
Inference by Clause Linking 

TR90-022 

May, 1990 

David Plaisted 
Shie-Jue Lee 

17;7 

, I 
,, 

: I 

The University of North Carolina at Chapel Hill I 
' ,, 

' 

Department of Computer Science 11 ,, 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

UNC is an Equal Opportunity/Affirmative Action Institution. 



Inference by Clause Linking* 

David A. Plaisted and Shie-Jue Lee 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 27599-3175 

May 16, 1990 

Abstract 

We present a novel theorem proving method based on the idea of never combining 
parts of different assertions (clauses) into a single assertion. This avoids some comb ina,. 
torial problems with other existing strategies. We mention some refinements of this idea 
which improve its performance. Results of an implementation are discussed, including 
tests on logic puzzles, set theory problems, and temporal logic theorems. We discuss 
methods used to make the prover self-controlling to an unusually high degree so that 
novice users need not specify which strategy to use. The system is particularly suited 
to the incorporation of specialized decision procedures. This and other extensions are 
discussed. Also, this work is placed in the context of general issues and developments 
in theorem proving and artificial intelligence. This paper is an extended version of a 
chapter to appear in the book INTELLIGENT SYSTEMS: State of the art and 
future directions by Zbiguiew Ras and Maria Zemankova. 

1 Introduction 

Virtually all theorem proving methods combine parts of separate formula during the pro
cess of inference. This combination can cause combinatorial problems, since a small number 
of formulas may combine in many different ways. We present a new method based on the 
idea of never combining parts of different formulas. This method has been implemented 
and shown to be of wide applicability in several different problem areas. We will present 
this method and results of an implementation, as well as comment on general issues in 
theorem proving and artificial intelligence. 

Our method, which we call the hyper-linking strategy, has some analogies to human 
problem solving methods. It consists of a two stage process. The first stage generates 
selected instances of the formulas given; the second stage tests the formulas for satisfiability 
using a case analysis method. The first stage may be considered as creative and the second 
as analytic. The method is also related to the associative network model of artificial 

'This research was supported by NSF under grant CCR-8802282. 

1 



intelligence, in which nodes are connected by links and activations can spread from node 
to node along the links. For us, the nodes are assertions, the links are unifications between 
parts of formulas, and the activations are substitutions that propagate from node to node. 
There is an obvious if possibly superficial resemblance to neural networks. The similarities 
with semantic networks in artificial intelligence, and with connection graph methods in 
theorem proving, are closer. 

In [Pla88][NP90] we presented about the ultimate extension of the subgoaling idea to 
theorem proving in full first order logic. Subgoaling is a common problem solving paradigm. 
However, the extension to full first order logic is difficult, and we now feel that subgoaling 
may not be the right model for general problem solving in full first order logic, except 
for problems that fit naturally into that form; these are the Horn or near-Horn problems 
[HW74]. 

We present our method in the context of Skolemized first order formulas (clause form) 
and satisfiability. However, the ideas seem to be more general than this, and should apply 
to non-clausal proof systems which use explicit quantifiers. The idea is to systematically 
search for parts of formulas that can be made identical by suitable instantiations of vari
ables. 

One objective of this presentation is to show the amount of detailed knowledge needed 
to do general problem solving well. There is a surprising amount of complexity and so
phistication in our theorem prover. It seems that mechanical theorem proving is a difficult 
area, and that only a complex program can do it well. If our prover were extended to deal 
with equality or higher order logic or extended in other ways, the complexity would be 
even greater; now it works on pure first order logic. This may be one reason that progress 
in theorem proving has been slow, namely, the amount of knowledge needed. 

This suggests that the lack of success of general problem solvers in artificial intelligence 
may have been due as much to the lackof general problem solving knowledge as to the 
lack of specialized knowledge. Such a general problem solver requires a large body of 
general problem solving knowledge to be successful. Further, it would be unlikely for a 
writer of a specific AI application to put this much general search knowledge into his or 
her program. In fact, we continue to find more such knowledge that needs to be added to 
our prover. In addition to general search knowledge, specific domain knowledge is often 
essential. Many of the theorems proven by the system are harder than problems solved by 
typical expert systems and AI reasoning systems, we feel. However, no specific verification 
of this belief has been attempted. One way to embed domain specific knowledge in our 
prover is to weight the links between clauses depending on experience; other methods will 
also be presented. 

One goal of our work is the rational reconstruction of human theorem proving activity. 
How could a human mathematician have obtained a proof, using plausible heuristics? We 
would like to take the mystery out of the process of proof discovery. We propose that 
simple low-level heuristics account for most of human theorem proving ability. By low
level heuristics, we mean such methods as preferring terms that are small, or contain a 
small number of variables, and so on. Some of the methods used in theorem proving, such 
as variable elimination [Hin88] and the complexity measure of Wang [WB87], successful 
though they are, seem largely to replace one mystery with another, since it is unlikely that 
a human would use such methods. We present some ideas that seem more natural, and 

2 



illustrate some of these ideas on the intermediate value theorem. 
An advantage of first order logic is that it is a universal language. This makes it easy 

to compare theorem provers since the same problems can be run on all of them. Also, 
this makes it easy to say how much knowledge is being given to the program to help guide 
the search, since the problem representation is often fixed. Another advantage of this 
universality is that if theorem proving methods are designed as mappings from clauses to 
clauses, then any combination of such methods can be used together. 

2 Past Work in Automatic Theorem Proving 

Some of the early work in theorem proving was similar in spirit to ours, such as the linked 
conjunct method of [Dav63]. Even the methods of [Gil60][PPV60] have similarities to 
ours. However, they also have significant differences. Gilmore's method is not based on 
unification. This means that the number of instances generated may be very large. Wang's 
method and the linked conjunct method are based on something like unification. However, 
they both consider a large number of possibilities for which literals to unify, resulting in 
many cases to consider. The paper [Dav63] (linked conjunct method) also doesn't explicitly 
give a completeness proof or a method of generating instances. Our method is based on 
unification but does not generate such a large number of cases. In this our method is 
similar to resolution. This may explain the effectiveness of resolution (and our method) as 
compared to methods used prior to 1965. Methods developed since 1965, such as model 
elimination and connection graph methods, also tend to be based on unification without 
requiring a large number of cases to be considered. Since 1965, much work has been done 
on the resolution method of Robinson [Rob65]. Unlike our method, resolution combines 
parts of different clauses. This has advantages and disadvantages. The connection graph 
methods of [Bib82] are close to ours, but even these combine literals from different clauses. 
We feel that instance-based approaches deserve more attention, and our experience with 
our implementation confirms this belief. We propose that instance-based provers can be 
competitive or superior to resolution provers using equivalent technology. 

The motivation of our work is to avoid the duplication of instances of clauses. There 
are two kinds of duplication. The first we call duplication by combination. This appears 
in resolution, model elimination, the connection graph method, and other strategies. The 
same instances of a clause can contribute to many resolvents, for example. The second kind 
of duplication is duplication by case analysis. This appears in the linked conjunct method of 
[Dav63] as well as in Davis and Putnam's propositional calculus decision procedure [DP60]. 
The same instances of clauses may appear in more than one case of a case analysis, although 
in each case there may be no duplication. Duplication by case analysis is more storage 
efficient than duplication by combination, because only one case needs to be considered at 
a time. Some early provers used duplication by case analysis, but few if any clause form 
provers currently use it. Andrews' prover [MCA82] seems to be one of the few current 
provers that use duplication by case analysis. · We avoid both kinds of duplication for 
first-order logic. We do use a Davis and Putnam-like method in our prover, but only for a 
propositional problem obtained from the first order theorem. For propositional calculus, 
case analysis is a natural and efficient strategy, in our experience. 

3 



We first present the theorem proving problem and notation in a simplified form sufficient 
for our purposes. Then we clarify the above points about duplication of instances. Our 
presentation is based on the theorem of Skolem-Herbrand-Godel which is popularly known 
as Herbrand's theorem. 

We use lower case letters, possibly subscripted, for individual constants, function con
stants, and predicate constants, and upper case letters, possibly subscripted, for (individual) 
variables. Each predicate constant and function constant has an arity, which is a non
negative integer telling how many arguments it takes. A term is a well formed expression 
composed of individual constants, variables, and function constants. An atom is a pred
icate constant followed by a list of terms. A literal is an atom or an atom preceded by 
a negation sign. We represent a negation sign by either "not" or "~". A literal is called 
positive if it is an atom, negative if it is the negation of an atom. A literal and its negation 
are called complementary literals. A clause is a disjunction of literals, expressed as a set. 
The empty clause denotes the logical constant FALSE. A set of clauses represents the 
conjunction of the clauses in the set. A positive clause is a clause containing only positive 
literals; a negative clause is a clause containing only negative literals. A clause containing 
only one literal is called unit clause. A term is a ground term if it contains no variables, 
and similarly for literals and clauses. A substitution is a mapping 8 from variables to 
terms, such that for only finitely many variables X do we have 8(X) of X. We represent a 
substitution by a finite set {X1 <- t 1 , ••• , Xn <- tn}, indicating that 8(X;) is t; and 8{X) 
is X if X is a variable distinct from the X;. If t is a term, then by t8 we indicate the result 
of simultaneously replacing all variables X; in t by t;. We say a term u is an instance of a 
term t if there is a substitution e such that u is te, and similarly for literals and clauses. 
A unifier of two terms {literals, clauses) L and M is a substitution e such that L8 and 
Me are identical. A most general unifier e of two terms {literals, clauses) L and M is a 
unifier of L and M such that for any other unifier r of L and M there is a substitution <I> 
such that L8<I> is identical to Lf (or M8<I> is identical to Mf). A set of ground clauses 
is unsatisfiable if there is no assignment of truth values, i.e. TRUE or FALSE, to ground 
atoms in S such that all clauses contained in S are true simultaneously. 

Theorem proving in first order logic can be reduced to the following problem, by Her
brand's theorem: Given a set S of clauses, to determine if there is a set T of ground clauses 
such that for each clause D in T there is a clause C in S such that D is an instance of 
C, and such that T is propositionally unsatisfiable. We call this the ground instantiation 
problem. For example, given S = { {p(a)}, { ~p{X), q{f{X))}, { ~q{f{Y))}}, the set T = 
{{p{a)}, {~p(a), q{f(a))}, {~q(f(a))}} is as specified. This set Tis propositionally unsat
isfiable because p(a) and (~p(a) V q{f(a))) imply q{f(a)). This contradicts ~q{f(a)). Note 
that if the ground instantiation problem can be solved, then S, with free variables regarded 
as universally quantified, is unsatisfiable. The search for the proof of any theorem in first 
order logic can be reduced to the ground instantiation problem by negating the theorem 
and then applying a well known process called Skolemization [CL73][Lov78]. For example, 
consider the theorem that ('v'X p(X)) implies (VX (p(X) V q(X))). This theorem is first 
negated, giving {VX p(X)) and ~(1/X (p(X) V q(X))), which is equivalent to (VX p(X)) 
and (3X {~p(X) A ~q{X))). Replacing existential quantifiers by a new constant a, we ob
tain {VX p{X)) and {~p(a) A ~q(a)). Removing universal quantifiers, we have p(X) and 
{~p(a) A ~q(a)). This is converted to the following setS of clauses: {{p(X)}, {~p{a)}, 

4 



{~q(a)}}. For details of this process, see [CL73][Lov78]. There is the set T of ground 
instances { {p( a)}, { ~p( a)}} which is propositionally unsatisfiable. Therefore the original 
theorem (VX p(X)) implies (VX (p(X) V q(X))) is valid. Note that if S contains the empty 
clause, then we can choose T to be the set containing the empty clause, solving the ground 
instantiation problem. 

Our theorem proving method constructs the set T of instances directly, then uses a 
propositional calculus decision procedure to test if T is unsatisfiable. We now make more 
precise how resolution and other methods involve the duplication of instances. Given 
clauses C and D, resolution computes a most general unifier e and then combines literals 
of Ce and De to obtain a resolvent. Note that if C and ce are identical, then literals may 
appear in both C and Ce. This is one kind of duplication of instances by combination. 
Another kind appears when a clause C resolves against many clauses D1 , D2 , ••• , Dn 
using the substitutions e 1 , e 2, ••• , en. In this case, it may be that many of the instances 
Ce; are Identical. Then the literals in Ce; may appear in many different resolvents. 
This is another kind of duplication by combination. If C or D is a unit clause, then 
this resolution is called a unit resolution [WOLB84] and it turns out that duplication 
by combination does not occur. Duplication by combination occurs for similar reasons 
in model elimination and the connection graph method. The linked conjunct method of 
[Dav63] involves duplication by case analysis. Given a set S of clauses, a linked conjunct 
is obtained by matching the literals in clauses in S in different ways. Each matching has 
to be looked at separately; each such matching is another case to be considered. The same 
instances will appear in many such matchings; thus we have duplication by case analysis. 
Even if S is propositional, there may be many cases to consider and the method may be 
slow. Since a given literal may match many other literals, there may be many cases to 
consider for each literal. Similarly, Davis and Putnam's method involves case analysis on 
the truth values of atoms appearing in S. If an atom A appears in S, the cases A = TRUE 
and A =FALSE are considered separately. Many clauses and literals will appear in both 
cases, so we have duplication by case analysis. However, since there are only two cases per 
literal, the case analysis appears to be more efficient than in the linked conjunct method. 
Davis and Putnam's method also has a number of optimizations for deleting literals from 
clauses in S whenever possible and eliminating some clauses from S when possible. In 
fact, our theorem prover appears to be much better than resolution and similar methods 
for problems that are largely propositional; this seems to be evidence that the duplication 
referred to is hindering these other methods. A related problem with connection graph 
methods is the need to store the connections. A connection is a pair (1, M) of literals such 
that L and the complement of M are unifiable. If there are n literals, there may be about 
n2 connections between them. This can be a large number of connections, and may require 
excessive storage and time to process. In fact, we tried storing some of these connections 
in earlier versions of our prover, but the cost was too great. Our current prover only 
stores instances of clauses and not any connections between them. The mating strategy of 
[And81 J is similar to the connection graph method and has similar properties. In fact, the 
mating strategy is much like the linked conjunct procedure of [Dav63]. Since it explicitly 
constructs links, or connections, between literals, the number of links with a particular 
literal may be much larger than two. Mating appears to have duplication by case analysis 
rather than duplication by combination, since matings are constructed and considered one 

5 



by one. However, since the number of links per literal may be much larger than two, the 
number of cases may be much larger than in Davis and Putnam's method for propositional 
calculus, it appears. We should mention that Andrews' prover also works on non-clause 
form formulas. Even our modified problem reduction format prover [Pla88] has duplication 
by combination on non Horn problems. 

3 Issues and Developments in Theorem Proving 

Many lines of work are progressing in theorem proving. Some work deals with complete 
strategies for general first order logic; a strategy is complete if it can prove all valid formu
las. Specialized rules for various domains have been shown to increase the power of theorem 
provers; Bledsoe's group has used this idea to obtain a good prover for theorems in analysis 
(the study of continuous functions). The theorem prover of Wu [Cho84][Wu78] performs 
spectacularly on many geometry theorems. Special decision procedures for certain theo
ries have been developed by Nelson and Oppen and others [NOSO]. Another approach is 
to develop languages in which a user can specify strategies that can be applied; Bundy 
[Bun88] and others have used this approach effectively. Special unification algorithms for 
various equational theories continue to be developed [SS82]. Term rewriting techniques 
[DJ90] are particularly effective for problems that may be stated as systems of equations 
and inequations. Recently, techniques from logic programming have been applied to the
orem proving, to obtain very fast rates of inference, on the order of thousands or tens 
of thousands of inferences per second. This approach was initiated by Stickel [Sti86] and 
others have extended it to parallel processing theorem provers [ABCM88]. Another way to 
obtain speed is by the use of good data structures and a low level programming language, 
as in the OTTER prover of McCune [McC89] which is written in C and uses discrimination 
nets for fast look-up of potential unifications. Provers are being used more and more for 
program verification and circuit verification and VLSI design. Theorem provers are now 
capable of proving respectable mathematical theorems, while also missing many theorems 
humans would find obvious. 

4 The Hyper-Linking Strategy Prover 

The philosophy of the hyper-linking strategy is never to combine literals from two clauses. 
Such combinations are done temporarily a couple of places in the prover, but if they do not 
lead to a proof, they are immediately forgotten. We tried several prior implementations of 
this idea. The idea first appeared in [Pla80] and the first implementation was in [JP84]. 
We attempted to extend this to a unification-based prover, without much success [PM88]. 
The key to our current success seems to be that we do not store any links between clauses, 
which sets our method apart from the connection graph methods of [Bib82] which rely 
heavily on such links. Also, a key to our success is the idea of hyper-linking, that is, 
considering all the literals in a clause at the same time, rather than one by one as in our 
previous attempts. The use of support strategies, explained below, was also important. 
Finally, in previous strategies, we computed a "fully linked set," which was essentially the 

6 



same as the linked conjunct of [Dav63]. However, we found that it takes too much time to 
compute this set, and instead we consider the set of all clauses, which may be much larger. 

Another advantage of this method is that clauses are kept as lists of literals, as in 
resolution. All literals are on an equal footing. This contrasts with the modified problem 
reduction format of [PlaSS], in which contrapositives of clauses are considered separately. 
The conceptual simplicity of having clauses as lists has enabled us to add some refinements 
to the prover without having to deal with the complexities of contrapositives. 

4.1 Overview of the Theorem Prover 

There are a number of steps to our theorem proving method. Given a set S of clauses, 
we want to find a set T of instances that are propositionally unsatisfiable, if it exists. 
Our method successively generates more instances of S using a hyper-linking operation, 
and periodically tests these instances for unsatisfiability. The phases in our method are 
hyper-linking, unit simplification, propositional unsatisfiability checking, and small proof 
checking. Unit simplification implements special rules for unit (one literal) clauses, as 
described below. Small proof checking searches for small proofs of a certain form, and 
often permits the method to terminate early. These four phases are repeated again and 
again until a proof is found or until a time limit is exceeded. 

This prover performs well on a number of problems, including the salt and mustard 
problem, the latin squares problem [Rob63], apabhp [StiS6], and the zebra problem [LS86]. 
Solutions are obtained much faster than by the modified problem reduction format prover 
of [PlaSS]. For example, the salt and mustard problem is solved in 30.217 seconds, and 
apabhp is solved in 4 72.417 seconds. The prover seems particularly good on problems 
that are nearly propositional in nature. It also seems good on other problems. We cannot 
think of a reason why the speed advantage on propositional problems should not extend 
to general first order logic, but we do not have as much evidence for this. For a listing of 
the times taken by our prover on some standard problems, see Table 4 at the end of the 
paper. Problems 1-93 are from [StiS6]. The problem "example" is a theorem presented 
by Pellitier and Rudnicki in AAR Newsletter No. 6, 19S6. The problem "exx5" is a 
verification condition from Hoare's FIND program. The problem "exx7" is a situation 
calculus theorem developed by David Plaisted. "latinsq" is the latin square problem from 
[Rob63]. "liar" is the teller and liar problem. "salt" is the salt and mustard problem. The 
problem "schubert" is Schubert's statement [WalS4]. The stack problem is a proof of a 
trivial property of push down stores. Problems 104-110 are pigeonhole problems. Problems 
111-114 are implicational calculus theorems. 

The current implementation is storage inefficient due to the implementation in ALS 
prolog, which compiles all assertions. Despite this, we usually do not run out of storage. 

4.2 The Hyper-Linking Strategy 

Given a set S of clauses, define a link in S to be a pair (L, M) of literals such that both 
L and M appear in clauses in S and such that L and the complement of M are unifiable. 
Note that this is essentially the same as a connection in the connection graph method, 

7 



except that we don't explicitly store the links, so that they cannot be deleted as they are 
in connection graph resolution. 

Definition. If C = {£1 , ••• , Lm} is a clause in a setS of clauses, then a hyper-link of 
C inS is a set {(£1 , Mt), ... , (Lm, Mm)} of links inS such that there exists a substitution 
0 such that L;0 and M;0 are complementary for all i, 1 ~ i ~ m. A most general such 8 
is called the substitution of the hyper-link and ce for this 0 is called the instance of the 
hyper-link. We call this instance generation a hyper-link operation. We call C the nucleus 
of the hyper-link and we call the M; (or clauses D; containing M;) the electrons of the 
hyper-link. 

The hyper-linking phase of the prover works this way: For each clause C in S, all hyper
links of C in S are computed, together with their substitutions 0. Then, the set of all 
such instances ce are added to s, for all clauses c in s and all substitutions 0 of their 
hyper-links. For example, if { -.p(X), q(X)} is inS and literals p(a) and -.q(a) appear in 
clauses inS, then the instance {-.p(a), q(a)} is generated. If { -.p(X), q(f(X))} is inS and 
the literals p(a) and -.q(X) appear in clauses inS then the instance {-.p(a), q(f(a))} is 
generated. 

In practice, hyper-linking is implemented in Prolog using backtracking, to examine all 
possibilities of links for all literals in C. Each instance is asserted into the database. Note 
that if some literal in C is a ground literal, or becomes a ground literal due to previous 
links, then no backtracking is needed since linking will not instantiate this literal. Also, 
note that our prover does not delete instances of clauses. Thus it is possible to have both 
a clause C and an instance D of C at the same time. This seems to be a disadvantage, but 
does not appear to cause problems. Also, instance deletion can be done in some cases, as 
explained below. 

After the hyper-linking phase, our prover performs a unit simplification phase which 
is analogous to operations in the Davis and Putnam procedure. If a unit clause {1} is 
derived and a clause C is obtained by hyper-linking such that C contains M, and M is an 
instance of the complement of 1, then C is replaced by C- {M}. We can write this as an 
inference rule as follows: 

S U {C} U {{1}}, Min C, M is an instance of -.1 

S U { C - {M}} U { {1}} 

This is called unit literal deletion. Also, if a unit clause {1} is derived, and clause C is 
derived, and C contains a literal M that is an instance of 1, then C can be deleted. This 
is called unit subsumption. This may be written as an inference rule as follows: 

S U {C} U {{1}}, Min C, M is an instance of 1 

S u {{1}} 

Note that unit literal deletion may produce more unit clauses, which may enable more 
unit literal deletions, and so on. Thus, a considerable amount of inference may occur in 
the unit simplification phase. As an example, suppose S is { {p}, { -.p, q}, { -.q, r}}. Then 
unit literal deletion with p produces {{p}, { q}, { -.q, r}}. There is now a new unit clause 

8 



q, and unit literal deletion with q finally produces the set of clauses { {p}, { q}, { r} }. As an 
example of unit subsumption, if S is {{p}, {p, q}}, then unit subsumption with p causes 
{p, q} to be deleted, producing the set { {p}} of clauses. 

The next step of our prover is propositional unsatisfiability testing. Suppose set S of 
clauses remains after unit simplification. Then we ground S, that is, replace all variables 
in S by a new constant symbol $, to obtain the set Gr(S) of ground clauses. Thus, if 
Sis {{~p(X)}, {q(X, Y)}} then Gr(S) is {{..,p($)}, {q($, $)}}. We then test Gr(S) for 
propositional unsatisfiability using a propositional calculus decision procedure similar to 
Davis and Putnam's method. It turns out that this is complete. That is, if a set S is unsat
isfiable, then after some number of rounds of hyper-linking, Gr(S) will be propositionally 
unsatisfiable. 

After the propositional test, we then apply a small proof check to S (not Gr(S)). This 
is a fast check to see if S has a "small proof." The details will be explained below. For 
example, if S contains two unit clauses {L} and {M}, and Land the complement of Mare 
unifiable, then we know that S is unsatisfiable. However, we can test for this condition 
much faster than by performing another round of hyper-linking, unit simplification, and 
propositional satisfiability testing. Our small proof check is more general than this test 
for complementary unifiable literals, but still can be performed efficiently. 

We now give an example to show how our prover works. Suppose S is { {p(a), q(a)}, 
{ -.p(X), q(Y)}, {p(X), ..,q(Y)}, { """'P(X), ..,q(Y)}}. We call these clauses C1 , C2 , C3 , and 
C4 , respectively. First, we hyper-link with nucleus C2 , obtaining the instance { -.p(a), 
q(Y)}. Then, we hyper-link with nucleus C4 , obtaining the instance {..,p(a), -.q(Y)}. 
Next, we hyper-link with nucleus C3 , obtaining the instance {p(a), -.q(a)}. At this point 
the set of instances is {{p(a), q(a)}, {-,p(X), q(Y)}, {p(X), ..,q(Y)}, {..,p(X), -,q(Y)}, 
{-.p(a), q(Y)}, {..,p(a), ..,q(Y)}, {p(a), -.q(a)}}. Finally, we ground all clauses, replacing 
all variables with$, obtaining the set of ground instances {{p(a), q(a)}, {..,p($), q($)}, 
{p($), ..,q($)}, {..,p($), ..,q($)}, {..,p(a), q($)}, {..,p(a), -.q($)}, {p(a), -,q(a)}}. This set is 
found to be propositionally unsatisfiable. To see this, consider the subset { {p(a), q(a)}, 
{p(a), ..,q(a)}, {-.p(a), q($)}, {..,p(a), ..,q($)}}. The first two clauses imply p(a). This, 
together with the third and fourth clauses, implies q($) and ..,q($), respectively, which is 
contradictory. Note that if we had grounded the set S of input clauses, this set would be 
satisfiable. The extra instances generated by hyper-linking were needed for the proof. 

We now give an example which shows the use of unit simplification during hyper-linking. 
Suppose S is {{p(a)}, { """'P(X), q(f(X))}, { ..,q(X), r(g(X))}, { ..,r(X)}}. Let's call these 
clauses C1 , C2, C3 , and C4 , respectively. Hyper-linking with nucleus C2, we obtain the 
instance {..,p(a), q(f(a))}, which is simplified to {q(f(a))} using unit literal deletion with 
the unit clause {p(a)}. Hyper-linking with nucleus C3 , we obtain the instance {..,q(f(a)), 
r(g(f(a)))}, which simplifies to {r(g(f(a)))} using the new unit clause {q(f(a))}. Also, using 
the unit clause { ..,r(X)}, this further simplifies to the empty clause {}, indicating that a 
contradiction has been found, and that S is unsatisfiable. For this proof, the propositional 
calculus prover is not needed, because the proof is obtained by hyper-linking and unit 
simplification alone. This is often the case. Also, those who are familiar with resolution 
may notice the similarity of this sequence of hyper-links to a unit resolution proof. 

9 



4.3 Completeness 

We now prove the completeness of the hyper-linking strategy. 
Definition. A mapping ¢ from clauses to clauses is an instance mapping if for all 

clauses C, ¢(C) is an instance of C. 
Lemma 1. Let T be an unsatisfiable set of ground instances of set S of clauses. Suppose 

Gr(S) is satisfiable. Let 

be an instance mapping. Extend ¢ to map the literals of C to the corresponding literals 
of ¢(C); for this, it may be necessary to distinguish the literals in different clauses. Then 
there are literals L, M in T that are complementary but Gr( ¢(L)) and Gr( ¢(M)) are not 
complementary. 

Proof. Let I be a model of Gr(S). Suppose the lemma is false; then for all literals 
L, M of clauses in T, if L and M are complementary then Gr( ¢(L)) and Gr( ¢(M)) are 
complementary. Then I can be used to give a model l' of T defined by l' p L iff I I= 
Gr( ¢(L) ). This contradicts the assumption that T is unsatisfiable. 

Definition. For a clause C, IICII is the sum of the number of occurrences of non-variable 
symbols inC, that is, individual, function, and predicate constants. IlLII is defined similarly 
for a literal L. If 

,P:T-+S 

is an instance mapping and Tis {D1 , •.• , Dn} then 11¢11 is the sum over i of liD;!!. 
Definition. Suppose (L,M) is a link in S and L and M are contained in clauses C and 

D respectively. A link operation on S with (L,M) produces two instances CO and D(}, where 
(} is the most general unifier of L and M. 

Lemma 2. Let T be an unsatisfiable set of ground instances of set S of clauses. Let ¢ 
be as in the above lemma. Suppose Gr(S) is satisfiable. Then there are clauses C1 and C2 

obtained by a link operation on S and there is an instance mapping 

such that 11¢'11 > 11¢11. 
Proof. By Lemma 1, there must exist literals L, M in clauses D1 , D2 ofT such that L 

and Mare complementary but Gr(¢(L)) and Gr( ¢(M)) are not complementary. However, 
it must be that their most general unifier (} binds at least one variable to a non-variable 
term. Then, 

II LIJ II+ II MIJ II> II L II + II M II 

Define ¢I by ¢'(D) = ,P(DIJ) forD = D1 or D = D2 , and ¢'(D) = ¢(D) otherwise. Then 
11¢'11 > 11¢11· 

Theorem. If S is an unsatisfiable set of clauses, then there is a set S11 of clauses 
obtained by a sequence of link operations on S such that Gr(S") is unsatisfiable. 

Proof. If Gr(S) is unsatisfiable, we are done. Suppose Gr(S) is satisfiable. We know 
by Herbrand's theorem that there is an unsatisfiable set T = {D1 , .•. , Dn} of ground 

10 



instances of clauses of S. Let ¢>be an instance mapping from T to S. Now, 111>11 is bounded 
by the sum over i of liD; II· By Lemma 2, if Gr(S) is satisfiable then we can perform a link 
operation on two clauses of S obtaining S' and 

¢>': T--+ S' 

with 11¢>'11 > 111>11· If Gr(S') is satisfiable, this can be repeated. Since the 111>11 are bounded, 
this process must stop. Letting S" be the set of instances at that time, Gr(S") will be 
unsatis.fiable by Lemma 2. 

Corollary. If S is an unsatisfiable set of clauses, then there is a set S" of clauses 
obtained by a sequence of hyper-link operations on S such that Gr(S") is unsatisfiable. 

Proof. For each link operation as in the theorem, we can find two hyper-links that 
will generate clauses that are instances of those generated by the link operation. However, 
these clauses will still permit an instance mapping from T, and eventually a set S" will be 
obtained with Gr(S") unsatisfiable. 

Note the simplicity of the proof, which seems simpler than the proof of the complete
ness of resolution, and is directly related to Herbrand's theorem. This suggests that the 
completeness proofs for extensions and refinements of this method (including equality and 
paramodulation) will be simpler than for resolution. Note also that our method does not 
have a factoring operation on clauses; a factor of a clause is an instance with two literals 
unified. 

5 Support Sets 

In resolution, set-of-support strategies (WRC65] are widely used. Such strategies seem es
sential for applications in which there are a large number of clauses. We also use a number 
of support strategies to restrict which hyper-links are performed while maintaining com
pleteness. One of these support strategies simulates forward chaining, another simulates 
backward chaining, and another simulates set-of-support in resolution. We permit these 
support methods to be interleaved in arbitrary orders on successive hyper-linking rounds, 
which allows us to combine forward and backward chaining, for example. We have found 
such strategies to be effective in reducing the size of the search space. We also permit 
combinations of support strategies to be used on a given round. 

We now define the various support criteria for the hyper-linking strategy. Suppose C 
is a nucleus of a hyper-link and £ 1 ... Lm are the positive literals that are electrons for C 
and M1 ..• Mn are the negative literals that are electrons for C. Thus C has m negative 
literals, linked by L;, and n positive literals, linked by Mj. Let A1 ..• Am be the clauses 
containing £ 1 .•• Lm, respectively, and let B1 ••. Bn be the clauses containing M1 ••• Mn. 
Let D be the instance of C obtained by this hyper-link. Then D is forward supported if m 
= 0 ( C is all positive) or if all A; are forward supported. D is backward supported if n = 0 
( C is all negative) or if all Bj are backward supported. D is user supported if C was user 
supported or if some A; or Bj was user supported. Initially, the user can specify a user 
support set T with the input clauses; all clauses in T are considered to be user supported 
initially. A round of hyper-linking can be restricted to be forward supported, backward 
supported, user supported, or any· combination of the three. If forward support is specified, 

11 



for example, then only forward supported hyper-links are performed. If a round is forward 
and user supported, then only instances which are both forward and user supported, are 
retained. Also, various support criteria can be interleaved. For example, [f,b] indicates 
that alternate hyper-linking rounds will be forward supported and backward supported. 

We also define distances for each kind of support. Thus a clause may have a forward 
distance, a backward distance, and a user distance. These are defined as follows: Let D 
be an instance as above. Then the forward distance of D is zero, if D is all positive, 
otherwise it is 1 + max{forward distances of A;}. The backward distance of D is zero, if 
Dis all negative, otherwise it is 1 + max{backward distances of Bj}· The user distances 
of all clauses are initially infinity, except clauses in the user support set, which have a 
user distance of zero. The user distance of Dis 1 + min{ user distances of A; and Bj}· 
These distances measure how closely related D is to various support sets. The larger the 
distance, the less related D is. We have a priority measure that can be made to depend 
on these distances, and prefer more "relevant," or closely related, clauses. 

User support seems necessary when there are large numbers of clauses. The user will 
typically specify the user support set to be those clauses that come from the theorem to 
be proven, and the other clauses will typically be axioms of some theory. User support 
restricts attention to clauses that are in some way related to the theorem. This appears to 
be necessary when there are large numbers of axioms, for otherwise many clauses will be 
derived purely from the axioms. The set of support restriction in resolution has a similar 
effect. 

We also have implemented a "throw a\¥ay" strategy, which permits a nucleus to be 
deleted in certain cases. Suppose we are doing a round of forward support. Suppose a 
nucleus Cis forward supported. Then C can be deleted after hyper-linking. The reason is 
that any instances needed for the proof, will be generated during that round, so that C is 
not needed. 

A problem with user support is that many instances become user-supported rapidly, 
since only one electron needs to be user-supported for an instance to be user supported. 
Forward support is more restrictive because all the electrons for the negative literals have 
to be forward supported in order for an instance to be forward supported. Often clauses 
have many negative literals and only one or two positive literals. Forward support has the 
problem that it does not restrict attention to the theorem. We have a method of combining 
the advantages of both kinds of support, although this has not yet been implemented. 
Given two types of support x andy, where x andy may be user, forward, or backward, we 
define x:y support as follows: Suppose Cis a nucleus of a hyper-link and Dis the instance of 
the hyper-link. Then Dis x:y supported if either Cis not x supported and Dis x supported, 
or if C is x supported and D is both x and y supported. The restriction to x:y support is 
complete for a number of combinations of x andy, including user:forward, user: backward, 
forward:backward, and backward:forward. In fact, x:y support is complete for x and y 
chosen arbitrarily from user, forward, and backward, but the given four combinations 
seem most interesting. For example, user:forward first generates user supported instances, 
and then restricts attention to their instances that are both user and forward supported. 
This is complete because eventually all clauses needed for the proof will be user supported, 
and after that, forward support can be used. Thus we restrict attention to instances related 
to the theorem, and also have the advantages of forward support. 

12 



Our distance measure is an attempt to restrict the proof size. However, we are really 
measuring the depth of the proof, not its size. This different measure may explain some 
differences in performance between our prover and the iterative deepening prover of Stickel 
(Sti86] as well as the modified problem reduction format prover (PlaSS]. Both of those 
provers measure the size rather than the depth of a proof. Sometimes it may be preferable 
to use one measure, and sometimes it may be preferable to use another. 

· 6 Unit Clauses 

We now present some special rules for unit clauses. These substantially help our prover. 
The first rule is that no instances of unit clauses are kept. That is, if L and M are two 
unit clauses, and M is an instance of L, then M can be deleted. This is actually a special 
case of unit subsumption, described earlier. The unit literal deletion rule permits literals 
to be deleted from clauses, and was also described earlier. Both rules simplify the set of 
clauses, in the sense that the size of the set of clauses is reduced, but proofs do not become 
harder to obtain. We need to treat one case specially, that is, the case in which there are 
two unit clauses L and M such that L and the complement of M are unifiable, but L is 
not an instance of the complement of M, nor is M an instance of the complement of L. For 
example, suppose that S is {{p( a, X)}, { ..,p(Y, b)}}. Then we can hyper-link with nucleus 
{p(a, X)} to obtain the instance p(a, b). However, this is deleted by unit subsumption 
since it is an instance of {p(a, X)}. In fact, we never do hyper-links with unit clauses as 
nuclei for this reason. When we groundS, we obtain the set {{p(a, $)}, {..,p($, b)}} of 
ground instances, which are satisfiable, so a proof cannot be found. Therefore we need 
a special test for the case of unit clauses L and M which are unifiable with each other's 
complement. 

We note that the UR resolution strategy (WOLB84], though incomplete, is compatible 
with the philosophy of our prover, namely, that literals from different clauses should never 
be combined. UR means "unit resulting," and this strategy only generates resolvents that 
are unit clauses. This strategy is often used by the Argonne group. We have also found 
that this strategy is effective in our prover, not surprisingly. UR resolution can be viewed 
as a kind of hyper-linking operation, in which all but one of the electrons is a unit clause, 
and the other electron is absent. For example, if the nucleus is { ..,p(X), ..,q(X), ..,r(X)} and 
the electrons for the first and third literals are p(a) and r(a), then the instance {..,p(a), 
..,q(a), ..,r(a)} is generated. The electron for the second literal ..,q(X) is missing here. The 
literals ..,p(a) and ..,r(a) are immediately deleted by unit literal deletion, resulting in the 
unit clause ..,q(a). Thus we have obtained a unit clause ..,q(a) by resolving the given clause 
with two unit clauses; this is essentially the same as UR resolution. 

7 Instance Deletion 

Since our prover does not delete instances of clauses, it may keep more clauses than a 
resolution prover. First, we note that not deleting instances can be an advantage, because 
it means that duplicate checking can be done much faster. Hashing or a discrimination net 
can be used for this purpose, in time essentially independent of the number of instances. 

13 



However, partially because of our use of Prolog as the implementation language, we have 
not fully exploited this possibility. 

We have experimented with methods of instance deletion, and have obtained some 
improvement on a few problems. For example, it is complete to only delete instances of 
non-forward supported clauses. The reason is that eventually all the instances needed will 
be forward supported, and therefore retained. Also, if the set of input clauses is a Horn 
set [HW74], then unit resolution is complete, and all instances can be deleted. In fact, 
instance deletion is complete whenever unit resolution suffices to obtain a proof, although 
this may not be known in advance. We have obtained significant improvements on some 
problems using these ideas, but significant slowdowns on others. It seems that retaining 
instances is not usually a major problem for this prover. 

Instance deletion can be made more efficient in the following way: Hyper-linking is 
performed by creating a list of all the literals that appear in clauses in S and using these 
literals as electrons in the hyper-links. If all instances are deleted, then we can delete 
literals in this list that are instances of other literals in this list, because such literals will 
produce clauses that are instances of clause produced by more general literals. A more 
restrictive but similar idea can be used if instances of non-forward supported clauses are 
deleted. 

8 The Propositional Calculus Prover 

After hyper-linking and unit simplification, the setS of instances generated so far is given to 
the propositional calculus prover. First, all variables in S are replaced by a new individual 
constant $ to obtain a set Gr(S) of ground clauses. Thus, the clause { ~p(X, Y), q(Y)} 
would be replaced by { ~p($, $), q($)}, for example. Then Gr(S) is tested for satisfiability 
using the propositional prover. If Gr(S) is unsatisfiable, then the ground instantiation 
problem has been solved and we know S is unsatisfiable. Otherwise, small proof checking 
or more rounds of hyper-linking and so on, are done. 

We have found that the time taken by the propositional prover is usually much smaller 
than the time taken by the other steps of the prover. Therefore, even if P = NP, this would 
not help most of the time. It is only for a few problems such as the "pigeonhole problems" 
[Pel86] that the propositional prover takes most of the time. The method we use is a 
modification of Davis and Putnam's method [DP60] and uses a technique similar to the 
dependency-directed backtracking methods discussed in [dK86][dK89] and to McAllester's 
RUP procedure [McA80]. However, even Davis and Putnam's method performs about as 
well most of the time. It is surprising that such a simple method should be good enough 
to make the time for propositional proving negligible most of the time. Also, since the 
only duplication of instances in our method occurs in the propositional prover, the speed 
of the prover shows that this duplication of instances by case analysis is not hurting the 
prover most of the time. 

14 



8.1 Davis and Putnam's Method 

We first describe Davis and Putnam's method, and then our modification of it. The 
following simplifications are used by both methods: 

1. A clause containing TRUE is replaced by TRUE. 

2. FALSE may be deleted from a clause containing FALSE. 

3. A clause containing both L and ~L may be replaced by TRUE. 

4. TRUE may be deleted from a set of clauses containing TRUE. 

5. A set of clauses containing FALSE may be replaced by FALSE. 

Thus, {{TRUE, p}, {FALSE,q}} simplifies to {TRUE, {q}} which simplifies to {{q}}. 
We represent Davis and Putnam's procedure by a procedure DP(S) which takes as input 

a set of propositional clauses and outputs TRUE, if S is satisfiable, and FALSE otherwise. 
This procedure is fairly simple, and may be described as follows: 

procedure DP(S) 
Simplify S to S'; 
If S' is TRUE or FALSE, return S'; 
If S' contains a unit clause C then % simplify using unit clause 

if C is {L} for positive literal L, 
replace L by TRUE in S', and simplify to obtain S"; 
return DP(S"); 

if C is { ~L} for positive literal L, 
replace L by FALSE in S', and simplify to obtain S"; 
return DP(S"); 

If S' contains a clause C containing a literal L and 
no other clause contains ..,L then % L is a pure literal 
if L is positive, replace L by FALSE in S', 

and simplify to obtain S"; 
return DP(S"); 

if L is ~M for some M, 
replace M by TRUE inS', and simplify to obtain S"; 
return DP(S"); 

If none of the above holds, then % do case analysis 
pick a positive literal L in some clause C in S'; 
replace L by TRUE, and simplify S' to S1; 

if DP(S1 ) is TRUE then return TRUE 
else replace L by FALSE, and simplify S' to S2 ; 

if DP(S2 ) is TRUE, then return TRUE 
else return FALSE; 

end DP. 

15 



8.2 Our Procedure 

Our procedure is as follows: 

procedure PC(S) 
Simplify S to S'; 
If S' is TRUE or FALSE, return S'; 
If S' contains a unit clause C then % simplify using unit clause 

if C is {L} for positive literal L, 
replace L by TRUE in S', and simplify to obtain S"; 
return PC(S"); 

if C is { -.L} for positive literal L, 
replace L by FALSE inS', and simplify to obtainS"; 
return PC(S"); 

If none of the above holds, then % do case analysis 
if S' does not contain a positive or a negative clause 
then return TRUE 
else Let C be a smallest negative clause in S'; 

pick a literal -.L in C; 

end PC. 

replace L by FALSE, and simplify S' to S1 ; 

if PC(S1 ) is TRUE then return TRUE 
else if the assignment of FALSE to L was not 

needed to show that sl is unsatisfiable 
then return FALSE % right cutoff 
else replace L by TRUE, and simplify S' to S2; 

if PC(S2 ) is TRUE, then return TRUE 
else if the assignment of TRUE to L was not 

needed to show that S2 is unsatisfiable 
then return FALSE %left cutoff 
else return FALSE; 

Our procedure is similar to the Davis-Putnam method, except that there is no test for a 
pure literal, and the clause used for case analysis is chosen as an all-negative clause, if one 
exists. However, the major difference is in the case analysis itself. If PC(S1 ) is FALSE, 
we keep track of whether the assignment to L is used in this part of the proof. If not, we 
call this a right cutoff and return FALSE, since the same proof could be done if the other 
truth value were assigned to L. If the truth assignment to L was used in the first case, but 
in the second case, PC(S2 ) is FALSE and the truth assignment to L is not used, we call 
this a left cutoff, and PC(S) returns FALSE. Right cutoffs correspond to cases in which 
our procedure does less case analysis than Davis and Putnam's method. We have observed 
a number of right cutoffs, especially on the pigeonhole problems. However, we have never 
observed a left cutoff. 

This procedure seems to be efficient. The times are about the same as Davis and 
Putnam's method, sometimes a little worse, and sometimes a lot better. For example, the 
times for the pigeonhole problems are listed in Table 1, where phS means 8 balls in 7 slots, 

16 



problem cpu( sec) 
ph3 0.017 
ph4 0.133 
ph5 0.833 
ph6 5.083 
ph7 34.400 
phS 258.750 

Table 1: Times for sample pigeonhole problems 

and so on. We can construct a resolution proof of the empty clause from the run of our 
propositional prover, as described in [Pla89]. In general, we can show that if a left cutoff 
does not occur, then our procedure runs in time polynomial in the size of its input and in 
the size of the proof it finds. The size of the proof is measured by the size of the proof 
tree. Since a proof tree may have many occurrences of the same sub-proof, the tree size 
may be larger than the length of a straight-line proof of the empty clause. Since we have 
never observed a left cutoff, in practice our procedure seems to run in polynomial time, in 
this weak sense. 

8.3 Logic Puzzles 

We have run our prover on some logic puzzles. These are solved mostly by the propositional 
prover, and our prover seems to do well on them. Although the time required to solve them 
is usually larger than that for a customized Prolog program, our input is more declarative, 
being in pure first order logic. The method of solution makes use of a different translation 
of a first-order formula into clause form than is standard for theorem provers. For logic 
puzzles, there is usually a finite domain D specified. For example, there may be a finite 
number of people, a finite number of jobs, and so on, and the problem is to match the people 
with the jobs so as to satisfy a number of constraints. Given such a domain D, we translate 
a first-order formula, containing quantifiers, into clause form in which individual constants 
and variables may appear but no function symbols of arity (number of arguments) greater 
than zero may appear. This is essentially the same as Schonfinkel-Bernays form in logic 
(LewSO], which is known to be decidable. The usual clause form translation introduces 
Skolem functions, which may make the search space infinite. 

Given such a D = {d1 , d2 , ••• , dn}, we can translate a formula (3X A[X]) into the 
formula A[d1] V A[d2] V ... V A[dnl· This can be further optimized if the formula is of 
the form (3X (p(X) A A[X])), where some subset E = { e1 , e2, ••• , em} of D satisfies p. 
For example, p(X) may mean that X is a person, and some of the d; may be persons, 
and some may be jobs, and so on. We can translate (3X) (p(X) A A[X]) into the formula 
A[e1] V A[e2] V ... V A(emJ· Using such techniques, a formula without function symbols 
may be obtained. This translation can result in an exponential size increase if there are 
many nested existential quantifiers. To avoid this, we can introduce new predicates for 
sub-formulas, as in the structure-preserving clause form translation of [PG86]. In this way, 
a polynomial size formula may be obtained. Some problems involve equality. We note that 
this can be expressed by the axiom X = X together with the axioms d; f dj for i f j. For 

17 



example, to express the fact that every person has a unique job, equality is needed. 
Once the input is in the proper form, our prover can be used. However, in order to show 

that a set H of hypotheses implies a certain conclusion R, we need to convert the formula 
(H 1\ ~(R)) to clause form and test it for satisfiability using the prover. This requires that 
the conclusion R be known. Usually in logic puzzles, finding R is the hard part. Therefore, 
we had to modify our prover to permit us to find the solutions to logic puzzles. To do 
this, we give the prover the hypotheses H. After some number of rounds of hyper-linking, 
the prover will detect that no more new instances can be generated, and that the set T of 
instances generated so far is satisfiable. At this point, the propositional prover can print 
out a model of Gr(T), that is, a truth assignment that makes all clauses in Gr(T) true. 
This model will give the solution to the logic puzzle, for example, an assignment of jobs 
to persons that satisfies the constraints. Once a model is found, a clause can be added 
which negates this truth assignment, and the prover can be run again. In this way, more 
than one solution to the logic puzzle can be found. When all such solutions have been 
found, the prover will detect that the clauses are unsatisfiable, indicating that there are no 
more solutions. For example, if a model {p, ~q, r} is found, this indicates that assigning 
TRUE to p and r and FALSE to q satisfies all the constraints. We can negate this model 
by adding the clause { ~p, q, ~r}, to the set of clauses. (Recall that a clause indicates the 
disjunction of its literals, that is, ~p V q V -.r.) 

This procedure works fairly well. For example, we can solve the jobs puzzle of [WOLB84] 
in 349.866 seconds and verify that there are no other solutions in 34 7.883 seconds. We 
can solve the Zebra puzzle of [LS86] in 1807.666 seconds and verify that there are no more 
solutions in 941.850 seconds. Only a small part of this time is spent in the propositional 
prover; the rest is spent in hyper-linking. This suggests that a systematic procedure 
for instantiating all variables to all possible elements of D, followed by the propositional 
prover, would be faster. For example, we can use replace rules to make the generation of 
the needed instances faster; for a discussion of replace rules see section 10. In fact, Davis 
and Putnam's procedure would probably do about as well on these puzzles. Therefore, 
the significance of our result is mainly that it shows the applicability of our prover to 
problems that could be solved by other known methods. However, we have found that 
other provers often have a hard time with these logic puzzles. Also, we feel that our ability 
to systematically transform a first-order formula into a form that the prover can use, makes 
this a more natural input format than the customized Prolog programs often used to solve 
such puzzles in less time. 

To illustrate the idea, let's solve the following puzzle: 

1. There are three friends: Michael, Richard, and Simon; three nationalities: American, 
Australian, and Israeli; three sports: basketball, cricket, and tennis. 

2. Each friend has a unique nationality and plays a unique sport. 

3. These friends came first, second, and third in a programming competition. 

4. Michael plays basketball, and did better than the American. 

5. Simon, the Israeli, did better than the tennis player. 

18 



6. The cricket player came first. 

Suppose c(X, Y) means X came in the Yth order, n(X, Y) means the nationality of X is 
Y, pl(X, Y) means X plays Y, pr(X) means X is a person, s(X) means X is a sport, o(X) 
means order X, and d(X, Y) means X did better than Y in the programming competition. 
The above rules are transformed to the following axioms: 

• % three persons 
1. {pr(michael)} 
2. {pr( richard)} 
3. {pr(simon)} 

• % three nationalities 
4. {n(american)} 
5. { n( australian)} 
6. { n(israeli)} 

• % three sports 
7. { s(basketball)} 
8. { s(cricket)} 
9. {s(tennis)} 

• % three orders 
10. {o(l)} 
11. { o(2)} 
12. {o(3)} 

• % each person has a nationality and no two different persons have same nationality 
13. { -,pr(P), n(P, american), n(P, australian), n(P, israeli)} 
14. { ..,n(N), ..,n(michael, N), ..,n(richard, N)} 
15. { ..,n(N), ..,n(michael, N), ..,n(simon, N)} 
16. { -.n(N), ..,n(richard, N), ..,n(simon, N)} 

• % each person plays a sport and no two different persons plays same sport 
17. {-,pr(P), pl(P, basketball), pl(P, cricket), pl(P, tennis)} 
18. { -,s(S), -,pl(michael, S), -,pi( richard, S)} 
19. { -,s(S), -,pl(michael, S), -,pl(simon, S)} 
20. { ..,s(S), -,pl(richard, S), -,pl(simon, S)} 

• % no two different persons came to the competition together 
21. { ..,pr(P), c(P, 1 ), c(P, 2), c(P, 3)} 
22. { ..,o(O), -.c(michael, 0), -,c(richard, 0)} 

19 



23. { -.o(O), -.c(michael, 0), -.c(simon, 0)} 
24. {-.o(O), -.c(richard, 0), -.c(simon, 0)} 

• % michael plays basketball, and did better than the american 
25. {pl(michael, basketball)} 
26. { -.pr(P), -.n(P, american), d(michael, P)} 

• % simon is Israeli, and did better than the tennis player 
27. { n( simon, israeli)} 
28. { -.pr(P), -.pl(P, tennis), d(simon, P)} 

• % no two different persons did the same in the competition 
29. { -.pr(Pl), -.pr(P2), -.d(Pl, P2), -.d(P2, Pl)} 

• % transitivity of did_better 
30. { -.pr(Pl), -.pr(P2), -.pr(P3), -.d(Pl, P2), -.d(P2, P3), d(Pl, P3)} 

• % the cricket player came first 
31. { -.pr(P), -.pl(P, cricket), c(P, 1)} 

The prover detects that these axioms are satisfiable, and outputs a model including the 
following literals: 

• c( simon, 1) 

• n(michael, australian), n(richard, american), n(simon, israeli), 

• pi( michael, basketball), pl(richard, tennis), pl(simon, cricket), 

• d(michael, richard), d(simon, richard) 

These literals are indeed the solution of the puzzle. This can be verified by putting the 
negation of these literals and the axioms together and running the prover to get a contra
diction. 

9 Small Proof Checking 

Some provers gain speed by looking for pairs L and M of unit clauses such that L and 
the complement of M are unifiable. If such are found, then a proof of unsatisfiability is 
immediate. Searching directly for such pairs may be much faster than performing many 
inferences until a proof of unsatisfiability is found. Our small proof checking is a gen
eralization of this "early termination" idea. Instead of looking for pairs of unit clauses, 

20 



we look for a hyper-link in which all the electrons are unit clauses. If this is found, then 
we immediately know that the clauses are unsatisfiable. For example, if the nucleus of 
the hyper-link is { -.p(X), -.q(X), r(X)} and the electrons are unit clauses p(a), q(a), and 
-.r(a), then the instance { -.p(a), -.q(a), r(a)} is generated. This will be simplified to the 
empty clause by unit literal deletion using the electrons. Searching for such hyper-links is 
much faster than doing a round of hyper-linking, since only unit electrons are used, and 
since the instances are not saved unless an empty clause is derived, which stops the search. 
We call this small proof checking because such a hyper-link corresponds to a small proof 
that the set of clauses is unsatisfiable. It turns out that it is only necessary to do this 
search for nuclei which are input clauses, that is, in the original set S of clauses. If such 
a small proof can be found for any nucleus, it can be found for an input clause. Also, 
such a small proof cannot be found unless the original theorem can be proved entirely by 
unit resolution [WOLB84], it turns out. This check for small proofs has been effective in 
reducing search times for many theorems in our prover. 

We have also implemented a more sophisticated small proof check which searches for 
small proofs of a more complicated structure. Instead of looking for a hyper-link in which 
all of the electrons are unit clauses already existing in the set of instances, we look for 
a hyper-link in which all of the electrons are either existing unit clauses, or derivable by 
one DR-resolution step. This allows us to find larger proofs, and sometimes terminate the 
search even earlier than with the simple small proof check described above. However, the 
time taken for this complicated small proof check can be much larger than the time to 
hyper-link, and so the time has to be controlled. We do this by defining the size of the small 
proof to be (d1 + d2 + ... + dn), where M1 , M2,: •• , Mn are the unit electrons, and if M; 
is an existing instance, then d; is 0, but if M; is a UR resolvent from a nucleus D;, then d; 
is one less than the number of literals in D;. Note that a small proof of size 0 corresponds 
to a proof that can be found by the simple small proof check given above. We first search 
for small proofs of size 0, then of size 1, then of size 2, et cetera, until some specified time 
bound is exceeded. We take care to avoid repeated work, so that the same work will not be 
performed for more than one size bound. Also, we avoid backtracking for ground literals, 
as in hyper-linking. Suppose the nucleus Cis {£1 , £ 2 , ••• , Lm}· Then we pick some clause 
D1 , unify a literal of D 1 with the complement £ 1 , and try to unify the other literals of 
D1 with complements of unit clauses. Then we pick another clause D2, unify one literal 
of D2 with £ 2 , and try to unify the other literals of D2 with complements of unit clauses, 
and so on. At each step we keep track of the total size of the proof constructed so far. If 
all clauses D; can be found for all literals in C, and all their literals can be unified with 
complements of unit clauses as specified, then we have a small proof and we know S is 
unsatisfiable. 

There are some refinements to this idea. First, time control needs to be done carefully 
because the time to search for one size bound may be very large. Therefore, we check the 
total time used so far before and after unifying the literals of each chosen clause D;. This 
ensures that the gaps between time checks are not too large. Also, we can delete instances 
of clauses before doing small proof checking. That is, if clause B1 is an instance of B2, then 
we need not consider B1 at all during small proof checking. We also order the clauses by 
number of literals. A simplest small proof is always found first if it exists. A refinement we 
haven't implemented yet is to not count ground literals of D; in the size bound. Ground 

21 



literals don't cost much time, since no backtracking is done, so a proof with many ground 
literals can be found quickly. We may consider not only ground literals in D; but literals 
that are ground literals by the time they are linked, because of the substitution that has 
been applied to D; so far. A further refinement would be to use something like Stickel's 
PTTP [Sti86] when searching for small proofs, since the MESON strategy used by PTTP 
is complete and would help for some problems that cannot be helped by our current small 
proof check. However, this might also cost extra time. 

10 Replace Rules 

We have a facility in the prover which simulates the idea of replacing predicates by their 
definitions. This has yielded spectacular improvements in efficiency in set theory problems, 
and also helps temporal logic theorems. It seems likely to help obtain harder theorems such 
as the intermediate value theorem, also. This idea was used in Potter and Plaisted [PPSS], 
but fits in more naturally with the current prover because a special tautology tester does 
not need to be written. A number of provers can solve set theory problems quickly using the 
idea of replacing predicates by their definitions, using explicit quantifiers. The problem 
for us with replacing predicates by their definitions is that the definitions may contain 
quantifiers. Since we are working in a quantifier-free setting, these definitions cannot 
be directly used. A quantifier-free prover has advantages because a simple unification 
algorithm may be used. However, we have found a way to get the same effect of replacing 
predicates by their definitions in this Skolemized, quantifier-free setting. 

In more general terms, the replace rule facility permits us to add instances without 
general search. These rules permit information to propagate more quickly than by hyper
linking. We may consider the replace rules like learned responses, while hyper-linking is 
like general search or unguided thought used in the absence of specific knowledge of what 
to do. The replace rules may also be viewed as clause production rules, that is, production 
rules in a clausal setting. Another way to look at it is to view the replace rules as focusing 
attention on objects that have already been constructed. The replace rules usually permit 
a large number of inferences that do not construct new objects. Only when these are 
exhausted, are new terms constructed by hyper-linking. This seems similar to the general 
philosophy of our prover, namely, to separate the process of combining literals from the 
process of reasoning about the instances already obtained, and also seems to correspond 
to human problem solving methods. Sometimes the replace rules construct new terms, but 
this can be done in a controlled way. 

Suppose we have defined a predicate p(X) as ( q(X) 1\ r(X) ). We would like to replace 
p(X) by ( q(X) 1\ r(X)) everywhere. We would also like to do this if p appears negated in a 
clause. Thus ~p(a) should be replaced by ~(q(a) 1\ r(a)). Note that the definition of p(X) 
may be expressed by the formula p(X) = (q(X) 1\ r(X)). This corresponds to the following 
clauses: 

1. { ~p(X), q(X)} 

2. { ~p(X), r(X)} 

3. {p(X), ~q(X), ~r(X)} 

22 



Suppose the clause { --,s(b), p( f(b))} is generated. We get the effect ofreplacing p( f(b)) by 
its definition, by adding the instances {--,p(f(b)), q(f(b))} and {...,p(f(b)), r(f(b))} to the 
set of clauses. These clauses logically imply the desired result (...,s(b) V (q(f(b)) 1\ r(f(b))), 
which is obtained by replacing p(f(b )) in the clause { ...,s(b ), p(f(b))} by its definition q(f(b )) 
1\ r(f(b)). Similarly, if a clause containing """'P(c) is generated, then we get the effect of 
replacing p(c) by its definition, by adding the instance {p(c), --,q(c), ...,r(c)}. Then it may 
be necessary to further replace q( c) and r( c) by their definitions, if they exist. We call the 
literals of clauses 1, 2, and 3 above containing p or """'P the distinguished literals since they 
are the literals being defined. They are treated differently than the other literals in the 
clause. 

Formally, we define a replacement like a hyper-link, with some modifications. 
Definition. If C = { L1 , ... , Lm} is a clause in a set S of clauses, and {Lt. ... , Lk} 

are the distinguished literals of C, then a replacement of C in Sis a set {(£1 , M1), ... , 

( Lk, Mk)} of links in S such that there exists a substitution 0 such that L;0 and M;0 
are complementary for all i, 1 ::; i ::; k. 0 allows the variables in M; substituted only by 
individual constants. A most general such 0 is called the substitution of the replacement 
and Ce for this 0 is called the instance of the replacement. We call C the nucleus of 
the replacement and we call the M; (or clauses D i containing M;) the electrons of the 
replacement. The notation 

will be used to indicate the replace rule 

{L1 , L2 , •• • , Lk> N1 , Nz, .. . , Nn} 

where L1 , L2 , ••• , Lk are the distinguished literals and M; is --,£;, for 1 ::; i ::; k. Thus -> 

represents implication and the distinguished literals are to the left of the arrow. 
A distinguished literal may be a context literal that is deleted from the instance when 

generated. Context literals sometimes are useful for reducing the number of instances that 
can be generated from a replace rule. 

The clauses {--,p(f(b)), q(f(b))}, {--,p(f(b)), r(f(b))}, and {p(c), ...,q(c), ...,r(c)} are in
stances of appropriate replacements indicated above. Our definition of a replacement 
allows more than one literal to be distinguished. This permits a more general form of 
definition that combines literals in different clauses. 

Sometimes a definition involves a quantifier. If p(X) is defined as (3Y q(X, Y)), then we 
can express this definition by the formula (p(X) = (3Y q(X, Y))), which after conversion 
to clause form yields the clauses 

1. { """'P(X), q(X, f(X))} 

2. {p(X), ...,q(X, Y)} 

These would be represented in our notation as the rules 

1. p(X) -> q(X, f(X)) 

2. """'P(X) -> ...,q(X, Y) 

23 



The literals containing p or ~pare the distinguished literals. If a literal p(g(a)) appears 
in a clause, then the first clause results in the instance {~p(g(a)), q(g(a), f(g(a)))} being 
added by replacement. If a literal not p(c) appears in a clause, then a replacement with 
the second clause as a nucleus results in the instance {p( c), ~q( c, Y)} being added to the 
set of clauses. 

Our prover performs replacements after each round of hyper-linking, and once before 
the first round of hyper-linking. Replacements are done until no new instances may be 
generated. Note that replacement may terminate in cases where the usual replacement of 
predicates by their definitions would not. For example, if a predicate p(X, Y) is defined 
to be p(Y, X), then replacement of p(a, b) by its definition would successively yield p(b, 
a), and p(a, b), and p(b, a), ad infinitum. However, the replace rules would only generate 
the instances {~p(a, b), p(b, a)} and {~p(b, a), p(a, b)}, and would then stop. 

There is also a technicality that restricts the use of replace rules. Namely, when we 
apply a replace rule {1, M, N} with distinguished literal L, generating an instance {L', 
M', N'}, then the literal L' may not be used as an electron .in further replacements. This is 
because this literal represents something that is being replaced, not a part of a definition, 
and we only want the definitions themselves to be available for future replacement. 

We now show how replace rules would help in the proof of a simple set theory problem. 
Consider the following theorem 

VX, Y(XUY = YUX) 

which states that the union operation is commutative. The replace rules we needed are 
listed below: 

l.X=Y-.Xs;:;Y 

2. X = Y __, Y s;; X 

3. ~(X = Y) --> ~(X s;; Y), ~(Y s;; X) 

4. X s;; Y --> ~(Z E X), Z E Y 

5. ~(X s;; Y) __, f(X, Y) E X 

6. ~(X s;; Y) __, ~(f(X, Y) E Y) 

7. Z E (X U Y) --> Z E X, Z E Y 

8. ~(Z E (XU Y)) --> ~(Z EX) 

9. ~(Z E (XU Y)) --> ~(Z E Y) 

These rules are obtained easily from the definitions of =, s;;, and U. We transform the 
negation of the theorem into the clause 

{~(aUb = bUa)} 

The following clauses are generated from the replace rules before the first round of hyper
linking: 

24 



1. {-.((aU b)~ (b U a)), -.((b U a) ~(aU b))} 

2. {(aU b)~ (b U a), f((a U b), (b U a)) E (aU b)} 

3. {(aU b)~ (b U a), -.(f((a U b), (b U a)) E (b U a))} 

4. {(b U a)~ (aU b), f((b U a), (aU b)) E (b U a)} 

5. {(b U a)~ (aU b), -.(f((b U a), (aU b)) E (aU b))} 

6. {-.(f((a U b), (b U a)) E (aU b)), f((a U b), (b U a)) E a, f((a U b), (b U a)) E b} 

7. {f((a U b), (b U a)) E (b U a), -.(f((b U a), (aU b)) E b} 

8. {f((a U b), (b U a)) E (b U a), -.(f((b U a), (aU b)) E a} 

9. {-.(f((b U a), (aU b)) E (b U a)), f((b U a), (aU b)) E b, f((b U a), (aU b)) E a} 

10. {f((b U a), (aU b)) E (aU b), -.(f((b U a), (aU b)) E a} 

11. {f((b U a), (aU b)) E (aU b), -.(f((b U a), (aU b)) E b} 

The propositional calculus prover decides that the above clauses are unsatisfiable. There
fore, we have proved the theorem. That is, the union operator is commutative. Notice 
that we didn't use hyper-linking. 

10.1 Application to the Intermediate Value Theorem 

We now show how replace rules may help to guide the search for a proof in a problem 
that is beyond the reach of most theorem provers. Following are first-order axioms for the 
intermediate value theorem, which says that if a continuous function f is negative at a and 
positive at b, and a ::; b, then there is a point X between a and b such that f(X) = 0. Here 
p(X, Y) means X ::; Y. 

• % two end points 
{p(a, b)} 
{p(f(a), 0)} 
{p(O, f(b))} 

• % least upper bound axioms 
{p(X, 1), -.p(X, b), -.p(f(X), 0)} 
{p(l, X), p(f(g(X)), 0)} 
{p(l, X), p(g(X), b)} 
{p(l, X), -.p(g(X), X)} 

• % inequality axioms 
{p(X, X)} 
{p(X, Z), -.p(X, Y), -.p(Y, Z)} 
{p(X, Y), p(Y, X)} 

25 



• % interpolation axioms 
{p(X, Y), -.p(X, q(Y, X))} 
{p(X, Y), -.p(q(Y, X), Y)} 

• % continuity axioms 
{p(f(X), 0), --.p(a, X), -.p(X, b), -.p(X, h(X))} 
{-.p(f(Z), 0), p(Z, h(X)), -.p(a, X), -.p(X, b), -.p(Z, X), p(f(X), 0)} 
{p(O, f(X)), -.p(a, X), -.p(X, b), -.p(k(X), X)} 
{-.p(O, f(Z)), p(k(X), Z), -.p(a, X), -.p(X, b), -.p(X, Z), p(O, f(X))} 

• % negation of the theorem 
{ -.p(f(X), 0), -.p(O, f(X))} 

The least upper bound axioms assert that I is the least upper bound of the set of X such 
that f(X) :::; 0 and X :::; b. Call this set A. The interpolation axioms state that there is a 
real number between any two real numbers. The continuity axioms state that if f(X) < 0 
then there is an interval following X such that f(Z) < 0 for all Z in this interval, and if f(X) 
> 0 then there is an interval preceding X such that f( Z) > 0 for all Z in this interval. The 
proof goes like this: Suppose f(l) < 0. Then there is some interval following I such that 
f(Z) < 0 for Z in this interval. This interval cannot include b since f(b) ;::: 0. Then there 
is some Z in this interval, Z :::; b, such that f(Z) < 0, by the interpolation axioms. This 
contradicts the fact that I is the least upper bound of A. Suppose f(l) > 0. Then there is 
some interval preceding I such that f(l) > 0. Then any Z in this interval is an upper bound 
of A, hence I is not the least upper bound of A. This completes the proof. 

One would think that such a simple proof would be easy for a computer. However, most 
provers cannot obtain this proof. One of the few that can is the prover of Bledsoe and 
Hines [BHSO] at Austin, which uses special inference rules for dense linearly ordered sets. 
Note that most of the inference steps involve reasoning about terms that have already been 
constructed, and not many involve constructing new terms, except in certain reasonable 
ways. We can formalize this by converting the clauses to replace rules, and then the above 
proof can be entirely obtained by the application of replace rules. We obtain the following 
replace rules from the axioms: 

1. p(X, b), p(f(X), 0) -+ p(X, !) 

2. -.p(l, X) -+ p(f(g(X)), 0) 

3. --.p(l, X) -+ p(g(X), b) 

4. -.p(l, X) -+ -.p(g(X), X) 

5. -.p(f(g(X)), 0) -+ p(l, X) 

6. -.p(g(X), b) -+ p(l, X) 

7. p(g(X), X) -> p(l, X) 

8. -.p(Y, X) -+ p(X, Y) 

26 



9. p(a, X)--> -.p(X, b), p(f(X), 0), -.p(X, h(X)) 

10. p(a, X), p(X, b), -.p(f(X), 0), p(Z, X), -.p(Z, h(X))--> -.p(f(Z), 0) 

11. p(a, X)--+ -.p(X, b), p(O, f(X)), -.p(k(X), X) 

12. p(a, X), p(X, b), -.p(O, f(X)), p(X, Z), -.p(k(X), Z)--> -.p(O, f(Z)) 

13. p(a, X), p(X, b), p(X, Z), -.p(O, f(X)) --> p(k(X), Z), -.p(O, f(Z)) 

14. p(f(X), 0) --> -.p(O, f(X)) 

15. p(O, f(X)) --> -.p(f(X), 0) 

16. p(X, Y), p(Y, Z) --> p(X, Z) 

17. -.p(X, Y) --> -.p(X, q(Y, X)) 

18. -.p(X, Y) --> -.p( q(Y, X), Y) 

These replace rules are fairly natural. For example, the least upper bound I is defined in 
terms of whether p(X,l) and p(l,X) are true for arbitrary X. Hence it is natural to make 
the literal containing p(X,l) or p(l,X) the distinguished literal. 

Using these axioms and replace rules, the prover obtains the following instances among 
others: 

1. {p(a, l)} 

2. { -.p(l, b), p(f(l), 0), -.p(l, h(l))} 

3. {p(l, h(l)), p(f(g(h(l))), 0)} 

4. {p(l, h(l)), p(g(h(l)), b)} 

5. {p(l, h(l)), -.p(g(h(l)), h(l))} 

6. {p(l, b), p(g(b ), b)} 

7. {p(g(b ), b), p(l, b)} 

8. {..,p(g(h(l)), b), -.p(f(g(h(l))), 0), p(g(h(l)), l)} 

9. {-.p(l, b), p(O, £(1)), -.p(k(l), l)} 

10. { --.p(O, f(l)), -.p(f(l), 0)} 

11. {-.p(l, b), p(f(l), 0), -.p(g(h(l)), 1), p(g(h(l)), h(l)), -.p(f(g(h(l))), 0)} 

12. { ..,p(f(l), 0), -.p(O, f(l))} 

13. {-.p(l,b), p(O, f(l)), p(k(l), b)} 

14. {p(k(l), 1), -.p(k(l), q(l, k(l)))} 

27 



problem cpu(sec) 
gcd 74.516 
lcm 13.700 
am8 148.066 

Table 2: Times for some other hard problems 

15. {p(k(l), I), ..,p(q(l, k(l)), I)} 

16. {p(k(l), q(l, k(l))), p(q(l, k(l)), k(l))} 

17. {p(q(l, k(l)), I), p(l, q(l, k(l)))} 

18. {-.p(l, b), p(O, f(l)), ..,p(l, q(l, k(l))), p(k(l), q(l, k(l))), -.p(O, f(q(l, k(l))))} 

19. {p(O, f(q(l, k(l)))), p(f(q(l, k(l))), 0)} 

20. {-.p(q(l, k(l)), k(l)), ..,p(k(l), b), p(q(l, k(l)), b)} 

21. {..,p(q(l, k(l)), b), -.p(f(q(l, k(l))), 0), p(q(l, k(l)), 1)} 

These instances are detected unsatisfiable by the propositional calculus prover. The prover 
spends 1467.216 seconds for finding this proof. 

It seems that a proper use of replace rules helps significantly in getting this proof. Note 
that the replace rules are fairly natural. Even the instantiation of Z to the term of the 
form q(X,Y) is fairly natural; the idea is that if you know there is a non-empty interval 
(X, Y) in which some property holds, then this property holds for the element q(X, Y) 
of this interval. This idea is similar to the variable elimination idea of Bledsoe, but we 
think, more natural. We believe that similar techniques will also help with am8 and other 
problems in analysis discussed in [WB87]. 

If we use context literals in the two rules for interpolation something like 

• Y <X, -.(Y <c), -.(c <X)-> q(Y, X) <X 

• Y <X, ..,(y <c), ..,(c <X) -> Y < q(Y, X) 

the proof can be obtained in 137.783 seconds. The literals ..,(Y < c) and •(c < X) are 
context literals here. These rules only generate the term q(Y, X) if there is a need for a 
Z in the interval (Y, X), so the search space is smaller. We also tried some other hard 
problems, such as am8 (WB87]. The result is listed in Table 2. 

We have not addressed the issue of termination. For this example, it is possible that the 
rules we have chosen, cause the generation of instances to fail to terminate. This problem 
can be addressed with a priority system described in section 11. However, we do give some 
general conditions guaranteeing termination. 

28 



10.2 Termination of Replacement 

Here we apply some ideas similar to those used to show termination of term rewriting 
systems [Der82] to prove termination of replacements. 

Definition. An ordering t on literals is called a replacement ordering if this ordering 
is reflexive and transitive and has the property that if L t M then for all substitutions 0, 
L0 t M0. Also, we require that for any literal L, the set of M such that L t M, must be 
finite. 

For example, we can say that L t M if the size of L is at least as large as that of M, 
and if each variable in M occurs at least as many times in L as in M. Thus p(X, f(X)) t 
q(X, X) but we don't have p(X, f(Y)) t q(X, X). The reason is that the substitution of a 
large term for X could make q larger than p. 

Definition. A set R of replace rules satisfies the termination condition for a replace
ment ordering t if for all rules r in R, for all literals L in r, if L is not a distinguished 
literal of r then there is a distinguished literal M of r such that M ?: L. 

Theorem. Let R be a set of replace rules and t be a replacement ordering such that 
R satisfies the termination condition fort. Then replacement using R always terminates. 

Proof. Let S be the (finite) set of clauses to which replacement is applied. Whenever 
an instance r' of a replace ruler is generated, for every literal L' in r', there exists a literal 
L in S such that L t 1'. This can be shown by induction on the number of replacements. 
Since for each L in S, the set of L' such that L t 1', is finite, there are only finitely many 
literals that can appear in instances r' obtained by replacements. Thus the number of 
instances r' is finite, and replacement will eventually stop. 

In general, a set of replace rules will terminate if the distinguished literals are larger than 
the other literals of each rule, in some reasonable ordering. Rules like p(X, Y) -+ p(Y, X) 
do not cause a problem; it is only rules like p(X) -+ p(f(X)) that cause a problem, because 
the non-distinguished literal is larger than the distinguished literal in any replacement 
ordering. 

11 The Sliding Priority System 

The prover has a priority system that relieves the user of the necessity of setting a maximum 
size bound for instances that may be generated by hyper-linking. In effect, the prover 
automatically sets the bound in a reasonable way. This feature has made the prover easier 
to use, as well as making many proofs easier to obtain. This idea has been explained 
in another context in the paper [NP90]. The same effect could be obtained by best-first 
search, but our method permits a simpler control structure. This simpler control structure 
(breadth-first search) fits in better with the hyper-linking strategy. 

We begin with an example. Suppose we decide in advance that some number (say 3) of 
clauses is all that we can store. Each clause has a priority, which is an integer giving its size 
or some other measure of complexity. We assume that for each n, there are only finitely 
many clauses having priority bounded by n. Suppose we want to set a priority bound so 
that no more than 3 clauses will be retained. Clauses with a priority that is too large will 
be deleted. However, we do not know in advance what the priority bound will be. Suppose 
we generate clauses of priority value 4, 10, 5, 7. After these four clauses are generated, 

29 



we know that all clauses of size greater than 7 cannot be retained, since there are three 
clauses with size 7 or less. Therefore, the priority bound is 7. Next, we generate clauses 
of size 12 and 8, which are deleted because their priorities are larger than 7. Finally, we 
generate a clauses of priority 6. The priority bound is now 6, and the clause of priority 7 
is deleted. Suppose there are no more clauses generated. We call this a round with a work 
bound of 3. This is called sliding priority because the priority bound keeps decreasing, or 
"sliding," in each round. If no proof can be found with a work bound of 3, we may double 
the work bound and try again. Eventually, the work bound will be large enough to obtain 
a proof, if the strategy is complete. Notice that the prover is automatically setting the 
priority to insure that the work bound is not exceeded. Notice also that the total number 
of clauses generated with work bound 3 is 7. The number of clauses that are generated 
and not deleted right away is 5. We call this the actual work for work bound 3. If a clause 
is deleted when it is generated, we don't count it in the actual work. 

This idea is attractive, and has enabled us to get a number of proofs more easily than 
without sliding priority, since the behavior of a prover is often very sensitive to the priority 
bound chosen. This idea permits the prover to be more self-guiding, requiring less input 
and insight from the user. However, there is a problem with sliding priority, namely, that 
there is no necessary relationship between the work bound and the actual work for a round 
of search. For example, if the first clause generated has priority 100, the second has priority 
99, the third has priority 98, ... , and so on, the actual work can be 100 for a work bound 
of 3 (or even 1). If the first clause has priority 10000, the second clause has priority 9999, 
and so on, the actual work can be 10000 for a work bound of 1. There is no upper bound 
to the actual work for a given work bound. 

We solve this problem by letting the actual work for a round be the sum of the priorities 
of the clauses generated, rather than the number of clauses generated. Presumably it takes 
more work to generate and store a clause of size 100 than a clause of size 10. If the work 
bound is 3, then a clause of size 100 (or 10) would be deleted immediately. With this 
approach, we can give a good upper bound for the actual work for a given work bound. 
Suppose the work bound is b. Then the worst case for actual work is when a clause of 
size b is generated, then a clause of size b-1, then a clause of size b-2, ... , then 2 clauses 
of size b/2, then 2 clauses of size b/2 - 1, ... then 3 clauses of size b/3, et cetera. The 
number of clauses generated is then about b/2 + 2(b/2- b/3) + 3(b/3 - b/4) + ... + (b
l)(b/(b-1)- b/b). This simplifies to b/2 + b/3 + b/4 + ... + b/b, or, b(1/2 + 1/3 + 1/4 
+ ... + 1/b ), which is proportional to b log b. Thus there is a reasonable upper bound for 
the number of clauses generated in a round. Also, the sum of the priorities of these clauses 
is easily seen to be proportional to b2 • This method of counting the work per clause is 
implemented in our prover. 

It is possible to have a more general sliding priority than this, although we have not 
implemented this idea. Suppose there are two parameters for a clause, such as its size 
and its depth of nesting of function symbols. Suppose we want to set bounds on the size 
and depth to insure that a work bound is not exceeded. However, we do not restrict the 
relationship between size and depth. This gives a kind of two-dimensional sliding priority. 
Something can still be done in this case. For example, suppose the work bound is 3. To 
make the illustration simpler, suppose that we only count each clause as one unit of work, 
regardless of its size and depth. Suppose 3 clauses have been generated, and all have size 

30 



less than 10 and depth less than 3. Then a clause of size 11 and depth 5 cannot be retained. 
The reason is that this clause can only be retained if the size and depth bounds are at 
least 11 and 5, respectively, and in this case, four clauses will be retained, exceeding the 
work bound. In the same way, any clause with size at least 10 and depth at least 3 should 
be deleted. This kind of a sliding priority poses interesting problems in data structures, 
to be able to efficiently decide whether a clause should be retained. 

In general, we may have a partial ordering -< on clauses such that if C ::; D, then if D is 
retained, C should be also. For example, if C has smaller size and depth than D, then C::; 
D in our above example. Or, there may be 3 measures of complexity of a clause, and we say 
C ::; D if all measures for D are at least as large as for C. Thus this formalism generalizes 
one, two, and higher dimensional sliding priorities, and even priorities computed as some 
linear sum of measures of C. In this case, we can delete a clause D if the number of clauses 
C with C ::; D, is at least b. Or, if we associate a non-unit work w(C) with each clause 
C, we can deleteD if the sum of w(C), for C ::; D, is at least b. However, for this system 
we need to consider the issue of whether ::; is efficiently computable, and whether the 
condition for deleting a clause is efficiently computable. 

We have found that our prover is very sensitive to the choice of priority measure. For 
example, we have tried both the maximum literal size in a clause, and the sum of literal 
sizes, as priority measures. Some problems that are easily solved with one measure cannot 
be solved with the other, and vice versa. We have also used the support distances as 
priority measures. In some tests, we have compared whether the maximum of a collection 
of priority measures is a better measure than a linear .sum. For example, we can let the 
priority of a clause be the maximum of ci x Pi where ci are positive coefficients and Pi are 
various complexity measures of the clause. The maximum often seems better, though we 
now use maximum literal size as our default, which is just one measure of the complexity of 
a clause. Sometimes the prover works much better when only clauses with a small number 
of variables are used. Therefore it may make sense to allow the user to weight variables 
more highly than constant symbols when computing the size of a term. In fact, it may 
often be useful to only retain ground instances during hyper-linking. 

The sliding priority idea can be used to control replacements. Some replace rules may 
not terminate. To handle this, we can use sliding priority and let each instance of a replace 
rule contribute to the work for the prover. When the work bound is exceeded, then replace 
rule instances with a high priority will be deleted. Since there are only a finite number of 
instances with a bounded priority, the replacement round will eventually stop. 

For some problems we found an amusing dependence of the time taken to find a proof 
on the time limit allocated to the prover. The instances are generated in order, with 
the nuclei having smallest number of literals used first. This is a simple way of ordering 
instances by priority. When the time limit is exceeded, those instances generated so far are 
used in unit simplification, small proof checking, and propositional calculus satisfiability 
testing. Some problems were proven more quickly with a small time bound than with a 
large one because of this. 

31 



12 The Top-Level Supervisor 

It is important that a theorem prover be usable by those with no knowledge of theorem 
proving strategies, since few users have such knowledge. Also, some applications of a 
prover should be fully automatic, and a human may not be available to set the options 
properly in a theorem prover. We have developed a top-level supervisor to entirely free the 
user from the necessity of understanding the prover or the merits of different strategies. 
This supervisor embodies much of our expert knowledge about how to prove theorems. Of 
course, much of our knowledge is also embodied in the prover itself. With the top-level 
supervisor, all the user has to do is input his problem in clause form, and the prover does 
the rest. Note that the use of sliding priority already frees the user from the task of setting 
size bounds. The top-level prover also frees the user from the task of choosing a strategy. 

To use the top-level supervisor, the user sets a minimum and a maximum time bound; 
these are set to 100 seconds and 1600 seconds, respectively, if the user does not set them. 
The prover also has a list of strategies to try on each problem. When a problem is tried 
using the top-level supervisor, each strategy on the list is tried in order, with a time limit 
of 100 seconds. Also, sliding priority is used for each strategy. If a proof is not found, 
the time limit is multiplied by two, and the process is repeated. This continues until the 
maximum time bound is exceeded. Often, one strategy is so much better than another 
for a problem, that it makes sense to try them all, with an increasing time bound, rather 
than just to try the first strategy with a large time bound, then the second strategy with 
a large time bound, and so on. 

Some strategies, like unit-resulting resolution, are not complete but are very fast when 
they are applicable. Thus, unit-resulting resolution appears early on the list. Some strate
gies are complete for restricted kinds of clauses. For example, deleting all instances of a 
clause is complete for Horn sets, but not in general. The prover will apply such strategies 
when appropriate. Some strategies require a user support set to be given. If this is not 
given, these strategies are omitted. Some strategies are not usually helpful, but may be 
good at times. To deal with this, we permit a time multiplier to be specified with each 
strategy. If this multiplier is .5, then the time bound is multiplied by .5 when using the 
strategy. On the initial run, the time bound is 100 seconds, so only 50 seconds are used 
on the initial run for strategies with a multiplier of .5. Sometimes it is helpful to set a 
bound on the number of literals in a hyper-link instance. We therefore include in the list 
of strategies, settings of this bound to 2 and 3. The combination of user support and 
unit-resulting resolution has been spectacularly effective on some problems, so we include 
it in the list. Also, the combinations of forward and backward support on alternate rounds 
have been effective. All these combinations, and others, are tried in a reasonable order, 
with increasing time bounds as specified above. 

We have found that this top-level supervisor often reduces the total time required to 
find a proof. When we ran it on some problems, we found that unit-resulting resolution 
often obtained a proof faster than our best previous time. The inconvenience of trying 
a strategy that may not be complete, inhibited us from using it on these examples, but 
the top-level supervisor removed that inconvenience. Therefore we feel that this idea is a 
significant enhancement of the prover, eliminating the need for some tedious bookkeeping 
by a human in trying a sequence of strategies. 

32 



We also have a batch mode for the top-level supervisor, in which a list of problems can 
all be run together. In this mode, the first strategy with the first time bound is tried on 
all problems, then the second strategy with the first time bound is tried on all problems 
not already solved, and so on. In this way, the theorems that can be proven quickly are 
solved early, and the theorems that are difficult do not delay finding the easy proofs. 

13 Temporal Logic 

We have applied our prover to temporal logic theorems, with some success. Special meth
ods for temporal logic are known [SC85], but it seemed that a general theorem prover 
might perform better in some cases, and also permit an easier transition to first-order 
temporal logic, for which no decision procedure exists. The use of replace rules has been 
especially helpful for these theorems, and in fact our experience with temporal logic has 
refined our replace rule mechanism substantially. 

We consider discrete linear time temporal logic, with D (henceforth),<> (eventually), 
U (until), and 0 (next state) operators. Each formula is true at various times; we use 
at(F, T) to indicate that a formula is true at timeT. To show a formula F is always true, 
we prove at(F, now) where "now" is a new constant symbol. The operators are defined in 
the following way: 

at(DF, T) =: (VU) U 2: T II at(F, U) 
at( <>F, T) =: (:JU) U 2: T II at(F, U) 

at(QF, T) =: at(F, s(T)), where s(T) is T+l 
at(FUG, T) =: (:JX) ((W) T S Y < X --> (p(Y) II ~q(Y))) II q(X)) 

at(FI\G, T) =: (at(F, T) II at(G, T)) 
at(FVG, T) =: (at(F, T) V at(G, T)) 

at(..,F, T) =: ..,at(F, T) 

With these definitions, the reader may verify that formulas such as Dp implies DQp are 
true. Such a language is useful for reasoning about concurrent computer programs, in 
which time is important. 

This formalism is ideally suited to replace rules. We can express the definition of 
henceforth by a clause, as follows: . 

-,at(DF, T), ..,(U 2: T), at(F, U) 

This can be expressed as a replace rule as follows: 

at(DA, T) -+ ..,(U 2: T), at(A, U) 

The following rule is also sometimes useful: 

at(DA, T), U 2: T --> at(A, U) 

We also have rules for pushing in negation, as follows: 

at( -,DA, T) --> at(<>( -,A), T) 

33 



To deal with eventualities, we define first(F, T) to be the first time U such that U :0:: T 
and such that at(F, U). We then axiomatize the fact that at(F, W) does not hold for W 
such that U > W :0:: T. This gives us the following replace rules: 

at(<>A, T) -> at(A, first(A, T)) 
at(<>A, T) -> first(A, T) :::: T 

at(<>A, T)-> -,(U :0:: T), U :0:: first(A, T), at(-,A, U) 
at(-,<>A, T) -> at(D(-,A), T) 

For next state we have the rules 

at(QA, T) -> at(A, s(T)) 
at(QA, p(T)) -> at(A, T) 

at(..,QA, T) ...., at(O(..,A), T) 

Also, we have some rules for until, as well as some axioms and rules for inequalities, 
equalities, successor s(T), and predecessor p(T) of timeT. 

We illustrate how a simple proof may be found entirely by replacement using these 
rules. Consider the theorem 

DQw->QDw 

To prove it, we negate it and show unsatisfiability. Thus we get the unit clause 

{at(..,(DQw-> QDw), now)} 

Suppose we have the replace rule X :0:: s(Y) -> p(X) :0:: Y and also replace rules as above 
for temporal operators. Replace rules for logical connectives and negation convert the 
negation of the theorem to the two unit clauses 

• {at(DQw, now)} 

• {at(..,QDw, now)} 

We then obtain successively 

• {at(Q-,Dw, now)} 

• {at(-,Dw, s(now))} 

• {at(<>..,w, s(now))} 

• {first(..,w, s(now)) :::: s(now)} 

• {at(..,w, first(..,w, s(now)))} 

• {..,at(w, first(..,w, s(now)))} 

• {p(first(..,w, s(now))) :0:: now} 

• {at(Qw, p(first(..,w, s(now))))} 

34 



• {at(w, first(~w, s(now)))} 

Note that clauses {~at(w, first(-,w, s(now)))} and {at(w, first(-,w, s(now)))} are comple
mentary. 

Using these axioms and rules plus some axioms and rules for equalities and inequalities, 
we have found a number of proofs of propositional temporal logic theorems very fast. Many 
of these proofs have been found essentially without search, entirely by applying replace 
rules to the input clauses and using the propositional calculus decision procedure. For this 
work, as elsewhere, we have found the ground substitution of replacement to be useful; this 
means that only replacements are done in which all the electrons are ground literals. For 
example, we solved the temporal theorem 

DOw......, DOw 

in 3.983 seconds. For the times for other temporal logic theorems, see Table 3. 
It is possible to have nontermination of replace rules if care is not taken. For example, 

suppose the theorem contains the unit clause at(D<>p, now). Suppose we also have the 
following replace rules: 

at(DF, T), U ?: T ......, at(F, U) 
at(<>F, T) -> at(F, first(F, T)) 
at(<>F, T) ......, first(F, T) ?: T 

X ?: Y, Y ?: Z ......, X ?: Z 

Then, using replacement and unit simplification, we can derive the literals 

• at(<>p, now) 

• at(p, first(p, now)) 

• first(p, now) ?: now 

• at( <>p, first(p, now)) 

• at(p,first(p, first(p, now)) 

• first(p, first(p, now)) ?: first(p, now) 

• first(p, first(p, now)) ?: now 

• at( Op, first(p, first(p, now))) 

.... 
and so on. 

We have often found that in order to prove A = B, it is much faster to prove A implies 
B and B implies A separately. This could be built in to the prover automatically if desired. 

One advantage of this formalism is that by modifying the axioms and strategies, we 
obtain many different proof procedures for temporal logic. Correctness is not a problem 
because the underlying search is done by a theorem prover. This contrasts with special 

35 



no problem cpu(sec) 

1 <>ow -> DODw 6.383 
2 ~<>w = o~w 6.617 
3 <>w V <>~w 0.683 
4 w-> <>w 0.500 
5 Ow-><>w 1.783 
6 Ow:: DOw 3.050 
7 <>w = <><>w 3.367 
8 <>~w =~ow 1.583 
9 D( w1 --+ w2) -> ( Ow1 -> Ow2) 3.067 

10 D( w1 1\ w2) = (Dw1 ) 1\ (Dw2) 10.250 
11 <>(w1 V w2) = (<>w1) V (<>w2) 9.717 
12 (Dw1 V Dw2)--+ D(w1 V w2) 3.250 
13 <>( w1 1\ w2) -> ( <>w1 1\ <>w2) 3.317 
14 (Dw1 1\ <>w2) --+ <>( w1 1\ w2) 2.967 
15 0( Wt 1\ w2) = ( Ow1 1\ Ow2) 8.283 
16 0(w1 Vw2 ) = (0w1 V0w2) 8.317 
17 0( W1 -> w2) = ( Owt -> Ow2) 8.367 
18 O(wl = w2) =(Owl= Ow2) 19.033 
19 0Dw= DOw 8.800 
20 O<>w =<>Ow 9.000 
21 DODw =<>ow 46.983 
22 0D0w = DOw 44.467 
23 Dw = (w 1\ 0Dw) 30.867 
24 <>w = (w V O<>w) 27.167 
25 (w 1\ <>~w) ..... <>(w 1\ o~w) 117.167 
26 (~w)Uw = <>w 6.700 
27 Dw1 1\ <>w2 -> w1 Uw2 6.350 
28 ( w1 Uw2)Uw2 -> ( w1 Uw2) 14.833 
29 w1U(w1 Uw2)-> (w1 Uw2) 25.133 
30 (Dw1 1\ (w2Uw3))-> (w1 1\ w2)U(w1 1\ w3 ) 34.983 
31 (w1 1\ w2)Uw3 = (w1Uw3) 1\ (w2Uw3 ) 27.033 
32 w1U(w2 Vw3) = (w1Uw2) V (w1Uw3) 236.183 
33 (<>w1 V Ow2)-> (((~w1)Uw2 ) V ((~w2)Uw1 )) 119.367 
34 w1 U(w2 1\ w3)-> (w1 Uw2) 1\ (w1 Uw3) 32.417 
35 (w1Uw3 ) V (w2Uw3 )--+ (w1 V w2)Uw3 11.817 

36 (w1 -> w2)Uw3 -> (w1 Uw3 --+ w2Uw3 ) 10.000 
37 (w1 Uw2) 1\ ((~w2)Uw3)-> w1 Uw3 33.583 
38 (w1Uw2)Uw3 --+ (w1 Vw2)Uw3 20.267 
39 w1U(w2Uw3)-> (w1 V w2)Uw3 33.367 

Table 3: Times for sample propositional temporal theorems 

36 



purpose procedures where correctness may be more of an issue. A disadvantage of our 
formalism is that we do not have a decision procedure. This means that even if a formula 
is satisfiable, we may spend a long time looking for a proof. This could be overcome, we 
feel, by setting a bound on the maximum term size needed to find a proof. However, if a 
proof cannot be found in a reasonable time, it is not clear that such a bound would help. 

14 Abstraction 

The idea of abstraction was developed in [Pla81] and seems promising for hard problems, 
although progress to date has been limited. We give some possibilities for using abstraction 
in our hyper-linking strategy prover. Since the prover is so sensitive to which measure is 
used for the priority of a clause, it seems reasonable to let abstraction modify the priority 
of a clause. The idea of abstraction is to map a set S of clauses onto an "abstract" set T 
of clauses, find proofs from T, and use these proofs as a guide to the search for a proof 
from S. Usually it is necessary to find all proofs from T in order to make this method 
complete; this is a disadvantage since there may be many such proofs and we cannot stop 
at the first one. To date, mostly simple syntactic abstractions have been tried. We have 
generally found that abstraction can help bad resolution strategies but not usually good 
ones. However, abstraction is good at detecting when there is an error in a set of clauses 
that prevents a proof from being found. 

In [Pla89] we presented a new abstraction called the joint subsumption abstraction which 
seems to have many advantages. Possibly this or other abstractions can be used with our 
hyper-linking strategy prover, in the following way. If a clause C corresponds to a clause in 
an abstract proof, then we can reduce its priority measure by some amount, thereby in effect 
preferring this clause. This will guide the search so as to prefer clauses that correspond to 
clauses in the abstract proofs. Another idea is to prefer clauses that are closely related to 
such clauses C. We can measure how closely related two clauses are by their distance in 
the connection graph, analogous to the support distances already computed by the prover. 
This permits clauses to be used in the proof that do not correspond to clauses in the 
abstract proof, but which are closely related to them. 

15 Extensions 

We give some possible extensions to the hyper-linking strategy prover. Some equality 
method would be useful on many problems. We plan to implement a term-rewriting 
facility, but more sophisticated techniques like associative-commutative unification [Sti81] 
are sometimes needed. In general, this prover is well suited to the use of specialized decision 
procedures, since it generates a set of ground clauses for testing by the propositional prover. 
Many specialized decision procedures are especially suited to ground clauses. One way 
to build in a specialized decision procedure, then, is just to add it to the propositional 
prover. For example, equality could be built in by adding a congruence closure test [NOSO] 
to the propositional prover. However, this is not complete unless the right instances of 
the input clauses are generated. Such instances will not necessarily be generated unless 
the equality axioms are included in the input. Including such axioms largely negates the 

37 



benefits of a specialized decision procedure. Another possibility is to use a kind of "theory 
hyper-linking," analogous to the theory resolution of Stickel [Sti85], to generate the needed 
instances and guarantee completeness. The idea of theory hyper-linking is similar to the 
idea of theory links mentioned by Murray and Rosenthal [MR86]. One area where a 
specialized decision procedure might help is temporal logic, where a decision procedure for 
discrete linearly ordered sets could be applied. 

In general, we would like to use semantics in the prover. Since this prover is not subgoal
oriented, as the modified problem reduction format is [Pla88], it is more difficult to use 
semantics. There is one way to use semantics, however. If the negation of the theorem is of 
the form A[X1 , ... , XnJ for free variables X1 , ... , Xn, and the axioms are H, then we are 
trying to show that (H 1\ A[X1 , •.• , Xn]) is unsatisfiable. It could be that from semantics 
we may suspect that (H 1\ A[t1 , ••• , tn]) is unsatisfiable, for certain terms t. For example, 
it could be that A[t1 , ••• , tnJ is false in a model of H. If so, we can instantiate the X; tot; 
and search for a proof. For example, in the intermediate value theorem, we are searching 
for an X such that f(X) is zero. We may know from examples that X may be the least 
upper bound l. Then we can attempt to show that f(l) is zero, which is easier. The same 
idea can be used to instantiate clauses in H by using other models. Another way to use 
semantics is to modify forward and backward support to support relative to some arbitrary 
interpretation; forward support implicitly uses the all-positive interpretation and backward 
support uses the all-negative interpretation. However, the problem with this idea is that 
it is difficult to tell if an arbitrary non-ground clause is true in a non-trivial interpretation. 

It is possible to extend the basic hyper-linking strategy to be more careful about which 
hyper-links to perform. To illustrate, suppose we are using·forward support. Initially, the 
positive clauses have forward distance 0 and the other clauses have forward distances in the 
interval [1, oo]. The first round of hyper-linking will generate some instances of the non
all-positive clauses; these instances will have forward distance 1. The forward distances of 
the non-all-positive input clauses will then be in the interval [2, oo], and so on, since the 
instances of distance 1 will have already been generated. In general, each clause has an 
interval giving its minimum and maximum forward distance. If the same instance appears 
twice with intervals [a1 , b1] and [a2 , b2], then the interval should be changed to [min(a1, 

a2 ), max(b1 , b2)]. Finally, in a hyper-link, we can require that the distances of the nucleus 
and electrons be close. If C is a nucleus and L is a positive electron from clause D, then 
there must exist integers i and i+l such that i is in the interval for D and i+l is in the 
interval for C. A similar idea can be applied to all support sets, forward, backward, and 
user support. 

Of course, it might be useful to extend the prover to sorted logics, mathematical induc
tion, and higher order logic. Mathematical induction might be difficult because the prover 
does not explicitly generate lemmas. However, we feel that there are enough general issues 
arising in first-order logic to keep us occupied for a while. 

38 



Table 4 Running times of sample problems1 

number number 
no problem of input cpu no problem of input cpu 

clauses (sec) clauses (sec) 
1 burst all 19 5.200 2 short burst 11 1.267 
3 pnm 9 5.800 4 haspartstl 8 5.033 
5 haspartst2 8 46.700 6 ances2 7 0.233 
7 num1 7 0.883 8 group1 6 0.950 
9 group2 7 4.100 10 ew1 6 0.300 

11 ew2 5 0.250 12 ew3 9 0.283 
13 rob1 3 0.250 14 rob2 7 3.917 
15 dm 4 0.650 16 qw 3 1.633 
17 mqw 5 4.017 18 dbabhp 14 8.333 
19 apabhp 19 748.450 20 ex4tl 7 131.183 
21 ex4t2 7 131.333 22 ex5 14 97.883 
23 ex6tl 8 17.517 24 ex6t2 8 17.267 
25 wosl 17 30.933 26 wos2 16 21.467 
27 wos3 20 2.450 28 wos4 25 20.550 
29 wos5 16 4.883 30 wos6 20 37.833 
31 wos7 19 6.183 32 wosS 18 3.283 
33 wos9 20 6.117 34 woslO 20 35.983 
35 wosll 22 41.167 36 wos12 21 2.683 
37 wos13 22 3.950 38 wos14 21 4.433 
39 wos15 24 3548.966 40 wos16 27 9.567 
41 wos17 30 73.183 42 wos18 25 2.933 
43 wosl9 33 6352.617 44 wos20 33 45003.100 
45 wos21 30 2005.217 46 wos22 34 73.467 
47 wos23 31 4.700 48 wos24 29 5.750 
49 wos25 36 6.267 50 wos26 24 31.900 
51 wos27 30 44.850 52 wos28 74 1880.667 
53 wos29 40 13.367 54 wos30 42 5.883 
55 wos31 20 54992.967 56 wos32 26 3.117 
57 wos33 26 9.567 58 ls5 4 0.660 
59 lsl7 12 8.117 60 ls23 6 1.000 
61 ls26 9 1.317 62 ls28 . 22 4.367 

1 All the times are obtained by running ALS-Prolog on a SUN3/60M workstation with 12 MB memory. 

39 



Table 4 Running times of sample problems (continued) 

number number 
no problem of input cpu no problem of input cpu 

clauses (sec) clauses (sec) 
63 ls29 13 5.400 64 ls35 6 4.350 
65 ls36 20 56.466 66 ls37 18 13311.517 
67 ls41 11 1.117 68 ls55 13 1.533 
69 ls65 20 43.350 70 ls68 15 1.633 
71 ls75 16 10.517 72 ls76tl 17 1.817 
73 ls87 23 68.667 74 ls100 9 1.000 
75 ls103 14 20.367 76 ls105 14 2.450 
77 ls106 14 2.500 78 ls108 16 491.350 
79 ls111 14 2.483 80 ls112 23 1248.250 
81 ls115 21 7.417 82 ls116 20 25.900 
83 lsllS 29 17.883 84 ls121 21 4.800 
85 changJeeJ 5 0.867 86 changJee..2 7 4.150 
87 changJee..3 5 1.450 88 changJeeA 5 0.933 
89 changJee..5 9 1.167 90 changJee_6 9 1.317 
91 changJee_7 7 0.850 92 changJee..S 9 5.950 
93 changJee_9 8 4.667 94 example 6 21.467 
95 expq 4 0.167 96 exx 4 0.267 
97 exx5 9 5.533 98 exx7 17 4.467 
99 latinsq 17 88.500 100 liar 8 7.650 

101 salt 44 32.167 102 schubert 30 135.950 
103 stack 3 0.167 104 ph2 3 0.117 
105 ph3 9 0.167 106 ph4 22 0.567 
107 ph5 45 1.800 108 ph6 81 7.283 
109 ph7 133 39.733 110 phS 204 269.417 -
101 il 3 27.983 112 sl 3 23.133 
113 ip1 4 132.283 114 p1 3 1948.500 

40 



References 

[ABCM88] P. E. Allen, S. Bose, E. M. Clarke, and S. Michaylov. PARTHENON: A parallel 
theorem prover for non-horn clauses, system abstract. In Proceedings of the 
9th International Conference on Automated Deduction, pages 764--765, 1988. 

[And81] P. B. Andrews. Theorem proving via general matching. Journal of the Asso
ciation for Computing Maehinery, 28:193-214, 1981. 

[BH80] W. W. Bledsoe and L. Hines. Variable elimination and chaining in a resolution
based prover for inequalities. In Proceedings of the 5th International Conference 
on Automated Deduction, pages 70-87, 1980. 

[Bib82] W. Bibel. Automated Theorem Proving. Vieweg, 1982. 

[Bun88] A. Bundy. The use of explicit proof plans to guide inductive proofs. In Pro
ceedings of the 9th International Conference on Automated Deduction, pages 
111-120, 1988. 

[Cho84] S.-C. Chou. Proving elementary geometry theorems using Wu's algorithm. In 
W. W. Bledsoe and D. Loveland, editors, Automated Theorem Proving: After 
25 Years, Contemporary Mathematics, volume 29, pages 243-286. 1984. 

[CL73] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca
demic Press, New York, 1973. 

[Dav63] M. Davis. Eliminating the irrelevant from machanical proofs. In Proceedings 
Symp. of Applied Math, volume 15, pages 15-30, 1963. 

[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer 
Science, 17:279-301, 1982. 

[DJ90) N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed
itor, Handbook of Theoretical Computer Science. North-Holland, Amsterdam, 
1990. 

[dK86] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162, 
1986. 

[dK89] J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of 
11th International Joint Conference on Artificial Intelligence, pages 290-296, 
1989. 

[DP60) M. Davis and H. Putnam. A computing procedure for quantification theory. 
Journal of the Association for Computing Machinery, 7:201-215, 1960. 

[Gil60] P. C. Gilmore. A proof method for quantification theory. IBM Journal of 
Research and Development, 4:28-35, 1960. 

[Hin88] L. Hines. Hyper-chaining and knowledge-based theorem proving. In Proceed
ings of the 9th International Conference on Automated Deduction, pages 469-
486, 1988. 

41 



[HW74] L. Henschen and L. Wos. Unit refutations and Horn sets. Journal of the 
Association for Computing Machinery, 21:590-605, 1974. 

(JP84] S. Jefferson and D. Plaisted. Implementation of an improved relevance crite
rion. In First Conference on Artificial Intelligence Applications, pages 476-482, 
1984. 

[LewSO] H. Lewis. Complexity results for classes of quantificational formulas. Journal 
of Computer and System Sciences, 21:317-353, 1980. 

(Lov78] D. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, 
New York, 1978. 

[LS86] Sterling L. and E. Shapiro. The Art of Prolog. The MIT Press, Massachusetts, 
1986. 

[McA80] D. McAllester. An outlook on truth maintenance. Technical Report AIM-551, 
Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1980. 

[MCA82] D. Miller, E. Cohen, and P. B. Andrews. A look at TPS. In Proceedings of the 
6th International Conference on Automated Deduction, pages 50-69, 1982. 

(McC89] W. W. McCune. Otter 1.0 Users' Guide. Mathematics and Computer Science 
Division, Aggonne National Laboratory, Argonne, Illinois, January 1989. 

[MR86] N. Murray and E. Rosenthal. Theory links in semantic graphs. In Proceedings 
·of the 8th International Conference on Automated Deduction, pages 353-364, 
1986. 

[N080] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure. 
Journal of the Association for Computing Machinery, 27:356-364, 1980. 

[NP90] X. Nie and D. Plaisted. A complete semantic back chaining proof system. 
In Proceedings of the 1Oth International Conference on Automated Deduction, 
1990. 

(NP90] X. Nie and D. Plaisted. Refinements to depth-first iterative deepening search 
in theorem proving. Artificial Intelligence, 41:223-235, 1989/90. 

[Pel86] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. 
Journal of Automated Reasoning, 2:191-216, 1986. 

(PG86] D. Plaisted and S. Greenbaum. A structure-preserving clause form translation. 
Journal of Symbolic Computation, 2:293-304, 1986. 

[Pla80] D. Plaisted. An efficient relevance criterion for mechanical theorem proving. In 
Proceedings of the First Annual National Conference on Artificial Intelligence, 
pages 79-83, 1980. 

[Pla81] D. Plaisted. Theorem proving with abstraction. Artificial Intelligence, 18:227-
261, 1981. 

[PlaSS] D. Plaisted. Non-Horn clause logic programming without contrapositives. 
Journal of Automated Reasoning, 4:287-325, 1988. 

42 



[Pla89] Do Plaisted. Mechanical theorem proving. In R. Banerji; editor, A Sourcebook 
on Formal Techniques in Artificial Intelligence. Elsevier, Amsterdam, 1989. 

[PM88] Do Plaisted and U. Meyer. A matching strategy for first-order theorem provingo 
1988. 

[PP88] R. Potter and D. Plaisted. Term rewriting: Some experimental results. In Pro
ceedings of the 9th International Conference on Automated Deduction, pages 
435-453, 1988. 

[PPV60] D. Prawitz, H. Prawitz, and N. Voghera. A mechanical proof procedure and its 
realization in an electronic computer. Journal of the Association for Computing 
Machinery, 7:102-128, 1960. 

[Rob63] J. Robinson. Theorem proving on the computer. Journal of the Association 
for Computing Machinery, pages 163-174, 19630 

[Rob65] J. Robinson. A machine-oriented logic based on the resolution principle. Jour
nal of the Association for Computing Machinery, 12:23-41, 1965. 

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal 
logics. Journal of the Association for Computing Machinery, 32:733-749, 1985. 

[SS82] J. Siekmann and P. Szabo. Universal unification and a classification of equa
tional theories. In Proceedings of the 6th International Conference on Auto
mated Deduction, pages 369-389, 1982. 

[Sti81] M. E. Stickel. A unification algorithm for associative-commutative functions. 
Journal of the Association for Computing Machinery, 28:423-434, 1981. 

[Sti85] M. E. Stickel. Automated deduction by theory resolution. Journal of Auto
mated Reasoning, 1:333-355, 1985. 

[Sti86] M. E. Stickel. A prolog technology theorem prover: Implementation by an 
extended prolog compiler. In Proceedings of the Eight International Conference 
in Automated Deduction, pages 573-587, 1986. 

[Wal84] C. Walther. A mechanical solution of schubert's steamroller by many-sorted 
resolution. In Proceedings of the 4th National Conference on Artificial Intelli
gence, pages 330-334, 1984. 

[WB87] T. C. Wang and W. W. Bledsoe. Hierarchical deduction. Journal of Automated 
Reasoning, 3:35-77, 1987. 

[WOLB84] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduc
tion and Applications. Prentice-Hall, 1984. 

[WRC65] L. Wos, G. Robinson, and D. Carson. Efficiency and completeness of the set of 
support strategy in theorem proving. Journal of the Association for Computing 
Machinery, 12:536-541, 1965. 

[Wu78] Went-tsiin Wu. On the decision problem and the mechanization of theorem 
proving in elementary geometry. Scientia Sinica, 21:159-172, 1978. 

43 




