1 , ••. , 

in order, until a 1 is returned. It subsequently RETURNs v, where the 1 was read from Xv. A 

WRITE(v) operation writes 1 in register Xv, and then writes 0 in Xv_1 , ..• ,X0 , in order. 

We now present our new tree algorithm, which gives the improved bounds of R :::; flogkl, 

W :::; flog k 1 , and M :::; k - 1. The registers are the nodes in a binary tree. The tree represents a 

sort of binary search conducted by the READ operation to find the value written. The READ takes 

a path from the root to a leaf, while the WRITE follows a path starting from a leaf to the root. 

The path in the tree taken by the READ, along with the values it reads, uniquely defines the value 

read. 

The tree representation of the registers is described as follows. Given any binary tree of k leaves, 

the internal nodes of the tree correspond to the registers, while the leaves correspond to the k-ary 

values. How does the binary tree specify the algorithm? Let the leaves of the tree be labeled in 

some arbitrary manner by the k values in V. 

A WRITE( v) operation writes into the set of registers which form the path between the root 

and the leaf labeled v, as follows: 

• The first internal node written is the parent of the leaf labeled v. If the leaf node is the 

left/right child, the value written is 0/1. 

• The ith internal node written is the parent of the (i- l)st node. If the (i- l)st node is the 

left/right child, the value written is 0/1. 
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• The last node written is the root. 

A READ operation reads a set of registers which form a path from the root to a leaf labeled v, 

for some v. It subsequently returns v. 

• The root node is the first node read. 

• Suppose the ith node read has value 0/1. Then, if its left/right child is a leaf, then RETURN 

the value v, where v is the label of the leaf. Otherwise, the left/right child of the ith node is 

the ( i + 1 )st node read. 

We just showed that any binary tree of k leaves completely specifies our algorithm. It remains 

to show that, for any k, a binary tree exists whose corresponding algorithm satisfies our bounds. 

Note that a binary tree is a tree where every node has either 0 or 2 children. Since any binary tree 

with k leaves must have exactly k- 1 internal nodes, our register bound of MA = k- 1 is satisfied. 

We need to argue that RA ::; flog k l and WA ::; flog k l· Since both READ and WRITE access 

registers which form a path from the root to a leaf of the tree, if the height of the tree is h, we have 

RA ::; h - 1 and W A ::; h - 1. (We subtract 1 from h because the leaf does not correspond to a 

register.) 

We show that there exists a tree such that h = flog k l + 1. Since there are k leaves and k - 1 

internal nodes, our tree has a total of 2k - 1 nodes. We know from graph theory that it is possible 

to construct a binary tree of p nodes with height flog(p + 1)1· So, we can construct a binary tree 

with 2k- 1 nodes and height h = flog(2k)l = flogkl + 1. Substituting for h, we have the bounds 

RA::; flogkl and WA::; flogkl. This gives our result. 

Figure 2 illustrates a 7-ary register with value 3. The path marked on the tree corresponds to 

the physical registers read by a logical READ operation. 

If k is a power of 2, the registers and values form a complete binary tree of height log k + 1. 

We describe the algorithm, for this special case, formally below. Let Vm Vm- 1 .•. v1 be the binary 

representation of the k-ary value v, where m = log k. The root register is labeled E. For each register 

labeled with the binary string l, the strings lO and l1 are the labels of its left and right children, 

respectively. Let the initial value of the logical register be v0 with its binary representation being 

Vo,mvo,m-1· .. vo,1• Then the initial value of the physical register labeled vo,m ... v 0,p+1 is v 0,p, for 

all p E {1, ... , m }. All other physical registers have initial value 0. 
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Figure 2: An Example lllustrating the Tree Algorithm 

Tree Algorithm for k a power of 2: 

To WRJTE(v), To READ, 

for p := 1 to m do for p := m to 1 do 

write Vp to register Vm •.• Vp+l Vp := read register Vm •.• Vp+l 

ACK RETURN(vm ... v1) 

Here, the log k physical values read by the READ operation form the binary representation of 

the k-ary number. Clearly, the algorithm has the bounds shown. 

In order to prove the correctness of the tree algorithm, we need some definitions and a lemma. 

We define what it means for a physical write to be before a physical read in a given schedule. We 

say that w is before r, if either the physical write w completely precedes the physical read r, or 

w and r overlap and r returns the value that w writes. We say that a logical READ R notices a 

logical WRITE W if there exists a physical registers such that W writes s before R reads s. Now, 

we state the following lemma. 

Lemma 19 Given any schedule of the tree algorithm, and any READ R in the schedule, R RE

TURNs the value written by the last WRITE W that R notices (note that there is a total order 

between the WRITE operations). If no such WRITE exists, R RETURNs the initial value. 
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Proof: Let R be a READ in some schedule. Suppose R notices no WRITEs. Then every physical 

read r initiated by R returns the initial value of the physical register read. Therefore, R RETURNs 

the initial value of the logical register. 

Otherwise, R notices some WRITEs. Let W be the last WRITE that R notices. Let s be the 

last register read by R such that W writes s before R reads s. Clearly, R reads the value b written 

by W into s. Otherwise, there is a later WRITE W1 such that W1 writes s and R notices W1 , which 

contradicts the fact that W is the last WRITE that R notices. 

Without loss of generality, let b = 0. (The argument for b = 1 is identical by replacing "left" in 

the following discussion with "right".) 

We claim that s is the last register read by R. Suppose not. Then, R next reads the register 

t corresponding to the left son of s. Since W wrote bin registers, it must have earlier written to 

register t. This contradicts the definition of s. 

Now, the left son of s must be a leaf node. Let v be the label of this leaf node. Clearly, v is 

RETURNed by R. Since W writes b into s, the logical value written by W is v. 

0 

Theorem 20 The tree algorithm implements a k-ary regular register using binary regular registers. 

Proof: Clearly the algorithm has the wait-free property. 

Given any schedule, and any READ R in that schedule, we need to prove that R RETURNs 

the value of one of the WRITE operations it overlaps with or the last preceding WRITE W1 . We 

consider two cases. 

Case 1: R notices no WRITEs. 

Since R reads the root node, and any WRITE must write into the root node, it follows that no 

WRITE completely precedes R. By Lemma 19, R RETURNs the initial value, and this satisfies 

regularity. 

Case 2: R notices some WRITEs. 

Let W1 be the last WRITE that R notices. By Lemma 19, R RETURNs the value written by W1 . 

We show that Wr either overlaps with R or is the last WRITE preceding R. This would satisfy 

regularity. 
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Figure 3: The Lower Bound for m at Different Values of k 

Clearly, fV1 cannot completely follow R, since, by the definition of notice, TY1 writes into some 

physical register which is subsequently read by R. The only other case to consider is that W1 

precedes another WRITE W2 , which completely precedes R. Since W1 is the last WRITE that R 

notices, R does not notice Wz. Since l¥2 completely precedes R, R must read the root node after 

Wz writes into it, which implies that R does notice W2• This gives a contradiction. Therefore, W1 

either overlaps with R or is the last WRITE preceding R. 

0 

The tree algorithm simultaneously gives us the best bounds we have for this problem. We present 

our lower bounds forM below. Both of the bounds we obtain are significant for different values of 

k. Figure 3 illustrates which bound is better for particular values of k. 

Lemma 21 M ::0: fl.og k l + 1. 

Proof: Choose any algorithm A. \Ve assume, for contradiction, that MA = flogkl. Note that the 

lower bound for M of fl.og k l , proved for safe registers, holds here as well. For all v E V, there is a 

schedule !7v of A in WOC of the form 
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WRITE(v) av ACK, 

where av contains no ACK. Let Cv be the configuration of <Tv; it is easy to see that Cv is stable. 

Choose v E V. For each wE V, w # v, there is a schedule <Tvw in WOe of the form 

WRITE(v) av ACK WRITE(w) f3vw ACK, 

where f3vw contains no ACK. Let Cvw be the configuration of <Tvw; it is easy to see that Cvw is stable. 

Since only WP takes steps in <Tvw and physical writes are done serially, f3vw goes through a 

sequence of stable configurations (corresponding to schedules in WO). By Lemma 2, L1 (Cvw) = w 

and L1 (Cv) = v. Since w # v and L1 is a function by Lemma 1, Cvw # C •. Thus a stable 

configuration is reached in f3vw that is different than c •. Let Dvw be the first such configuration. 

Dvw and Cv differ in a single bit, i.e., in the value of a single register. 

Since there are only flog k l bits in each configuration, there are only flog k l configurations which 

differ in a single bit from Cv· Since there are k- 1 values in V different than v, there exist distinct 

wand u in V such that Dvw = Dvu· Call this configuration Dv· By regularity, Ll(Dvw) E {v,w} 

and Ll(Dvu) E {v, u}. Thus Ll(Dv) = v. 

Since Ll(Cv) = v, all the Cv's are distinct. Since Ll(Dv) = v, all the Dv's are distinct. It is 

easy to see that Cv # Dw for all v and w. Thus there are at least 2k distinct stable configurations, 

requiring at least flog k l + 1 registers. Therefore, we have a contradiction. 

0 

Lemma 22 M 2: rzlogk- loglogkl - 2. 

Proof: Choose any algorithm A. Let d be the number of registers used in the algorithm. 

For all v E V, there is a schedule <Tv of A in WOe of the form 

WRITE(v) av ACK, 

where av contains no ACK. Let Cv be the configuration of av; it is easy to see that Cv is stable. 

Clearly, L1 (Cv) = v. 

We claim that for any two k-ary values v and w, there exist a pair of stable configurations Dv 

and Dw which differ in exactly one bit such that L(Dv) = v and L(Dw) = w. Suppose not. Then, 

consider the schedule O"vw in woe of the form 
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f7v WRITE(w) f3vw ACK, 

where f3vw contains no ACK. Let the configuration of f7vw be Dvw· The configuration of f7v is 

c •. Note that Dvw is a stable configuration and L1 (Dvw) = w. Consider the sequence of stable 

configurations reached by the schedule f7vw starting from C. and ending at Dvw· By the assumption, 

there exists a stable configuration Dx in the sequence such that L1 (Dx) = x but x # v and 

x # w. A READ starting at Dx would therefore RETURN x, which violates regularity. This 

gives a contradiction. 

Let c. be the number of stable configurations C in S such that L1 (C) = v, for each k-ary vaiue 

v. Let c = min{cxlx E V}, and let v E V be such that c =c •. For each value w such that w # v, 

there are stable configurations D. and Dv, inS which differ in exactly one bit such that L1 (D.) = v 

and L1 (Dw) = w. Since each stable configuration C, such that L1 (C) = v, has d neighbors, and 

there are (k- 1) vaiues w, it follows that 

cd;:::k-1. 

Since there are k different values and at most 2d possible stable configurations, 

We solve the two inequalities below. 

c >_ k-1 and c < 2d 
d - T 

===> k-1 < < 2d -._c_T 

===> k2 - k ::; d2d 

===> k2 /2 $ d2d, fork ;::: 2. 

===> 2(logk) ::; d+logd+l. 

The last inequality implies that d > 2(logk) -loglogk- 2. 

4.2 Trade-Offs 

0 

We have the following lower bounds for R and M relating to one-write algorithms. In particular, 

we show that any one-write algorithm for this problem would require at least k registers. In other 

words, our hypercube algorithm for safe registers does not work for regular registers. 
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Theorem 23 For all algorithms A, ifWA = 1 then RA 2': k- 1 and MA 2': k- 1. 

Proof: The lower bound for RA follows from the same result for safe registers. By using a similar 

argument, we can actually make the additional claim that every READ reads at least k- 1 distinct 

physical registers. We use this claim in the following proof of the bound forMA. 

To show MA 2': k, suppose in contradiction that a one-write algorithm A exists which uses k- 1 

registers. Then Lemma 9 carries over from the safe case, implying that the function L has the 

rainbow-coloring property. Let C0 be the initial configuration; clearly, L(C0 ) = v0 • Consider the 

following schedule a: 

READ(1) a RETURN(1, v0 ) 

where a consists only of physical actions taken by RP1 • We claim that a does not contain any 

physical write. 

Claim 24 The sequence of actions a does not contain a physical write. 

Proof: Suppose ti does contain a physical write, i.e., 6 = 61 write;(b) 152 , where 151 

contains no physical write. Then, there is a schedule of the form 

READ(1) 151 write;(b) 152 RETURN(1, v0 ) READ(1) 15' RETURN(l, v0 ), 

where 15' contains only physical actions. Let C1 be the configuration that differs from C0 

only in position i. Then L(C1) = v, for some v # v0 . 

Consider the schedule 

WR!TE(v) 7 ACK, 

where 7 contains only physical actions of WP. Then 7 consists of a single physical write, 

to register i (as well as possibly some physical reads). An easy induction shows that 

READ(1) 151 WRITE(v) 7 ACK write;(b) 152 RETURN(1, v0 ) READ(1) a' RETURN(1, v0 ) 

is a schedule, since there is no physical write in 151 and the physical write within the 

logical WRITE is "obliterated" by write;(b). This violates regnlarity because the second 

READ shonld RETURN v, not v0 • 
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Figure 4: Relationship Between the Four Configurations 

0 

Now, we continue with the proof of the theorem. Pick two distinct registers (call them registers 

i and j) which are read in schedule a. 

We define C1 to be the stable configuration which differs from C0 in position j, C3 to be the stable 

configuration which differs from C0 in position i, and C2 to be the stable configuration which differs 

from Co in positions i and j. For alll E {1,2,3}, C1 is a terminal configuration. Let L(C1) = Vt. It 

is easy to verify that v0 , v1 , v2 and v3 are distinct values in V. Suppose, without loss of generality, 

that the initial value of both registers i and j is 0. Figure 4 illustrates the relation between the four 

configurations defined. Adjacent configurations differ in a single bit. The label on the edge between 

two configurations corresponds to the particular bit in which they differ. 

Now, consider the following sequences of actions which can be applied at a configuration Cstart 

and results in the configuration cfinish· 
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II Cstart sequence f3 c,,n •• h II 
Co f3o1 = WRITE(v1) 'Yo1 writej(l)icn ACK c1 

c1 (312 = WRITE(v2) /12 write;(l)/{2 ACK C2 

C2 (323 = WRITE( va) 'Y2a writej(O),Z3 ACK Ca 

Ca f3a2 = WRITE(v2) /32 writej(l)"fs2 ACK C2 

C2 (321 = WRITE( v1) /21 write;(0)/~1 ACK c1 

We claim that if we have a schedule u with the configuration Cstart and no pending WRITE, 

we can concatenate an appropriate sequence of actions f3 (from the table above) to u to obtain the 

schedule u' with the configuration Cfinish· The sequence f3 is a single logical WRITE which consists 

of a single physical write (and possibly some physical reads)-thus none of the lab's contain any 

physical writes. It is easy to see that each f3 exists. 

We create a new sclledule o/ by taking <> and inserting certain sequences at certain points, 

according to the following rules. First, we insert {301 before READ (1), resulting in configuration Cr. 

Then, before each readj of RP r, if the configuration is C1 , we insert f3r 2f323 , resulting in configuration 

Ca. Before each read; of RPr, if the configuration is C3 , we insert f332f32r, resulting in configuration 

C1 • To see that <>' is a schedule, it is sufficient to observe that the only time the configuration 

cllanges within the schedule is when a sequence f3ab is inserted. This follows from the fact, proven in 

Claim 24, that<> contains no physical writes. In particular, inserting (301 changes the configuration to 

Cr, inserting f3r 2/3z3 changes the configuration to C3 , and inserting {332f32r changes the configuration 

to Cr. We can prove, by a simple induction, that the configuration reaclled by any prefix of schedule 

o/ up to a read; by RP1 is always C1. Similarly, the configuration reached by any prefix of schedule 

<>1 up to a readj by RP1 is always C3 • Therefore, read; and readj always return the value 0. It follows 

that v0 is the value RETURNed by the READ(l) in the schedule <>'. Since, to satisfy regularity, 

the READ should RETURN vr, v2 or v3 , we have a contradiction. 

D 

We conclude this section with a trade-off result relating to a constant number of writes. This 

follows from the identical result derived in the safe case. 

Theorem 25 For all algorithms A, ifWA = c, where c :<:; (logk)/3, then MA 2:: (c!k/2) 1/c and 

RA 2:: (c!k/2)1/c. 
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5 n-Reader Registers From 1-Reader Registers 

We consider the problem of implementing ann-reader, k-ary, safe (or regular) register, for n 2: 2, 

out of 1-reader, k-ary, safe (or regular) registers. (The results are the same for safe as for regular). 

Theorem 26 R=1, W=n, andM=n. 

Proof: An algorithm in [Lam86] implies that R :$ 1, W :$ n, and M :$ n. The algorithm consists 

of n physical registers, n read processes and one write process. To do a logical WRITE, the write 

process writes the logical value into each of the n physical registers and then ACKs. To do a 

logical READ, the (appropriate) read process reads the value in its associated physical register and 

RETURNs that value. 

Lemma 3 implies that R 2: 1. We argue the lower bounds for Wand M. Choose any algorithm 

A. 

W 2: n: Let S; be the set of physical registers read by read process RP; for all i. Since the 

physical registers are 1-reader, the S;'s are disjoint. We now show that some logical WRITE must 

write ;tt least one physical register in each S;, implying that WA 2: n and thus W 2: n. Suppose 

in contradiction that no logical WRITE of A writes at least one physical register in each S;. There 

exists a schedule of A in WOC of the form 

WRITE(v) "'ACK, 

where v f. v0 and "' contains no ACK. By assumption, there is some i such that "' contains no write 

to any register in S;. There exists a schedule of A of the form 

READ(i) (3 RETURN(i, v0 ), 

where (3 consists only of actions of RP; and contains no RETURN. An easy induction shows that 

WRITE(v) "'ACK READ(i) (3 RETURN(i, v0 ) 

is a schedule of A, violating the safe or regular property since v f. v0 • 

M 2: n: Since we just showed that some WRITE writes at least one physical register in each S; 

and the S;'s are disjoint, MA 2: n and thus M 2: n. 

0 
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6 Regular Registers From Safe Registers 

We can show tight bounds on R, W, and M, for implementing ann-reader, binary, regular register 

out of n-reader, binary, safe registers, for n :;:: 1. Note that given all the preceding algorithms, this 

case is all that is necessary to implement any kind of regular register out of any kind of safe register 

- one can simply compose algorithms. 

Theorem 27 R = 1, W = 1, and M = 1. 

Proof: The lower bounds follow from Lemma 3. 

The upper bounds follow from an algorithm in [Lam86]. The algorithm has one physical register, 

n read processes, and one write process. To read the logical register, the (appropriate) read process 

simply reads the physical register and returns the value read. To write the logical register, the write 

process writes the new value into the physical register if and only if the new value is different than 

the old value (the last value written). Since every physical write toggles the value of the (safe) 

physical register, the desired regular behavior for the logical register is achieved. 

0 

7 Conclusion 

We have demonstrated upper and lower bounds on the number of physical registers, the number of 

physical reads in a logical read, and the number of physical writes in a logical write, for a variety 

of register implementations. In many cases, our bounds are tight. Some of our upper bounds follow 

from two new algorithms that we present, one for implementing a k-ary safe register out of binary 

safe registers, and another for implementing a k-ary regular register out of binary regular registers. 

We also presented several interesting trade-offs between these cost measures, for implementing k-ary 

registers out of binary registers. The bounds on the number of physical operations can be converted 

into bounds on the time to perform the logical operations, in terms of the time for the physical 

operations. 

Future work includes finding such bounds for more algorithms, in particular, those involving 

atomic registers and multi-writer registers. We also do not yet have tight bounds on W and M for 

implementing k-ary regular registers out of binary regular registers. It would be interesting to see if 
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better bounds are possible in some cases than those obtained by composing the algorithms we have. 

A final question is what difference does it make, if any, if clocks are available to the read and write 

processes? 
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