
Porta-SIMD: An Optimally Portable
SIMD Programming Language

Duke CS-1990-12 UNC CS TR90-021

May 1990

Russ Tuck

Duke University
Deparment of Computer Science
Durham, NC 27706

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

Text (without appendix) of a Ph.D. dissertation submitted to Duke University. The
research was performed at UNC.

@ 1990 Russell R. Tuck, III

UNC is an Equal Opportunity/ Atlirmative Action Institution.

PORTA-SIMD: AN OPTIMALLY PORTABLE SIMD
PROGRAMMING LANGUAGE

by

Russell Raymond Tuck, III

Department of Computer Science
Duke University

Dissertation submitte in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

1990

Copyright © 1990 by Russell Raymond Tuck, III
All rights reserved

Abstract

Existing programming languages contain architectural assumptions which limit their porta­
bility. I submit optimal portability, a new concept which solves this language design problem.
Optimal portability makes it possible to design languages which are portable across vari­
ous sets of diverse architectures. SIMD (Single-Instruction stream, Multiple-Data stream)
computers represent an important and very diverse set of architectures for which to demon­
strate optimal portability. Porta-SIMD (pronounced "porta.-simm'd") is the first optimally
portable language for SIMD computers. It was designed and implemented to demonstrate
that optimal portability is a useful and achievable standard for language design.

An optimally portable language allows each program to specify the architectural features
it requires. The language then enables the compiled program to exploit exactly those fea.­
tures, and to run on all architectures that provide them. An architecture's features are those
it can implement with a constant-bounded number of operations. This definition of optimal
portability ensures reasonable execution efficiency, and identifies architectural differences
relevant to algorithm selection.

An optimally portable language for a set of architectures must accommodate all the
features found in the members of that set. There was no suitable taxonomy to identify the
features of SIMD architectures. Therefore, the taxonomy created and used in the design of
Porta-SIMD is presented.

Porta.-SIMD is an optimally portable, full-featured, SIMD language. It provides dynamic
allocation of parallel data with dynamically determined sizes. Generic subroutines which
operate on any size of data may also be written in Porta-SIMD. Some important commercial
SIMD languages do not provide these features.

A prototype implementation of Porta-SIMD has been developed as a set of #include files
and libraries used with an ordinary C++ compiler. This approach has allowed more rapid
prototyping and language experimentation than a custom compiler would have, but modestly
constrained the language's syntax. The result is a very portable but only moderately efficient
implementation. Porta-SIMD has been implemented for the Connection Machine 2, for
Pixel-Planes 4 and 5, and for ordinary sequential machines.

Optimal portability is an important new concept for developing portable languages which
can handle architectural diversity. Porta.-SIMD demonstrates its usefulness with SIMD
computers.

ll Abstract

Acknowledgements

I am most thankful to God, who has made possible what I could n0t have done alone. He
enabled me to finish work which looked like it could drag on forever, and to do it in time for
an impossible looking graduation deadline. He taught me a lot about faith, trust, prayer,
and His peace in the process. He has given me a wonderful wife, Debbi, who loves me and
makes life fun. Most of all, God gave His son Jesus to die for my failures and give me new
life with meaning and hope.

I appreciate Debbi's unending patience, prayers, sacrifice, and encouragement. These
have been especially important during my final push to finish, during which she has been
busy finishing her own graduate degree. Our family, our church and some special friends
have joined in with encouragement and prayers, for which I am very grateful. Dad's quick
mid-day phone calls from California several times over the last few weeks were especially
helpful.

Dr. Frederick P. Brooks, Jr. has been the consummate advisor. He .has provided
critically important insight, advice, and perspective. He has regularly and dependably
scheduled time for our meetings, despite the many demands on his time, and that has been
very important to my steady progress. I am grateful to Dr. Brooks for accepting me as
his student and providing me with assured grant support, guidance, and freedom, even
when all I knew about my research goals was that I wanted to improve the programming of
SIMD computers. I appreciate his deep Christian faith, and have enjoyed participating in
Wednesday lunch Bible studies with him.

I appreciate my committee for their encouragement and sound advice. Dr. Henry Fuchs
has supported my work financially as part of the Pixel-Planes project since I began working
on Porta-SIMD, and has been very supportive personally as well. Dr. Merrell Patrick also
served on my M.S. committee, and has shown a personal interest in my success that was
especially helpful during my transition into doctoral research. Dr. Jothy Rosenberg's ideas,
interestj and personality have made him a very valuable source of encouraging advice and
positive suggestions. Dr. John Board has provided sound comments and helpful references.

I appreciate Dr. Jan F. Prins' service on my committee as an ex officio member, doing
significant work without official recognition. He has often been the most accessible member
of my committee, and has served as a valuable sounding board for ideas and dilemmas.

Greg Turk, a fellow graduate student and member of the Pixel-Planes team, has been
valuable as a pioneering Porta-SIMD user and for his willingness to discuss and comment
on how Porta-SIMD should work. I appreciate his willingness and that of Tim Cullip for
me to use their programs as examples and include them in this dissertation.

I want to thank Michael Tiemann for writing G++ (the GNU C++ compiler), for making
it freely available, and for providing timely fixes to compiler bugs as they were reported.

I appreciate the encouragement and friendship of many members of the Duke and UNC
Computer Science Departments, including especially my long-time office mates at Duke,
Jack Briner and Mark Jones, and the entire Pixel-Planes team at UNC.

I appreciate the time Carlton Brown and Debbi Tuck spent patiently and carefully

iii

iv Acknowledgements

reading drafts of this document to point out and suggest corrections for my writing errors.
I appreciate the time Herb Taylor of the David Sarnoff Research Center spent helping

me understand details of the Princeton Engine, and also his friendship and encouragement.
Several institutions have been important to my research. The Departments of Computer

Science at the University of North Carolina at Chapel Hill and Duke University have pro­
vided critically important computing resources and office space. My research at UNC has
been supported by the Pixel-Planes Project, Drs. Henry Fuchs and John Poulton, P.I.s, and
its grants: National Science Foundation grant #MIP-8601552, Defense Advanced Research
Projects Agency order #6090, Office of Naval Research contract #N0014-86-K-0680; and by
the GRIP Project, Frederick Brooks, P.I., under National Institutes of Health grant #RR
02170.

Access to a Connection Machine was provided first by the Advanced Computing Research
Facility (ACRF) at Argonne National Laboratories, under grants NSF-ASC-8808327 and
DOE-W-31-109-ENG-38, and more recently by the Connection Machine Network Server
(CMNS) Pilot Facility at Thinking Machines Corporation under DARPA contract DACA76-
88-C-0012.

Contents

Abstract

Acknowledgements

1 Introduction, Thesis, and Overview

2 Optimal Portability

3 A SIMD Taxonomy for Optimal Portability
3.1 Definition of SIMD Architectures ..
3.2 Taxonomy of SIMD Architectures . .

3.2.1 Feature Names
3.2.2 Communication

3.2.2.1 Labeling (number, N) ..
3.2.2.2 Communication (C) ...
3.2.2.3 Collision Resolution, Write (W) .
3.2.2.4 Collision Resolution, Fetch (F)
3.2.2.5 Piped Communication (P)
3.2.2.6 Cut-Through Communication (T)

3.2.3 Local Addressing
3.2.3.1 LocaJ Addressing (L) ..

3.2.4 Reduce and S~an
3.2.4.1 Reduce (R)
3.2.4.2 Scan (S)

3.2.5 Parallel I/0
3.2.5.1 Input (I)
3.2.5.2 Output (0)

3.2.6 PE to Host I/0 .
3.2.6.1 Get (G)

3.2.7 Naming a Classification
3.3 The Taxonomy in Use .

3.3.1 PxP14 (Pixel-Planes 4)
3.3.2 Oldfield (Oldfield et a!.)
3.3.3 PxP15 (Pixel-Planes 5) .
3.3.4 AIS-5000 (Applied Intelligent Systems, Inc.)
3.3.5 Centipede .
3.3.6 Princeton Engine
3.3.7 ASP (Associative String Processor)
3.3.8 llliac IV .

v

i

iii

1

5

11
11
12
14
14
17
17
19
20
20
21
22
23
24
24
25
25
25
25
26
26
26
26
29
30
30
30
30
31
31
31

vi CONTENTS

3.3.9 SOLOMON (Simultaneous Operation Linked Ordinal MOdular Net-
work) 32

3.3.10 MPP (Massively Paral~el Processor) 32
3.3.11 DAP (Distributed Array Processor) 32
3.3.12 BLITZEN 32
3.3.13 YUPPIE (Yorktown Ultra Parallel Polymorphic Image Engine) 33
3.3.14 Unger (S. H. Unger) . 33
3.3.15 GAM Pyramid (George Mason University, Adder pyramid, MPP cir-

cuits, Pyramidal topology) 33
3.3.16 BVM (Boolean Vector Machine) 33
3.3.17 GFll (11-Gflop target performance) . . 34
3.3.18 BSP (Burroughs Scientific Processor) 34
3.3.19 MP-1 (MasPar Computer Corp.) 34
3.3.20 CM-2 (Connection Machine, model 2) . 35

3.4 Previous SIMD Taxonomies 35

4 Portability of Existing SIMD Languages 37
38
38
38
38
38
38
38
39
39
39
40

4.1 Survey of SIMD Languages
4.1.1 Illiac IV Languages .
4.1.2 MPP Language .
4.1.3 BVM Language .
4.1.4 BSP Language .
4.1.5 MP-1 Language .
4.1.6 CM Languages .
4.1.7 Fortran 8x
4.1.8 Other Languages

4.2 Existing Languages Are Not Optimally Portable
4.3 Non-Procedural Languages

5 Porta-SIMD Language Design
5.1 Requirements for an Optimally Portable Language

5.1.1 Specify Target Architecture
5.1.2 Provide Architectural Features
5.1.3 Enforce Architectural Limits

5.2 Desigu Strategy and Goals
5.2.1 Implementation Technology ..
5.2.2 Strategy for Optimal Portability .
5.2.3 Other Goals

5.3 Language Overview and Example .
5.4 Porta-SIMD Language Definition

5.4.1 Reserved Words
5.4.2 Architecture Identifiers
5.4.3 Target Architecture . .
5.4.4 Types

5.4.4.1 Virtual Machines .
5.4.4.2 Parallel Data . . .
5.4.4.3 Declaration .
5.4.4.4 Allocation
5.4.4.5 Lvalues

5.4.5 Storage
5.4.6 Conversions . . .

41
41
41
43
43
43
43
44
45
46
50
50
50
51
51
51
51
52
54
54
54
55

CONTENTS

5.4.6.1 Representation Changes .
5.4.6.2 Casting
5.4.6.3 Assignment
5.4.6.4 Usual Unary Conversions
5.4.6.5 Usual Binary Conversions .
5.4.6.6 Function Arguments and Return Values .

5.4. 7 Expressions
5.4.7.1 Enabled and Disabled PEs ...
5.4.7.2 Primary and Postfix Operators .
5 .4. 7.3 U nar~ Operators . . .
5.4.7.4 Assignment Operator
5.4.7.5 Arithmetic Operators
5.4.7.6 Shift Operators ...
5.4.7.7 Bitwise Operators ..
5.4.7.8 Relational Operators
5.4.7.9 Logical Operators .
5.4.7.10 Other C Operators.

5.4.8 Flow Control
5.4.9 Special Operations
5.4.10 Providing Architectural Features
5.4.11 Labeling

5.4.11.1 1, 2, ... , N (Cartesian Coordinates)
5.4.11.2 p2 (Level and 2-D Coordinate)

5.4.12 Communication (C) ..
5.4.12.1 aC (Adjacent)
5.4.12.2 mC (Pyramid)
5.4.12.3 cC (Cube Connected Cycles) .
5.4.12.4 pC (Preselected Permutation)
5.4.12.5 gC (Global)

5.4.13 Collision Resolution, Write (W) . .
5.4.13.1 sW (Select)
5.4.13.2 lW (Logically Combine) .
5.4.13.3 aW (Add or Compare)
5.4.13.4 mW (Multiply)

5.4.14 Collision Resolution, Fetch (F)
5.4.14.1 sF (Select)
5.4.14.2 rF (Replicate) .. .

5.4.15 Piped Communication (P) ..
5.4.15.1 u (Unlimited) .. .
5.4.15.2 c (Copy)

5.4.16 Cut-Through Communication (T)
5.4.16.1 r (Restricted) and l (Local) .
5.4.16.2 c (Connect Through Switch)
5.4.16.3 o ("Or'' Combine) .

5 .4.17 Local Addressing (L)
5.4.17.1 lL (Limited)
5.4.17.2 uL (Unlimited)
5.4.17.3 c (Communication with Local Addressing)

5.4.18 Reduce (R)
5.4.18.1 d*R (Dimensioned)
5.4.18.2 m*R (Multi-dimensioned) ..

Vll

55
56
56
56
57
57
57
58
58
58
58
59
59
59
60
60
60
60
62
62
63
63
64
64
64
67
67
67
67
68
68
68
68
68
69
69
69
69
70
70
70
71
71
72
72
72
72
73
74
74
74

viii

5.4.18.3 g*R (Global)
5.4.18.4 Flow Control with "goR"

5.4.19 Scan (S)
5.4.19.1 d*S (Dimensioned) .
5.4.19.2 g*S (Global)

5.4.20 Input (I)
5.4.20.1 I (Input) ..

5.4.21 Output (0)
5.4.21.1 dO (Display Output)
5.4.21.2 0 (Output)

5.4.22 Get (G)
5.4.22.1 rG (Restricted Get)
5.4.22.2 G (Get)

5.5 Potential Language Enhancements .
I

6 Implementing an Optimally Portable Language
6.1 Requirements for an Optimally Portable Language

6.1.1 Provide Architectural Features
6.1.1.1 Many Operations .
6.1.1.2 Many Architectures

6.1.2 Enforce Architectural Limits
6.2 Porta-SIMD Implementation Results

6.2.1 History
6.2.2 Structure
6.2.3 Implementation Difficulties
6.2.4 Status
6.2.5 Example Programs
6.2.6 Using Porta-SIMD
6.2.7 Portability oflmplementation .

6.3 Performance
6.3.1 Constant-Bounded Simulation.
6.3.2 Achievable Efficiency
6.3.3 Parallel Overhead in Porta,.SIMD Prototype .
6.3.4 Overall Performance of Porta,.SIMD Prototype

7 Recommendations
7.1 Prototype Porta,.SIMD Implementation
7.2 Porta-SIMD Language Design .
7.3 Improved Language Design
7.4 Host/PE-Array Interface .

8 Conclusion

A Note on Prototype Porta-SIMD #include Files

CONTENTS

74
75
75
76
76
76
76
76
76
77
77
77
77
77

79
79
79
80
80
81
81
81
82
82
83
84
87

. 103

. 103

. 104

. 105

. 106

. 107

109
. 109
. 109
. 110
. 110

113

115

List of Tables

3.1 Communication Features of SIMD Architectures
3.2 Other Features of SIMD Architectures
3.3 Classification of SIMD Architectures

ix

15
16
29

X LIST OF TABLES

List of Figures

3.1 1-D and 2-D Adjacent Communication Networks
3.2 Examples of Cut-Through Communication .
3.3 Tree of SIMD Architectures
3.4 Tree of SIMD Architectures (cont.)

5.1 rectangle.C - Example PortarSIMD program.
5.2 Fragment of example PortarSIMD ''life" program.

6.1 julia.C- Julia Set Program (part 1) ..
6.2 julia.C- Julia Set Program (part 2) ..
6.3 julia.C- Julia Set Program (part 3) ..
6.4 julia.C- Julia Set Program (part 4) .
6.5 julia.C- Julia Set Program (part 5) ..
6.6 julia.C- Julia Set Program (part 6) ..
6.7 life.C- Game of Life Program (part 1)
6.8 life.C- Game of Life Program (part 2)
6.9 life.C- Game of Life Program (part 3)
6.10 surface.C- Intensity Axis of Symmetry Program (part 1)
6.11 surface.C -Intensity Axis of Symmetry Program (part 2)
6.12 surface.C -Intensity Axis of Symmetry Program (part 3)
6.13 surface.C -Intensity Axis of Symmetry Program (part 4)
6.14 surface.C- Intensity Axis of Symmetry Program (part 5)
6.15 surface.C -Intensity Axis of Symmetry Program (part 6)
6.16 surface.C -Intensity Axis of Symmetry Program (part 7)
6.17 surface.C- Intensity Axis of Symmetry Program (part 8)

xi

18
23
27
28

48
49

85
86
88
89
90
91
92
93
94
95
96
97
98
99

. 100

. 101

. 102

xii LIST OF FIGURES

Chapter 1

Introduction, Thesis, and Overview

Portable high-level languages for von Neumann computers are major accomplishments in
computer science. These languages have radically improved the quality, cost, reliability,
and availability of software. However, the greater architectural diversity of SIMD (Single­
Instruction Multiple-Data) parallel computers has kept them from fully benefiting from
such languages. Each existing SIMD language assumes some particular set of features is
available, and is therefore suitable for programming only some subset of SIMD machines.
Architectural differences such as communication and local addressing are too important for
algorithm selection to be hidden from the programmer in this way. They are too powerful
to ignore when available, but too expensive to simulate when not supported in hardware.

Optimal portability is a new language design concept which can bring the benefits of
portable high-level languages to architecturally diverse families of computers, including
SIMD computers. Here is an informal definition of optimal portability: given a set of
architectures, and a taxonomy for those architectures which can be expressed in a tree
structure, a language is optimally portable for the set of architectures if: (1) it requires each
program to specify at compile time a subtree of the taxonomy as the set of architectures on
which it will run; (2) it allows the program to take full advantage of the features common
to all the nodes of that subtree; and (3) it prevents the program from using any features
not common to all the nodes of that subtree. The full definition adds a key requirement:
the taxonomy must consider two nodes, or a node and a computer, equivalent if and only if
each can simulate the other with a constant-bounded number of its own operations. This is
called the constant-hounded simulation criterion within this work.

The basis for optimal portability is recognizing that each algorithm has some inherent
range of portability implicitly defined by the operations (or architectural features) it uses.
An optimally portable language allows every algorithm appropriate for its set of architectures
to be expressed naturally, and to execute on all architectures which support the set of
operations used by the algorithm. An optimally portable language provides some consistency
checking: it generates an error message if the program uses operations not common to all
nodes in the specified subtree of the taxonomy. Finally, the constant-bounded simulation
criterion ensures reasonable execution efficiency. In short, an optimally portable language
lets the programmer use all the features shared by any specified set of target architectures,
while being protected from using features they do not share.

By specifying a broad or narrow set of target architectures, the programmer can select
just the right tradeoff between universal portability with limited features and limited porta­
bility with more powerful features. The language thereby provides the optimal degree of
portability for each program. An additional benefit is that the programmer may use a single
language for many architectures instead of having to learn many different languages.

I have developed a taxonomy of SIMD architectures which uses the constant-bounded

1

2 CHAPTER 1. INTRODUCTION, THESIS, AND OVERVIEW

simulation criterion. Using it, I designed Porta-SIMD (pronounced "porta-simm'd"), the
first optimally portable SIMD programming language. Porta-SIMD provides a set of types
corresponding to each point in the taxonomy. These types support exactly the operations
appropriate to that point. By declaring the data types of each algorithm's variables, the
programmer specifies which operations the algorithm may use. The set of all data types
used in a program's declarations determines the program's portability. The program will
run on any architecture which supports all the architectural features implied by the set of
data types.

Porta-SIMD has been implemented on Pixel-Planes 4 and 5 and the Connection Machine,
as well as on a sequential computer simulating parallel architectures.

I am prepared to defend the following thesis statements:

• Optimal portability is an important new concept for handling architectural diversity in
programming language design, and is particularly important for SIMD architectures.

• Porta-SIMD is the first optimally portable programming language for SIMD comput­
ers. It demonstrates that optimal portability is an achievable goal for SIMD languages.

My argument that these statements are correct has three main parts: analysis, design, and
implementation.

The analysis portion of this dissertation contains three chapters. Chapter 2, "Optimal
Portability", presents a precise definition of optimal portability, and discusses issues involved
in formulating this definition.

None of the existing SIMD taxonmpies used the constant-bounded simulation criterion,
so I developed one that does. Chapter tl presents this new taxonomy and discusses previous
SIMD taxonomies. It demonstrates the new taxonomy's completeness by using it to charac­
terize a large number of published SIMD architectures. While developing this taxonomy was
a necessary step in applying the concept of optimal portability to SIMD language design,
the taxonomy is a useful contribution to knowledge in its own right. It is more complete in
coverage and comprehensive in scope than previous work, and benefits from the well-defined
and defensible level of detail provided by optimal portability's constant-operation simulation
criterion.

Despite the wide variety of existing SIMD languages, none are optimally portable. Chap­
ter 4, "Portability of Existing SIMD Languages," surveys existing SIMD languages and
shows how each fails to satisfy the definition of optimal portability. The principal way these
languages fail is that each language provides only a single set of architectural features for all
programs to use. As a result, each language can only be implemented on architectures which
support all the features it requires. And if the architecture provides additional features, the
language provides no way to take advantage of them. The language determines the degree
of portability instead of the programmer, which is the opposite of optimal portability.

The design portion of the dissertation consists of chapter 5, "Porta-SIMD Language De­
sign." It describes the first optimally portable SIMD programming language. Porta-SIMD
was designed to show how the concept of optimal portability can be applied to language de­
sign. For convenience, Porta-SIMD is an extension of C++. Porta-SIMD provides parallel
data types with an additional characteristic included in the type: the set of architectural
features available for using and manipulating data of that typeo Because these features are
those defined by the taxonomy of chapter 3, this allows the program to specify exactly which
features are used by each algorithm and each program. The implementation provides type
checking to ensure that features not specified by an object's type are not used with that
object.

The primary argument in support of the dissertation's thesis concludes with chapter 6,
"Implementing an Optimally Portable Language". Just as the design of Porta-SIMD was

3

undertaken to demonstrate the value and applicability of optimal portability, a prototype
implementation of Porta,-SIMD was done to demonstrate the completeness and usefulness
of the language design.

This chapter describes the requirements an implementation of any optimally portable
language must meet, then moves on to the specific prototype implementation of Porta­
SIMD. Because Porta,-SIMD's implementation is intended as a proof-of-concept tool, it
has been done as a set of libraries and #include files for use with an unmodified C++
compiler. Despite some limitations, C++ was the right tool for this stage of the research,
allowing successively more complete prototypes on a wide variety of platforms. Writing a
full optimizing compiler for Porta,-SIMD would have been inappropriate for this work, and
impossible with the resources available.

Porta,-SIMD has been implemented for the Connection Machine, Pixel-Planes 4, the
Pixel-Planes 5 simulator (hardware was not yet available), and sequential computers sim­
ulating SIMD architectures. In addition to describing the Porta,-SIMD implementation,
chapter 6 presents some example Porta,-SIMD programs. It goes on to discuss the perfor­
mance of this multi-targeted implementation and potential future implementations, using
both analytic methods and actual measurements based on the example programs. There
is no reason to believe that a compiler for an optimally portable language cannot pro­
vide performance comparable to other languages which are not optimally portable but have
equivalent features otherwise. The price of the portability appears to be paid entirely in
compile time. However, using the prototype Porta-SIMD implementation, programs run up
to 10 times slower than using machine-specific SIMD languages, and potentially use 50

Chapter 7, "Recommendations," follows the formal argument in support of the thesis.
It presents opportunities for future research and my personal view of how the concept of
optimal portability should influence existing and future SIMD languages. It begins with
opportuuities related specifically to the prototype implementation of Porta,-SIMD, and the
Porta,-SIMD language design. This leads to a discussion of improved optimally portable
languages, and other characteristics I consider important for SIMD languages. Finally, I
discuss the interface between the host and the PEs. It can be improved through both
hardware architecture and compiler technology.

Finally, chapter 8, "Conclusions," summarizes the results of this research. Optimal
portability appears to be a clarifying concept for handling architectural diversity. Its
application in Porta,-SIMD provides a new mode of portability for SIMD languages, and
demonstrates that such portability is achievable in practice. The requirements of optimal
portability contributed to the development of a SIMD taxonomy in which equivalence is de­
fined by constant-bounded simulation. This taxonomy consequently has many dimensions
of equivalence-versus-difference.

I hope this work will have a strong influence on future SIMD languages, and that opti­
mally portable languages will bring more, cheaper, and better software to all SIMD archi­
tectures.

4 CHAPTER 1. INTRODUCTION, THESIS, AND OVERVIEW

Chapter 2

Optimal Portability

An optimally portable language allows a programmer to write code which is exactly as
portable as the algorithm being coded. This is the optimal degree of portability: exactly
what is needed for each situation. Defining this level of portability, and making it available
in a SIMD programming language, is the key contribution of this dissertation.

In contrast to optimal portability, existing SIMD languages artificially restrict or extend
portability. Some restrict portability by requiring specific architectural features (e.g., ar­
bitrary global communication) to be present whether they are used or not. Some extend
portability by not allowing the use of some architectural features. They thereby ban efficient
execution of some algorithms. Most do both.

Of course, designing and implementing an optimally portable language requires a precise
definition of optimal portability. This chapter presents and justifies that definition. A
key feature of this definition is the strict lower bound it places on execution efficiency.
This bound ensures that optimally portable languages provide useful portability, not just
theoretical portability. Succeeding chapters demonstrate this definition's value by applying
it to existing languages, and to the design and implementation of an example language.

Optimal portability is best defined using operations on sets of abstract architectures.
Blaauw and Brooks define the architecture of a computer as "a minimal behavioral specifica­
tion," and distinguish it from the implementation and realization. [BiaauwBroo90] Specifically,
variable quantities such as the number of processors in a parallel computer and the amount
of memory per processor are not specified by the architecture. They are details of the hard­
ware realization. Within this work, I define an abstract architecture to be the set of data
types and operations provided by a computer's architecture, without regard to how the data and
operations are represented. Every data type is assumed to have a fixed size which is the same
in all the processors of a system. Except where explicitly stated otherwise, I use architecture
as a synonym for abstract architecture. Where I need to distinguish abstract architecture from
architecture as defined by Blaauw and Brooks, I refer to the latter as detailed architecture. The
operations and data types of an architecture are collectively referred to as the architecture's
features, another synonym for abstract architecture.

Language definitions share many characteristics with architectures (which are themselves
machine languages). Languages are implemented by compilers and interpreters. Dealing
with an abstract (as opposed to a detailed) architecture gives the degree of portability found
in most sequential languages, such as C and Fortran. These languages provide portability
only between closely related architectures following the von Neumann model. [Dasgupta89,
pp. 103-108] Note that languages do not impose limits on architectural variables. But the
implementation of a language may fail to execute a program which is perfectly legal according
to the language, if some resource (e.g., memory) is exhausted during its execution.

The members of a set of architectures are equivalent if and only if their intersection is identical

5

6 CHAPTER 2. OPTIMAL PORTABILITY

to their union. The union of a set of architectures is an architecture containing all data types
and operations contained in any member of the set. The definition of intersection is more
complicated, and introduces key elements in the overall definition of optimal portability. The
point of the two-step construction of a set's intersection is to synthesize the most powerful
architecture which can be simulated efficiently by all members of the set. The intersection
of a set S of architectures is an architecture constructed as follows:

1. let architecture u be the union of S. To each member A; of S add each data type and
operation in u which Ai can simulate with a constant number of its own data elements
and operations.

2. Take the intersection of the sets of data types and operations of all members of S, as
augmented by the previous step, to create the intersection architecture.

The intersection of a set of architectures will also be called the shared architecture of the
set. The first step in constructing a set's intersection expands each member architecture to
include all the features it can simulate efficiently. Then the second step can recognize the
features shared by all members, even if they were initially expressed differently. The two
most important parts of the definition of intersection are the phrases "number of ... data
elements and operations" and "constant." These phrases address the issue of efficiency.

First, the number of operations and data elements is measured, not time (in clock cycles
or milliseconds) or space (in processor word size, bits of memory, logic elements, or silicon
area). Measures of time and space apply to implementations and realizations, not architec­
tures. Architectures have operations and data elements; simulation efficiency is measured
by counting these. The dynamic number of operations executed is counted, not the static
number written in an algorithm or the number of distinct types used. This corresponds to
the implementation concept of execution time, rather than code size or instruction set size.
Data elements are counted by the high-water mark, or the maximum number ever allocated
simultaneously. In implementation terms, this would be the amount of memory required to
execute the code.

The second phrase, "constant," introduces the constant-bounded simulation criterion
which is used to distinguish architectures and their features. Constant-bounded simulation
is the simulation by some,architecture of one or more architectural features, using only a constant
number of the architecture's operations and data elementso Any Turing-equivalent machine
can simulate any architecture, but not always with useful performance. The constant­
bounded criterion provides a tight bound on simulation overhead. It also fits well with
intuitive notions of equivalent architectures, by making equivalence transitive. If architec­
ture A; can do a constant-bounded simulation of A;, and A; can likewise simulate Ak, then
A; can also do a constant-bounded simulation of Ak. Though the simulation of Ak by A;
may be a two-level process that multiplies the constants of the two levels, the product of
any finite set of constant-bounded numbers is also constant-bounded. It will be shown in
chapter 3 that the set of distinct features of SIMD architectures is finite.

A looser bound on simulation for defining equivalent architectures, such as a logarithmic
or polynomial bound in the amount of memory or number of processors, would not allow
equivalence to be transitive. A tighter bound, such as a limit on the constants allowed
in constant-bounded simulation, would be arbitrary. It would also be meaningless in the
face of large constant-factor differences in execution times for identical features on different
implementations.

The result of the definition of a set of eqnivalent architectures is that any member of the
set can simulate any other member, and the number of native operations they execute will
be within a constant factor of each other.

An architecture supports a language feature (which may be an operation, statement type,
data type, standard library function, or other construct) if and only if the language feature can

7

be implemented with a constant number of the architecture's operations and data elements. A
set of language features provides access to (or provides) an architectural feature if and only if
it enables a program to express within a constant-bounded number of symbols all computations
performable by a single use of the architectural feature. A program is portable across a set S of
architectures if and only if it uses only language features supported by the shared architecture
of S. The target architecture of a program is an architecture across which the program declares
it is portable.

A programming language L is optimally portable for a set S of architectures if and only if
all of the following are true:

• L requires each program p to declare some architecture Ap E S as its target architecture.
(A default target architecture may be implicitly specified in the absence of an explicit
specification.)

o L does not allow p to use any language feature not supported by Av.

• L provides all architectural features in Ap. and allows p to use any language feature
supported by Av.

By satisfying this definition, an optimally portable language gives p exactly the portabil­
ity and power implied by its architectural assumptions, as embodied in its target architecture
Ap. As a resnlt, p is as portable as possible without changing its architectural assumptions.
Of course, if p has specified a target architecture supporting architectural features it actually
does not use, then p can be made more portable simply by specifying a target architecture
which more precisely reflects the program's intrinsic portability. The definition implies that
p is portable across any set S1 ~ S such that Av is the shared architecture of S1 , including
the maximal such set, Sp. Therefore, p cannot be portable across a larger set of architec­
tures without giving up the use of one or more data types or operations. (But if p does
not actually use all the features in its target architecture, then giving up the "use" of these
unused features by changing the target architecture gives p its full intrinsic portability with­
out otherwise changing the program.) In addition, p cannot use additional data types or
operations without adding to Ap. If the augmented architecture were not equivalent to Ap,
this would reduce p's portability by removing architectures from Sp. If it were equivalent,
it would not increase the power available to p.

It is important that optimally portable languages are not allowed to provide language
features not supported by the target architecture. Providing snch features would require the
compiler to generate code which uses arbitrary data elements and operations to simulate
the unsupported features. That would destroy the constant-bounded execution gnarantee
for language features.

Prohibiting compilers from simulating data types and operations not supported by the
target architecture helps ensure portability with useful performance, not just theoretical
portability. This does not restrict the function of programs, since a program may simulate
such data types and operations itself. The implementers of a language may even provide,
as a convenience to programmers, an optional library to do this simulation.

The definitions given so far ensure constant-bonnded execution overhead from language
features down through abstract architectures. However, this performance guarantee is mean­
ingless without a similar assurance concerning execution overhead in implementing the archi­
tecture. A particular computer must be considered to implement only a single set of equivalent
architectures. "this set must be the set of architectures equivalent to the architecture defined by
the computer's lowest-level publicly documented programming interface. This definition says
that every computer implements a single architecture, and specifies how to determine the
definition of that architecture.

8 CHAPTER 2. OPTIMAL PORTABILITY

In some cases, a single machine may be reasonably described by two or more quite
different abstract architectures. As long as they are equivalent, they are equally valid
descriptions. For example, a bit-serial SIMD machine may be described as having operations
on bits, on multi-bit integers, or on floating-point numberso Operations on the multi-bit data
types can be simulated by a constant number of bit-serial operations. The constant (which
may be over 1000) depends on the nature and size (in bits) of the simulated data type, but
does not depend on the values stored in data elements of that type. The architectures are
equivalent. This is consistent with the common practice of building implementations of a
single architecture with varying execution speeds.

Another example is a SIMD machine with a 2-dimensional grid interconnection net­
work which allows communication in parallel between pairs of adjacent PEs (Processing
Elements), using its lowest-level publicly documented programming interface. With an ad­
ditional layer of software to do automatic routing, the machine might also be described
as providing communication between arbitrary pairs of PEs. The number of operations
required to simulate arbitrary communication with this 2-D grid depends heavily on the
dynamically chosen communication pattern. A lower bound for the worst case is the diam­
eter of the network, which is at least the square root of the number of PEs. Since a SIMD
architecture does not specify a maximum number of PEs, this is not a constant bound.
Therefore, the two descriptions are not equivalent, and only the fust is part of a valid
abstract architecture for this machine. However, if the automatic routing software were hid­
den beneath the lowest-level publicly documented programming interface, the architecture
would be considered by the above definitions to provide communication between arbitrary
pairs of PEs.

For most sequential computers, the lowest-level publicly documented programming in­
terface is assembly language. For some SIMD computers it is a library, or even a high-level
language and its standard library. For example, on the Connection Machine the lowest-level
publicly documented programming interface is Paris, a library callable from several sequen­
tial languages. On the MasPar MP-1, it is MPL (which is C with simple parallel extensions)
and its standard library.

There are several reasons to define a machine's architecture by its lowest-level publicly
documented programming interface, rather than by its hardware. A programmer has no
access to the hardware except through this interface, so a language which provides features
equivalent to this interface is neither hiding features from nor inventing features for the pro­
grammer. Hardware documentation is not always publicly available. When it is, it.is often
less complete and precise than the programming interface, largely because programming in­
terfaces must be well documented in order for important software to be developed. Machine
builders are free to implement, transparently to the programmer, a single architecture with
different hardware designs. These identically programmed machines should be considered
by languages to have the same architecture.

Although I believe this is the best available method for defining a computer's architec­
ture, it leads to some apparent contradictions. For example, the CM-2 (Connection Machine,
model 2) and MP-1 both define global reduction and parallel prefix computations as sin­
gle operations. This is despite the fact that any implementation using pairwise operations
(which they in fact use) must take O(log2 n) steps when there are n PEs. Arbitrary global
inter-PE communication is another example. Both the CM-2 and the MP-1 implement this
operation with an iterative procedure, the number of iterati~ns of which is not bounded
by a constant with respect to the number of PEs. Even sequential machines have a slight
non-constant element to their implementation; memory access with address decoding is the­
oretica!Iy logarithmic in the size of the address space (linear in the number of address bits).
However, the architects and implementers of these machines, and those of all the languages
designed and implemented for them, concur that these features should be considered part

9

of the programming model. They are powerful abstractions, and can be implemented rea­
sonably efficiently with a combination of hardware and firmware. Defining these machines'
architectures by their lowest-level publicly documented programming interface captures this
collective judgement, which further supports the use of this definition.

The definition of optimal portability allows a strong statement to be made about the
efficiency of optimally portable languages: every language feature available on a particular
computer is implementable with a constant number of operations and data elements at
the computer's lowest-level publicly documented programming interface. This is as strong a
statement of efficiency as any portable language can make. Anything stronger would require
knowledge of implementations, which is beyond the scope of language definitions.

10 CHAPTER 2. OPTIMAL PORTABILITY

Chapter 3

A SIMD Taxonomy for Optimal Portability

While the architectural differences between sequential (not vector) computers are significant
to cost and performance, it is very rare for them to influence algorithms in application
programs. This is because purely sequential computers share the von Neumann model
of architecture, and are equivalent by the definition in chapter 2. Therefore, sequential
languages are optimally portable by that chapter's definition.

In contrast, the family of SIMD architectures is large and diverse. SIMD architectures
aim to apply unmatched computational power to suitable problems. They do this by repli­
cating the essential processing elements abundantly and distributing the data store among
them, without also duplicating the instruction fetch and decode, flow control, and code
store components. But choosing the precise set of features to replicate in each PE, and the
network by which PEs exchange data, involves trade-offs between power and cost per PE.
There is no single "right" set oftrade-offs which is best for all applications, since applications
vary in the benefit they derive from each feature. This is the source of the architectural
diversity which makes optimally portable SIMD languages necessary and non-trivial.

A programming language can be optimally portable only for a specific set of architec­
tures. That set must be well defined, so a definition of SIMD architectures is presented in
section 3.1. The architectural features within the set must be identified and distinguished
using the constant-bounded simulation criterion. I have developed a new SIMD taxonomy
which does exactly that; it is presented in section 3.2. Section 3.3 demonstrates this taxon­
omy by using it to classify some important existing SIMD architectures. For the purpose of
this classification, each SIMD computer is considered to implement the architecture defined
by its lowest-level publicly documented programming interface. This is required by the
definition of optimal portability. Finally, section 3.4 reviews some existing taxonomies and
discusses why none of them is a suitable basis for designing an optimally portable language.
They are discussed at the end of the chapter primarily so the vocabulary of architectures
and architectural features developed in the rest of the chapter can be used in the discussion.

3.1 Definition of SIMD Architectures

An architecture A is a SIMD architecture if and only if all of the following are true:

• A has a host computer which handles ordinary scalar computations and flow control, and
which broadcasts instructions, one at a time, to. all PEs (Processing Elements).

• A has n > 1 identical PEs which each execute, simultaneously, each instruction broadcast
by the host.

• Each PE is able to evaluate basic arithmetic and logical expressions.

11

12 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

I believe every useful SIMD architecture also has the following properties:

1. Each PE is able, in response to broadcast instructions, to independently choose whether
to ignore instructions to modify its memory. (PEs executing all instructions are enabled,
while those ignoring instructions to modify memory are disabled. PEs can be considered
to have an enable-bit which is 1 only in enabled PEs.)

2. Each PE is able to compute its unique PE number 0 ::; p::; n- 1.

3. Each PE has its own private memory.

Property 1 can be simulated with a constant number of ordinary arithmetic and logical
operations. Architectures that do not have this property are therefore equivalent to those
that do, and can be considered to have it. This property takes many different but equivalent
forms in various machines, with it being possible to ignore different subsets of the instruction
set.

Property 2 holds for every architecture which can, by any means, load into each PE a
different member of a set of distinct values. To see this, consider the set of PE numbers as
the data to be loaded. If there is a SIMD architecture which does not have this property, I
do not think it is very interesting because the PEs cannot be given unique predetermined
data on which to operate.

The only claimed exception to property 3, that I am aware of, is an alternative set of
architectures where PEs access a global memory space through a network of some kind
(cf., [HwangBrigg84, pp. 326-327]). I believe that any such architecture is equivalent to
a loc~l-memory architecture in which the PEs are connected to each other by the same
network that connects the PEs to the global memory.

Specifically, the BSP (Burroughs Scientific Processor, section 3.3.18) is the only non-local
memory architecture I know of. It is equivalent to a large subset of the CM (Connection Ma­
chine, section 3.3.20) architecture. (Both architectures are discussed briefly in section 3.3.)
The BSP can simulate the CM's local memory model simply by assigning a distinct portion
of global memory to each PE for private use, and accessing memory assigned to other PEs
only to simulate communication. Similarly, the CM can simulate the BSP's global mem­
ory model by using its communication primitives to access memory, treating all the private
memory as a single global memory space. Both are constant-bounded simulations, so the
BSP's global memory and arbitrary PE to memory interconnection network is equivalent to
the CM's local memory and a subset of its communication primitives. The only difference
between the memory and communication systems of the architectures is that the CM has
more powerful mechanisms for resolving multiple simultaneous writes to a single memory
location.

If any of these properties is not true of all SIMD architectures, then the taxonomy of
the next section is considered to have an additional feature for each such property. Because
all architectures currently classified by this taxonomy have all these features, they will not
be mentioned further.

3.2 Taxonomy of SIMD Architectures

This section presents a new taxonomy of the diverse architectures that exist within the
definition of SIMD just presented. The taxonomy's purpose is to provide a basis for designing
optimally portable SIMD languages. Therefore, its criterion for distinguishing architectural
features from one another is constant-bounded simulation.

Of course, some of the constant factors ignored by this criterion are important for other
purposes. Designers of SIMD machines must decide not ouly which features to implement,

3.2. TAXONOMY OF SIMD,ARCHITECTU~ES 13

but also how much hardware to devote to minimizing each constant. Constant factors can
also be important to users choosing the best machine on which to run a program. But these
constants reflect the performal'ce of an implementation, not the suitability of an algorithm
to an architecture. So this taxonomy appropriately ignores them.

The t3.xonomy presented here is reasonably comprehensive, but not exhaustive. No static
SIMD taxonomy could remain exhaustive in any case, since new architectural features can
always be invented. All that is needed is to propose implementing as a single operation
some computation which cannot be implemented by existing architectures using constant­
bounded simulation.

Communication networks are a good example of this. There is an infinite number of
communication networks which are not equivalent (by the constant-bounded simulation cri­
terion). A finite taxonomy cannot describe them all. Fortunately, the set of communication
networks and other architectural features proposed in the literature is much more manage­
able. There are many common features and similarities, which makes it possible to describe
most proposed architectures as combinations and variations of a few important architectural
concepts.

The taxonomy presented here is intended to classify architectures which have been im­
plemented or proposed in the literature. It is not intended to classify all conceivable ar­
chitectures, or even all architectures obtainable by combining the features of proposed ar­
chitectures in new ways. Where several architectures are sufficiently similar, I have sought
to generalize the similar features and provide a unifying classification. For example, my
description of cut-through communication is more general than connection autonomy as
proposed by Maresca and Li [MarescaLi88, MarescaLi89]. I believe I am the first to iden­
tify the segmented communication bus architectures of the Princeton Engine (section 3.3.6
and ASP (Associative String Processor, section 3.3.7) as special 1-D cases of connection
autonomy, and the first to int<jgrate the communication capabilities of Unger's architecture
(section 3.3.14) into a more general framework.

Some less common architectural features have not been used enough to suggest which
possible generalizations are most useful. In particular, where pairs of features that might
interact have never been proposed as part of the same architecture, I have not attempted
to define what their interactions might be.

The taxonomy presented here classifies an architecture as a set of architectural features.
A classification contains at most one feature chosen from each of 12 feature categories.
The categories are grouped and named as follows. The groups are in order of decreasing
significance for most algorithm selection tasks.

Communication:
Labeling (number, N)
Communication (C)
Collision Resolution, Write (W)
Collision Resolution, Fetch (F)
Piped Communication (P)
Cut-Through Communication (T)

Local Addressing:
Local Addressing (L)

Reducing and Scanning:
Reduce (R)
Scan (S)

Parallel I/0:
Input (I)
Output (0)

14 CHAPTER 3. A SIM[! TAXONOMY FOR OPTIMAL PORTABILITY

PE to Host I/0:
Get (G)

The items in paxentheses identify the categories.
The sections that follow describe the naxning of architectural features, and the features

in each category. In some cases, a feature or set of features can perform a constant-bounded
simulation of some other feature. The simulating feature or set of features is then said
to subsume the simulated feature. This is mentioned where it is particularly important or
common. Tables 3.1 (p. 15) and 3.2 (p. 16) summarize the features in each category.

3.2.1 Feature Names

Every feature has a name. A feature name consists of a number or an upper-case letter,
optionally preceded by one or more lower-case letters. The upper-case letter identifies the
category the feature is part of. Most categories have a unique letter which is the final
(upper-case) letter of all its feature names. The single exception is "labeling"; it is the only
category which uses numbers in feature names.

Several related features are sometimes named and described as variations of a single
base feature. (E.g., adjacent communication has variations both with and without diagonal
connections, wrap-around edges, and local communication.) In such cases, the base feature
is named and described. Then each of. a set of modifiers of that base feature is named and
described. Rules are given describing the legal combinations of modifiers. Finally, each legal
variation obtainable from the modifiers and combining rules is naxned.

The name of a variation always begins with the name of the base feature, minus the
final letter. This is followed by the letters for all its modifiers, in the order the modifiers
are described in the taxonomy. The final letter of the base feature completes the name of
the derived feature.

In a few cases, there is no base feature because at least one modifier is required by all
variations. Where this is true, a pseudo-base feature is given which has an asterisk (*) in
its naxne. The asterisk must be replac~d by one or more modifiers to create a legal feature
naxne. For example, the global reduction pseudo-base feature g*R has modifiers f, o, x, m,
s, and p. These represent the features lgfR, goR, gxR, gmR, gsR, and gpR.

3.2.2 Communication

Interprocessor communication is a very important characteristic ofSIMD architectures. It is
the axea of SIMD architecture which exhibits the most diversity. The primary determinant of
an architecture's communication capabilities is the network used to connect the processors.
A cartesian grid with one or two dimensions is most common, but complete graphs and
other networks have also been proposed and used. The "labeling" and "communication"
feature categories define the basic interprocessor communication network.

These categories make no pretense of describing all the possible communication networks
that could be used in SIMD axchitectures. There is an infinite number of such networks,
and a tremendous body of literature describing them. (Two good surveys are [WuFeng84,
Siegel85].) This taxonomy only attempts to describe interconnection networks which have
been used or proposed as paxt of a SIMD architecture. Obviously, more features will be
added to the "labeling'' and "communication" categories as new SIMD architectures use
additional interconnection networks.

In some architectures, each PE is able to independently choose with which one of several
(or many) other PEs it will communicate. This raises the possibility that some PE will be

3.2. TAXONOMY OF SIMD ARCHITECTURES

Communication

Labeling (number, N)

1 1-D cartesian coordinate.
2 2-D cartesian coordinate.

Any fixed-dimension cartesian coordinate.
N N-D cartesian coordinate.
p2 3-tuple: level number and 2-D cartesian coordinate.

Communication (C)

aC Adjacent communication.
d Diagonal.
w Wrap.
I Local.

mC Pyramid of 2-D grids, adjacent communication.
c Count.

cC Cube Connect~d Cycles communication.
pC Preselected set of permutations.
gC Global communication.

Collision Resolution, Write (W)

sW Select.
IW Logically combine {and, or, xor).
a W Add, or take maximum or minimum.
mW Multiply.

Collision Resolution, Fetch (F)

sF Select.
rF Replicate.

Piped Communication {P)

P Pipe.
u Unrestricted pipe.
c Copy pipe.

Cut-Through Communication {T)

T Cut-through communication.
r Restrict the switch.
1 Program switch locally.
c Connect through switch.
o "Or" together multiple values.

15

Table 3.1: Communication Features of SIMD Architectures. Summary of the communication
group of features described in section 3.2.2, shown by category.

16 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

Local Addressing

Local Addressing (L)

IL Limited local addressing.
uL Unlimited local addressing.

c Local addressing during communication.

Reducing and Scanning

f First.
o Or, and.
x Xor.
m Max, Min, f.
s Sum (add), m, x, o.
p Product (multiply), s.

Reduce (R) I
' d*R Reduce along one dimension.

m*R Reduce along multiple dimensions.
g*R Global reduction.

Scan (S)

d*S Scan along a dimension.
g*S Global scan.

Parallel I/ 0

Input (I)

I Parallel input.

Output (0)

dO Parallel output, write-only (display).
0 Parallel ouput.

PE to Host I/0

Get (G)

rG Restricted get.
G Get.

Table 3.2: Other Features of SIMD Architectures. Summary of non-communication features
described in sections 3.2.3-3.2.6, shown by group and category.

3.2. TAXONOMY OF SIMD ARCHITECTURES 17

selected as the communication partner of more than one other PE. How such communication
collisions are resolved is determined by the ''write" and "fetch" feature categories.

"Piped communication" extends ordinary grid communication by allowing PEs to com­
municate with PEs which are a fixed distance and direction away, but the distance is greater
than one.

The feature categories described so far control the communication pattern either globally
in the host, or locally in each originating PE. The final communication category, "cut­
through communication", provides distributed control of communication. Each PE may
initiate, forward, or intercept data. This has the interesting consequence that neither the
host nor the originating PE necessarily knows with which other PE an originating PE is
communicating.

3.2.2.1 Labeling (number, N)

The n PEs of every SIMD architecture are numbered from 0 to n- 1. PE numbers are used
by operations described later in this taxonomy. An architecture may define a supplemen­
tary labeling of PEs, used to identify individual PEs in certain operations provided by the
architecture. There must be a mapping from PE numbers to PE labels which is one-to-one
and onto. However, the definition of this mapping is an implementation detail not defined
by the architecture. The following labelings are defined.

1 1-D cartesian coordinate.

2 2-D cartesian coordinate.

A cartesian coordinate with any fixed number of dimensions.

N N-D cartesian coordinate. An architecture with this labeling specifies no fixed number
of dimensions. A progr~ may specify the number of dimensions to be used, up to
some implementation-defned maximum.

p2 A 3-tuple consisting of It 2-D cartesian coordinate and a level number. This is used
with the pyramidal multi-grid "mC" communication feature described in the next
section. The PEs are arranged in 2-D square cartesian grids of fixed sizes. The grids
are numbered 0, 1, 2, .. ··I The grid at level I has 21 PEs along each side. The label's
level number specifies a grid, and the 2-D coordinate specifies a PE within that grid.

In the absence of the "gCl" global communication feature and of features which re­
quire a labeling, these labelings have no significant effect and are all equivalent. Their
real importance is in the way they influence certain other features whose behavior depends
on the number of dimensions. However, "N" by definition subsumes any fixed-dimension
cartesian labeling ("1", ''2", ...) whenever the remaining features are kept constant. Any
fixed-dimension cartesian labeling subsumes any smaller-dimensioned labeling when the re­
maining features are constant and do not include certain features. The excluded features
are: all piped and cut-through communication features, and the dimensioned (non-global)
reduce and scan features.

3.2.2.2 Communication (C)

The following characteristics are shared by all features in this category. When a communi­
cation operation is performed, all enabled PEs initiate communication with a remote PE.
(The identity of the remote PE is specified differently in each feature.) The communication
operation may send data to the remote PE, or fetch data from the remote PE. In both cases,
the operation is unaffected by the enable status of the remote PE.

18 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

aC Adjacent communication. This f~ature requires a cartesian coordinate labeling. Each
enabled PE may communicate with PEs whose labels differ from its own by exactly
one in exactly one dimension. It· may communicate with only one of them at a time,
and the dimension and direction { + 1 or -1) of the other PE are specified globally. It
has three modifiers.

aC

d Diagonal. Each enabled PE may communicate with PEs whose labels differ from
its own by exactly one in one or more dimensions. "d" also modifies piped and
cut-through communication features"

w Wrap. Label differences in each dimension may be calculated modulo the length
(in PEs) of that dimensio~, so that the ends of each dimension wrap around.
"w" also modifies piped and cut-through communication features. The choice of
whether to wrap or not is made globally for each operation.

I Local. The dimension(s) and direction(s) (+1 or -1) of communication are cho­
sen locally (i.e., independently in each enabled PE). "!" does not modify any
other features.

These modifiers may be combined freely, yielding the following features: aC, adC, awC,
a!C, adwC, ad!C, aw!C, adw!C. Figure 3.1 illustrates the interprocessor communication
networks used for adjacent communication, each labeled with its feature name. Note
that "]" affects the way the network is used, but not the topology of the interconnection
network itself.

adC awe adwC

D-0

Figure 3.1: 1-D and 2-ID Adjacent Communication Networks

For any fixed number of dimensions, architectures with and without the "1" modifier
are equivalent. They are not equivalent when the "N" cartesian labeling is used. For
any fixed number of dimensions, architectures with and without the "d" modifier are
equivalent when they contain no piped or cut-through communication features. Archi­
tectures with and without the ''w" modifier are equivalent if they do not contain any
piped or cut-through communication feature. Note that "w" makes wrap-around com­
munication available) but does not require its us.e. When wrap-around communication
is available, each communication operation specifies whether to use it.

mC Multiple 2-D grids with pyramidal interconnections. This feature requires the "p2"
pyramidal labeling. PEs are connected between levels so that each PE not on the last
level is connected to 4 child PEs on the next level that form a 2 by 2 sub-grid. Each
enabled PE may communicate with its child and parent PEs, and with its adjacent
PEs on the same !eve] (as defined by the "aC" feature for a !-D cartesian grid). The
choice of which of these PEs to communicate with is normally made globally.

3.2. TAXONOMY OF SIMD ARCHITECTURES 19

The "d", "w", and ''l" modifiers applied to "aC" are not relevant here. Because the
number of neighbor PEs with which communication is possible is fixed, simulation
of these modifiers is constant-bounded. So the description just given without these
modifiers is equivalent to a description which includes them.

"mC" has one modifier.

c Count. Count the number of enabled PEs on the largest layer, returning the
result to the host. This operation is included here because it is only applicable
to architectures with this pyramidal topology.

The following features are legal: mC, mcC.

cC Cube Connected Cycles communication. Each enabled PE may communicate with
PEs which are adjacent to it in the Cube Connected Cycles interconnection network
as described in [PreparataV81]. The choice of which of these possible PEs to commu­
nicate with is made locally. (This is equivalent to making the choice globally, since
the number of possibilities is fixed at three.)

pC Preselected set of permutations. A globally selected permutation specifies which pairs
of PEs may communicate, and which PE of each pair initiates communication (if it
is enabled). The maximum number of permutations which may be used by a single
program is implementation dependent.

gC Global communication. Each enabled PE may communicate with any PE it chooses.

Under certain conditions, this feature subsumes each of the other features in the
communication (C) category. First, any labeling required by the other feature must
be present. Second, the "cP" piped communication feature must not be present, and no
cut-through communication feature may be present. (The cut-through communication
features provide a distributed routing mechanism in which the originating PE does
not necessarily know the identity of the PE it communicates with.)

If a cartesian labeling is present with "gC", then the "aC" feature is implicitly present
also. The "aC" modifiers "d" and "w" may be prepended to_ "gC" in t_his case. This
does not change the architecture, since "adwC" is subsumed by "gC" when a labeling
is present. It is significant because it allows the implicit "aC" to be modified by a
piped or cut-through communication feature. It also allows the "aC" modifiers "d"
and ''w" to modify that piped or cut-through communication feature. The MP-1
(section 3.3.19) is an example of this. Piped and cut-through communication features
require a variant of "aC", are modified by the "d" and "w" modifiers of "aC", and do
not affect "gC" .

3.2-2.3 Collision Resolution, Write (W)

When more than one PE attempts to send (write) data to a single PE, there is a write
collision. If none of the features in this category are present, the result of a write collision
is undefined. Collision resolution does not apply to piped communication (P) operations,
which do not result in collisions. Collision resolution also does not apply to cut-through
communication (T) operations, which handle collisions differently.

Write collisions can occur with any of the communication (C) features except "pC"
(preselected permutation communication). (All "pC" communication is by permutation,
so collisions are impossible.) Collisions can occur with "gC" (global communication), with
"aC" (adjacent communication) modified by "I" (local direction), and with ''mC" (pyrami­
dal communication) or "cC" (CCC communication) when local communication is in use.

20 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

Collisions can also occur in "mC" whenever more than one child of a single parent PE
attempts to communicate with that parent PE.

sW Select. One of the values is selected arbitrarily and used, and the other values are
ignored. This is the same as serializing the write operations.

IW Logically combine. The inputs are combined with one of the bitwise logical operations
"and", "or", or "xor". The behavior of 1'sW" may also be used. The choice of operator
and behavior is made globally. I

a W Add, or take maximum or minimum. The inputs are combined with one of the arith­
metic operations "add", "max'', or "min". The behavior of "lW" may also be used.
The choice of operator and behavior is made globally.

mW Multiply. The inputs are combined with multiplication. The behavior of "aW" may
also be used. The choice of behavior is made globally.

Any architecture with a fixed limit on the number of colliding requests can do constant­
bounded simulation of all these features. This includes all the fixed-dimension cartesian
coordinate labeled machines (not "N") which have variations of "aC" communication but
do not also have "gC" communication. It also includes architectures with "cC" and "mC"
communication.

3.2.2.4 Collision Resolution, Fetch (F)

When more than one PE attempts to fetch (read) data from a single PE, there is a fetch
collision. If none of the features in this category is present, the result of such an operation
is undefined. Collision resolution does not apply to piped communication (P) operations,
which do not result in collisions. Collision resolution also does not apply to cut-through
communication (T) operations, which handle collisions differently.

Fetch collisions can occur under the same circumstances as write collisions.

sF Select. One of the PEs requesting data will receive it. The others will not receive any
data, leaving the location where it was to be stored unmodified.

rF Replicate. All the requesting PEs receive a copy of the data. This is the same as
serializing the requests. The behavior of "sF" may also be used. The choice of behavior
is made globally.

"sF" is subsumed by "sW", as follows. Each PE simulating "sF" senda to the PE it is fetching
from some data which identifies the sending PE (e.g., PE number or relative position). The
"sW" feature ensures that each PE receives at most one such message. Each receiving PE
simply senda the fetched data back to the PE identified by the request it received.

The same architectures which can do constant-bounded simulation of write collision
resolution features can also do constant-bounded simulation of all fetch collision resolution
features.

3.2.2.5 Piped Communication (P)

Piped communication is simply extended adjacent commnnication. Communication is with
a PE some globally-specified number of PEs away, where that distance need not always be
one as with adjacent communication. The "d" (diagonal) and "w" (wrap) modifiers of "aC"
(adjacent communication) modify piped communication as well. The "!" (local direction)

3.2. TAXONOMY OF SIMD
1
ARCHITECTURES 21

modifier of "aC" does not apply to piped communication; the choice of direction for piped
communication is always madf globally.

Piped communication only has meaning on architectures with adjacent communication
(variations of the "aC" feature). Piped communication may not be used simultaneously
with cut-through communication. An architecture may have features from both categories
(though none that I know of does), but these features do not affect each other. Collision
resolution does not apply to piped communication, because no collisions can occur. Local
addressing during communication ("*cL") does apply to piped communication.

P Pipe. The restriction is imposed that there may be no enabled PE in the straight path
between any two communicating PEs. "P" has two modifiers.

u Unrestricted pipe. There is no restriction on which PEs may be enabled.

c Copy pipe. During restricted pipe communication, copy the communicated data
into each disabled PE in the straight path between each pair of communicating
PEs.

The ''u" and "c" modifiers may both be present, but they do not modify each other.

The legal features are: P, uP, G:P, and ucP. "ucP" provides all three kinds of communication
described in this category. I

Global communication ("gC") subsumes "P" and ''uP", but not "cP".

3.2.2.6 Cut-Through Communication (T)

Cut-through communication is an extension to adjacent communication. Also known as
connection autonomy, cut-through communication places a crossbar switch at each PE's
connection to the communication network. This switch can be globally or locally pro­
grammed, but the default is global. The switch can be the PE's connection to the network
(in which case the switch is connected to the network all the time), or it can be used to
temporarily replace the PE in the network at the PE's discretion. The latter case is the
default: the PE may choose locally to disconnect itself from the network and connect its
switch to the network in its place.

These characteristics allow the creation of multiple logical "wires", each connecting some
number of PEs in an extremely flexible pattern. If any PE places data on such a wire, all
the other PEs connected to the wire receive that data. If more than one PE sends data
to the same wire, the result is undefined unless "o" C'or" combine, described later in this
section) is specified.

Cut-through communication allows multi-cast communication, where the data sent by
a single PE may be received by multiple remote PEs. For this reason, cut-through com­
munication supports sending data, but not fetching data. That is, when each enabled PE
initiates communication with some set of remote PEs, data is always sent from each enabled
PE to its remote PEs. The enabled PEs never fetch data from remote PEs.

T Cut-through communication. Place a globally-programmable crossbar switch at each
PE's connection to the interconnection network.

r Restrict the switch. Replace the crossbar with a rotary "straight-across" switch. This
switch always connects one pair of network wires that go in opposite directions.

I Local switch programming. Allow each PE to program its own switch.

22 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

c Connect through switch. Expand the switch so the PE can connect to the network
through the switch, instead of having to remove the switch from the network to connect
itself to the switch. If the switch is a crossbar, simply add another port to it for the
PE's connection. This connection is programmed with the rest of the switch. If the
switch is the restricted rotary switch, add a connection from the PE to the center
of the switch's straight-across wire. Whether this connection is made or broken is
controlled in the same way as the switch's orientation, whether that is global or local.

o "Or" together multiple values. If more than one PE sends data to a single wire (set
of connected PEs), the data is bit-wise "or'' d together instead of being undefined.

The modifiers may be combined freely, so the legal features are: T, rT, IT, cT, oT, r!T, reT,
roT, leT, loT, coT, rlcT, rloT, rcoT, lcoT, ricoT.

Figure 3.2 shows some example communication patterns using cut-through communica­
tion. Each pattern is labeled with the feature it illustrates. The small rectangle on one side
of PEs in some patterns indicates that the PE itself is connected to that communication
port. Note that "o" affects the behavior of the network, but not the topology, so it is not
visible in the figure.

Cut-through communication requires adjacent communication ("a*C").
The "d" (diagonal) and "w" (wrap) modifiers of "aC" also apply to cut-through commu­
nication. "d" provides additional ports on the switch, which go to diagonally adjacent PEs.
"w" allows wrap-around wires between switches at opposite edges of the PE array. The
"!" (local direction) modifier of "aC" does not apply to cut-through communication. The
direction of communication is specified by the configuration of the switches.

Cut-through communication may not be used simuitaneously with piped communica­
tion. An architecture may have features from both categories (though none that I know
of does), but these features do not affect each other. Collision resolution features (W, F)
do not apply to cut-through communication; collision handling for cut-through communi­
cation is described earlier in this section. Local addressing during communication ("*cL",
section 3.2.3) does not apply to cut-through addressing; all addressing during cut-through
communication is global.

This taxonomy could easily be extended to allow cut-through communication with the
"mC" (pyramidal communication) and "cC" (CCC communication) communication fea­
tures. But no such architecture has been proposed, so that extension has not been done
yet.

Global communication ("gC") does not subsume cut-through communication. Cut­
through communication does not subsume piped communication or global communication.

Locally programmed ("!") cut-through communication raises an interesting implemen­
tation difficulty. The host does not necessarily know the length of the longest wire carrying
data in a communication operation, because that depends on the locally programmed switch
configurations. Even in the absence of "I", the host may still not know the length of the
longest data wire if the "c" modifier is also not present, because the wire length may depend
on which switches are connected to the network by their PEs. Not knowing the length of
the longest data wire makes it difficult to choose the right length of time to wait for the
data to propagate on the wire. The implementation of YUPPIE (Yorktown Ultra Parallel
Polymorphic Image Engine, section 3.3.13) handles this by reqniring the program to specify
a bound on the length of the longest wire in each communication operation.

3.2.3 Local Addressing

Local memory within each PE is most commonly accessed using the same globally-specified
address in all PEs. Allowing PEs to access their local memory using different locally-

3.2. TAXONOMY OF SIMD ARCHITECTURES 23

leT

T reT

cT leT

Figure 3.2: Examples of Cut-Through Communication

computed addresses adds significantly to an architecture's flexibility and power. Middleton
and Tomboulian discuss the costs and benefits of local addressing [MiddletonT89].

3.2.3.1 Local Addressing (L)

IL Limited local addressing. Each PE can locally address some subset of its memory.

uL Unlimited local addressing. Each PE can locally address its entire memory. This
obviously subsumes "lL".

c Local addressing during communication. Each PE initiating a communication op­
eration may specify that the remote PE with which it is communicating use local
addressing to load or store the data, as appropriate. The initiating PE specifies the
address which the remote PE is to use, and sends this address to the remote PE as
part of the communication operation. The form of local addressing provided ("IL'' or
''uL") is the same as that available in the local PE.

24 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

This modifier is only meaningful in an architecture with a communication (C) feature.
The collision resolution (W, F) features apply to local addressing during communica­
tion, except that two requests are not considered to collide unless they specify both
the same remote PE and the same address. Local addressing during communication
is allowed with piped communication (P). However, local addressing during commu­
nication does not apply to cut-through communication (T).

c'c" modifies both "lL" and "uL", so the legal features are: lL, uL, lcL, ucL.
CAM (Content Addressable Memory) is sometimes associated with SIMD architectures.

However l there is an important distinction between a SIMD architecture used to implement
a CAM, and a SIMD architecture with CAM words as its local memory. The former is
common in the literature, and uses only global addressing in each PE. The latter has never
been proposed, to my knowledge.

3.2.4 Reduce and Scan

Reduce and scan are similar in that they both apply some combining operator to a value
from each enabled PE in some set of PEs. Reduce is concerned only with the final result,
while scan also computes and saves each intermediate result. Scan is also known as the data
independent prefix operation.

Computing reduce and scan with fixed fan-in operators clearly takes log n parallel steps
for n PEs. However, both operations are provided as single operations on commercially
available SIMD computers, as shown in section 3.3. Reduce and scan are actually at least
as efficiently implemented as the global communication operations which are also provided
as single operations on the same and additional computers. Blelloch elaborates on this
point [Blelloch87].

Reduce and scan share the following modifiers, which specify sets of combining opera­
tors.

f First. Always use the first (leftmost) operand as the result. For scan, this is also
called copy.

o Or, and. Bitwise inclusive "or", or bitwise "and".

x Xor. Bitwise exclusive "or", or use one of the "o" operations.

m Max, Min. Maximum, minimum, or use the "f'' operation.

s Sum. Add, or use one of the "m", "x", or "o" operations.

p Product. Multiply, or use one of the "s" operations.

3.2.4.1 Reduce (R)

d*R Reduce along one dimension. Place in each enabled PE the result of combining the
values of all enabled PEs whose labels differ from that PE's label in only one dimension.
This requires a cartesian labeling.

m*RReduce along multiple dimensions. Place in each enabled PE the result of combining
the values of all enabled PEs whose labels differ from that PE's label only in the
specified dimensions. This requires a cartesian labeling.

g*R Global reduction. Return to the host the result of combining the values of all enabled
PEs.

3.2. TAXONOMY OF SIMD ARCHITECTURES 25

These are all pseudo-features, meaning that they are not real features without a modifier to
specify the combining operation. The "d", "m", and "g" prefixes may be combined. They
do not modify each other, so combining them simply makes the different features available
within the same architecture. Since "m" subsumes "d", there is no reason to write them
both. Therefore, the legal features are: dfR, doR, dxR, dmR, dsR, dpR, mfR, moR, mxR,
mmR, msR, mpR, gfR, goR, gxR, gmR, gsR, gpR, dgfR, dgoR, dgxR, dgmR, dgsR, dgpR,
mgfR, mgoR, mgxR, mgmR, mgsR, mgpR.

The features "goR" and "gmR" are equivalent. The "m*R" features subsume the cor­
responding "d*R" features, by definition. Each "d*R" feature subsumes the corresponding
"g*R" feature for any fixed number of dimensions (e.g., cartesian labelings "1", "2", ... ,
but not "N").

3.2.4.2 Scan (S)

d*S Scan along a dimension. Place in each enabled PE the result of combining its value
with the values of all enabled PEs whose labels differ from that PE's label in only
one dimension and have a lower number in that dimension. This requires a cartesian
labeling.

g*S Global scan. Place in each enabled PE the result of combining its value with the
values of all enabled PEs with a lower PE number than its own.

These are all pseudo-features, meaning that they are not real features without a modifier to
specify the combining operation. The "d" and "g" prefixes may be combined. They do not
modify each other, so combining them simply makes the different features available within
the same architecture. Therefore, the legal features are: dfS, doS, dxS, dmS, dsS, dpS, gfS,
goS, gxS, gmS, gsS, gpS, dgfS, dgoS, dgxS, dgmS, dgsS, dgpS.

The dimensioned copy scan ("dfS") subsumes piped copy communication ("ucP").

3.2.5 Parallel I/0

A parallel I/0 operation transfers in a single operation a value for each PE between the PE
and an external data source or sink. The transfer is performed in every PE, whether the
PE is enabled or not.

3.2.5.1 Input (I)

I Parallel input. Read a value into each PE from a data source.

Typical data sources include disk files and video devices.

3.2.5.2 Output (0)

dO Parallel output to a write-only device. Write a value from each PE to a write-only
data sink.

0 Parallel ouput. Write a value from each PE to a read/write mass storage device.

"dO" is named for "display", since some video displays are write-only devices. Disk files are
the most common read/write mass storage devices.

26 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

3.2.6 PE to Host I/0

Architectures which do not provide parallel I/0 usually provide serial I/0 to and from
the PEs through the host. Data can be sent from the host to any or all PEs in all SIMD
architectures, by broadcasting the data as part of the instruction stream. The data can be
preceded by instructions to ensure that exactly the right PEs are enabled and therefore able
to record the data from the host. Getting data from PEs back to the host is a very common
feature, but it is not universal.

3.2.6.1 Get (G)

rG Restricted get. Copy a value from some unspecified arbitrary PE to the host.

G Get. Copy a value from any specified PE to the host.

"G" implies full serial I/0 to and from the PEs through the host.
The feature "goR" (global "or'' reduction) subsumes "G" (get).

3.2. 7 Naming a Classification

An architecture's classification is written by concatenating the names of its features. The
feature names should normally be written in the same order used to describe them in the
preceding sections, as a convenience to the reader.

3.3 The Taxonomy in Use

This section shows that the taxonomy just presented is useful and reasonably comprehensive,
by using the taxonomy to classify a representative set of 20 SIMD architectures. The
architectures and their classifications are summarized in table 3.3 and discussed in the
remainder of this section.

These architecture classifications are presented as a tree in figures 3.3 and 3.4. The
root node of the tree is the basic SIMD architecture with no optional features. The leaves
are real computer systems; each leaf system implements the architecture containing the set
of optional features named on the path from the root to that leaf. Each vertical level of
the tree is labeled with the feature category it represents, and each box in a level names a
particular feature in that category.

In both the table and tree formats, the canonical classification of each architecture is
shown (as canonical is defined in the next paragraph). However, some architectures are
listed again in parenthesis to point out architectures which it may not be obvious that they
subsume. Note that the power of the architectures does not increase monotonically, as the
orderings might suggest. Constant-bounded simulation (the "subsumes" relation) provides
only a partial ordering.

The architecture classifications that follow are presented in a common format. The
header is the name of the architecture, with a parenthesized explanation of the name if
appropriate. This is followed by the architecture's classification. The classification is stated
at least twice. The first statement is the most natural classification. The second is equivalent
to the first, but is a canonical classification which names all features the architecture can
provide with constant-bounded simulation. This canonical form is used in table 3.3. Any
succeeding classification statements show important subsumed architectures which might
otherwise be overlooked.

3.3. THE TAXONOMY IN USE 27

Commu i ation

Collisio , rite

Cut-thro gh C mmunication

Local A dress· g

Reduce

Scan

Figure 3.3: Tree of SIMD Architecture Classifications. The remainder of the tree is shown
in the next figure.

28 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

PipedC m

Local A dressiog

Scan

1) 1 11)

Figure 3.4: Tree of SIMD Architecture Classifications, continued from the previous figure.

3.3. THE TAXONOMY IN USE 29

!lame .11 •••• C .II .F .. P ... T •. L ... R ... S I .0 .G
-- ----- -- -- --- ---- --- ---- ---- -

PxPl4 dO
Oldfield goR
PxPl5 goR I 0 G
AIS-5000 1 adwlC mil rF rG
Centipede 1 adwlC mil rF lcL goR G
Princeton Engine 1 adwlC mil rF leT ucL 0
ASP 1 adwlC mW rF lcoT goR gxS G
Illiac IV 1 adwlC mil rF uP ucL I 0 G
SOLOMOII 2 adwlC mil rF goR I 0 G

MPP 2 adwlC mW rF goR I 0 G
DAP 2 adwlC mW rF goR I 0 G
BLITZEII 2 adwlC mil rF lcL goR I 0 G
YUPPIE 2 adwlC mil rF reT I 0 G
Unger 2 adwlC mil rF coT goR I 0 G
GAM Pyramid p2 mcC mil rF goR I 0 G
BVM cC mW rF I 0 rG
GF11 pC uL goR I 0 G
(GF11) II awe uL goR I 0 G
(GF11) 2 adwlC mW rF ucL goR I 0 G
BSP gC sW rF ucL I 0 G
MP-1 2 dwgC mW rF ucP uL gpR gpS I 0 G
(MP-1) 2 adwlC mW rF ucP ucL gpR gpS I 0 G
(MP-1) II gC mW rF uP uL gpR gpS I 0 G
CM-2 II gC all rF ucP ucL mgsR dgsS I 0 G

Table 3.3: Classification of SIMD Architectures. Canonical classifications are shown. Clas-
sifications with the architecture name in parentheses show significant subsets which are
subsumed by the canonical classification, but are not obvious from it.

The text following each architecture's classification mentions any distinctive features
that influenced the design of the taxonomy. The lowest-level publicly documented program­
ming interface that defines the architecture is identified. The organizational affiliation and
implementation status are given, if known. References describing the architecture are given
last.

3.3.1 PxPl4 (Pixel-Planes 4)

2 dO
dO

I believe Pxpl4 is the most architecturally minimal SIMD machine proposed, but also the
most massively parallel machine ever built (256K PEs). Its one optional feature is "aO"
(display output), which enables it to display PE values directly to a video display. PxPl4
is unique in not providing a way to get data from the PEs back to the host, and "dO"
was created to describe these limited I/0 capabilities. PxPI4's most powerful and unique
feature is a fast hardware bilinear expression evaluation tree. Because this provides a large
but constant savings in operations, it is not apparent in this taxonomy. The 2-D labeling is
natural because it is supported by the hardware expression evaluation tree and reflects the

30 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

video output format. However, the labeling is architecturally extraneous.
A haxdware-specific C-callable library defines the architecture. Designed and built in

the University of North Carolina at Chapel Hill's Department of Computer Science, a 256K
PE system has been running since 1986. [FuchsPoult81, FuchsGHSA +s5, EylesAuFGP87,
GreerEyles88]

3.3.2 Oldfield (Oldfield et al.)

goR
goR G

This machine is very close to being the minimnm SIMD architecture. It is a CAM (Content
Addressable Memory) with enough logic in each word for the word to barely qualify as
a SIMD PE. Constant-bounded simulation of arithmetic operations and an enable bit is
laborious, but possible. Memory is very limited, since the architecture specifies only one
word of memory and a few 1-bit registers. Such limited memory is typical of CAMs, even
those that qualify as SIMD architectures.

The architecture is described in terms of very low-level operations 1 but no software in­
terface is described in the references I have. The authors are at Cambridge and Syracuse
Universities. They report that the architecture has been simulated on a Connection Ma­
chine. [OldfielWWB88]

3.3.3 PxP15 (Pixel-Planes 5)

2 goR IOG
goR IOG

The successor to PxP14, PxP15 also eschews communication and achieves the same degree of
parallelism. However, PxP15 is more mainstream in its I/0 system. The hardware expression
tree evaluates biquadratic expressions, providing a large but constant savings in operations.
A hardware-specific C-callable library defines the architecture. A 256K PE PxP15 system
is under construction in the University of North Carolina at Chapel Hill's Department of
Computer Science. [FuchsPEGG+sg, UNC MSL88]

3.3.4 AIS-5000 (Applied Intelligent Systems, Inc.)

1 aC
1 adwlCmWrF

rG
rG

This architecture has no enable register, but can simulate one. A hardware-specific C­
callable library defines the architecture. Applied Intelligent Systems, Inc. appears to be
selling AIS-5000 systems consisting of 128 to 1024 PEs. [Wilson88]

3.3.5 Centipede

1 aC lL goR rG
1 adwlC mW rF lcL goR G

This is a successor to the AIS-5000, differing from the AIS-5000 primarily by adding limited
local addressing and or-reduction. Its local addressing allows each PE to specify the low­
order address bits, while the higher-order bits axe specified globally. Centipede is a planned
commercial product of Applied Intelligent Systems, Inc. [Wilson88]

3.3. THE TAXONOMY IN USE

3.3.6 Princeton Engine

1 aC
1 adw!CmWrF

leT uL
leT ucL

0
0

31

The locally programmed, connect through switch form of cut-through communication
("leT") used by the Princeton Engine is not seen in any other machine to my knowledge.
It is similar to that used by the ASP, though. Another apparently unique feature is having
parallel output but not parallel input. Input is performed by shifting in one end of the
1-D array of PEs. But output is in parallel to a buffer to which video output devices have
random access. This buffer is a read/write mass storage device, but it is unusual that the
Princeton Engine cannot read from it in parallel. (But the output data could be sent back
to the sequential input port.)

The architecture is defined by its microcode. The Princeton Engine was designed and
built at the David Sarnoff Research Center. At least two systems, each with up to 2000PEs,
were built in 1989. [ChinPasBTK88, Taylor88]

3.3.7 ASP (Associative String Processor)

1 aC !coT goR gxS G
1 adw!C mW rF !coT goR gxS G

The locally programmed, connect through switch, "or" combining form of cut-through com­
munication ("!coT") used by the ASP is similar to that used by the Princeton Engine, but
not identical. Like the Oldfield architecture, the ASP is a SIMD CAM with only one word
of memory per PE. The ASP's "disable every other enabled PE" feature is equivalent to
"gxS" (global "xor'' scan), and prompted the inclusion of this feature in the taxonomy.

A hardware-specific C-callable library defines the architecture. Chips have been designed
at Brune! University and Aspex Microsystems Ltd, but apparently no system has been built
yet. (The benchmarks referenced appear to be based on simulations.) [Lea86b, Lea88,
KrikelisLe88b, KrikelisLe88a, Lea86a, KrikelisLe88c]

3.3.8 TI!iac IV

1 awC uP
1 adw!C mW rF uP
2adw!CmWrF uP

uL
ucL
ucL

I 0 G
I 0 G
I 0 G

The Illiac IV is usually considered to have a 2-D grid topology. However, it also supports
a 1-D ring with unrestricted piped communication (''uP"), which is more powerful. This
1-D architecture subsumes the 2-D architecture, simulating 2-D shifts with 1-D shifts of
distance one or the length of a side of the 2-D grid. The Illiac IV prompted the "uP"
feature in the taxonomy. This feature is also supported by the Mas Par MP -1. (Though the
CM-2 subsumes "uP" with its global communication, it does not support it directly.)

The llliac IV's architecture is defined by the ASK assembly language. The Illiac IV
is the best known early SIMD architecture. It was conceived by Daniel Slotnick, who
had previously been involved in the SOLOMON (see section 3.3.9) design effort. Though
installation at the University of Illinois was initially planned for 1970, campus turmoil caused
a change in location. The Illiac IV, with 64 PEs, was delivered to the NASA/ Ames Research
Center in 1972. After a period of software development and hardware debugging, it officially
became operational in 1975. [Hord82]

32 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

3.3.9 SOLOMON (Simultaneous Operation Linked Ordinal MOd­
ular Network)

2 adwlC goR I 0 G
2 adwlC mW rF goR I 0 G

SOLOMON was the first SIMD computer ever built. It introduced the concept of the enable
bit. I think it is a remarkable tribute to SOLOMON's designers that the MPP and DAP
still use an identical architecture today.

SOLOMON's architecture is defined by an assembly language. Westinghouse Electric
Corporation designed and built SOLOMON. A 9 PE machine was operational in 1963.
A 1024 PE machine was planned, but to my knowledge was not built. [SlotnickBM62,
BallBo!JMS62, Schaefer90]

3.3.10 MPP (Massively Parallel Processor)

2awC goR IOG
2adw!CmWrF goR I 0 G

The architecture is defined by the MCL assembly language and the Pearl microcode assembly
language. A 16K PE MPP was developed by Goodyear Aerospace Corporation for NASA
Goddard Space Flight Center and delivered in 1983 and recently decommissioned. [Potter85,
NASA/Godda85b, NASA/Godda85a]

3.3.11 DAP (Distributed Array Processor)

2awC goR IOG
2adwlCmWrF goR I 0 G

There is a hint in [Active Mem88, p. 14] that the DAP may also support unrestricted piped
communication ("uP"). The DAP's architecture is defined by APAL {Array Processor As­
sembler Language). Unfortunately, the appendix on APAL in [Active Mem88], which would
be expected to clear up the question of "uP" support, omits all mention of communication.
I do not have access to a copy of [Active Mem87a], which should provide an authoritative
answer.

AMT (Active Memory Technology, Inc.) sells lK and 4K PE DAPs commercially.
Previous versions of the DAP were developed and built by ICL (International Computers
Ltd.). [ParkinsoHM88, Active Mem88, Active Mem87a] [Iliffe82, chapter 12]

3.3.12 BLITZEN

2 adC lL goR I 0 G
2 adwlC mW rF lcL goR I 0 G

The BLITZEN architecture was designed as a successor to the MPP. The only change visible
at the level of this taxonomy is the addition of local addressing. Whether this addressing
is limited or unlimited depends on the system built from BLITZEN chips. Each PE can
locally address its on-chip memory. However, the architecture provides for additional off­
chip memory which is not locally addressable. That is why it is classified as "lL'' (limited
local addressing) here. A system which did not provide off-chip memory could be considered
to support ''uL" (unlimited local addressing) instead.

BLITZEN's architecture is defined by the BLITZ assembly language [RosenbergD88].
The BLITZEN project involves cooperation between researchers at MCNC, Duke, NCSU,
and UNC. The architecture has been simulated [RosenberBH88], and chips have been fab­
ricated at MCNC. A prototype system with 128 PEs on a single chip is being built at
UNC. [BlevinsDHR90, DavisReif88, BlevinsDaR87]

3.3. THE TAXONOMY IN USE 33

3.3.13 YUPPIE (Yorktown Ultra Parallel Polymorphic Image En­
gine)

2 aC
2 adw!CmWrF

reT
reT

I 0 G
I 0 G

The papers that present the YUPPIE architecture have a dual purpose: to propose con­
nection autonomy as a new feature for SIMD architectures, and to present YUPPIE as a
demonstration of that feature. Connection autonomy as they describe it is equivalent to
"leT" (locally programmed, connect through switch, cut-through communication). However,
YUPPIE only implements "reT" (restricted, connect through switch, cut-through communi­
cation), which is dramatically simpler than "leT". YUPPIE's usefulness as a demonstration
of connection autonomy is therefore highly questionable. Both "leT" and "reT" are new fea­
tures for 2-D cartesian grids, although Unger, ASP, and the Princeton Engine implemented
other forms of cut-through communication independently.

The YUPPIE architecture is defined by an assembly language. A chip has been fab­
ricated, but no system has been built, that I know of. This work was done at IBM's
T. J. Watson Research Center. [MarescaLi88, MarescaLi89]

3.3.14 Unger (S. H. Unger)

2 adwlC coT goR I 0 G
2 adwlC mW rF coT goR I 0 G

S. H. Unger first proposed the concept of a SIMD computer in 1958 [I!iffe82, pp. 170 & 241 J.
The architecture he proposed did not include an enable bit, but is capable of simulating one
with a constant number of operations. He did not call it a SIMD architecture, since that
term was not coined by Michael Flynn until 1966 [Flynn66]. Besides inventing the id~a of
SIMD architectures, Unger proposed adjacent communication on a 2-D cartesian grid. He
also proposed a form of non-local communication which is equivalent to the "coT" (connect
through switch, "or" combining cut-through communication) feature. This feature has not
been used since, to my knowledge.

The architecture is defined at the level of assembly language. Unger did this work at
Bell Telephone Labs, Inc. The architecture was not implemented. [Unger58]

3.3.15 GAM Pyramid (George Mason University, Adder pyramid,
MPP circuits, Pyramidal topology)

p2 mcC goR I 0 G
p2 mcCmWrF goR I 0 G

The GAM Pyramid prompted the "mC" (pyramidal communication) feature. The adder
pyramid prompted the "c" (count) modifier of "mC", and is separate from the pyra­
mid of PEs. The GAM Pyramid architecture is defined by a microcode assembler. The
GAM II Pyramid (same architecture, second hardware implementation) contains 1365
PEs in six layers and became operational in 1988 in the labs of George Mason Univer­
sity. (Abuhamdeh88, SchaefeHBV87]

3.3.16 BVM (Boolean Vector Machine)

cC goR IOG
cCmWrF goR I 0 G

The BVM is the only SIMD machine I am aware of to use a Cube Connected Cycles inter­
connection network. This network occuPies an interesting position, intermediate in power

34 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

between the 1-D and 2-D grid architectures and the global communication architectures.
For example, reduce and scan are not single operations, but they can be implemented with
O(log(n)) operations instead of the O(Vn) required on 2-D grids without piped communi­
cation.

The BVM's architecture is defined by BVL-0, a C-like language with embedded assembly­
level operations for the BVM [TombouliMW85, Tuck85, Tuck87]. The BVM was designed
by Robert Wagner in the Duke University Department of Computer Science. A chip was
fabricated and a small prototype system was built in 1986. [Wagner83, Wagner81]

3.3.17 GFll (11-Gflop target performance)

pC uL goR I 0 G
pC uL goR I 0 G

N awC uL goR I 0 G
2 adwlC mW rF ucL goR I 0 G

The GFll's pre-programmable circuit switch is unique among SIMD machines. It allows
a global choice from among lK permutations selected and programmed into the switch
during program startup. The GF11

1
architecture is defined by microcode embedded in

Pascal. A GFll built to accommodate a maximum of 576 PEs has been running with at
least 400 PEs at IBM T. J. Watson Research Center since 1989 or before. [BeetemDenW85,
BeetemDen W86, Wirbel89]

3.3.18 BSP (Burroughs Scientific Processor)

gC sW rF ucL I 0 G
gC sW rF ucL I 0 G

As already discussed in section 3.1, the BSP has a global memory connected to the PEs
by a communication network. This is vnique, to my knowledge. But it is equivalent to the
architecture's classification, in which PEs have local memory and communicate with each
other using the "gC" (global communication) feature. Collision resolution is by serialization
only. This is not true of any other architectures I am awaxe of, but is not surprising in light
of the underlying model of shared global memory.

I suspect that the BSP architecture is defined by an assembly language, but have not
been able to verify this. The BSP was a commercial product of Burroughs Corporation, first
sold in 1979, and contained 16 PEs. The BSP project grew out of Burroughs' involvement
in the development of the llliac IV. [HwangBrigg84, pp. 326-327 & 410-422] [Liebrick79]

3.3.19 MP-1 (MasPar Computer Corp.)

2 dwgC mW rF ucP uL gpR gpS I 0 G
2 dwgC mW rF ucP uL gpR gpS I 0 G
2 adwlC mW rF ucP ucL gpR gpS I 0 G
N gCmWrF uP uL gpR gpSI 0 G

Direct support for piped copy communication ("cP") appears to be unique, though it is
subsumed by dimensioned copy scan ("dfS") in the CM-2. The combination of global
communication with a 2-D grid ("2gC") is also both unique and yet subsumed by the
CM-2's N-D grid ("NgC"). The "mW" (multiply to combine collisions on write) feature is
a minor addition not found in other architectures with global communication. Of course,
the 2-D labeling applies primarily to piped communication and dimensioned reduce and
scan. So as the classifications above show, the MP-1 architecture subsumes some important
"NgC ... " architectures.

3.4. PREVIOUS SIMD TAXONOMIES 35

The MP-1 architecture is defined by MPL and its standard library. That library is
still evolving, and the features "ucL" (unlimited local addressing during communication),
"dpR" (dimensioned reduction with product) and "dpS" (dimensioned scan with product)
might reasonably be added. Such architectural evolution through library enhancement has
a precedent in the evolution of Paris, which added "msR" (multi-dimensional reduction with
sum) and "dsS" (multi-dimensional scan with sum) in the upgrade from version 4 to version
5. The MP-1 is a commercial product of MasPar Computer Corp. and contains up to 16K
PEs. [MasPar Com90b, MasPar Com90a]

3.3.20 CM-2 (Connection Machine, model 2)

N gC aW rF ucP ucL mgsR dgs I 0 G
N gC aW rF ucP ucL mgsR dgs I 0 G

The Connection Machine introduced, or at least popularized, several important architectural
features. One is "N" (arbitrary dimensional cartesian labeling), which reflects the underlying
hypercube used by the router. The combination of "gC" (global communication) and "a W"
(add to combine collisions on write) is a more important contribution. Of its innovations, the
provision of "mgsR" (multi-dimensioned or global reduction with sum) and "dgsS" (multi­
dimensioned or global scan with sum) may have the largest influence on SIMD algorithms.

The Connection Machine was first embodied in the CM-1, which was replaced by the
CM-2 in 1987. Although there are significant hardware differences in these models, their
architectures as defined by Paris are similar or identical. Paris (Parallel Instruction Set)
is a hardware-specific C-callable library. Different versions of Paris have defined slightly
different architectures. The current version of Paris is 5.2, which runs only on the CM-2 and
is classified here. Version 4.3 runs on both the CM-1 and CM-2. Thinking Machines Corp.
sells CM-2s with up to 64K PEs. [Hillis85, Thinking M87b, Thinking M87a, Thinking M89]

3.4 Previous SIMD Taxonomies

No existing SIMD taxonomy I am aware of is a suitable base for the design of optimally
portable SIMD languages. Of course, none was developed specifically for this purpose. Any
comprehensive SIMD taxonomy which used constant-bounded simulation as its criterion
for distinguishing architectural features would be suitable as a tool for optimally portable
SIMD language design, but no existing taxonomy uses this criterion. This section gives a
very brief survey of existing SIMD taxonomies.

Flynn [Flynn66] distinguishes and names the class of SIMD architectures. Feng [Feng77]
and Handler [Handler77] propose some quantitative measures of parallelism, but do not
further classify SIMD architectures. Snyder [Snyder88] extends Flynn's taxonomy to distin­
guish architectures with local addressing from those with only global addressing.

Rice et al. [RiceSeidm W88] propose a high-level classification of SIMD systems which
deals primarily with the connections between the host, sequencer(s), PEs, and I/0 subsys­
tem. This classification does not deal with PE features such as local addressing, or with
communication beyond identifying an interconnection graph.

Hwang and Briggs [HwangBrigg84, chapters 5-6] cover interconnection networks and
associative memory well, and describe some particular SIMD architectures in detail. In
the taxonomy section of their work, they do not recognize the presence or absence of local
addressing in PEs as a significant architectural characteristic. There are other features they
do not discuss at all. They distinguish between bit-serial and bit-parallel PEs, which are
architecturally equivalent by the definition of chapter 2.

Siegel [Siegel85] develops a notation for describing SIMD architectures as part of his
treatment of interconnection networks. The notation is used to describe the assumptions

36 CHAPTER 3. A SIMD TAXONOMY FOR OPTIMAL PORTABILITY

made in the remainder of that work on interconnection networks. It is not developed to
distinguish other aspects of SIMD architectures.

Gerritsen [Gerritsen83] and Fountain [Fountain83] compare SIMD implementations.
Gerritsen considers performance and configuration parameters such as cycle counts, clock
speed, number of PEs, and 1/0 architecture. Fountain examines register structure, logic
diagrams, and other details of PE implementation. This level of detail is appropriate for
system designers and architects, rather than programmers and language designers.

In a sirnilar vein, Kohonen [Kohonen80, chapter 6] covers the intersection of CAM (Con­
tent Addressable Memory) and SIMD architectures in great detail. He makes no distinction
between the details normally hidden from programmers by a compiler, and the higher level
features which are important to algorithm selection.

An extended abstract by Jamieson [J amieson87] considers matching algorithms with all
kinds of parallel architectures, not just SIMD. Karp [Karp87] presents a taxonomy restricted
to "those aspects that affect coding style," but considers only MIMD (Multiple-Instruction
Multiple-Data) architectures.

Though each of these earlier taxonomies has its own purpose and merit, none is an
appropriate tool for designing an optimally portable language.

The taxonomy presented in this chapter begins with a precise definition of equivalence.
This not only leads to an operational rule for distinguishing architectures and their fea,.
tures, but it also brings to the surface more dimensions along which existing architectures
differ. The result is a larger number of descriptors, which makes it possible to more nearly
reconstruct the properties of an architecture from its classification.

Chapter 4

Portability of Existing SIMD Languages

Like any other family of computer architectures, software tools are necessary to harness
the power of SIMD computers. The most important such tools are appropriate program­
ming languages. Unlike vector processors, where language research has focused largely on
discovering implicit parallelism in existing sequential programs, efforts for SIMD machines
have focused on new languages in which parallel data operations can be expressed directly.
This reflects the consensus that utilizing the much greater parallelism of SIMD machines
requires new and different algorithms not found in existing sequential programs, and that
these parallel algorithms are best expressed in appropriate parallel languages.

Whereas not all research projects involving SIMD architectures have advanced to the
point of developing language tools, some have. The result is a variety of high- and low-level
languages for expressing data,-parallel, or SIMD, algorithms. One striking characteristic of
this body of language research is that almost all efforts have been part of a larger effort
to develop and use a particular SIMD architecture. There have been very few independent
projects to develop languages for SIMD computers in general.

One reason for this is that SIMD computers exhibit much greater architectural diversity
than sequential computers, which essentially all share the same von Neumann architecture.
The level of abstraction common among programming languages is sufficient to hide the
minor architectural differences among sequential architectures, making it possible to imple­
ment most sequential languages efficiently on virtually all sequential computers. The SIMD
taxonomy presented in the previous chapter shows that this is not true for SIMD languages
and architectures.

Language designers, who have been concerned primarily with supporting some particular
SIMD architecture, have handled this problem by designing a language suitable for the
particular set of features provided by that architecture. As a result, each existing SIMD
language contains architectural assumptions which make it suitable for programming only
a certain subset of SIMD machines: those which closely resemble the machine for which it
was designed.

Optimal portability solves this problem. Its definition provides a mechanism for ac­
commodating architectural diversity within a single language, and provides a criterion for
identifying the architectural distinctions the programmer should be allowed to see. An op­
timally portable language requires each program to specify its target architecture, i.e., its
architectural assumptions and precise portability. An optimally portable language allows
each program to use all the language features that are supported by the program's target
architecture; but it does not allow the program to use any language feature not supported
by that target architecture.

37

38 CHAPTER 4. PORTABILITY OF EXISTING SIMD LANGUAGES

4.1 Survey of SIMD Languages

A careful search of the literature has found no SIMD programming languages satisfying
the definition of optimal portability. Most existing languages for SIMD computers include
implicit architectural assumptions. These limit them to some subset of the architectural
space defined in the previous chapter. Some languages are not portable at all. To my
knowledge, Fortran 8X is the only language that has been implemented in any form on more
than one SIMD machine. In the brief survey of SIMD languages below, most languages are
grouped by machines. Very low-level languages are not considered, leaving no languages to
discuss for some machines.

4.1.1 Illiac IV Languages

Three main languages were developed for the Illiac IV: GLYPNIR (Algol-like), CFD
(Fortran-based), and IVTRAN (Fortran-based). [Hord82] All require the programmer to
use and understand low-level hardware features and limitations. They are not true high­
level languages. A more portable Pascal-based language called Actus [Perrott75] was also
developed. Actus is limited by its assumption of 2D grid communication.

4.1.2 MPP Language

As defined, Parallel Pascal is suitable only for architectures with a 2-dimensional rectangular
inter-PE communication network. The MPP's implementation of Parallel Pascal also fails to
insulate programmers from hardware details, contrary to the language definition. [Potter85]

4.1.3 BVM Language

BVL-0 (Boolean Vector Language 0) [TombouliMW85, Tuck87] is a C-like language for the
BVM. It was designed to be the only language for the BVM, so it includes some very low­
level machine-specific features. It assumes the presence of a CCC network, and does not
provide for features not present in the BVM, like local addressing. Although it could be
adapted for use on other architectures with a constant number of adjacent PEs, programs
written to use the BVM's CCC network wonld have to be rewritten.

4.1.4 BSP Language

The BSP Fortran Vectorizer [HwangBrigg84, pp. 417-422] combines some automatic vector­
ization of ordinary Fortran with some vector-oriented language extensions. Some of these
extensions assume the presence of the BSP's arbitrary communication.

4.1.5 MP-1 Language

MPL (MasPar Parallel Application Language) assumes the presence of all the MP-l's im­
portant architectural features. These include adjacent, piped and global communication,
local addressing, and reduce and scan operations. [MasPar Com90b, MasPar Com90a]

4.1.6 CM Languages

C*, CM-Lisp, and *Lisp all assume the presence of the Connection Machine's support of
global communication, local addressing, and local addressing during communication. Some
also assume the presence of reduce and scan operations. [Thinking M87b, RoseSteele87,

4.2. EXISTING; LANGUAGES ARE NOT OPTIMALLY PORTABLE 39

SteeleHill86, Thinking M88] Paralation Lisp assumes at least support for global communi­
cation with completely arbitrary combining functions for collision resolution during write,
which is not supported by any architecture classified in chapter 3, and replication on fetch
collisions. It also assumes support for scan operations. [Sabot87, Sabot88a, Sabot88b]
CM++, which has both machine-independent and machine-dependent aspects, assumes the
full power of the Connection Machine architecture. [Collins90]

4.1.7 Fortran 8x

A language consisting of Fortran 77 with some VAX extensions and some proposed
Fortran 8x array extensions and a few machine-specific features was proposed in 1984
[Massachuse84], but not implemented [AlbertKnLS88]. More recently, a subset of For­
tran 77, with proposed Fortran 8x array extensions (including some "removed extensions"),
has been implemented for the CM [AibertKnLS88]. MasPar has announced its intention to
deliver a very similar product for the MP-1. This reflects the many architectural similarities
of these machines, evident in their classifications in the previous chapter. FORTRAN-PLUS
for the DAP 500 is an implementation of Fortran 77, minus I/0 facilities, plus some pro­
posed Fortran 8x array extensions [ParkinsoHM88, Active Mem87b]. There are significant
differences in the languages supported for the CM and DAP. These reflect their fundamental
architectural differences.

The proposed Fortran 8x standard [Technical87] is the most portable language yet im­
plemented for SIMD architectures. Although it is not optimally portable, its "removed
extensions" are a step in that direction because they can be implemented on those archi­
tectures that support them efficiently. They include vector-valued array subscripts, which
require arbitrary communication. Still, Fortran 8x requires communication and uses 2-D
grid communication heavily, so it cannot be implemented on all SIMD architectures.

4.1.8 Other Languages

Hamet and Dorband propose a new language which they describe as "a generic fine-grained
parallel C" but do not explicitly name. [HametDorba88] Its parallel control structures as­
sume support for global "or" reduction, and its interprocessor communication statement
assumes support for unrestricted piped 1-D adjacent communication. Most other optional
architectural features are not provided, but there are plans to add unlimited local addressing.

Miller and Stout propose an approach to language portability based on common commu­
nication operations. It is embodied in the language Seymour. [MillerStou88b, MillerStou88a]
These operations include scanning, reduction, global communication, and sorting.

Rice, Seidman, and Wang present a SIMD language amenable to proofs of program
correctness. [RiceSeidm W90] It explicitly assumes a hypercube (N-D) topology with adjacent
communication. It does not provide local addressing or reduction.

4.2 Existing Languages Are Not Optimally Portable

Each of these languages contains embedded assumptions about the architecture or archi­
tectures on which programs will run, violating the first part of the definition of optimal
portability. The discussion of each language commented on these assumptions. Every lan­
guage discussed allows the use of one or more features not present in all architectures, and
most fail to allow the use of some feature present in some architecture. Therefore, they all
fail to satisfy the second or third part of the definition of optimal portability.

40 CHAPTER 4. PORTABILITY OF EXISTING SIMD LANGUAGES

4.3 Non-Procedural Languages

The research reported in this dissertation is primarily concerned with procedural languages,
with a level of abstraction similar to C, C++, Pascal, or Fortran. Languages of this type
both allow and require the programmer to express an algorithm unambiguously. Except for
eliminating obviously redundant operations arising from the way an operation is expressed,
the compiler for such a language is not involved in algorithm selection.

Some other families of languages allow the programmer to express the computation in
a less algorithmic form, leaving the language implementation more latitude in choosing an
exact algorithm. Some claim that the relative algorithm independence of the program allows
greater portability among diverse parallel architectures. This is most often claimed with
regard to modest parallelism on MIMD (multiple-instruction multiple-data) architectures.
There has been relatively little work on non-procedural languages specifically for SIMD ar­
chitectures. CM-Lisp or Paralation Lisp (section 4.1.6 might be considered non-procedural.

O'Donnell [Odonnell88] discusses the SIMD architectural features required to efficiently
implement various operations typical of declarative programming languages. This tends to
confirm that in declarative languages, as in procedural languages, each feature of a language
has its own architectural assumptions.

Chapter 5

Porta-SIMD Language Design

Previous chapters have defined optimal portability and described its benefits. They pre­
sented a taxonomy suitable for evaluating optimal portability for SIMD architectures, and
concluded that no previous SIMD language is optimally portable. This chapter shows that
optimal portability is an achievable goal for SIMD language design. It shows this by pre­
senting the design of a new language, Porta,.SIMD.

The organization of this chapter is as follows. First, the requirements an optimally
portable language must meet are discussed in greater detail than in the preceding chapters.
Then the major influences on Porta,.SIMD's design are discussed. These include the strategy
for meeting the requirements of optimal portability, the choice of implementation technology
and its impact on the language design, and secondary design goals. A brief overview of the
language and some small examples give a feel for the language before section 5.4 presents the
Porta,.SIMD language definition. Finally, some potential future enhancements are discussed.

5.1 Requirements for an Optimally Portable Language

The definition of an optimally portable language in chapter 2 has three requirements~ The
language must make each program specify a target architecture, it must provide all the
features of that architecture, and it must enforce a ban on language features the target
architecture does not support. The SIMD taxonomy presented in chapter 3 is tailor-made
for specifying target SIMD architectures and the features they support, doing so in a way
that satisfies the snpporting definitions of optimal portability. The rest of this discussion
assumes architectures are specified using chapter 3's taxonomy.

5.1.1 Specify Target Architecture

The requirement that each program specify its target architecture can be met in several
ways. The target architecture may be implicitly specified, or it may be explicitly specified
at several levels. Here are some examples.

Program level The target architecture is specified at program link time, perhaps with a
linker option or a library name.

File level A target architecture for each sonrce code file is specified within the file. The
compiler and linker combine these specifications to obtain the overall target architec­
ture, which must subsume those of the files.

Algorithm level A target architecture for each algorithm is specified within the source
code for the algorithm. The compiler and linker combine these to obtain the overall

41

42 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

target architecture.

Each of these explicit specification levels has a corresponding enforcement level.

Program level Verify at link time that no file being linked uses a feature not supported
by the target architecture.

File level Verify when compiling each file that it uses only features supported by its target
architecture.

Algorithm level Verify when compiling each statement and operation that it uses only
features supported by the target architecture specification applicable to that statement
and operation.

These explicit specification and enforcement levels have different advantages and disad­
vantages for programmers. The program level makes the program's portability most clear.
The programmer specifies an overall target architecture, and the language implementation
verifies that the program will run efficiently on that target architecture. However, programs
are usually composed of many algorithms, and those algorithms often use different sets of
architectural features. Reusing algorithms in different programs is easiest if each algorithm's
minimum target architecture is specified as part of the algorithm's expression in the lan­
guage. Separating such an important characteristic from the algorithm's source code and
putting only an overall target architecture in the program's makefile increases the potential
for programmer error. It makes it much easier to accidentally use an algorithm which re­
quires features not present in the program's target architecture, and postpones recognition
of the problem until the program is linked. Using file level target architecture specification
finds such problems earlier, but still separates an important algorithm characteristic from
the algorithm's source code if the file contains more than one algorithm.

Using only implicit specification of the target architecture is essentially the same as using
only program level specification, and specifying as the target architecture the architecture
of the SIMD computer for which the program is currently being compiled. When explicit
specification is used at some, but not all, levels, the effect is to use implicit specification at
the remaining levels.

I believe the programmer is best served by using all three levels of explicit specification
and enforcement. Each algorithm's expression in the language must include a specification
of its target architecture. This makes the algorithm and its architectural assumptions in­
separable and aids correct algorithm reuse. The target architecture specification in each
file and for the program as a whole serve two purposes. They summarize the architectural
assumptions of the program and its parts, and they are assertions about the portability of
the program and its parts. A summary which understates portability by specifying spuri­
ous architectural assumptions is acceptable, and perhaps occasionally useful. (However, a
compiler might usefully warn the programmer whenever an architectural feature is specified
at any level but not used within the scope of the specification.) But a summary which
overstates portability by omitting architectural assumptions is incorrect; its assertion fails,
and it evokes an error message. Porta,.SIMD provides all three levels of specification and
enforcement.

There are several ways of integrating algorithm level target architecture specification
into a language. The method used by Porta,.SIMD augments the notion of data type to
include an architecture specification. Then it requires that every operation be supported by
the shared architecture of the types of its operands.

I considered two alternative methods of algorithm level target architecture specification.
The first specifies an architecture for each subroutine as part of its declaration. This lets
the architecture be stated in fewer places. Although a subroutine may contain more than

5.2. DESIGN STRATEGY AND GOALS 43

one algorithm, a subroutine is a common and useful unit of code for reuse. The second
alternative allows any block scope to be labeled with an architecture, and requires every
parallel operation to be within such a labeled scope. Further, nested scopes are allowed,
but a nested scope may only be labeled with an architecture subsumed by the enclosing
scope's label. That is, an architecture scope may restrict the architecture of an enclosing
scope, but may never specify an architectural feature not supported by the enclosing scope.
An architecture scope is not allowed to be larger than a single subroutine, so it cannot
degenerate into file level target architecture specification. These two alternatives can be
combined, and the combination is probably better than either alone.

Both Porta-SIMD's type-based method and the alternative scope-based methods ade­
quately support algorithm level specification of architectural assumptions. Implementation
technology played a large role in the decision to use type-based architecture specification in
Porta-SIMD.

5-1.2 Provide Architectural Features

An optimally portable language must be able to provide access to every architectural fea­
ture that can be part of any target architecture. That is part of the definition of optimal
portability.

The SIMD taxonomy presented in chapter 3 defines 12 categories containing a total
of 94 architectural features (if fixed-dimension cartesian coordinates with more than two
dimensions are temporarily ignored). However, some of these features modify the behayior
of other features when both are present in an architecture. So providing all the required
features includes providing them in all their various modified forms.

5-1.3 Enforce Architectural Limits

An optimally portable language must be able to prevent a program from using any language
feature that provides an architectural feature which is not part of the target architecture.
The interaction of architectural features means that some forms of a feature may only be
used when another feature is present. This complicates the implementation of enforcement
somewhat.

5.2 Design Strategy and Goals

This section introduces some important aspects of Porta-SIMD's design. I decided very
early to do a prototype, or "proof of concept," implementation without writing a compiler.
Instead, I used C++ features to define new parallel data types and overload the standard
arithmetic operators to work with these new types. This decision and the influence it had
on the design of Porta-SIMD are discussed in the first subsection. The second subsection
describes the strategy Porta-SIMD uses for satisfying the requirements of optimal portabil­
ity. The final subsection discusses language features and design goals not directly related to
optimal portability.

5.2.1 Implementation Technology

The purpose of designing Porta-SIMD was to demonstrate that optimal portability is an
achievable goal for SIMD languages. To bolster this argument, I decided to build a prototype
implementation of Porta-SIMD. An important purpose of this prototype is to show that the
language design is complete and detailed enough to allow implementation. Another was to

44 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

provide feedback to the language design by developing the prototype concurrently with the
language.

Writing a compiler for Porta,.SIMD was not the best way to accomplish these goals. For
me to write a compiler in a reasonable amount of time, working alone, would have required
designing a very stripped-down toy language. It would have been difficult to experiment
with the language early on, and difficult to change it based on that experience.

Using C++ [Lippman89, Stroustrup89, Stroustrup86] as the base language and imple­
mentation tool provided an excellent alternative. I used its class definition and operator
overloading capabilities, and its preprocessor macros, to define parallel data types and make
them appear very much like they were built in. Implementing Porta-SIMD entirely as C++
#include files and libraries let me begin with a tiny prototype and grow it through several
versions to its final form. Experience with each version helped shape the language design
and the next version.

C++ also provided a full, well-known base sequential language to extend. There was no
need to invent new syntax and semantics for the sequential sections of SIMD programs, or
to spend time implementing them. And a lot was gained by using a language with which
programmers were already familiar. Using C++ was also a good choice for implementation
portability, because it was available on all the sequential hosts I used. It was only necessary
to port the machine-dependent parts of my class implementations.

However, C++ has limits that influenced Porta-SIMD's design and implementation. The
implementation limits are discussed in the next chapter. The primary influence on language
design was the facilities C++ provides, and does not provide, for "extending'' the language.
C++ class definitions and operator overloading let me define SIMD parallel data types
and their use in C++ expressions. However, C++ provides no mechanism for adding new
attributes of data types. Therefore, the parallel data types have information encoded in
their type names which would be better expressed as type attributes. Being parallel is the
first such attribute. Another is the set of architectural assumptions the type makes. These
attributes are encoded in the simd_ARCHID part of the type names, as described in detail in
section 5.4.4.2.

C++ does not provide a mechanism for extending the semantics of control structures.
So Porta-SIMD's parallel flow control is done with macros. They are functional, but not
as convenient or attractive syntactically as I would like. There are also some restrictions
on the use of casts. These are an artifact of the way user-defined type conversions may be
specified. Fortunately, this does not restrict the function of the language, because conversion
by assignment to an explicitly declared temporary variable is always possible.

C++ had a more important influence on the strategy used to achieve optimal portability
in Porta-SIMD. This is discussed in the next subsection.

Overall, the benefits of using C++ as the language base and implementation tool for
Porta-SIMD are substantial. The limitations inherent in this approach were acceptable, and
more than balanced by the benefits.

5.2.2 Strategy for Optimal Portability

Porta-SIMD provides all three levels of target architecture specification and enforcement:
program, file, and algorithm. The way this is done fits very well with the C++ implementa­
tion strategy, and takes full advantage of C++'s strong type checking. Porta-SIMD provides
access to all features in the SIMD taxonomy.

The program level target architecture must be specified by linking with the library that
is named for the target architecture. Exactly one such library must be used, and the libraries
are such that this is enforced by the linker.

5.2. DESIGN STRATEGY AND GOALS 45

The file level target architecture is specified by including the file of Porta-SIMD def­
initions named for the target architecture. The C++ compiler enforces the architectural
restrictions of this target architecture, because the #include file only defines the data types
and operations supported by the specified target architecture. The #include files verify
that only one target architecture is specified within any file.

The algorithm level target architecture is specified using data types. Each parallel data
type includes an architecture specification as part of its name. The operations defined for
each data type include only those supported by its architecture. This approach uses the
strong type checking of C++ to fulfill optimal portability's enforcement requirement.

Porta-SIMD provides basic PE computation by defining the basic C++ operators for all
parallel data types. It also provides parallel "if-then-else" flow control and a few other basic
operations for all SIMD architectures. Porta-SIMD provides optional architectural features
appropriate for each type's architecture. These are provided primarily in the form of named
member functions. A few are also provided via overloaded operators, but there are too many
operations and variations of similar operations to provide more than a few of them through
operator syntax. Of course, not all operations should be expressed with operators. Some
operations have so many variations that expressing them with operators may cause more
confusion than benefit. C++ does not allow new operators to be added, though it is not
clear whether more operators would be a good idea. There is room for future improvement
in this part of Porta-SIMD's design.

5.2.3 Other Goals

My primary goal in designing Porta-SIMD was to convince observers that it is possible
to design a real, full-featured optimally portable SIMD language. This does not require
designing the perfect such language, but it does require the language design to provide
optimal portability while also dealing successfully with some other important issues. I did
not design a "toy'' language stripped of all features not directly related to optimal portability,
because I want to show that optimal portability is a practical and useful design goal for real
commercial SIMD languages.

As a result of this goal, Porta-SIMD provides better features than C* and MPL in three
important areas unrelated to optimal portability. These are virtual machines, allocation of
PE memory, and generic parallel subroutines. Porta-SIMD provides multiple virtual SIMD
machines on which to allocate parallel variables. Each virtual machine has its own size and
shape, which need not be the same as the underlying hardware machine. Each variable is
associated with a virtual machine, and has one element stored in each of that machine's
(virtual) PEs. The primary purpose of the virtual machine is to specify the size and shape
of its variables. It also ensures that its variables have the same size and shape, and may
therefore be operated on together. Virtual machines may be allocated dynamically during
program execution, with dynamically computed size and shape. MPL intentionally does not
provide virtual machines. C*'s domains and domain arrays provide something similar to
statically allocated virtual machines, but with some characteristics I find odd. Domains are
like virtual machines in the sense that parallel variables are allocated within domains, and
domains are used to activate sets of PEs and operate on the domain's variables. But each
domain is a type (like a structure name), not a variable. And the size and shape are specified
by declaring arrays of some domain type. These arrays can only be allocated statically.

Porta-SIMD allows parallel variables of all three important storage classes: global
(static), local (automatic), and dynamic. MPL also provides all three storage classes, but
C* does not provide dynamic allocation of domain (parallel) variables.

A generic parallel subroutine is able to perform some computation on any virtual machine
specified at run time. Porta-SIMD allows parallel variables to be allocated on any virtual

46 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

machine; it allows virtual machines to be passed as subroutine arguments like any other data
type; and it provides a means of determining which virtual machine any parallel variable is
on. These features allow a Porta-SIMD subroutine to allocate parallel (local or dynamic)
variables on the same virtual machine on which a parallel argument was allocated, perform
its computation on that virtual machine, and even return a parallel variable allocated on that
machine. If several parallel arguments are on different virtual machines, there are globally
declared virtual machines, or there are locally declared virtual machines, the subroutine can
use any or all of these virtual machines. This is especially useful for writing utility routines
for libraries, since very little is known about the application calling such library routines.
Because C* activates sets of PEs based on the domain name, which is a type, a C* routine
must specify at compile time the set of PEs it will run on. There is a global "all PEs"
domain, but most variables are not accessible from it. Generic parallel subroutines are not
applicable to MPL, since it provides only a single real machine.

5.3 Language Overview and Example

Porta-SIMD extends C++ by adding SIMD parallel data types. Most C++ operators are
defined for these new types, and some additional operations are defined as C++ ''member"
functions of the parallel data types. C++ is very nearly a strict superset of C (HarbisonSt84,
KernighanR78]. Users familiar with C, even if they are not familiar with C++, should have
little trouble using Porta-SIMD. Porta-SIMD's extensions to C++ can be summarized as
follows.

Architecture Identifiers Each legal architecture specifier defined by chapter 3's SIMD
taxonomy can be used as an architecture identifier in Porta-SIMD. This includes the
basic SIMD architecture with no optional features, denoted by the null string.

Architecture identifiers are used within the names of parallel data types, as described
in the following paragraphs. When a type name that may contain any architecture
identifer is written, the place for the architecture identifier is marked ARCHID. If the
null architecture identifier is used and would cause two underscore (_) characters to
appear together1 only one underscore is written.

Virtual SIMD Machines Porta-SIMD provides virtual SIMD machines of all architec­
tures as data types. The types are named simd_ARCHID_mach. Each virtual machine
may be declared with any size (and shape, if ARCHID contains a cartesian labeling).
Providing multiple virtual machines allow a program to use parallel variables with a
variety of sizes and shapes.

Parallel Data Types For each integer and floating-point data type in C++, there is a
corresponding SIMD parallel type consisting of a data element of that type in each
PE of a virtual SIMD machine. This parallel data type is named by prepending
simd_ARCHID_ to the name of the C++ data type. For instance, simd_int is the
parallel version of the type int for the basic SIMD architecture. Most C++ operators
are defined for these parallel data types, and parallel expressions are evaluated in each
enabled PE.

Optional Architectural Features Porta-SIMD provides C++ member functions, or
methods, for each parallel data type. These methods provide access to the optional
architectural features specified by the type's ARCHID.

Flexible Data Type Sizes Each of the simd_ integer data types may be declared to con­
tain any number of bits from 2 to some implementation-defined maximum. In addition,

5.3. LANGUAGE OVERVIEW AND EXAMPLE 47

a boolean simd_ARCHID_bool type is provided which requires only a single bit in each
PE. These extensions allow better use of the limited local PE memory.

Extended Type Conversion Rules The C++ rules governing type conversions within
an expression containing multiple data types have been extended to encompass the
new parallel types.

Flow Control A parallel "if-then-else" conditional execution mechanism is provided. For
architectures which support it, there is also a parallel "while" statement.

Porta-SIMD is described fully in the next section, but a couple of examples are used
here to show the flavor of the language. The first example, shown in figure 5.1, is a trivial
graphics program that displays a single rectangle and requires the rectangle to be aligned
with the coordinate axes by which the PEs are labeled. It begins by declaring with an
#include statement that its architecture identifier is 2d0, meaning it assumes that the PEs
have a 2-D labeling and that a display device is supported by the architecture. It also
declares a global virtual machine with this architecture and default size.

The rectangle() function returns a boolean flag in each PE of the virtual machine,
indicating whether the PE is in the rectangle defined by the function arguments. It does
this by declaring and initializing variables which hold the coordinates of each PE, then
comparing these coordinate variables to the arguments and accumulating the results of the
comparisons. The main program simply calls rectangle() and displays the result.

The second example, shown in figure 5.2, is a slightly modified fragment of a "Game
of Life" program written by Greg Turk. The entire program is presented in section 6.2.5.
AB every Porta-SIMD source file must, this one specifies the file's architecture identifier
before using any parallel features. In this case, the identifier is 2aCG, meaning that this
code requires 2-D adjacent communication and full PE to host communication on the target
architecture.

The remainder of figure 5.2 is a routine which computes a generation of the game of
life, as follows. Given a 2-D array of cells, one per PE, and the initial state of the cells
(whether each is occupied or not), it uses the following rules to compute the next state of
each cell. An occupied cell remains occupied if either two or three of its eight adjacent cells
are occupied, otherwise it becomes unoccupied. An unoccupied cell becomes occupied if
exactly three of its eight adjacent cells are occupied, otherwise it remains unoccupied.

This example introduces three important language features. First, the subroutine
compute_i terations () will run on any virtual machine specified at run time. The vir­
tual machine is specified implicitly by the cell argument, which exists on some virtual
machine. The routine declares each local parallel variable to be on the same virtual ma­
chine as cell, using the m_2aC() method to query cell for its machine. I call a routine
such as this which may be used on any virtual machine specified by its arguments a generic
parallel routine. I think the ability to write generic parallel routines is an important and
powerful language feature. In particular, it is difficult to write readily reusable code when
important information such as which virtual machine to use is communicated implicitly by
common assumptions or global variables.

Some important SIMD languages, including C* (Thinking M87b, RoseSteele87] and OM­
Fortran [AlbertKnLS88], do not support generic parallel routines. CM-Lisp (SteeleHill86]
and Paralation Lisp (Sabot87, Sabot88a, Sabot88b] do support them, as do the
machine-specific languages Paris (Thinking M87b, Thinking M89] and CM++ (Collins90].
*Lisp (Thinking M87b, Thinking M88] provides sufficient but minimal support: virtual ma­
chines may be declared and passed as subroutine arguments, and parallel variables may be
allocated on such a virtual machine, but there is no way to determine dynamically which vir­
tual machine an existing parallel variable is on. MPL's (MasPar Com90b, MasPar Com90a]
single real PE array model does not support generic parallel routines.

48 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

#include <simd_2dO.h>

I* Accept the coordinates of the upper left and lower right
* corners of a rectangle with sides parallel to the axes.
* Return 1 in each PE inside the rectangle, 0 in those outside.
*I

simd_2_bool rectangle(simd_2_mach *m,

{

}

int xi, int y1, int x2, int y2)

simd_2_bool inside(m);
simd_2_int x(m, 16), y(m, 16);
x.pe_coord(dimen_x);
y.pe_coord(dimen_y);
inside = 1;
inside&= (x > x1);
inside&= (y > y1);
inside&= (x < x2);
inside&= (y < y2);
return(inside);

main()
{

}

simd_2d0_mach mach;
simd_2dO_bool result(&mach);
result= rectangle(2,6,24,67);
result.display();

Figure 5.1: rectangle.C - Example Porta-SIMD program.

The second feature introduced by this example is adjacent communication. Four
direction constants are declared, named for the compass directions. These have type
direction_aC, meaning they specify a dimension along which to communicate, and a direc­
tion along that dimension. The fetch() method operates in each enabled PE by fetching
data from the adjacent PE in the direction specified by its second argument (N, S, E, or
Win this example). The data in each remote PE is taken from the variable named by the
first argument (cell or tsum), aud is stored in each fetching PE in the variable on which
fetch() is invoked (tmp).

The third feature introduced by figure 5.2 is the parallel IF-ELSE-ENDIF statement.
Although sequential '~f" statements control the flow of execution, that is not precisely the
case for SIMD parallel "if" statements. Instead of using a scalar test expression to decide
whether to execute the body of a sequential "if" statement, a parallel "if'' uses a parallel
test expression to decide in which PEs to execute the body. In particular, the code following
each of the IF and ELSE keywords is executed, but only in the appropriate (and mutually
exclusive) sets of PEs.

5.3. LANGUAGE OVERVIEW AND EXAMPLE

#include <simd_2aCG.h>
I* Compute several generations of life.
* cell life grid of cells
* iters -- number of generations to compute
* (number of times to advance the state)
*Does all computation on virtual machine holding "cell".
*I

void compute_iterations(simd_2aCG_bool& cell, int iters)
{

}

int i;
const direction_ac E(dimen_x,1), W(dimen_x,-1),

N(dimen_y,l), S(dimen_y,-1);
simd_2aC_int tsum(cell.m_2aC());
simd_2aC_int sum(cell.m_2aC());
simd_2aC_int tmp(cell.m_2aC()); I* used in communication *I

for (i = 0; i < iters; i++) {

}

I* count the living neighbors *I
I* tsum = self + NS neighbors (3 cells) *I
tsum = cell;
tsum += tmp.fetch(cell, II);
tsum += tmp.fetch(cell, S);

I* sum= tsums of self and Ell neighbors (9 cells). *I
sum = tsum.;
sum += tmp.fetch(tsum, E);
sum += tmp.fetch(tsum, W);
I• subtract self from sum, so have 8 neighbor count. •I
sum -= cell;

I• compute new generation •I
IF (cell)

IF (sum < 2 I I sum > 3)
cell = 0;

EIIDIF
ELSE

IF (sum == 3)
cell = 1;

EIIDIF
EIIDIF

Figure 5.2: Fragment of example Porta-SIMD "life" program.

49

50 CHAPTER 5. PORTA-SJMD LANGUAGE DESIGN

5.4 Porta-SIMD Language Definition

This section defines Porta-SIMD's extensions to C++ [Lippman89, Stroustrup89,
Stroustrup86]. These extensions have been made as much in the spirit of C++ as pos­
sible, and in most cases existing language rules apply to the extensions as well. These cases
will generally not be mentioned, in order to focus on the extensions themselves and on the
few exceptions.

The initial sections of this language definition describe the base language defined on
all SIMD architectures. These are followed by sections describing language features which
provide access to optional SIMD architectural features.

Porta-SIMD defines a variety of types, with a variety of declaration arguments. Besides
the declaration arguments described with each such type, every type Porta-SIMD defines
may also be declared with a single argument, which is a value of the same type. The
declared object is initialized to the value of the argument. Each type Porta-SIMD defines
also includes the assignment operator, so values of that type may be assigned to !values of
that type.

The prototype Porta,.SIMD implementation does not implement the entire language. It
implements the integer data types, but not floating point types. It implements only selected
optional architectural features. The prototype implementation is described in detail in the
next chapter.

This language definition is intended to be complete. However, if it is ambiguous or
incomplete in some way, it may be helpful to consult the public interface specifications of
Porta-SIMD's parallel data types, in appendix A.

5.4.1 Reserved Words

The identifier simd and all identifiers beginning with the prefix simd_ are reserved by Porta­
SIMD and may not be used as program identifiers. The prefixes direction_ and label_
and the identifier shape are likewise reserved. The following keywords used in parallel
flow-control constructs are reserved: ALL, E!IDALL, IF, ELSE, ENDIF, WHILE, E!IDWHILE.

5.4.2 Architecture Identifiers

The architecture classification names defined by the taxonomy presented in chapter 3 are
used as architecture identifiers. An architecture identifier therefore identifies a particular set
of optional architectural features, which defines a SIMD architecture. The null architecture
identifier, an empty string, identifies the base SIMD architecture with no optional features.

Architecture identifiers are used within the nan\es of parallel data types. When a type
name that may contain any architecture identifer is written, the place for the architecture
identifier is marked ARCHID. If the null architecture identifier is used and would cause two
underscore (_) characters to appear together, only one underscore is written.

One architecture identifier is said to be a subset of another if its architecture is sub­
sumed by the other's architecture. (I.e., an architecture which can be simulated with a
constant-bounded number of operations and data elements is a subset of the simulating ar­
chitecture.) A program may, through its data declarations, use any number of architecture
identifiers, provided they are all subsets of some overall architecture identifier. There may be
several such overall architecture identifiers, provided they are all equivalent. (Architecture
equivalence is defined in chapter 2.)

5.4. PORTA-SIMD LANGUAGE DEFINITION 51

5.4.3 Target Architecture

Every Porta-SIMD source file must specify its target architecture by including exactly one
file whose name has the form simd_ARCHID.h. (If the null architecture identifier is used,
the underscore is omitted.) This must be done before any parallel data type is named in
the file. No architecture identifier may be used in the file unless it is a subset of the file's
target architecture.

Every Porta-SIMD program must specify its overall target architecture during the link
phase of its compilation. The method used to specify the overall target architecture is
implementation dependent. No architecture identifier may be used in the program unless it
is a subset of the program's overall architecture identifier.

5.4.4 Types

Porta-SIMD extends C++ with two new sets of types: virtual machine types and parallel
data types. Objects of these types can be statically declared and dynamically allocated.

5.4.4.1 Virtual Machines

Porta-SIMD allows a program to perform parallel computations on multiple, logically dis­
tinct, virtual SIMD machines. A type name of the form s imd_ARCHID _mach is used to
declare a virtual machine with any architecture identifier.

Having multiple virtual machines with different sizes and shapes allows a program to
operate on different kinds of data with different natural sizes and shapes. When the imple­
mentation supports virtual processor to hardware processor ratios greater than one, multiple
virtual machines are even more important because they allow the best virtual processor ratio
to be used for each kind of data.

A single default virtual machine is provided by Porta-SIMD without explicit declaration
within the program, and has the program's overall architecture identifier. It has no name,
but is used implicitly in certain parallel data declarations as described in section 5.4.4.3.2.
Any other virtual machines used by the program must be explicitly declared before their
use.

5.4.4.2 Parallel Data

Porta-SIMD provides parallel integer, floating point, and boolean data types. Every par­
allel object is associated with a virtual SIMD machine, and consists of a set of identical
elements, one per PE of its virtual computer. Parallel data type names have the form
simd_ARCHID_TYPE, where TYPE is one of: int, unsigned, float, double, bool. The choice
used for TYPE is called the basic data type, or just basic type.

The parallel integer int and unsigned types satisfy the same C++ language rules as
their sequential counterparts. However, they differ in one way. The amount of PE storage
used to represent these integers may be specified when they are declared or allocated. (See
section 5.4.4.3.) Therefore, the C++ types short and char have no parallel counterparts;
appropriate parallel int and unsigned declarations replace them.

The parallel floating point float and double types are just like their sequential coun­
terparts in C++. The implementation of parallel floating point types may be different than
the implementation of sequential floating point types, but both must satisfy the same C++
language requirements. If the parallel and sequential implementations are not identical,
conversion between parallel and sequential floating point types must be done correctly by
the implementation (see section 5.4.6.1).

The parallel bool type holds a boolean value in each PE.

52 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

Because their names begin with simd_, parallel types are also called simd_ types. The
term simd_ types does not include the simd_AR.CHID_mach types 1 despite their similar name.
They are referred to as the virtual machine types, or simply machine types. The int and
unsigned simd_ types are called the integer simd_ types. The float and double simd_
types are called the floating point simd_ types. The integer and floating point simd_ types
are together called the numeric simd_ types.

simd_ types containing the null architecture identifier are called "base'' simd_ types, and
are available on all SIMD computers. Therefore, operations are provided for base simd_
types only if they are supported by all SIMD architectures. The remaining simd_ types are
called "derived" simd_ types. Each derived simd_ type provides all the operations of its
corresponding base type, plus additional operations which take advantage of the optional
architectural features specified by its architecture identifier.

5.4.4.3 Declaration

5.4.4.3.1 Virtual Machine Declarations Virtual machines may be declared with or
without arguments. Without arguments, the virtual machine has an implementation defined
size and shape, which is usually the same as the hardware machine in use. With arguments,
the virtual machine has the size and shape they specify. The number, type, and meaning
of the arguments depends on the labeling and communication features of the architecture
identifier.

The base machine type, simd_mach, has one argument: the number of PEs. Other
virtual machine types have the same argument as the base type, unless they contain one of
the following features.

1 One argument: the number of PEs.

2 Two arguments: the number of PEs in each dimension .

. . . arguments: the number of PEs in each dimension.

N One argument oftype shape, which specifies the number of dimensions and the number
of PEs in each dimension. The type shape is described in a succeeding paragraph.

p2 One argument: the number of levels in the pyramid.

cC One argument: the number of PEs; however, the implementation may provide a virtual
machine with more PEs. This allows it to provide a full CCC network, or a convenient
portion of one.

An argument value of zero specifies that the default value be used. The result of declaring
a virtual machine with arguments the implementation cannot satisfy (e.g., requested too
large a machine) is undefined.

The type shape is provided in .source files whose target architecture includes the "N"
labeling. Its value is used to specify the size and shape of a virtual machine with the "N"
labeling, when the machine is created. (The shape type could be provided for architectures
with fixed-dimension cartesian labelings, but a run-time check would sometimes be required
to verify that a shape had the right number of dimensions.) A shape object may be
declared in either of two ways: (1) a single unsigned scalar argument specifies the number
of dimensions; (2) a single shape argument initializes the new object to the argument's
value. The operator D may be applied to a shape !value. It has a single unsigned scalar
argument which specifies a dimension of the !value. The operator D returns a reference
to that dimension's length (in PEs), so it may be used to set or examine the value of the
shape. The length of each dimension of a shape value must be initialized before the value

5.4. PORTA-SIMD LANGUAGE DEFINITION 53

can be used, either individually with [], or collectively by initializing with another shape
value. The dimens () method may be applied to any shape value. It has no arguments, and
returns the number of dimensions in the shape value.

Here are some example declarations.

simd_mach m, m_a(4096);
int i = 32;
simd_gCaWrFgsRgsSIO_mach m_big(i * 1024);
simd_2adwCucPIOG_mach m_rect_a;
simd_2adwCucPIOG_mach m_rect_b(i, 64);

shape cube_shape(3);
cube_shape[O] = 32;
cube_shape[1] = 32;
cube_shape[2] = 32;
simd_NgCIO_mach m_cube(cube_shape);

simd_p2mCG_mach m_pyr(5);
simd_eC_mach m_ccc_a, m_ccc_b(2048);

5.4.4.3.2 Parallel Data Declarations Objects of the simd_ types may be declared
with or without arguments. Without arguments, they are placed on the default machine
and have the default size. The default machine has the program's overall architecture
identifier and an implementation dependent size (usually the size ofthe hardware).

The arguments which may be specified in the declaration of a simd_ variable depend on
its basic data type. For all basic types, the first argument is a pointer to a virtual machine.
The object is created on the virtual machine pointed to. The architecture identifier in the
declaration must be a subset of the architecture identifier of the virtual machine pointed
to. (The program is aborted with a message if this is not true.) If the argument value is a
null pointer, or no arguments are specified, the default machine is used. If the declaration is
for an integer basic type, there is a second argument discussed in the next paragraph. For
other basic types, there is only one argument.

The "length" of a simd_ type is the number of bits it is declared to contain in each
element. The length of an integer simd_ type can be specified as the second argument to
its constructor. This length may be any integer from 2 to some implementation-defined
maximum, which must be at least large enough to store all possible values of a scalar C++
int in that implementation. If no length, or a length of zero, is specified in the declaration
of an integer simd_ type, an implementation defined default length is used. (The default
length should be at least 16 bits, the minimum default sequential int size in existing C++
implementations.) Here are some example declarations.

simd_unsigned u_a, u_b(&m_big, 8);
simd_int tiny_i(NULL, 2), larger_i(NULL, 32);
simd_2aCIOG_unsigned u_c(&m_rect_a);
simd_2aCIOG_unsigned u_d(&m_rect_b, 0);

The length of boolean s imd_ types is always 1.

simd_bool bO, b1(&m_a);
simd_2adCgoR_bool b_2d;

The lengths of floating point simd_ types are implementation dependent.

simd_float f, fprime(&m_cube);
simd_gCgoRIOG_double g;

54 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

5.4.4.4 Allocation

A simd_ value is not a single value stored in the host computer, but a set of values stored
one per PE. Similarly, virtual machines represent portions of physical SIMD machines. For
this reason, simd_ objects and virtual machines may not be stored in malloc()'d memory.
Instead, dynamic allocation is performed using the C++ new operator, and anything so
allocated is freed with the C++ delete operator.

simd_int *sipa;
simd_gCIO_int *sipb;
sipa = new simd_int;
sipb =new simd_gCIO_int(mbig, 17);
delete sipa;
delete sipb;

simd_mach *mp;
mp =new simd_mach(4096);
sipa =new simd_int(mp, 0);
delete sipa;
delete mp;

A program is aborted with an error if it uses in any way a parallel data object residing
on a virtual machine which does not exist (e.g., has been deleted). It is therefore wise to
ensure that all simd_ objects residing on a virtual machine have been deleted or gone out
of scope before the virtual machine is deleted or allowed to go out of scope.

5.4.4.5 Lvalues

As in C++, an !value is an expression referring to a region of storage (an object). Such
an expression is called an "lvalue" because it may appear on the left side of an assignment
expression. Non-lvalue expressions are sometimes called "rvalues" because in an assignment
expression they may only appear on the right side.

simd_ !value expressions are produced and required according to rules analogous to
those for scalar expressions. The description of each operator accepting or producing a
simd_ expression notes when an operator must be an lvalue and when the result is an
!value. When no such comment is present, the operands need not be !values and the result
is not an lvalue.

5.4.5 Storage

The exact amount of storage per virtual PE used for data elements of a simd_ object
is implementation-dependent, subject to the following constraints. The individual values
of any particular simd_ object must be stored identically in each virtual PE. If a length
argument was used in the simd_ object's declaration, at least that many bits of each virtual
PE's memory must be used to store the object, though more may be used. All simd_ objects
declared with a particular length must be stored in the same number of bits of virtual PE
memory.

The C operator sizeof does not give information about the amount of PE storage used
to store simd_ objects. Rather, it reports the size of the implementation-dependent host
object used to store information about the simd_ object. The bits() method returns as an
unsigned value the declared length of any simd_ object. The declared length of a boolean
simd_ object is 1. The declared length of a floating point simd_ object is implementation
dependent. The following fragment prints 16.

5.4. PORTA-SIMD LANGUAGE DEFINITION

simd_int a(16);
printf(11%u", a.bits());

55

There is no provision for finding the number of bits actually used to store a simd_ object,
which is greater than or equal to the number returned by bits 0.

5.4.6 Conversions

The type conversion rules governing ordinary C types are extended in Porta-SIMD to in­
corporate the simd_ types as naturally as possible. This section's subsections describe each
new or extended conversion rule in Porta-SIMD. The first subsection treats the actual rep­
resentation changes involved in each type conversion. The rest define which conversions are
performed under which circumstances.

Every conversion is performed entirely within a single virtual machine.

5.4.6.1 Representation Changes

The basic rules governing representation changes for scalar integer types apply to conversions
among simd_ integer types as well. These representation changes are performed in all PEs
of the virtual machine on which the parallel value resides, regardless of whether the PE is
enabled or not. (Sections 5.4.7.1 and 5.4.8 discuss the enable status of PEs.)

The most basic conversion is between objects of the same type but different lengths.
An unsigned simd_ object is converted to a shorter unsigned simd_ object by discarding
the excess high-order bits. It is converted to a longer unsigned simd_ object by filling the
additional high-order bits with zeros. If signed integer simd_ objects are represented in
two's-complement form (as in all current implementations), the rules are very similar. On
conversion to a shorter object, excess high-order bits are discarded. When converting to a
longer object, the additional high-order bits are filled with copies of the sign bit.

Conversion between a base simd_ type and one of its derived types, or between two
derived types of the same base types, requires no change of representation. However, con­
version is allowed only to derived types with an architecture identifier which is a subset of
the architecture identifier of the virtual machine on which the data resides.

Conversion between signed and unsigned integer simd_ types always begins by converting
the original data, still in its own type, to the same length as the destination type. If two's­
complement form is used for signed integers, no further conversion is needed between integer
simd_ types.

A non-boolean simd_ type is converted to a boolean simd_ type very simply. Every
non-zero element takes the boolean value one (true), and every zero element takes the value
zero (false). A boolean simd_ type is converted to an integer simd_ type by treating it as
a very short unsigned object; it is simply zero-extended to the desired length. These rules
are consistent with C's treatment of boolean values (e.g., the test expressions of if, for,
and vhile statements, and the value of relational operators such as<).

Conversion between floating point and integer s imd_ types is done exactly like it is done
for scalar types. Conversion between floating point and boolean simd_ types is done in two
steps, converting first to an unsigned simd_ type, and from that to the final type.

A scalar value can be converted to a simd_ value of the same type by replication; every
element of the resnlting simd_ object has the scalar's value. Conversion of a scalar value to
a simd_ value of a different basic type proceeds in two steps: conversion to a simd_ value of
the scalar's type, followed by conversion to the desired simd_ type. A simd_ value cannot
be converted to a scalar.

56 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

5.4.6.2 Casting

C++ allows all legal conversions to be invoked explicitly using a type cast. Due to limit&­
tions inherent in the implementation technology, Port&-SIMD does not provide this much
flexibility. Porta,SIMD allows casts of all basic simd_ types to unsigned simd_ types. How­
ever, it does not allow the opposite casts, from unsigned to other basic simd_ types. It
also does not allow casts between other basic simd_ types. (E.g., a cast from simd_bool to
simd_int is not allowed.) A scalar value cannot be cast to a simd_ type.

Any conversion not possible with a cast can be performed with a simple assignment
statement (section 5.4.6.3). Here are some acceptable casts.

simd_unsigned
simd_G_unsigned
simd_int
simd_2aC_int
simd_bool
simd_float

su;
sGu;
si;

s2aCi;
sb;
sf;

(simd_unsigned)
(simd_unsigned)
(simd_unsigned)
(simd_unsigned)
(simd_unsigned)
(simd_G_unsigned)
(simd_G_unsigned)
(simd_G_unsigned)

si;
saCi;
sb;
sGu;
sf;
s2aCi;
sb;
su;

Here are some casts that are not allowed.

(simd_int) su;
(simd_int) sb;
(simd_bool) su;
(simd_bool) si;
(simd_float) su;
(simd_unsigned) 1;
(simd_int) 1;
(simd_bool) 1;

5.4.6.3 Assignment

All legal conversions can be accomplished through the simple assignment statement. (The
simple assignment statement uses the = operator.) Simply write an object of the desired
type on the left side of the =, and the value to be converted on the right side.

5.4.6.4 Usual Unary Conversions

C and C++ define certain ''usual conversions" that are performed implicitly during expres­
sion evaluation. Their purpose is to convert all the operands of an operator to a common
type before performing the operation. Port&-SIMD also converts the operands to a com­
mon basic simd_ type and common length before performing an operation. However, the
usual conversions also ensure that the common type will be one of a very small set of types.
Port&-SIMD extends this set of types to include all the simd_ types. As a result, there is
no implicit conversion of simd_ types during evaluation of unary operators.

5.4. PORTA-SIMD LANGUAGE DEFINITION 57

5.4.6.5 Usual Binary Conversions

The following rules are added to the set of usual binary conversions, and are applied, in
order, whenever an operator has one or more parallel operands.

1. If one operand is scalar and the other is parallel, convert the scalar operand to its
corresponding simd_ type.

2. If one of the operands is integer or boolean and the other is floating point, convert the
integer or boolean to the floating point type.

3. If the operands have different lengths, lengthen the shorter to the length of the longer.
If one of the operands is boolean, this implicitly converts it to an unsigned integer.

4. If one operand is signed and the other is unsigned, convert the signed operand to its
unsigned equivalent. (This is what C and C++ do with scalars.)

5. If the operand types have different architecture identifiers, convert both to the same
type. This may be their common base type, or any derived simd_ type which has an
architecture identifier specifying only architectural features present in both operand
types. The exact type selected is implementation dependent.

These ensure that the operands have the same base type, length, and architecture identifier.
Of course, while a Porta-SIMD implementation is required to evaluate expressions as if

these rules had been used, it is not required to literally perform the specified conversions if
the same result can be achieved by a more efficient method.

5.4.6.6 Function Arguments and Return Values

If an expression appearing as an argument in a function call does not match the type of
that argument as declared in the function declaration, it is cast to the declared type of the
argument. Similarly, if the expression appearing in a return statement does not match the
return type in the function declaration, it is cast to the declared return value type. In both
cases, it is an error if the resulting cast is not allowed by Porta.SIMD.

5.4.7 Expressions

simd_ values may be accessed only by mechanisms explicitly provided by Porta.SIMD. With
a few exceptions discussed in this section, all C operators may be applied to simd_ objects.
The use of each operator with simd_ types is discussed in detail below, including the precise
operand types allowed, whether to apply the usual binary conversions, and the type of the
result.

All the C operators implemented by Porta.SIMD perform the same computation as in
C and C++, but do it in every enabled PE when the operands are parallel. They have the
same precedence and associativity as in C and C++.

Except as explicitly described in sections 5.4.7.4, 5.4.12.5 and 5.4.17.3.2, all simd_ objects
within a single expression must reside on the same virtual machine. Some violations of this
rule cannot be detected at compile time. Depending on the implementation, such violations
may cause the program's execution to be aborted with a message, or may be silently ignored.
In any case, expressions violating this rule have undefined results.

58 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

5.4.7.1 Enabled and Disabled PEs

Operations and methods that modify simd_ objects (including temporary objects created
implicitly during expression evaluation) are performed only in enabled PEs. However, con­
versions are performed in all PEs, enabled or not. There are a few additional operations
that modify disabled PEs; this is explicitly stated where each such operation is described.
Any operation which does not have such a statement in its description operates only in
enabled PEs. Section 5.4.8 defines when PEs are enabled.

5.4.1.2 Primary and Postfix Operators

An array of simd_ objects may be declared. Because it is a host array, such an array of
simd_ objects may be subscripted with 0 like any other host array.

There are no parallel function calls, so the () (function call) operator cannot be applied
to simd_ objects. Of course, scalar functions can return simd_ objects.

There are also no parallel structures, so the . (direct selection) and-> (indirect selection)
operators cannot be applied to simd_ values. Scalar structures may contain simd_ objects,
though. The entire simd_ object, represented by its host-resident "handle" or ~'descriptor",
is contained in the structure.

The postfix operators ++ (post-increment) and -- (post-decrement) may be applied to
numeric simd_ objects only. Unfortunately, PortarSIMD is limited by its implementation
within C++ here, and is unable to provide the proper access-then-operate semantics. There­
fore, these postfix operators are currently exactly equivalent to their prefix forms. A future
implementation of Porta,.SIMD may correctly implement the postfix forms of these opera,.
tors. Until then, programs should avoid these postfix operators and use only their prefix
forms.

5.4.7.3 Unary Operators

The prefix ++(pre-increment) and -- (pre-decrement) operators and unary - (negate) op­
erator may be applied to numeric simd_ type !values, and produce an !value of the same
type.

The - (bitwise not) operator may be applied to any integer or boolean simd_ type,
producing a value of the same type.

The ! (logical not) operator may be applied to any simd_ type, and produces a boolean
simd_ value with an implementation dependent architecture identifier.

The sizeof and cast operators were discussed in sections 5.4.5 and 5.4.6.2, respectively.
The II; (address of) operator may be applied to a simd_ object, and produces a scalar

pointer to the object. (The pointer points to the object's host ''handle".) The unary *
(indirection) operator may be applied to a pointer to a simd_ object (initialized with the 1<
operator); it produces a simd_ object which may be used like any other simd_ object. There
are no scalar pointers to individual elements of simd_ objects. Section 5.4.17.2 describes
simd_ pointers.

5.4. 7.4 Assignment Operator

As mentioned in section 5.4.6.3, the assignment operator (=) has two arguments and stores
into the left argument the value of the right argument. The left argument must be an !value.
If the right argument is a simd_ value, the left argument must be, too. The arguments may
have any combination of types, provided a conversion is defined in section 5.4.6 from the
type of the right argument to the type of the left argument.

5.4. PORTA-SIMD LANGUAGE DEFINITION 59

If both arguments are simd_ values, then they must be on the same virtual machine, or
else on virtual machines which were declared with identical argument values and identical
labeling in their architecture identifiers. This case provides trivial communication between
distinct virtual machines having identical size and shape.

5.4. 7.5 Arithmetic Operators

The binary arithmetic operators include* (multiplication), I (division), Y. (remainder), +
(addition), and - (subtraction). These operators may be applied to any combination of
scalar and parallel numeric operands. The single exception is that the operands of Y. must
be integers. The usual binary conversions apply to the operands, and the result is the type
to which the operands were converted.

The corresponding binary arithmetic assignment operators are *=, 1=, Y.=, +=, and -=.
These may be applied to any combination of scalar and parallel numeric operands, provided
the left operand is a parallellvalue. Again, the operands of Y.= must be integers. The usual
binary conversions apply to the operands, and the result is converted to the type of the left
operand and stored in it. The result is the modified left operand, an !value.

Boolean simd_ types may appear as operands to these operators under the following
conditions. Only one operand may be boolean, and the other operand must have a parallel
numeric type. A boolean object may not be the left operand of an arithmetic assignment
operator. The conversion rules are not affected by the presence of a boolean operand.

5.4. 7.6 Shift Operators

The shift operators include « (left shift) and » (right shift). These operators may be
applied to any combination of scalar and parallel integer operands. The usual unary con­
versions apply to each operand, but the usual binary conversions do not apply. However, if
one operand is scalar and the other is parallel, the scalar operand is converted to a simd_
operand of its own basic type and the same architecture identifier as the parallel operand.
The operands are also converted to a common architecture identifier, using the same rule
used by the usual binary conversions. The result has the type, after all conversions, of the
left operand.

The corresponding shift assignment operators are «= and »=. These operators may be
applied to any combination of scalar and parallel integer operands, provided the left operand
is a parallellvalue. The same conversion rules apply as for the non-assignment forms. The
result is stored in the left operand. The result is the modified left operand, an !value.

Boolean simd_ types may appear as operands to these operators under the following
conditions. Only one operand may be boolean, and the other operand must have a parallel
integer type. A boolean object may not be the left operand of a shift assignment operator.
The conversion rules are the same as in the absence of a boolean operand, except that a
boolean left operand is converted to an unsigned simd_ type the same length as the right
operand.

5.4. 7. 7 Bitwise Operators

The bitwise operators include t (and), - (xor), and I (or). These operators may be applied
to any combination of scalar and parallel integer operands. The usual binary conversions
apply to the operands, and the result is the same type that the operands are converted to.

The corresponding bitwise assignment operators are t=, -=, and I=. These may be
applied to any combination of scalar and parallel integer operands, provided the left operand
is a parallellvalue. The usual binary conversions apply to the operands, and the result is

60 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

converted to the type of the left operand and stored in it. The result is the modified left
operand, an !value.

Boolean simd_ types may appear as operands to these operators under the following
conditions" Only one operand may be boolean, and the other operand must have a parallel
integer type. A boolean object may not be the left operand of a bitwise assignment operator.
The conversion rules are not affected by the presence of a boolean operand.

5.4. 7.8 Relational Operators

The relational operators include< (less than), > (greater than), <= (less than or equal), >=
(greater than or equal), == (equal), and ! = (not equal). These operators may be applied to
any combination of numeric scalar, numeric parallel, and boolean parallel operands. The
usual binary conversions apply to the operands. The result is boolean parallel, with the
same architecture identifier as the type to which the operands were converted.

5.4. 7.9 Logical Operators

The logical operators include && (logical and), and II (logical or). These operators may be
applied to any combination of scalar and parallel numeric operands and parallel boolean
operands. The usual unary conversions apply, but not the usual binary conversions. If
one operand is scalar and the other is parallel, the scalar operand is converted to a simd_
operand of its own basic type and the same architecture identifier as the parallel operand.
The operands are also converted to a common architecture identifier, using the same rule
used by the usual binary conversions. The result is boolean, with the same architecture
identifier as the converted operands.

5.4.7.10 Other C Operators

The ternary ? : (conditional) operator may not have a simd_ first operand. The second and
third operands may be simd_ expressions, provided the expressions evaluate to exactly the
same type. (Note that this identical-type requirement implies that either both or neither of
the second and third operands have a simd_ type.)

The comma operator is the same in PortarSIMD as in C and C++. It may separate any
pair of expressions.

5.4.8 Flow Control

PortarSIMD provides a parallel conditional IF statement similar to the scalar if statement.
The syntax is

IF (<simd expr>)
<statements>

ELSE
<statements>

END IF

<simd expr> represents any expression which evaluates to a value of a simd_ type.
<statements> represents any statements, including nested IF statements properly paired
with their nearest following ENDIFs. The ELSE and its following <statements> may be left
out.

The <simd expr> is evaluated once, and effectively assigned into a simd_bool temporary
variable. During execution of the statements between IF and ELSE (or END IF if there is no
ELSE), only PEs where the temporary variable is true are enabled. During execution of

5.4. PORTA-SIMD LANGUAGE DEFINITION 61

the statements between the ELSE and ENDIF, the only enabled PEs are those where the
temporary variable is false. When a nested IF statement is executed, PEs already disabled
before the nested IF statement was encountered remain disabled throughout its execution.
Comments in the following example show which PEs are enabled, by giving the expression
which must be true in every enabled PE.

simd_bool a, '"b;
I* Initialize a and b. •I
IF (a)

I• a •I
IF (b)

I* a tlt b •I
ELSE

I* a It& !b •I
END IF

I* a •I
ELSE

I• !a *I
IF (b)

I• !a 1/;1/; b •I
END IF
I* !a *I

END IF

It is important to recognize that every statement between IF and ENDIF is always ex­
ecuted, though only in the appropriate PEs. This includes scalar expressions, which are
executed in the host as usual. The following code fragment illustrates the potentially sur­
prising results.

simd_bool a;
I• Initialize a. •I
int x = 0;
IF (a)

x++;
ELSE

x++;
E!IDIF
print£("x=Y.d", x);

I• bad style •I

I• bad style •I

It prints x=2. It is usually wise not to modify scalar variables within a parallel IF statement.
An exception is a scalar variable local to only one part of the IF statement (the statements
following either IF or ELSE, but not both).

Some SIMD languages define a parallel if statement which does not execute
<statements> unless at least one PE is enabled. Such an it statement cannot be im­
plemented without the optional architectural feature "goR", so it cannot be standard in
an optimally portable SIMD language. However, section 5.4.18.4 describes how to express
such a statement in Porta.-SIMD when the target architecture supports it. That section also
describes Porta-SIMD's parallel WHILE statement.

A parallel ALL statement can be used to temporarily enable all PEs. The syntax is

ALL
<statements>

EBDALL

62 CHAPTER 5. PORTA-SIMD LAIJGUAGE DESIGN

It enables all PEs for execution of <statements>, then restores the enable status in use
before ALL was executed. It thereby ensures that all PEs execute <statements>, even PEs
currently disabled by IF or WHILE statements.

5.4.9 Special Operations

The method pe_number() may be applied to any integer simd_lvalue, and has no arguments.
It stores into the !value in each PE the unique number of that (virtual) PE. The PE number
is treated as an infinite precision unsigned simd_ value, the high order bits of which are
truncated on assignment to the !value. The result is the modified !value.

simd_unsigned a;
a.pe_number();

The method set() may be applied to any simd_ !value. It has two arguments: (1) an
unsigned scalar PE number (unsigned), (2) a scalar value convertible to the basic type of
the simd_ !value. The second argument's value is stored into the !value in the PE identified
by the first argument. There is no result.

simd_unsigned a;
unsigned pe = 5, value = 25;
a.set(pe, value);

The method bits() is described in section 5.4.5. It may be applied to any simd_ object.
It has no arguments) and returns a scalar unsigned value which is the declared number of
bits in the simd_ object.

The method m_ARCHID () may be applied to any simd_ object. (The underscore is
omitted if the null architecture identifier is used.) It has no arguments, and returns a pointer
to the virtual machine on which the simd_ object is stored. The architecture identifier of the
returned pointer is that specified in the method name. If the architecture identifier specified
is not a subset of the architecture of the simd_ object to which the method is applied, a
null pointer is returned.

simd_2aCG_maeh mach;
simd_2aCG_unsigned u(mach);
simd_mach *m_ptr;
m_ptr = u.m();
m_ptr = u.m_2aC();
m_ptr = u.m_gC(); //Returns NULL

The method pes() may be applied to any virtual machine object or simd_ object. It
has no arguments. It returns an unsigned scalar value, which is the number of PEs in the
virtual machine, or in the virtual machine on which the simd_ object is stored.

s imd_mach m;
unsigned num_pes;
num_pes = m.pes();
simd_bool b(im);
num_pes = b.pes();

5.4.10 Providing Architectural Features

The remaining sections of this language definition describe langnage features which provide
access to optional architectural features. The sections are named for the features they
discuss. The methods described in each remaining section may only be applied to simd_
objects with an architecture identifier which subsumes the architectural feature provided.

5.4. PORTA-SIMD LANGUAGE DEFINITION 63

5.4.11 Labeling

5.4.11.1 1, 2, ... , N (Cartesian Coordinates)

The method pe_coord() may be applied to any integer simd_ !value whose architecture
identifier contains a cartesian labeling. It takes one argument: a scalar unsigned dimension
number which must be less than the number of dimensions. Dimensions are numbered from
zero. The PE's coordinate in the specified dimension is stored in the !value. The result is
the modified !value.

Whenever a file's architecture identifier contains or subsumes a cartesian labeling "L",
the type label_L is defined. For example, label_1 and label_2 are defined in files which
have a 2-D cartesian labeling as part of their architecture identifier. The value of a label_
object specifies a particular PE in a particular virtual machine. label_ objects are useful
for converting between aPE's coordinates and PE number.

A label_ object is always initialized as it is declared, using one of the type's two forms of
declaration. All declarations take a pointer to a virtual machine as the first argument. The
pointer type must contain the same labeling as the label_ object being declared. The first
form of declaration has two arguments, the second of which is the PE number of a PE on
the virtual machine pointed to by the first argument. This form is the same for all label_
types. The second form has n + 1 unsigned scalar arguments numbered from the left (i.e.,
the first argument is number 1), where argument i is the coordinate of the specified PE in
dimension i-1 and n is the number following label_ in the type name of the label_ object
being declared. The second form of declaration for type label_ll is handled differently from
the fixed-dimension types just discussed. The second argument in a label_ll declaration is
a pointer to an array of PE coordinates; the array must have the same number of elements
as the vjrtual machine pointed to by the first argument has dimensions, and each element i
is the coordinate in dimension i.

The following methods may be applied to label_ objects. Method dimens 0 takes no
arguments and returns the number of dimensions in the virtual machine on which the PE
specified by the object exists; machO takes no arguments and returns a pointer to that
virtual machine. Method coord() takes an unsigned scalar argument and returns the PE's
coordinate in that dimension. Method pe_number() invoked without arguments returns the
PE number of the PE identified by the object; invoked with an unsigned scalar argument
it sets the object to identify the PE with that number (on the same virtual machine the
object already specifies) and returns the argument value. The array index operator ([])
may be applied to label_ objects. The braces must enclose an unsigned scalar dimension
number, and the value of the expression is the PE's coordinate in that dimension; if this
expression appears as the left side of a simple assignment operator (=), the coordinate is
set to the assignment operator's right argument and the new value is then returned. If an
illegal PE number or coordinate value is specified as an argument to any of these methods
or operators, the result is undefined.

5.4.11.1.1 2 (2-D Cartesian Coordinate) Constants are defined which name the two
dimensions. They are dimen_x and dimen_y, and they have values 0 and 1 respectively.

Several methods may be applied only to simd_lvalues with a 2-D cartesian labeling. The
bilinear() method computes and stores a%+ by+ c in the !value to which it is applied.
The coefficients a, b, and c are floating point scalar arguments, and the floating-point result
is truncated before being stored. "' and y represent each PE's coordinates in the zero and
one dimensions, respectively. bilinear() may be applied only to integer simd_ !values.
This code fragment computes "'+ .5y- 3.

simd_2_int a;

64 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

a.bilinear(1, .5, -3);

The biquadratic() method differs from bilinear() only in its arguments and the value
it computes. biquadratic 0 has six floating point scalar arguments named a through
f, respectively. It computes and stores in the !value to which it is applied the value of
ax2 + by2 + czy+ dz + ey +f.

5.4.11.2 p2 (Level and 2-D Coordinate)

The pe_coord() method defined for cartesian coordinate labelings may also be applied to
integer simd_ !values with a p2 labeling. Each PE's coordinate within its level is stored into
the !value. The pe_level() method may be applied to any integer simd_ !value with a p2
labeling. It has no arguments, and stores in the !value in each PE that PE's level number.
The result is the modified !value.

5.4.12 Communication (C)

Architecture features for communication, and especially adjacent communication, have more
interactions than any other set of features. This causes a profusion of variations on the basic
communications operations: send() and fetch().

One kind of variation is the way in which the direction of. communication is specified.
Several types, with names beginning direction_, are used to specify communication pat­
terns. The remainder of each such type name is a feature name. The direction_ types
are used as arguments to send() and fetch() operations. The architecture identifier of
the simd_ object to which these operations are applied must support the feature named
by the direction_ type which is used to specify the communication pattern. In addition,
each direction_ type may only be used in a source file whose target architecture subsumes
the feature named by the direction_ type. The direction_ types are described in the
subsections which follow.

The send() method may be applied to any simd_ value with a communication feature.
The fetch() method may be applied to any simd_ !value with a communication feature.
Both methods have two arguments: (1) a simd_ value, (2) a direction_ type value. For
send() only, the first argument must be an !value. The first argument must be on the
same virtual machine as the object to which send() or fetch() is applied, or else the two
virtual machines must have been declared with exactly the same arguments and have the
same labeling in their architecture identifiers. send() causes each enabled PE to send the
value to which send() is applied to the PE specified by the direction_ argument, where
the value is then stored into the first argument. The value is stored regardless of the enable
status of the receiving PE. fetch() causes each enabled PE to fetch the value of the first
argument from the PE specified by the direction_ argument, and store the fetched value
into the simd_ !value to which f~tch() is being applied. The value is fetched and stored by
each enabled PE, regardless of the enable status of the PE from which the value is fetched.
The result of fetch() is the modified !value to which it is applied. No result is returned by
send(). If the basic types of the simd_ value to which send() or fetch() is applied and
the simd_ first argument are not the same, the necessary conversion is performed before the
communicated data is stored.

5.4.12.1 aC (Adjacent)

The type direction_ac describes ordinary "aC" adjacent communication. Its declaration
requires two arguments: (I) unsigned scalar dimension number, (2) signed integer scalar di­
rection along the dimension. The method dimen() with no arguments returns the dimension

5.4. PORTA-SIMD LANGUAGE DEFINITION 65

number of the direction_ac value it is applied to. With one unsigned scalar argument,
it sets the dimension number to the argument valUe and returns the modified dimension
number. The method dirO with no arguments returns the direction of the direction_ac
value it is applied to. With one signed integer scalar argument, it sets the direction to the
argument value and returns the modified direction. The direction value must always be one
of: -1, 0, 1. Each PE initiating communication does so with the PE whose label differs by
dirO in dimension dimen(). A direction_aC value may be assigned to a direction_aC
!value.

simd_2aCG_mach m;
simd_2aC_unsigned u_aC(m);
simd_unsigned u(m);
direction_ac east(0,1);
u_aC.send(u, east);
u = u_aC.tetch(u, east);

5.4.12.1.1 d (Diagonal) The type direction_adC describes "adC" adjacent diagonal
communication. Its declaration requires one argument: (I) unsigned scalar number of di­
mensions. The method dimens () with no arguments returns the number of dimensions of
the direction_adC value it is applied to. The operator D with one unsigned argument, a
dimension number, produces an lvalue which is the direction_adC's direction along that
dimension. Only the values 1, 0, and -1 may be assigned to this !value. The direction along
each dimension must be defined before a direction_adC value is used as an argument to a
send() or fetch() method. Each PE initiating communication does so with the PE whose
label differs by [i] along each dimension i. A direction_adC object may be initialized
by declaring it with a single argument of type direction_ac. Values of type direction_ac
and direction_adC may be assigned to direction_adC !values.

simd_2adCG_mach m;
simd_2adC_unsigned u_adC(m);
simd_unsigned u(m);
direction_adC northwest(2);
northwest[O] = -1;
northwest[1] = 1;
u_adC.send(u, northwest);
u = u_adC.fetch(u, northwest);

5.4.12.1.2 I (Local) The type direction_alC describes "aiC" adjacent communication
with local choice of direction. Its declaration requires two arguments: (1) unsigned scalar
dimension number, (2) signed integer simd_ direction along the dimension. The method
dimen() with no arguments returns the dimension number of the direction_alC value it
is applied to. With one unsigned scalar argument, it sets the dimension number to the
argument value and returns the modified dimension number. The method dir() with no
arguments returns the direction in each PE of the direction_alC value it is applied to.
With one signed integer simd_ argument, it sets the direction to the argument value in each
PE and returns the modified direction. The direction value in each PE must always be one
of: -1, 0, 1. The simd_ direction value must be on the same virtual machine as the simd_
value to which send() or fetch() is applied. Each PE initiating communication does so
with the PE whose label differs by dir() in dimension dimen(). A direction_alC object
may be initialized by declaring it with a single argument of type direction_aC. Values of
type direction_aC or direction_alC may be assigned to a direction_alC !value.

66 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

simd_2alCG_mach m;
simd_2alC_unsigned u_alC(rn);
simd_unsigned u(m);
simd_int i(m);
I* ... *I
direction_alC east(O,i);
u_alC.send(u» east);
u = u_alC.fetch(u, east);

5.4.12.1.3 d (Diagonal) and I (Local) The type direction_adlC describes "ad!C"
adjacent diagonal communication with local choice of direction. Its declaration requires
one argument: (1) unsigned scalar number of dimensions. The method dimens() with no
arguments returns the number of dimensions of the direction_adlC value it is applied
to. The operator [] with one unsigned argument, a dimension number, produces a simd_
!value which is the direction_adlC's direction along that dimension in each PE. Only the
values 1, 0, and -1 may be assigned to this !value in each PE. The direction along each
dimension must be defined before a direction_adlC value is used as an argument to a
send() or fetch() method. The simd_ direction value in every dimension must be on the
same virtual machine as the simd_ value to which send() or fetch() is applied. Each
PE initiating communication does so with the PE whose label differs by its value of [i]
along each dimension i. A direction_adlC object may be initialized by declaring it with a
single argument of type direction_aC, direction_adC, or direction_alC. Values of type
direction_ac, direction_adC and direction_alC may be assigned to direction_adlC
!values.

simd_2adlCG_mach m;
simd_2adlC_unsigned u_adlC(m);
simd_unsigned u(m);
simd_int i(m), j(m);
I* ... *I
direction_adlC some_dir(2);
some_dir [0] = i;
some_dir [1] = j ;
u_adlC.send(u~ some_dir);
u = u_adlC.fetch(u, some_dir);

5.4.12.1.4 w (Wrap) Wrap-around communication provided by the "w" option to "aC"
is expressed in Porta-SIMD as a variation on the send() and fetch() method names, rather
than on their argument types. The characters _wrap are added to send and tetch to spec­
ify that computation of the remote PE label is done using modulo arithmetic. (This is
true independent of other communication variations, including "aC"s "d" and "l" modi­
fiers. Like other optional features, the presence of support for wrap-around communication
does not prevent the use of methods which do not require it. Therefore, both _wrap and
regular communication methods may be used on simd_ objects which support wrap-.around
communication.)

simd_2adwlCG_mach m;
simd_2awC_unsigned u_awC(m);
simd_unsigned u(m);
direction_ac east(0,1);
u_awC.send_wrap(u, east);
u = u_awC.fetch_wrap(u, east);

5.4. PORTA-SIMD LANGUAGE DEFINITION

simd_unsigned u_2adw1C(m);
simd_int i(m), j(m);
I* ... *I
direction_adlC some_dir(2);
some_dir[O] = i;
some_dir[1] = j;
u_adwlC.send_wrap(u, some_dir);
u = u_adwlC.£etch_wrap(u, some_dir);

5.4.12.2 mC (Pyramid)

67

All the adjacent communication methods for variations of the "aC" feature may also be
applied to any simd_ object which has "mC" in its architecture identifier. This provides
communication within levels of the pyramid. Communication between levels is supported
by additional methods.

The type direction_mc is scalar and enumerated, with these values: ne, se, sw, nw. The
methods send_child() and fetch_ child() have the same arguments and same results as
the basic send() and fetch() methods. They both have a direction_mC type second
argument which specifies which child each PE communicates with. PEs without children
are like PEs in adjacent communication when no wrap is used: sent data is discarded and
fetched data is zero.

The fetch_parent_replicate() method has only one argument, the normal fetch()
method's first argument, and the same result as the normal fetch() method. Each PE
fetches data from its parent PE. The single PE without a parent fetches zeros.

The send_parent_with_COMBINE() methods are named by replacing COMBINE with one
of: overwrite, and, or, xor, add, max, min, mul. These methods have one argument, the the
normal send() method's first argument. Each PE sends data to its parent, and the parent
combines the values it receives using the specified combining operation. The combining
operations are described in section 5.4.13. Data sent by the single PE without a parent is
discarded.

5.4.12.3 cC (Cube Connected Cycles)

The type direction_cC is scalar and enumerated, with these values: s, p, 1. The
direction_cC type second argument is used with the send() and fetch() methods to
do CCC communication.

5.4.12.4 pC (Preselected Permutation)

The type direction_pC is a scalar type which identifies one of a set precomputed permu­
tations. I do not have information on the way such permutations are specified in the GFll,
which is the only machine I know of to use the ''pC" feature. Therefore, I have not defined
how values of type direction_pC are specified. However, once a direction_pC value is
available, it is used as the second argument to the send() and fetch() methods to do
"pC" communication.

5.4.12.5 gC (Global)

The type direction_gC is simply an unsigned integer simd_ type. The value of a
direction_gC in each PE is used as aPE number, identifying the PE with which to commu­
nicate. A direction_gC value is used as the second argument to the send() and fetch()

68 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

methods to do "gC" communication. The direction_gC value must be on the same virtual
machine as the simd_ value to which the send() or tetch() operation is applied. Unlike
all other communication operations, send() and fetch() operations with a direction_gc
type second argument may communicate between any two virtual machines. The first argu­
ment and the object to which the operation is applied may be on any two virtual machines.
If the second argument in any PE names a nonexistent PE in the virtual machine being
communicated with, the result of communication is undefined in all PEs.

simd_gC_mach m;
simd_gC_unsigned u_gC(m);
simd_unsigned u;
simd_unsigned v(m);
direction_gc d(m);
I* ... *I
u_gC.send(u, d);
v = u_gC.fetch(u, d);

5.4.13 Collision Resolution, Write (W)

Collision resolution on write is specified by appending a string to the name of the send()
method to indicate the combining operation to use. The string appended has the form
_with_OP, where OP is one of the combining operators described in the remainder of this
section. This string is appended after _;-rap, if _wrap is also used. Some examples are
shown after all the combining operators are described.

5.4.13.1 sW (Select)

The combining operator overwrite may be used when the simd_ object to which send() is
applied supports the "sW" feature. overwrite specifies that aPE receiving multiple values
store one (any arbitrary one) and discard all others.

5.4.13.2 IW (Logically Combine)

The combining operators and, or, and xor may be used when the simd_ object to which
send() is applied supports the "lW" feature. These combining operations specify that a
PE receiving multiple values combine them with the named bitwise operation and store the
result.

5.4.13.3 aW (Add or Compare)

The combining operators add, max, and min may be nsed when the simd_ object to which
send() is applied supports the "aW" feature. These combining operations specify that a
PE receiving multiple values combine them with the named arithmetic operation and store.
the result. add means combine by adding. max means combine by selecting the maximum
value. min means combine by selecting the minimum value.

5.4.13.4 mW (Multiply)

The combining operator mu1 may be used when the simd_ object to which send() is applied
supports the ''m W" feature. This combining operation specifies that aPE receiving multiple
values multiply them together and store the result.

Here are some examples of collision resolution on write.

5.4. PORTA-SIMD LANGUAGE DEFINITION

simd_gcmw_mach m_gC;
simd_2awlCmW_mach m_2aC;
simd_gCmW_unsigned u_gC(m_gC);
simd_2a~lCmW_unsigned u_2aC(m_2aC);
direction_gc dg(m_gC);
simd_unsigned u(m_2aC);
I* ... •I
direction_alC da(2, u);
u_gC.send_with_add(u, dg);
u_2aC.send_with_mul(u, da);
u_2aC.send_wrap_with_xor(u, da);

5.4.14 Collision Resolution, Fetch (F)

69

Collision resolution on fetch is specified by appending a string to the name of the fetch()
method to indicate the combining operation to use. The string appended has the form
_with_OP, where OP is one of the combining operators described in the remainder of this
section. This string is appended after _wrap, if _wrap is also used. Some examples are
shown after all the combining operators are described.

5.4.14.1 sF (Select)

The combining operator select may be used when the simd_ object to which fetch() is
applied supports the "sF" feature. select specifies that a PE receiving fetch requests for its
value from multiple PEs selects one arbitrarily and sends its value to the selected fetching
PE, ignoring all the other requests. This means exactly one PE fetching from any particular
single PE is successful. Unsuccessful PEs fetch no data at all.

5.4.14.2 rF (Replicate)

The combining operator replicate may be used when the simd_ object to which fetch() is
applied supports the "rF" feature. replicate specifies that all PEs fetching from any par­
ticular PE are successful. The data of any PE receiving multiple fetch requests is replicated
to satisfy all the requests.

Here are some examples of collision resolution on fetch.

simd_gcmw_mach m_gc;
simd_2aw1CmW_mach m_2aC;
simd_gcmw_unsigned u_gc(m_gC);
simd_2a~lCmW_unsigned u_2aC(m_2aC);
direction_gc dg(m_gC);
simd_unsigned u(m_2aC);
I* ... •I
direction_alC da(2, u);
u = u_gC.fetch_with_replicate(u, dg);
u = u_2aC.fetch_~ith_select(u, da);
u = u_2aC.fetch_~ap_vith_replicate(u, da);

5.4.15 Piped Communication (P)

Piped communication is specified by appending the string _across_disabled to the
name of the send() or fetch() method, and also adding a third argument. The string

70 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

_across_disabled is appended after _wrap, if _wrap is also used. The third argument is
an unsigned scalar distance value. This distance must not exceed the number of PEs the
virtual machine doing the communicating has in any dimension involved in the communica­
tion. For non-diagonal communication, this is the dimension specified by direction~aC. For
diagonal communication, this is any dimension with a non-zero value in direction_adC.
As specified in the taxonomy, there may not be any enabled PEs in the direct path of
communicating PEs.

Some examples are shown after the "u" and "c" modifiers of "P" are described.

5.4.15.1 u {Unlimited)

Unlimited piped communication is specified by adding the third argument to send() and
fetch() methods to specify the distance, as in regular piped communication, but without
appending any string to the names of these methods. The restriction concerning enabled
PEs between communicating PEs is removed.

5.4.15.2 c (Copy)

Copy piped communication is specified just like regular piped communication, except the
string _copy_across_disabled is used instead of _across_disabled. As specified in the
taxonomy, every PE directly between communicating PEs receives a copy of the data com­
municated, and all of these PEs must be disabled. The intermediate copies of the data are
stored in the same simd_ object as the regular communicated data.

Here are some examples of piped communication.

simd_2awCucP_mach m;
simd_2awCucP_unsigned u(m);
direction_ac d(O, 1);
simd_unsigned v(m);
unsigned dist;
I• . .. •I
u.send_wrap_across_disabled(v, d, dist);
v = u.fetch(v, dp dist);
v = u.fetch_copy_across_disabled(v, d, dist).;

5.4.16 Cut-Through Communication (T)
Cut-through communication is specified by replacing the second argument of the send()
method with a value of a switch_ type. There is no tetch() for cut..throngh communication.
The switch_ type specifies the programming of each PE's connection to the communication
network; it must be programmed, as described in succeeding paragraphs, before it is used.
There are sixteen switch_ types, the result of four independent boolean modifiers. Each
modifier may be used only when it is supported by the architecture identifier of the simd_
object to which send() is applied with the switch as an argument. The modifiers are as
follows.

d Corresponds to the "d" modifier of the "aC" feature.

c Corresponds to the "c" modifier of the "T" feature.

r Corresponds to the "r" modifier of the ''T" feature. "r" must be used when "T" has the
"r" modifier, and may be used when "T" does not. This is the opposite situation of
the other modifiers, which may be used when there is architectural support, and must

5.4. PORTA-SIMD LANGUAGE DEFINITION 71

not be used when there is not. This is because ''T" 's "r" limits the architecture, unlike
the other features which extend the architecture.

I Corresponds to the "l" modifier of the "T" feature.

The switch_ types are named by appending the selected modifier letters, in the order just
listed. The underscore is omitted if no modifier letters are selected.

A switch_ object represents a switch at every PE. Switches have ports and shorts. A
port is a "wire" to an adjacent PE, or possibly to the switch's PE. A short is a logical
connection between two or more ports. "Short" is transitive, so if some port is shorted
to two other ports, all three ports are shorted. A switch is programmed by specifying its
shorts. All switch_ types are declared without arguments and initially contain no shorts.
The clear() method has no arguments and clears all shorts from the switch_ !value to
which it is applied.

5.4.16.1 r (Restricted) and I (Local)

The short() method adds a short to the programming of the switch !value to which it
is applied. It has one or two arguments and returns no result. If the switch_ to which
short() is applied has the "r" modifier, then short() may only be invoked with one
argument; otherwise, it may be invoked with either one or two. The arguments to short 0
are direction_ types, but which direction_ types are allowed depend on the architecture
identifier of the switch_ object to which short() is applied. The direction_ type may
include the "d" modifier if that architecture identifier supports the "d" modifier of "aC".
Similarly, it may include the "!" modifier if the architecture identifier supports the "1"
modifier of "T". Each direction_ argument to short() specifies one of the switch's ports,
either locally or globally. The port specified is the one through which communication would
occur if that direction_ value were used with adjacent communication. If short () is
invoked with one argument, it shorts the specified port to the opposite port. (I.e., the port
going in exactly the opposite direction.) If short () is invoked with two arguments, it shorts
the two specified ports together.

When the "!" modifier of "T" is present in the architecture identifier of the switch to
which short() is applied, short() only modifies the programming of switches in enabled
PEs. In this case, clear() also operates only on switches in enabled PEs; however, decla­
ration of a switch creates a program with no shorts in all PEs, enabled and disabled. When
this modifier is not present, only a single switch program is being formed and the enable
status of PEs is not relevant.

5.4.16.2 c (Connect Through Switch)

The short_selfO method has one argument, which may have exactly the same types as
the arguments to short(). short_self() shorts the switch's "PE" port (i.e., its connection
to the PE) to the switch port specified by the argument. short_self() may be applied to
a switch_ object which has the "c" modifier of ''T" in their architecture identifier.

The short_self() method may also be applied to a switch_ object which does not
have the "c" modifier of ''T" in its architecture identifier. However, in this case the action is
more limited; the clear() method is applied before short_self(). Any later application
of short() undoes the action of short_self(). This use of short_self() specifies that
the PE is to be connected to the communication port, and the PE's switch disconnected.
Invoking short() specifies that the PE is to be disconnected from the communication
network, and its switch connected; it also begins reprogramming the switch.

72 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

5.4.16.3 o ("Or" Combine)

When the "o" modifier of "T" is present 1 it can be specified that multiple values sent to the
same set of PEs be combined with the bitwise or operation. This is specified by appending
with or to the name of the send() method. It goes after _wrap, if _wrap is also used.

5.4.17 Local Addressing (L)

5.4.17.1 IL (Limited)

Limited local addressing involves the use of a special set of simd_ array types. These types
are named like ordinary simd_ types, but have the string _arr appended to their name.
These simd_ array types have one additional declaration argument, which is the number of
array elements to create. The array consists of that number of identical simd_ objects, just
like the one that would have been created if the _arr and third argument had been omitted.
The virtual machine on which the simd_ array exists must have an architecture identifier
that supports the "lL'' feature.

These simd_ arrays may only be used in the ways described here. The bits() method
may be applied to a simd_ array, and returns the same value as if it had been called on an
element of the array. The elements() method may be applied to a simd_ array; it takes
no arguments and returns the number of elements in the array (an unsigned scalar value).
The elem() method is the primary way to use a simd_ array. It has one argument, which is
normally an unsigned integer simd_ value. (The argument may also be an unsigned scalar
value, in which case it is converted to an unsigned integer simd_ value and used as if it had
been simd_.) The argument must be on the same virtual machine as the simd_ array to
which it is applied. This argument identifies in each PE, enabled or not, the array element
to be accessed in that PE. The return type of elem() depends on the way it is used. If
it is used where a simd_ rvalue may be used, it returns a simd_ rvalue of the same type
as the array's elements and containing the selected element's value in each PE (enabled or
not). If it is used as the left argument to the plain assignment operator(=), then in each
enabled PE the rvalue being assigned is copied into the selected element of the array. If
the argument to elem() contains in any enabled PE a number greater than the number of
elements in the array, the result is undefined.

5.4.17.2 uL (Unlimited)

Unlimited local addressing involves the use of a special set of simd_ pointer types. These
types are named like ordinary simd_ types, but have the string _ptr appended to their
name. These simd_ pointer types have only one declaration argument; they omit the second
argument of ordinary simd_ declarations. The virtual machine on which the simd_ pointer
exists must have an architecture identifier that supports the "uL" feature.

These simd_ pointers may only be used in the ways described here. The set 0 and
ref() methods are the primary ways to use a simd_ pointer. The set() method has one
argument, which may have any of several types. If the argument is a simd_ !value, then in
each enabled PE the pointer is set to point to that simd_ !value. If the argument is a simd_
array to which the elem() method is applied, then in each enabled PE the pointer is set to
point to the array element selected by the argument to elem(). If the argument is a simd_
pointer, then in each enabled PE the pointer to which set() is applied is set to point to
whatever the argument pointer points to. If the argument is the null pointer (NULL), then
in each enabled PE the pointer is set to the null pointer. In any case, the argument must
be on the same virtual machine as the pointer, and the basic type of the argument must

5.4. PORTA-SIMD LANGUAGE DEFINITION 73

be the same as the basic type of the simd_ pointer. No other argument types are allowed.
set() returns no value.

The ref() method has no arguments. Like the simd_ array elem() method, the way it
is used determines its action and return type. If ref() is applied to a simd_ pointer where
a simd_ rvalue may be used, it returns a simd_ rvalue of the same basic type as the simd_
pointer to which it is applied. If a the pointer has a null value in some enabled PE, the
result is undefined. If it is used as the left argument to the plain assignment operator (=),
then in each enabled PE the rvalue being assigned is copied into the location pointed to
by the simd_ pointer in that PE. If a the pointer has a null value in some enabled PE, the
result is undefined.

5.4.17.3 c (Communication with Local Addressing)

5.4.17.3.1 Intra-Machine Communication Communication with local addressing,
provided by the "c" modifier of the "L" feature, is specified by replacing the first argument
of any of the various legal forms (except cut-through communication) of send 0 and fetch 0
methods. When limited local addressing is provided, this first argument may be replaced by
a pair of arguments: (1) a simd_ array value (which must be an !value for send()), and (2)
an unsigned integer simd_ value to be used as an index into the array. The index value in
each PE initiating communication is sent to the PE with which it is communicating; there,
the index is applied to the array to address the data to use. The index value must be on
the same virtual machine as the simd_ value to which send() or fetch() is applied. The
simd_ array must also be on this virtual machine, unless one of the following conditions is
met: (1) global communication is being used; (2) the two virtual machines have the same
labeling in their architecture identifiers and were declared with the same argument values.

When unlimited addressing is also supported, the normal first argument of the various
send() and fetch() methods may be replaced by a simd_ pointer. The pointer value in
each PE initiating communication is sent to the PE with whi-ch it is communicating; there,
the pointer value is used to address the data to use. The pointer value must be on the same
virtual machine as the simd_ value to which send() or fetch() is applied.

When the send() or fetch() method specifies collision resolution, collisions are only
considered to occur when multiple PEs communicate with the same PE using the same
addressing value.

5.4.17.3.2 Inter-Machine Communication ("gC" only) Non-trivial communica­
tion between different virtual machines is only supported when the architecture identifier of
the machine on which communication is initiated sup.ports global communication ("gC").
This section describes how to specify local addressing when it is also supported by the
architecture identifier of that initiating virtual machine. For limited local addressing, the
method has already been alluded to. Simply use a simd_ array argument to send() or
fetch() which is on a different virtual machine than the simd_ value to which the method
is applied. The index value must be on the same virtual machine as the value to which the
method is applied, but must contain valid index values for the· array (which is on another
virtual machine).

For unlimited local addressing, the invocation of the send() and fetch() is unchanged.
However, the pointer is allowed to be set differently. The argument to the set() method
may be on a different virtual machine than the pointer itself. A pointer set in this way may
only be used for communication with local addressing; it may not be used for ordinary local
addressing within a single virtual machine.

74 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

5.4.18 Reduce (R)

A set of methods with names of the formreduce_OP() may be applied to any simd_lvalue to
specify reduction operations. In the case of global reduction only, described in a following
paragraph, reduce_OPO may also be applied to a simd_ rvalue. The legal values of OP
depend on the combining operation modifier to the reduce feature of the simd_ values's
architecture identifier. The legal values for each architecture modifier are as follows.

f first.

o or, and.

x xor.

m max, min, or an "r' operator.

s add, or an "m", "x", or "o" operator.

p mul, or an "a" operator.

The meanings of these operators are described in detail in the taxonomy. The type of
reduction operation is specified by the presence and type of argument to the reduce_OP ()
method.

5.4.18.1 d*R (Dimensioned)

If there is an argument to the reduce_OP() method, it must have one of two types. The
argument may be an unsigned scalar value, which specifies a dimension along which to
reduce. This single-dimensioned reduction is legal when the simd_ !value's architecture
identifier has the "d" or "m" prefix to its "R" feature. Single-dimensioned reduction groups
PEs by coordinate in the other dimensions, so the PE labels of each group differ only in
that dimension. The elements of the simd_ value in the enabled PEs of each group are
combined with OP. Then every PE in each group, enabled or not, receives a copy of its
group's combined value. This combined value is the reduce_OP() method's return value. It
is a simd_ rvalue of the same basic type as the simd_lvalue to which the method is applied.

5.4.18.2 m*R (Multi-dimensioned)

The other legal type for reduce_OP() 's single argument is a pointer to an array of scalar
unsigned values. The array must contain one value for each dimension of the simd_ !value
to which the method is applied. This use of reduce_OP () performs multi-dimensioned
reduction. Multi-dimensioned reduction groups PEs by coordinate in the dimensions for
which the corresponding argument array value is zero. The labels of PEs in each group
therefore differ only in the dimensions for which the corresponding argument array value is
non-zero. The elemel)ts of the simd_ value in the enabled PEs of each group are combined
with OP. Then every PE in each group, enabled or not, receives a copy of its group's combined
value. This combined value is the reduce_OP() method's return value. It is a simd_ rvalue
of the same basic type as the simd_ !value to which the method is applied.

5.4.18.3 g*R (Global)

If there is no argument, then global reduction is performed. This is legal when the simd_
!value's architecture identifier has the "It' prefix to its "R" feature. Global reduction returns
a scalar value of the same basic type as the simd_ value to which it is applied. This returned

5.4. PORTA-SIMD LANGUAGE DEFINITION 75

value is obtained by combining the elements of the simd_ value in all enabled PEs, using
the OP operator.

It is particularly useful and common to use the result of reduce_ or() as a logical value.
The method any() provides exactly that; it performs a global reduce_orO, and returns one
if the result was non-zero and zero if the result was zero. It is legal wherever reduce_ or()
is, and returns the same type result. A special related method called any_enab~ed() is also
provided. It is legal whenever any() is. It has no arguments. It returns a scalar unsigned
value which is either zero or one. any_enab~ed() returns one if virtual machine holding the
simd_ value to which it is applied has at least one PE enabled; it returns zero otherwise.

5.4.18.4 Flow Control with "goR"

Section 5.4.8 presented an IF ELSE ENDIF construct which always executes its body's state­
ments, even if no PEs are enabled. The any_enab~ed() method may be used to write a
similar structure which only executes its body's statements when at least one PE is enabled.

IF (<simd expr>)
if (<simd expr>.any_enabled()) {

<statements>
}

ELSE
if (<simd expr>.any_enabled()) {

<statements>
}

END IF

Porta.SIMD gives the programmer the flexibility to use either construct when both are
supported by the target architecture. And it provides flow control even when the "goR"
feature is not supported.

The "goR" feature makes possible a second kind of flow control. A WHILE construct is
written as follows.

WHILE (<simd expr>)
<statements>

END WHILE

<simd· expr> represents an expression which evaluates to a value of a simd_ type.
<statements> may be any number of Porta-SIMD statements.

The <simd expr> is evaluated before execution of the statement, and any enabled PEs
which compute a zero value for it are disabled. After this, if <simd_expr>. any_enab~ed() is
true then the statement is executed. This process is repeated until any_enab~ed() returns
false. Once a PE is disabled, it remains disabled until the entire WHILE construct has
performed all iterations and completed its execution. After any_enab~ed() returns false,
all PEs disabled by the WHILE construct are enabled. The enable status of all PEs is therefore
exactly as it was immediately before the WHILE construct began execution. Execution then
resumes immediately after the WHILE construct.

5.4.19 Scan (S)

A set of methods with names of the form scan_OP () may be applied to any simd_ !value
to specify reduction operations. The legal values of OP depend on the combining operation
modifier of the scan feature of the simd_ values's architecture identifier. The legal values
for each architecture modifier are the same as those described for reduce in the preceding

76 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

section. The type of scan operation is specified by the presence or absence of an argument
to the reduce_OP () method.

5.4.19.1 d*S (Dimensioned)

If there is an argument to the reduce_OP() method, it must be an unsigned scalar value,
which specifies a dimension along which to scan. This single-dimensioned scan is legal
when the simd_ !value's architecture identifier has the "d" prefix to its "S" feature. Single­
dimensioned scan groups PEs by coordinate in the other dimensions, so the PE labels of
each group differ only in that dimension. The elements of the simd_ value in the enabled
PEs of each group are combined with OP in a prefix operation that computes the a result in
each enabled PE. This partial result is the combination of its own element with all elements
in enabled PEs in its group with a smaller coordinate in the dimension in which their labels
differ. This partial result in enabled PEs is the scan_OP() method's return value. It is a
simd_ rvalue of the same basic type as the simd_ !value to which the method is applied.
It's value in disabled PEs is undefined.

5.4.19.2 g*S (Global)

If there is no argument to the reduce_OP () method, then a global scan operation is per­
formed. Global scan is legal when the simd_ !value's architecture identifier has the "g"
prefix to its "S" feature. The elements of the simd_ value in all enabled PEs are combined
with OP in a prefix operation that computes the a result in each enabled PE. This partial
result is the combination of its own element with all elements in enabled PEs with a smaller
PE number. This partial result in enabled PEs is the scan_OP() method's return value. It
is a simd_ rvalue of the same basic type as the simd_ !value to which the method is applied.
It's value in disabled PEs is undefined.

5.4.20 Input (I)

5.4.20.1 I (Input)

The method read() may be applied to any oimd_ !value whose architecture identifier con­
tains "I". read() has a single argnment, an implementation dependent file specifier. read()
copies the next value from the file into the simd_ !value, copying the data into all PEs re­
garless of enable context. The format of the data is implementation dependent, but must
be that nsed by write(). read() returns an integer scalar value which is non-negative if
and only if the operation succeeded.

5.4.21 Output (0)

5.4.21.1 dO (Display Output)

The method display() may be applied to any simd_ value whose architecture identifier
contains or subsumes "dO". display() has a single optional argnment, an implementation
dependent destination specifier. If no argument is given, an implementation dependent
default value is used. display() copies the simd_ value to the destination, copying the
data in all PEs regardless of enable context. The format of the data is implementation
dependent, and need not be the same as that used by read() and -.rite(). display()
returns an integer scalar value which is non-negative if and only if the operation succeeded.

It is intended that the destination specifier encode information such as the display device
and the component of the image that the simd_ value represents. Typical components might
be: "red", "green", "blue", "mapped.:.color", "rgb", "grayscale", "black-and-white".

5.5. POTENTIAL LANGUAGE ENHANCEMENTS 77

5.4.21.2 0 (Output)

The method write() may be applied to any simd_ value whose architecture identifier
contains "0". write() has a single argument, an implementation dependent file specifier.
write() appends the simd_ value to the file, copying the data in all PEs regarless of enable
context. The format of the data is implementation dependent, but must be understood by
read(). write() returns an integer scalar value which is non-negative if and only if the
operation succeeded.

5.4.22 Get (G)

5.4.22.1 rG (Restricted Get)

The method get() may be applied with no argument to any simd_ value whose architecture
identifier contains or subsumes "rG". The result is a scalar value of the same basic type as
the simd_ value to which get() is applied. The value is the value of that simd_ value in
some arbitrary PE.

5.4.22.2 G (Get)

The method get ()may be applied with one argument to any simd_ value whose architecture
identifier contains or subsumes "G". The result is a scalar value of the same basic type as
the simd_ value to which get() is applied. The value is the value of that simd_ value in
the PE specified by the argument. The argument is an unsigned scalar value which is used
as a PE number. The argument value must be less than the number of PEs in the simd_
value's virtual machine.

5.5 Potential Language Enhancements

I believe Porta-SIMD's portability, power, expressiveness and type safety are excellent.
However, I do see some ways to improve the language. They all concern more concise,
natural, and aesthetic ways of expressing common operations.

Communication between the host and PEs, now expressed with set() and get() meth­
ods, could be written with square braces ([]). Limited local addressing could also be written
much more naturally by using square brackets to index into simd_ arrays, instead of using
the elem() method.

Unlimited local addressing would be improved by making the use of simd_ pointers look
more like the use of scalar pointers. One or more of the pointer-related operators (11:, *, ->,
.) could be used for this purpose.

Communication could be expressed much more compactly if square brackets or parenthe­
ses were used in place of some forms of the send() and :fetch() methods. There are almost
certainly too many variations of these methods to use operator notation for all of them, and
especially to remember what all those operators mean. But using operators for some of the
more common cases would probably improve program readability. Square brackets seem
more natural to me, but it may be ambiguous or confusing to use them for communication
in addition to the other uses already planned. Parentheses are a reasonable alternative.
Pointer syntax using -> and directions might even be useful.

Each of these potential enhancements is likely to improve the appearance and readability
of Porta-SIMD programs. Determining the best design for these new features will require
substantial thought and experimentation, particularly rewriting programs using possible
language designs to see how the features work out in practice. While such work is important

78 CHAPTER 5. PORTA-SIMD LANGUAGE DESIGN

to the evolution of Porta-SIMD, these language enhancements are all cosmetic. They are
not expected to yield new insights concerning optimal portability.

Chapter 6

Implementing an Optimally Portable Language

Implementing an optimally portable language generally requires more work than implement­
ing a less portable language. However, most of the additional work involves either analysis
and checking to enforce architectural limits, or provision of restricted forms of the language's
more powerful features. There is no reason I can find why a high-quality implementation of
an optimally portable language should not provide at least as efficient execution of appli­
cation programs as a high-quality implementation of any other high-level SIMD language.
However, the technology used in the prototype Porta-SIMD implementation places severe
limits on that implementation's completeness and efficiency. While C++ #include files and
libraries were an excellent tool for producing early prototypes to help Porta-SIMD's design
evolve rapidly, it is not an appropriate tool for developing a complete or highly efficient
implementation. As a result, only an important but relatively small subset of Porta-SIMD
has been implemented.

Chapter 5 begins by discussing in detail the requirements for designing an optimally
portable language, as defined in chapter 2. Similarly, the first section of this chapter dis­
cusses the requirements for implementing an optimally portable language, and some of the
alternatives available for doing such an implementation. That is followed by a description
of the prototype implementation of Porta-SIMD, the knowledge gained from building this
prototype, and the experience of Porta-SIMD users. Some example programs are included.
The final section discusses the theoretical and practical performance that can be expected
from a high-quality implementation of an optimally portable SIMD language, as well as the
performance actually achieved by the prototype implementation of Porta-SIMD.

6.1 Requirements for an Optimally Portable Language

There are three requirements for optimally portable languages. The first, making each
program specify its target architecture, is primarily a language design issue. It is an im­
plementation issue only to the extent that the implementation must be able to parse the
language. However, the other two requirements for an optimally portable language have a
substantial impact on its implementation. They are discussed in the next two subsections.

6.1.1 Provide Architectural Features

When all the variations due to various interacting architectural features are counted, Porta­
SIMD defines a large number of language features. Other optimally portable SIMD lan­
guages will share this characteristic, because it reflects the fact that several architectural
features in chapter 3's taxonomy modify each other. This leads to a combinatorial explo­
sion of distinct operations. For example, there are well over 100 variations of the send()

79

80 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

method. The number of distinct architectures, and hence Porta-SIMD architecture identi­
fiers to support, is even larger, since even features which do not interact with each other
can be independently selected for use in an architecture identifier. There are over 2 billion
legal architecture identifiers. Providing large numbers of language features (operations) and
architecture identifiers is the requirement which most distinguishes the implementation of
an optimally portable SIMD language from that of an ordinary SIMD language.

6.1.1.1 Many Operations

There are several ways an implementation of an optimally portable language may deal with
the large number of operations. In a few cases, it may be possible to implement a smaller
but equivalent set of features. For example, the architecture identifier 2aC is equivalent to
2adwlCmWrF, but specifies many fewer communication operations. However, in many cases
there is no equivalent architecture with significantly fewer operations. This is the case for
both the CM-2 and MP-1 architectures.

The only way to implement all the required operations using C++ #include files and
libraries is to list and define them all exhaustively. Each distinct operation must be defined
separately for every simd_ type. This is an important limit of the implementation method:
it defines and implements operations, not characteristics of operations.

The natural way for a compiler to handle the many variations on operations is to parse
the operation name and arguments to find the selection made for each dimension of variation.
Handling the variations this way is much more tractable than enumerating them. Having
recognized the components of the operation's specification, the compiler might generate code
in one of two ways. It might build code for exactly the operation specified, by combining
code which implements the various features combined in the operation. Or it might have
built-in implementations for the most general and most common operations, and use a
special case of a more general operation if an exact match is not available for the specified
operation.

6.1.1.2 Many Architectures

An implementation of an optimally portable language for a SIMD computer must provide
architecture identifiers representing every architecture subsumed by that computer's archi­
tecture. This is only a handful for a basic architecture like Pixel-Planes, but can be a very
large numbei: for architectures with many optional features. The CM-2 subsumes over one
million architecture identifiers.

It is impractical for the current prototype implementation of Porta-SIMD to provide
large numbers of architecture identifiers. Because each architecture identifier may appear in
the names of several types, an implementation based on C++ #include files and libraries
must contain many definitions for each architecture identifier it supports. The real problem
is that the implementation technology can only deal with architecture identifiers as distinct
entities, rather than as sets of architectural features. This is another aspect of the limit
of this implementation method noted in the previous section: it defines and implements
architectures, not architectural features.

Fortunately, compilers are not limited in this way. They can treat architecture identifiers
in the natural way, as a set offeatures formed by selecting at most one from each of twelve
categories. So the number of possible architecture identifiers should not be a siguificant
problem for compiler-based implementations of optimally portable languages.

6.2. PORTA-SIMD IMPLEMENTATION RESULTS 81

6.1.2 Enforce Architectural Limits

Enforcing the architectural limits each program specifies for itself presents some of the same
issues discussed in the previous section. Enforcing a ban on language features not supported
by the program's target architecture is closely related to providing those features that are
supported by that architecture.

Again, the C++ library method used in the prototype Porta.-SIMD implementation has
severe limits. It prohibits the use of language features by not defining them. Since it is
unable to define all the required architecture identifiers, it incorrectly bans those it is not
able to define. As before, a compiler need not have this difficulty, and should be able to
enforce architectural limits correctly.

6.2 Porta-SIMD Implementation Results

A prototype implementation of Porta-SIMD has been performed. It implements a subset of
the language, and runs on Pixel-Planes, the Connection Machine, and a sequential computer
simulating a SIMD architecture.

This section reports on the prototype implementation Porta-SIMD. The implementation
evolved with my ideas and the language design. Its present structure is briefly reviewed,
and some of the difficulties inherent in the implementation approach are described. The
current status of the implementation is reported for each computer supported, and the im­
plemented subset of the language is defined. Three existing SIMD programs were rewritten
in Porta-SIMD and are presented in this section. Their performance is reported in sec­
tion 6.3.4. The details of compiling and running a Porta-SIMD program are described, and
the comments of Porta-SIMD users are reported. Finally, the effort required to port the
prototype implementation is described.

6.2.1 History

Porta-SIMD's prehistory began in late 1987 when I began experimenting with C++ as a
tool for data parallel programming at Dr. Brooks's suggestion. By the end of the year I had
the beginning of the concept of optimal portability, and a tiny beginning on Porta-SIMD. In
March 1988, Porta-SIMD provided the single parallel type simd_int and the C assignment
operators (e.g.,+=, I=, etc.), and ran on PxPI4 (Pixel-Planes 4) and sequential machines.

Next, I added ''virtual memory" to the sequential version, in preparation for the off­
chip backing store memory of PxP15 (Pixel-Planes 5). This feature allows programs to
use the entire off-chip memory space, with the implementation transparently moving data
into on-chip memory to operate on it as needed. I had the opportunity to visit Argonne
National Laboratory's ACRF (Advanced Computer Research Facility), where I ported the
then-current implementation ofPorta-SIMD to the CM-2 (Connection Machine, model2) in
less than a week. I presented a paper on my work at Frontiers '88 [Tuck88], and implemented
the remaining C operators for simd_int by the end of the year.

In early 1989, I implemented two additional parallel types: simd_unsigned and
simd_bool. This meant handling type conversions for ·the first time, which required a
lot of work. I also wrote a User's Manual for Porta.-SIMD [Tuck89]. By May, I had also
ported Porta-SIMD to the PxP15 simulator. The next task was to add support for multi­
ple virtual machines of different sizes. That was largely completed in .July, along with a
complete rewrite of the memory management system to support it. The improved memory
management was also needed to support the different memory model used by Paris with
release 5 of the CM-2's system software.

82 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

At this point, C++ 2.0 was released and I revised the implementation's class structure
to take advantage of its new features, including multiple inheritance. This was important
preparation for supporting multiple architecture identifiers effectively. Compiler problems
slowed porting of the new features to the CM-2, but the CM-2 version was up to date by
the end of 1989. The CM-2 at CMNS (the Connection Machine Network Server) was used
for this port and subsequent work on the CM-2.

Work in 1990 has focused on implementing optional architectural features, the most
important of which are adjacent and global communication and local addressing.

6.2.2 Structure

The prototype implementation of Porta-SIMD consists of a few preprocessor macro def­
initions for fiow control and several families of C++ classes which implement the types
described in the language definition. There are two main sets of classes: the programmer
interface classes which implement the parallel data types, and the hardware interface classes
which implement virtual machines. Although Porta-SIMD programs may declare and use
virtual machines, they directly use only a tiny part of the capabilities of virtual machines.
The real use of virtual machines is by the parallel data type classes, which use virtual
machines to do all parallel computation.

These two sets of classes are similarly structured. Each has a base class which implements
the null architecture identifier. Classes are derived from this class to implement individual
architectural features. Additional layers of classes are then derived with multiple inheritance,
each deriving from the feature classes of the architecture identifier it implements. Since
some features interact, there can be significant amounts of code in classes above the bottom
''feature" layer, and higher layers may inherit from these combined-feature nodes. The
virtual machine family of classes has names of the form simd_ARCHID_mach, where ARCHID
is an architecture identifier. The parallel data family of classes is actually three very similar
families: simd_ARCHID_unsigned, simd_ARCHID_int, and simd_ARCHID_bool.

The parallel data families all derive from from the simd_ARCHID_ var family, which en­
capsulates the shared characteristics of all data types, including access to memory manage­
ment classes. Both the _ var classes and the memory management classes are invisible to
PortarSIMD programs.

The reader interested in more details of the class structure and the public and private
interfaces of these classes is invited to study appendix A. It contains the C++ header files
which declare these classes.

6.2.3 Implementation Difficulties

Although using C++ #include files and libraries to implement Porta-SIMD allowed early
rapid prototyping and avoided writing a compiler, it also caused some problems. Section 6.1
has already pointed out that it is impractical to implement the full Porta-SIMD language
with this technology because of the large number of language features and architecture
identifiers. The two other major difficulties have been with conversions among simd_ types,
and with compiler bugs.

C++ supports user-defined implicit type conversions. Unfortunately, these have the
wrong semantics for conversions between simd_ types. The problem stems from the fact
that the length of the elements of a simd_ type is not part of the type name, but an argument
to the declaration. In designing Porta-SIMD, I felt it was important to be able to specify
integers with any number of bits in order to make the most effective use of limited PE
memory. But making each size integer a different type would have multiplied the number
of types and seriously complicated implementation. Making the length invisible to the type

6.2. PORTA-SIMD IMPLEMENTATION RESULTS 83

system means each operator must be able to handle arguments with different lengths, which
is acceptable. But because the length is not visible to the C++ type system, implicit
conversions do not change lengths.

An example will show the conversion problem.

simd_int signed16(NULL, 16), signed32(NULL, 32);
simd_unsigned uns16(NULL, 16), uns32(NULL, 32);
nns32 = signed16;
signed32 = uns16;

C++ invokes the conversion operation, which does not change the length and so does noth­
ing. Then the assignment operator is given two operands of the same type but different
lengths. The result is that the value of signed16 is zero-extended, and the value of uns16
is sign-extended. This is the opposite of the correct behavior, which is to sign-extend the
signed value and zero-extend the unsigned value.

In order to implement type conversion correctly, it was necessary to define multiple
versions of .every operator, one version for every possible combination of argument types.
Multiplying the number of operations this way created an unwieldy number of small but
distinct subroutines in both the machine-independent and machine-dependent layers of the
implementation.

Another difficulty with user-defined implicit conversions in C++ caused the limitations
in cast operations described in section 5.4.6.2. C++ provides no mechanism for specifying
which of several possible user-defined conversions to use. Instead, it requires that at most
one user-defined conversion be applicable in each situation.

Although C++ is an excellent language, it is still evolving and its compilers are not yet
as mature as those for older languages like C. As the prototype Porta-SIMD implementation
evolved, it repeatedly uncovered compiler bugs. In June 1989 my code reached a point where
the AT&T C++ 1.2 compiler got internal errors when attempting to compiling my code. I
was not able to find a work-around, but was able to continue development using the GNU
G++ compiler. I soon found a bug in it, too, but the bug only affected Sun-4s, so I was
able to continue work using Sun-3s; the bug was fixed in October.

UNC got C++ 2.0 from AT&T in December 1989, so I had two working C++ compilers
again. I immediately found a pair of complimentary bugs, one in each compiler, but a work­
around, too. But by the end of January I had found another bug in the AT&T 2.0 compiler;
this one caused it to generate illegal C code as output. I was not able to find a satisfactory
work-around, so I thereafter used only the GNU compiler. In February I found a bug in the
GNU compiler which halted work. A fixed version was available by the beginning of March.

Each compiler bug was a drain oftime and energy while I identified the problem, reported
it, and tried to work around it.

6.2.4 Status

The prototype implementation of Porta-SIMD implements a subset of Porta-SIMD. This
subset includes the integer and boolean parallel types, but no parallel floating-point types.
The following architectural features are implemented: 2-D adjacent communication (2aC),
global communication (gC) with write collisions handled by selection (sW) and fetch collisions
handled by replication (rF), limited local addressing both alone and during communication
(lcL), global reduction with "and" and "or'' (goR), display output (dO), and unlimited PE
to host "get" I/0 (G). All the base architectural features common to all SIMD machines
and the optional architectural features 2aCG are tested, working, and in use. However, the
features gCsWrFlcLgoRdO are still in the debug and test phase.

84 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

Naturally, the CM-2 version supports all these features; the PxP14 version supports no
optional features except 2d0; and the PxP15 simulator version supports features 2dOG. The
versions for PxPI4 and the PxP15 simulator do not support multiple virtual machines. The
sequential version currently simulates the same features as the PxPI5 simulator version)
though the simulators are completely unrelated.

The PxPI4 version implements the Porta,.SIMD language in an earlier stage of its evo­
lution. This is because there is no port of C++ 2.0 to the PxP14 Graphics Processor on
which PxPI4 programs run. Code for the PxP14 version of Porta,.SIMD was therefore frozen
before the the Porta-SIMD implementation was moved from C++ version 1.2 to 2.0.

The prototype implementation ofPorta,.S~MD consists of declarations in .h (#include)
files, definitions in . C (C++ source) files, compilation rules in make files, and test programs
used solely to exercise the implementation. There are 103 .h files containing a total of over
8500 lines. Of these, 72 contain declarations used directly by user programs; the rest are
directly used only by implementation source files. Appendix A consists of all the . h files.
The . h files are #include'ed by 98 . C files, which contain a total of over 17300 lines and are
stored in 27 directories. The prototype implementation is compiled and built into libraries
using 33 make files with a total of over 3400 lines. A test suite comprising 72 . C files and
over 8300 lines of code was used to test the prototype implementation. Together, these four
groups of files contain over 37000 lines. These line counts are for all lines in the respective
files, including comments and blank lines. None of these statistics include source which was
written and discarded as part of the implementation's evolution.

6.2.5 Example Programs

This section presents some example Porta.-SIMD programs. Each was already in use in
the UNC Department of Computer Science when it was translated to Porta-SIMD. Some
measurements have been made of the performance of these programs. Those results are
reported in section 6.3.4.

The first program computes and displays the Julia set, a fractal pattern closely related
to the Mandelbrot set. In fact, the main computation of these two sets is done identically;
the only difference is in the initialization. Greg Turk originally wrote this program using
the low-level C-callable "FB Macros" interface to PxP14. He translated the core of this
program to Porta.-SIMD very early in Porta,.SIMD's development, and provided valuable
user feedback in the process. The program has since been updated to reflect Porta.-SIMD's
evolution. The Julia set program uses the 2 (2-D) and dO (display output) features, and
runs on all versions of Porta,.SIMD.

The Julia set is the set of points in the complex plane c at which, for a given complex
constant z, z = z2 + c converges to a finite value. There is a distinct Julia set for every value
of z. (The Mandelbrot set is the set of starting points in the complex plain z at which this
equation converges when c is zero.) Approximations of these sets are normally computed
by doing some finite number of iterations, during which most points not in the set reach a
value which assures that they diverge to infinity.

The Julia set program is shown in figures 6.1-6.6. The first part, figure 6.1, contains
declarations including program constants and global variables. Part 2, figure 6.2, shows the
driver routine for the Julia set calculation. It initializes the points to be computed, calls
the routine i terata() to perform each iteration, and colors and displays the result. Points
not in the set are colored based on the number of iterations required to detect their assured
divergence. A simple two-color scheme is used, based on whether the number of iterations
was even or odd.

Part 3, figure 6.3, shows the iterate() routine, performs one iteration of the overall
Julia set calculation. The precision with which the calculations can be carried out is limited

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

I* Julia in Porta-SIMD. Greg Turk. •I

#include <stdio.h>
#include <std.h>
#include "simd_2d0.h"

I* atoi() •I

I* Image will be IM_SIZE x IM_SIZE *I
#define IM_SIZE 35

I* specification of fixed-point
const int length = 10;

size •/
II total length

const int int_part = 3;
const int fract_part = length -

II bits to left of decimal
int_part; II bits to right

I* other constants •I
const int color_length = 8;

I* forward procedure declarations •I
void compute_positions(float, float, float, float, float, float,

float, float&, float&, float&, float&, float&, float&);
void check_overflow (simd_2_intt val, simd_2_bool& oflow);
void get_bit(simd_2_bool& dst, simd_2_int& src, int position);
void draw_julia(float, float, int);
void iterate(float, 'float);
float rnd(float, float);

I• globals •I
simd_2d0_mach mach(IM_SIZE, IM_SIZE);

simd_2d0_unsigned color(tmach, color_length); II result image

simd_2_int tbig(tmach, 2 *length);
simd_2_int a(tmach,length);
simd_2_int b(tmach,length);
simd_2_bool in(tmach);
simd_2_bool parity(&mach);

float width = 4.0;

#ifdef pxpl4gp

II double sized temporary
II real and complex parts

II are we still in set?
II parity of# iterations

short doneflag = 0; I* Flag to tell host when program ends. •I
#endif

I• constants •I
const float aspect = 1.0;
const float magic = (1 << (length- 3));

Figure 6.1: julia.C- Julia Set Program (part 1).

85

86 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

I* Draw a Julia set. *I
void draw_julia(float dx, float dy, int iters)
{

}

float xa,xb,xc;
float ya,yb,yc;

I* compute (a,b) positions *I
compute_positions(O.O, 0.0, (float)IM_SIZE, (float)IM_SIZE,

0.0, 0.0, width, xa, xb, xc, ya, yb, yc);

a.bilinear(xa, xb, xc);
b.bilinear(ya, yb, yc);

I* reset parity of number of iterations, and "in" :flag. *I
parity = 0;
in = 1;

I* perform iteration *I
for (int i = 0; i < iters; i++)

iterate (dx, dy);
}

I* outside Julia set alternates red and blue stripes *I
IF (parity)

color = 0;
ELSE

color = 110;
END IF

I* inside Julia set is white •I
IF (in)

color = 255;
END IF
color.display();

Figure 6.2: julia.C- Julia Set Program (part 2).

6.2. PORTA-SIMD IMPLEMENTATION RES1:[LTS 87

on PxP14 by the machine's small memory (72 bits per PE). The code and its comments reflect
some effort to minimize memory use in order to achieve the maximum precision (greatest
fixed-point integer length) possible in the calculation. This is only necessary because of the
limitations imposed on the prototype implementation by the fact it is not a compiler.

Part 4, figure 6.4, contains the routine which checks for overflow in the fixed-point format
used by the program. It is used by iterate() as part of the test for divergence. Part 5,
figure 6.5, presents a small main program to draw some Julia sets, and a support routine
used by the overflow checking routine. Part 6, figure 6.6, shows two sequential support
routines. One is used (in figure 6.2) as part of the initialization of points prior to beginning
the iterative calculation. The other produces random coordinates which the main program
uses in choosing Julia sets to draw.

The second program was also written by Greg Turk. It computes and displays the game
of life. It originally ran on the MP-1 (MasPar), and was written in MPL. It uses the features
2aC (2-D adjacent communication) and G (get). The parallel portions are shown in figures
6.7 and 6.8.

Figure 6. 7 shows the declaration of the virtual machine and grid of cells to be simulated.
It features the routine which computes a generation of the game of life, which was discussed
in detail in section 5.3. Figure 6.8 shows support routines used by the main program to
initialize the grid of cells. The extern "C" {} statements in figure 6.7 may be ignored..
They make the subroutines they name callable from C as well as C++.

Figure 6.9 shows two main programs which use the life routines in the preceding two
figures. The first simply runs the life simulation and prints the results of each iteration.
The second invokes a graphical user interface to the game of life. Greg Turk wrote this
interface in C using the X window system. The extern "C" {} statements make it possible
to correctly make calls between the C user interface and the Porta-SIMD (C++) code shown.

The final example presented here is the parallel part of a program by Tim Cullip. It
accepts a surface spaceified as an input image, where each intensity value in the image is
the surface's elevation at that point. The program calculates the Intensity Axis of Symme­
try [GauchPizer88] of the surface to detect features of the surface. It was written in MPL
for the MP-1, and will run on the CM-2 version of Porta-SIMD when testing and debugging
of the necessary features is complete. It uses some of the most powerful features of the MP-1
and CM-2 architectures. These include: 2aC (2-D adjacent communication), gCsllrF (global
communication with collision resolution: selection on write and replication on fetch), lcL
(limited local addressing, including during communication), and G (get value from PE to
host). This program is contained in figures 6.10- 6.17, and its internal structure is describe
by its comments.

6.2.6 Using Porta-SIMD

The mechanics of compiling and linking a Porta-SIMD program are very similar to those
for an ordinary C++ program. Each step requires only a minor addition.

When compiling and linking a Porta-SIMD program by hand, as opposed to using
make, begin by defining the shell variable PORTA_SIMD. (At UNC, it should have the value
/home/common/tuck/sinld.) Using the csh, this is done with the following command.

setenv PORTA_SIMD /home/common/tuck/simd

The command which compiles each program source file into an object file must predefine
two symbols using the -D compiler option. The first symbol identifies the type of SIMD
hardware on which the program will run. This may be seq (to simulate parallel hardware
using a sequential computer), pxpl4 (to use PxP14), pxpl5sim (to use the PxPI5 simulator),
or em (to use the CM-2). The second symbol identifies the host computer type. This

88 CHAPTER 6. IMPLEMENTINQ AN OPTIMALLY PORTABLE LANGUAGE

I* Perform one iteration. *I
void iterate(float dx, float dy)
{

}

simd_2_bool oflow(&mach);

I• (a-b) * (a+b) (Use explicit tmps to conserve memory.) •I
tbig = a;
tbig -= b;
b += a·

' tbig •= b;

I* check for overflow *I
check_overflow(tbig, oflow);
IF (oflow) in= 0; ENDIF

I• shift result right to get rid of extra fraction bits. •I
tbig >>= fract_part;

I• Recompute original b; update a and put old a in tbig. •I
b -= a;
{ I• Create block so temp is freed as soon as possible. •I

simd_2_int temp = a;
a = tbig;
tbig = temp;

}

tbig •= b; I• a * b •/

I* check for overflow *I
check_overflow(tbig, oflow);
IF (oflow) in = 0; ENDIF

I• shift to multiply by two, and check for overflow again •I
tbig «= 1;
eheck_overflow(tbig, oflow);
IF (oflow) in = 0; ENDIF

I• shift result right to get rid of extra fraction bits. •I
tbig >>= fract_part;
b = tbig; I• move new product into b •I

I• add in the shift factor (use block to free tmp quickly) •I
{ a += magic * dx; }
{ b += magic * dy; }

I• update parity of iterations •I
IF (in)

parity = !parity;
END IF

Figure 6.3: julia.C- Julia Set Program (part 3).

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

I* Check to see if abs(value) >= 2.
Entry: value - value to check magnitude of
Exit: oflow- 1 if overflow, 0 if not

*I
void check_overflow(simd_2_int& value, sirnd_2_bool& oflow)
{

}

simd_2_bool neg(tmach), bit(&mach)n;

I* assume no overflow *I
o:flow = 0;

I* see if value is negative •I
neg= (value< 0);

IF (neg) II it negative
get_bit(bit, value, fract_part * 2 + 3);
IF (!bit)

oflow = 1;
END IF
get_bit(bit, value, fract_part * 2 + 4);
IF (!bit)

oflow = 1;
END IF

ELSE I I if positive
get_bit(bit, value, fract_part * 2 + 3);
IF (bit)

oflow = 1;
END IF
get_bit(bit, value, fract_part * 2 + 4);
IF (bit)

oflow = 1;
END IF

END IF

, Figure 6.4: julia.C- Julia Set Program (part 4).

89

'

90 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

I* Main program. *I
main(int argc, char *argv[])
{

int i;
int num = 60;

i:f (argc > 1)
num = atoi(argv[1]);

I* Draw set at 4 particular points, then at random points. *I
draw_julia(O.O, 0.0, 50);
draw_julia(0.245, 0.0, 50);
draw_julia(-0.7761, 0.0, 50);
draw_julia(-0.121, 0.755098, 50);
for (i = 0; i < num; i++)

draw_julia(rnd(-1.0, 1.0), rnd(-1.0, 1.0), 50);

#ifdef pxpl4gp
donetlag = 1 ;

#endif
}

I* Extract one bit
Entry: source

position
Exit: dest

*I

of a simd_int into a simd_bool.
- source simd_int to extract bit
- position of bit to get (LSB is
- place to return bit

:from
position

void get_bit(simd_boolt dest, simd_int& source, int position)
{

}

int mask= (1 <<(position- 1));
dest = mask & source;

Figure 6.5: julia.C- Julia Set Program (part 5).

1)

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

I* Compute initial values of (a,b). *I
void compute_positions(float xi, float y1, float x2, float y2,

float ex, float cy, float width, float& xa, float& xb,
float& xc, float& ya, float& yb, float& yc)

{

}

y2 = y2; II so C++ won't complain about y2 being unused
float dx;
dx = x2 - xi;

I* compute value for a */
xa = magic * width I dx;
xb = 0.0;
xc = -magic * (width I 2 ex) - x1 * magic * width I dx;

I* compute value for b *I
ya = 0.0;
yb = -magic * width I dx I aspect;
yc = magic * (width I 2 I aspect + cy) +

y1 * -magic * width I dx I aspect;

I* Return a random number between min and max. •I
float rnd(float min, float max)
{

}

float r = (rand() & Oxffff) I (float)Oxffff;
return(r * (max- min) +min);

Figure 6.6: julia.C- Julia Set Program (part 6).

91

92 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

I* Life for the Maspar. Greg Turk, February 1990.
* Translated from MPL to Porta-SIMD by Russ Tuck.
*I

#include <simd_2aCG.h>
const unsigned rows = 32, cols = 64;
simd_2aCG_mach mach(cols, rows);
simd_2aCG_bool cell(&mach); I* the life grid of cells *I

#ifndef SIMPLE_MAIN I* Make some routines C-callable. *I
extern 11 C'v { void compute_iterations(int iters); }
extern 11 C11 {void cell_flip(int x, int y); }
extern ucn { void init_cellsO; }
#end if

I*** Compute several generations of life. ***I
void compute_iterations(int iters)
{

}

int i;
const direction_aC E(0,1), W(0,-1), !1(1,1), 5(1,-1);
simd~2aC_int tsum(cell.m_2aC());
simd_2aC_int sum(cell.m_2aC());
simd_2aC_int tmp(cell.m_2aC()); I* used in communication *I

for (i = 0; i < iters; i++) {

}

I* count the living neighbors •I
tsum = cell;
tsum += tmp.fetch(cell, N);
tsum += tmp.fetch(cell, S);

sum = tsum;
sum += tmp.fetch(tsum, E);
sum += tmp.fetch(tsum, W);
sum -= cell;

I* compute new generation *I
IF (cell)

IF (sum < 2 I I sum > 3)
cell = 0;

END IF
ELSE

IF (sum == 3)

cell = 1;
END IF

E!IDIF

Figure 6.7: life.C- Game of Life Program (part 1).

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

I*** Flip the state of a cell. ***I
void cell_flip(int x, int y)
{

}

simd_2_int tmp(cell.m_2());

IF (tmp.pe_coord(O) == x kk tmp.pe_coord(1) -- y)
IF (cell -- 0)

cell = 1;
ELSE

cell = o·
' END IF

END IF

I*** Create a single glider. ***I
void create_glider(int x, int y)
{

}

cell_flip (x, y);
cell_flip (x, y+1);
cell_flip (x, y+2);
cell_flip (x+1, y+2);
cell_flip (x+2, y+1);

I*** Create the decathlon (ten cells in a row). ***I
void create_decathlon(int x, int y)
{

}

int i;

for (i = 0; i < 10; i++)
cell_flip (x + i, y);

I*** Create a glider and decathlon. ***I
void init_cells()
{

}

cell = 0;
create_glider (10, 10);
create_decathlon (30, 16);

I*** Turn on one cell. ***I
void cell_on(int x, int y)
{

cell.set(label_2(cell.m_2(), x, y), 1);
}

Figure 6.8: life.C- Game of Life Program (part 2).

93

94 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

#ifdef SIMPLE_MAIN
I*** Simple main program to demo game of life. ***I
#include <stdio.h>
#include <std.h> I• getenv(), strtol() •I
void print_cells() {

}

for (int row=O; row < rows; row++) {
for (int col=O; col < cols; col++)
printf("'l.c",cell.get(label_2(cell.m_2(),col,row))?'X':, ');

printf("\n");
} printf("\n11

);

int main() {

}

I• Get # of iterations from environment var LIFE_ITERS. •I
unsigned life_iters = 10; I* Default # of iters. •I
char *env_strp, *tmp_strp;
char **check_strpp = &tmp_strp;
if ((env_strp = getenv("LIFE_ITERS")) != NULL) {

long tmp_val = strtol(env_strp, check_strpp, 0);
if (*check_strpp == env_strp)

}

printf("Ignoring non-int value of env var LIFE_ITERS.\n11
);

else life_iters = tmp_val;

printf("Will compute %u iterations. \n", life_it6rs);

init_cells();
for (int i=O; i <= li:fe_iters; i++){

print:f("Iteration Y.d:\n", i); print_ cells();
compute_iterations(l);

}

return(O);

#else
I*** Send cells back to host. ***I
extern "C" {void give_cells(int *host_cell); }
void give_cells(int *host_cell)
{

}

int *cell_ptr = host_cell;
tor (int row=O; row < rows; row++) {

for (int eol=O; col < cols; col++) {
*(cell_ptr++) = cell.get(label_2(cell.m_2(), col, row));

}
}

I*** Use X user interface (code not shown). ***I
extern "C" { int realmain(int argc, char *argv D); }
main(int argc, char *argvO) { return(realmain(argc,argv)); }
#endif

Figure 6.9: life.C- Game of Life Program (part 3).

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

I* surface.C by Tim Cullip.
* Translated from MPL to Porta-SIMD by Russ Tuck.
*I

#include <stdio.h>
#include <simd_2gCsWrFlcLG.h>
#include <image.h> I* UNC's "/usr/image" library. *I

const GREYLEN 16; I* Bits used for images *I
const direction_aC E(dimen_x, 1). !oJ(dimen_x, -1),

N(dimen_y, 1). S(dimen_y, -1);
const int Debug = 1• •

I* surface(): treat input image as a surface, using the pixel
* values as surface elevation, and calculate the Intensity
* Axis of Symmetry of the surface to detect its features.

*
* At call: pix points to an xdim by ydim by 3 array of
* GREYTYPE pixels. These are arranged as three xdim by ydim
* images in succession. The first image is the input, and the
* other two are undefined. The other parameters con~rol the
* computation, and are input only.
* At return: all three images pix points to are full. They
* contain respectively the original x and y coordinates and
* original input value (intensity) of each output pixel.
*I

void surtace(GREYTYPE *pix, int xdim, int ydim,
GREYTYPE min, GREYTYPE max,

{

double fw1, double fw2, double fw3,
int Maxiteration, int SpreadFactor)

I• Process weight arguments. *I
int wi = 100*fw1;
int w2 = 100*fw2;
int w3 = 100*fw3;

int i,j,x,y,i1,i2;
plural GREYTYPE val;

print:f(11 Start dpu_setup(); dims: Y.d Y.d\n",xdim,ydim);
print:f("intensity range: Y.d Y.d\n11 ,min,max);
print:f("weights: Y.d Y.d Y.d\n",w1,w2,w3);
print:f ("i ters, spread: Y.d Y.d\n11

, Maxiteration, SpreadFactor) ;

Figure 6.10: surface.C- Intensity Axis of Symmetry Program (part 1)

95

96 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

}

I* Allocate machine and some variables on it. *I
simd_2gCsWrFlcLG_mach •machptr =

new simd_2gCsWrFlcLG_mach(xdim,ydim);

I* Input image will be loaded into I.
*X, Y, and I are computed, and become the output data.
•I

simd_2G_int X(machptr, GREYLEN);
simd_2G_int Y(machptr, GREYLEN);
simd_2G_int I(machptr, GREYLEN);
I• b: binary image from intensity threshold •I
simd_2aCgoR_bool b(machptr);
I• d: manhattan distance to a 0 in b (radius). •I
simd_2_int d(machptr, GREYLEN);
I* r: array of values of d~ one for each intensity. *I
int num_r = max-min+1;
printf(11num_r: Y.d\n 11 ~num_r);

simd_21L_int_arr r(machptr, GREYLEN, num_r);
I* R: array matching r, with true values wherever the r
* value is a local maximum along either dimension. *I

simd_2gCsWrFlcL_bool_arr R(machptr, GREYLEN, num_r);
simd_2_int F(machptr, GREYLEN);
simd_2_int •D[9];
for (i=O; i < 9; i++) {

D[i] =new simd_2_int(machptr, GREYLEN);
}

I• Copy input image to I. •I
GREYTYPE *pix_ptr = pix;
for (i=O; i < I.pes(); i++) {

I[i] = *pix_ptr++;
}

printf(11 Input image is in parallel memory.\n");

I• Do real work. •I
init_ias(X, Y);
init_radius(I, b, d, r);
converge_surface(X, Y, I, 0, D, F, R, min, max,
Maxiteration = 10;
converge_surtace(X, Y, I, 1, D, F, R, min, max,

I• Copy result data back to scalar array (*pix) .
pix_ptr = pix;
for (i=O; i < X.pes(); i++) { *pix_ptr++ = X[i];
:for (i=O; i < Y.pes(); i++) { *pix_ptr++ = Y[i];
for (i=O; i < I. pes(); i++) { *pix_ptr++ = I [i];

r);

r);

*I

}
}
}

printf ("Output data is in sequential memory. \n");

Figure 6.11: surface.C- Intensity Axis of Symmetry Program (part 2)

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

void init_ias(simd_2_intk X, simd_2_intk Y)
{

}

X.pe_coord(dimen_x);
Y.pe_coord(dimen_y);

void init_radius(simd_2_int& I, simd_2aCgoR_bool& b,
simd_2_int& d, simd_2lL_int_arr& r)

{

}

GREYTYPE Intensity,i,dist;
GREYTYPE intensity_offset;
simd_2aC_int trnp = d;

for (Intensity= min; Intensity<= max; Intensity++) {
I• first create the binary image inside the contours
* and zero the distance function •I

}

IF (I >= Intensity)
b = 1;

ELSE
b = 0;

EIIDIF;
d = 0;
I* now set up to iterate until all 1's are burned away •I
dist = 1;
WHILE (b) {

}

I• if I'm a 1 and any neighbor is a 0, record distance •I
IF (b)

tmp = b;
IF (!tmp.fetch(b,
IF (!tmp.fetch(b,
IF (!tmp.fetch(b,
IF (!tmp.fetch(b,

ENDIF;

II))
E))
S))
W))

d = dist; EIIDIF;
d = dist; END IF;
d = dist; END IF;
d = dist; EIIDIF;

I• if my distance just got recorded, turn me off *I
IF (d == dist)

b = 0;
ENDIF;
dist++;

intensity_offset = Intensity - min;
r.elem(intensity_offset) = d;

Figure 6.12: surface.C- Intensity Axis of Symmetry Program (part 3)

97

98 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

I* For each level of intensity, identify PEs at local maximum
* radius along either dimension. Each such PE is on a ridge.
•I

void RadiusRidge(GREYTYPE min, GREYTYPE max,
simd_21L_int_arr& r, simd_21L_bool_arr& R)

{

}

simd_2aC_int p(r.m_2aC(), GREYLEN);
simd_2aC_int trnp = p;

for (int i_offset=O; i_offset <= max-min; i_offset++) {
p = r.elem(i_otrset);

}

R.elem(i_offset) = 0;
IF (((p > tmp.fetch(p, E)) && (p > tmp.fetch(p, W))) I I

((p > tmp.fetch(p, N)) && (p > tmp.fetch(p, S))))

R.elem(i_offset) = 1;
ENDIF;

I* Calculate the energy at each point on the surface.
*Energy decreases as radius increaSes (climbing a ridge))
* but increases as continuity constraints are violated.
•I

simd_2_int SurfEnergy(simd_2_int& ix, simd_2_int& iy, int ind,
simd_2_int *D[], sirnd_2_int& F,

{
int SecondPass, sirnd_2aC_mach *m)

simd_2_int x(m), y(m), z(m), rindex(m), pindex(m);
simd_2aC_int xlettl(m), xleft2(m), xright1(m), xright2(m);
simd_2aC_int xbottomi(m), xbottom2(m), xtopi(m), xtop2(m);
simd_2aC_int yle£t1(m), yleft2(m), yright1(m), yright2(m);
simd_2aC_int ybottomi(m), ybottom2(m), ytopi(m), ytop2(m);
simd_2_int su(m), sv(m);
simd_2_int Xu(m), Xv(m), Xuu(m), Xvv(m), Xuv(m);
simd_2_int Yu(m), Yv(m), Yuu(m), Yvv(m), Yuv(m);
simd_2_int dist(m, 16);
simd_2_int Energy(m, GREYLEN);
simd_2_int retval(m, 32);

x = ix;
IF
ELSE IF
ELSE IF
ELSE IF
ELSE {

y = iy;
(x < 0) retval=10000;
(x >= xdim) retval=10000;
(y < 0) retval=10000;
(y >= ydim) retval=iOOOO;

Figure 6.13: surface.C- Intensity Axis of Symmetry Program (part 4)

6.2. PORTA-SIMD IMPLEMENTATION RESULTS

z = I;
IF (F) {

I* Find the radius value at the pixel location we want
to move to, which was specified by caller. *I

dist.fetch(r, z, simd_label_2(x,y).pe_number());
D [ind] = dist;

} ELSE { dist = D[ind];} ENDIF

I* first pass: energy is radius at the specified x,y. *I
Energy= 0.0;
if (SecondPass) {

I* Look at neighbor values so can compute continuity

* constraints. *I
ALL {

I* Unconditionally copy x & y 1 PE in each direction. *I
xleft2.fetch(x, W);
xright2.fetch(x, E);
xbottom2.fetch(x, S);
xtop2.fetch(x, N);
yleft2.fetch(y, W);
yright2.fetch(y, E);
ybottom2.fetch(y, S);
ytop2.fetch(y, N);

} ENDALL;

I* Conditionally save neighbor data while it's here. *I
xleft1 = xleft2;
xright1 = xright2;
xbottom1 = xbottom2;
xtop1 = xtop2;
yleft1 = yleft2;
yright1 = yright2;
ybottom1 = ybottom2;
ytop1 = ytop2;

I* low conditionally fetch from neighbors copies of
* their neighbor's X and Y, to get data 2 PEs away. *I

xleft2.fetch(xleft2, W);
xright2.fetch(xright2, E);
xbottom2.fetch(xbottom2, S);
xtop2.fetch(xtop2, N);
yleft2.fetch(yleft2, W);
yright2.fetch(yright2, E);
ybottom2.fetch(ybottom2, S);
ytop2.fetch(ytop2, N);

su = abs(xleft1- xright1) + abs(yleft1- yright1);
sv = abs(xbottom1- xtop1) + abs(ybottom1- ytopi);

Figure 6.14: surface.C - Intensity Axis of Symmetry Program (part 5)

99

}

100 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

}

I* Compute 1st and 2nd partial derivatives of x and y
* with respect to u and v. *I

IF (su+sv < SpreadFactor) {
Xu = (xright1 - xleftl)/2;
Xv = (xtopl - xbottoml)/2;
Xuu = xrightl - x - x + xleftl;
Xvv = xtop1 - x - x + xbottomi;

Yu = (yrightl - yleftl)/2;
Yv = (ytop1 - ybottoml)/2;
Yuu = yrighti - y - y + yleft1;
Yvv = ytop1 - y - y + ybottom1;

Energy = wl*(Xu•Xu + Yu•Yu + Xv•Xv + Yv•Yv) +
w2*(Xuu•Xuu + Yuu•Yuu + Xvv•Xvv + Yvv•Yvv);

Xu = (xright2 - x)/2;
Xuu = xright2 - xright1-xright1 + x;
Yu = (yright2 - y)/2;
Yuu = yright2 - yright1-yright1 + y;
Energy+= w1*(Xu•Xu + Yu•Yu) + w2*(Xuu•Xuu + Yuu•Yuu);

Xu = (x - xleft2)/2;
Xuu = x - xleft1-xleft1 + xleft2;
Yu = (y - yleft2)/2;
Yuu = y - yleft1-yleft1 + yleft2;
Energy+= wl*(Xu•Xu + Yu•Yu) + w2•(Xuu•Xuu + Yuu•Yuu);

Xv = (xtop2 - x)/2;
Xvv = xtop2 - xtop1-xtop1 + x;
Yv = (ytop2 - y)/2;
Yvv = ytop2 - ytop1-ytop1 + y;
Energy+= wl*(Xv•Xv + Yv•Yv) + w2•(Xvv•Xvv + Yvv•Yvv);

Xv = (x - xbottom2)/2;
Xvv = x - xbottom1-xbottom1 + xbottorn2;
Yv = (y - ybottom2)/2;
Yvv = y - ybottom1-ybottom1 + ybottom2;
Energy+= w1•(Xv•Xv + Yv•Yv) + w2*(Xvv•Xvv + Yvv•Yvv);

} ENDIF;

I* Energy rises w/radius, rises w/loss of continuity. •I
Energy += w3*dist; I• w3 < 0; w1 > 0; w2 > 0; •I

ENDIF; ENDIF; ENDIF; ENDIF;
retval =Energy; return(retval);

Figure 6.15: surface.C -Intensity Axis of Symmetry Program (part 6)

6.2. PORTA-SIMD IMPLEMENTATION RESULTS 101

I• Use relaxation to find surface with minimal energy,
*where energy is calculated by SurfEnergy().
* See Tim Cullip's thesis for details.
•I

void converge_surface(sirnd_2_int X&, sirnd_2_int Y&,
simd_2_int Z&, int Num, simd_2_int *D[],
simd_2_intk F, simd_2gCsWrFlcL_bool_arrk R,
GREYTYPE min, GREYTYPE max, simd_21L_int_arrk r)

{

simd_2gCsWrFlcL_mach •m = R.m_2gCsWrFlcL();
simd_2gCsWrFlcL_int x(m,GREYLEN), y(m,GREYLEN), z(m,GREYLEN);
simd_2_int DX(m, GREYLEN), DY(m, GREYLEN);
simd_2_int pChange(m, 32);
simd_2_int Energy(m, 32), MinEnergy(m, 32);
simd_2gCsWrFlcL_bool tmp(m);
int Iteration;
int Change;
int SecondPass = Num;

if (Num == 0) RadiusRidge(min, max, r, R);
fflush(stdout);
I• Flag indicates this point or a neighbor point has moved
* in previous iteration, so this point should be considered
* in this iteration. After a point and its neighbors stop,
* it stays stopped. Set for self and neighbors if move.
* This improves efficiency in original sequential program,
*but is probably not needed in parallel versions. *I

F = 1;
Iteration = 0;
ZeroFlag = FALSE;
I* Each iteration: for each pixel, check to see if its or
* its neighbors' location is better place. During 1st pass,
* just move to higher radius number until hit a ridge.
* 2nd pass: try to balance seeking high radius vs. keeping
* local continuity. *I

while (Iteration < Maxiteration) {
Change = 0;
pChange = 0;
Iteration++;
index = 0;
DX = DY = 0;
X = X;
y = Y;
z = Z;

Figure 6.16: surface.C -Intensity Axis of Symmetry Program (part 7)

}

102 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

}

I* Check energy at own and neighbor,s location; it any
* neighbor is better~ remember its direction and move
* in that direction. *I

IF (tmp.fetch(R, z, simd_label_2(x,y).pe_number()) == 0)

I* Check my energy at my location *I
MinEnergy = SurfEnergy(x,y,O,D,F,SecondPass, m);
Energy= SurtEnergy(x+1,y,1,D,F,SecondPass, m);
I• Now check my energy at all 8 neighboring locations. *I
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= 1; DY= 0;} ENDIF;
Energy= SurfEnergJ(x-1,y,2,D,F~SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= -1; DY= 0;} ENDIF;
Energy= SurfEnergy(x,y+1,3,D,F,SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= 0; DY= 1;} ENDIF;
Energy= SurfEnergy(xpy-1~4,D,F,SecondPass~ rn);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= 0; DY= -1;} ENDIF;
Energy= SurfEnergy(x+1,y+1,5,D,F,SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= 1; DY= 1;} ENDIF;
Energy= SurfEnergy(x-1,y+1,6»DJF,SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= -1; DY= 1;} ENDIF;
Energy= SurfEnergy(x-1,y-1,7,D,F,SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= -1; DY= -1;} ENDIF;
Energy= SurfEnergy(x+1,y-1,8,D,F,SecondPass, m);
IF (Energy < MinEnergy)

{MinEnergy = Energy; DX= 1; DY= -1;} ENDIF;
} ENDIF;
I* Move to better neighbor. •I
IF ((DX != 0) I I (DY != 0)) {

X += DX;
Y += DY;
F = 1;
pChange++;

} ELSE { F = 0; } ENDIF;

ZeroFlag = TRUE;

simd_int abs(const simd_intk val)
{ simd_int tmp=val;

IF (tmp < 0) tmp = -tmp; ENDIF; return(tmp);
}

Figure 6.17: surface.C- Intensity Axis of Symmetry Program (part 8)

6.3. PERFORMANCE 103

may be sun2, sun3, sun4, vax, or pxpl4gp (for the PxP14 Graphics Processor front-end).
Also, include this compiler option: -I${PORTA_SIMD}/include. For example, the following
command compiles the file prog. c for execution on a Connection Machine with a Sun-4
host. It uses the GNU C++ compiler, "g++".

g++ -I${PORTA_SIMD}/include -Dcm -Dsun4 -c prog.c

When linking the object files to generate an executable, specify linkage with a Porta­
SIMD library using the -1 option. Use library simd_ARCHID, where ARCHID is an architecture
identifier. If the null architecture identifier is used, containing no optional features, omit
the underscore and simply use library simd. Include this option in the link command:
-L${PORTA_SIMD}/lib/ simd.hw/hosLhw/ compiler ..:name. Here, simd.hw and host..hw are
the symbols defined with -D in the compile command discussed in the preceding paragraph,
and compiler _name names the C++ compiler being used. These symbols are needed only to
manage the various platforms supported. If only one version of Porta-SIMD were installed,
and it were installed in a standard system library directory, this -L link command option
would not be needed at all. The implementation for a particular SIMD machine may require
additional options on the link command, or even a special set of linkage commands. For
example, linking for the CM-2 requires the options -lparis and -lm, and linking for PxP14
requires two special commands. The commands below link prog. o, creating an executable
program prog which runs on a Connection Machine with a Sun-4 host. The program has a
target architecture identifier of 2aCG.

setenv LIBDIR ${PORTA_SIMD}/lib/cm/sun4
CC -L${LIBDIR} -o prog prog.o -lsimd_2aCG -lparis -lm

6.2.7 Portability of Implementation

As already discussed in section 6.2.2, the prototype implementation of Porta-SIMD has been
structured and written to maintain a clearly defined interface between machine-independent
and machine-dependent parts of the program. All machine-dependent code is in the imple­
mentations of the virtual machine classes and certain memory management classes. In
practice, even most of the code in these machine-dependent classes is shared by all ver­
sions. The first port to the CM-2, mentioned in section 6.2.1, took only five days, including
the time required to learn Paris. The implementation has grown substantially since then,
so there is more code to port, but it remains highly portable. Comparable figures are not
available for the other ports, because they were done incrementally while other development
work proceeded in parallel.

I estimate that porting Porta-SIMD to a new SIMD architecture requires writing a code
fragment within the body of about 75 class methods. At least 50 of these code fragments
require no more than five lines of code each in the existing ports. In existing ports, a handful
of the fragments take 30-60 lines, and the remainder between five and 30 lines.

The use of C++ has contributed substantially to implementation portability. The AT&T
and GNU C++ compilers are both highly portable and have both been widely ported.

The unique portability of Porta-SIMD's implementation is an attraction to the BLITZEN
team, a member of which is considering porting it to the BLITZEN prototype.

6.3 Performance

This section evaluates from four perspectives the performance of potential and actual im­
plementations of optimally portable languages. The first issue is how well some real SIMD

104 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

architectures implement their equivalent architectures as defined by the taxonomy of chap­
ter 3. Another way of stating this is, "what are some typical constants in some actual
constant-operation simulations of equivalent architectures?" The second issue concerns the
efficiency a high-quality compiler for an optimally portable language can be expected to
achieve. In particular, can an optimally portable language be implemented as efficiently as
existing high-level SIMD languages?

The final two issues study the efficiency of the prototype Porta-SIMD implementation.
One examines the overhead in parallel operations and memory use. The other compares
overall execution times of Porta-SIMD programs with versions of the same programs written
in languages native to the SIMD machine.

6.3.1 Constant-Bounded Simulation

Chapter 3 presents a SIMD taxonomy and uses it to classify some SIMD architectures. It
is reasonable to ask what constant values are involved in each real architecture's constant­
bounded simulation of the architecture it is classified as having. Remember that a com­
puter's architecture is defined as its lowest level publicly documented programming interface.
In the vast majority of cases, across both operations and architectures, the constant is very
small (1-5).

For example, most architectures provide almost all the arithmetic and logical operations
of C++'s operators as single operations. Of course, there are a few exceptions: on some
architectures, the constant for shift operators is the word length; on Pixel-Planes, multiply
and divide require two or three times the operand length, and floating point operations
require that or a little more; on the Oldfield machine, virtually all operations are laborious.
Enable management for flow control takes one or two operations for most architectures, and
rarely over four or five.

Communication operations which are supported directly by native operations can in al­
most every case be performed in one or two operations. The constant involved in constant­
bounded simulation of other communication operations equivalent to the native operations
depends on the operations involved. Simulating wrap-around communication with plain
adjacent communication, by folding the machine in each dimension, usually requires four
or six adjacent communication operations and four condition tests. Simulating diagonal
communication takes one adjacent communication operation for each dimension. Simulat­
ing locally controlled adjacent communication where there is a fixed number of neighbors
usually requires one IF and one send() operation per neighbor. Simulating combining in
this case usually takes one additional operation per neighbor. Section 3.3 shows for each
architecture which operations are supported by the native architecture and which are pro­
vided by constant-bounded simulation. The former are named in the architecture's most
natural classification, (the first classification shown in each subsection of section 3.3); the
latter are named in the canonical classification (shown second).

A separate issue is the execution time required by each real SIMD computer to execute
the operations in its architecture (as defined by its lowest level publicly documented inter­
face). This varies very widely. Bit-serial PEs typically require one to three clock cycles per
bit for most operations. Multiplication, division, and floating point operations typically use
clock cycles proportional to the square of the number of bits. Simple adjacent communica­
tion usually takes about the same number of clock cycles as an integer add, but on the CM-2
it takes several times longer [Thinking M89]. The time required for local addressing varies
widely: BLITZEN does limited local addressing at comparable speed to global addressing;
the MP-1 does unlimited local addressing in two or three times the time required for global
addressing; and the CM-2 takes different times for limited and unlimited local addressing.
Reduce and scan operations take time proportional to the logarithm of the number of pro-

6.3. PERFORMANCE 105

cessors on all the machines classified which provide them. The time required for global
communication varies significantly with the particular communication pattern, the collision
resolution mechanism, and the number of PEs.

6.3.2 Achievable Efficiency

A compiler for an optimally portable SIMD language should be able to produce code which
executes just as efficiently as that produced by compilers for other high-level SIMD lan­
guages which provide equivalent features but are not optimally portable. The semantic
analysis phase of a compiler for an optimally portable language can parse all declarations
of architectural assumptions, verify that they are met, and remove them. This means the
compiler's code generation phase receives essentially the same input as if the language were
not optimally portable, and therefore should generate equally efficient code.

Alternatively, the compiler for the optimally portable language could use the compiler
for the other language as a code generator. I.e., after parsing the program and verifying
that it is consistent with its declared target architecture, the compiler could translate the
program to the other language for compilation by the other compiler. Since the languages
provide equivalent features, this should not be difficult in most cases. It should certainly
provide programs written in the optimally portable language the same execution efficiency
as if they had been written in the other language.

The following analysis of what is required for a language to be optimally portable sup­
ports the claim that a compiler for an optimally portable language should be able to gener­
ate code which executes as efficiently as that produced by a compiler for any other SIMD
language providing equivalent features. Consider the three requirements of an optimally
portable language, defined in chapter 2 and discussed in sections 5.1 and 6.1, and their ef­
fects on execution efficiency of compiled programs. The first and third requirements are that
a target architecture be specified by the program, and that this specification be enforced by
the compiler. The architecture specification is of course parsed and used by the semantic
analysis phase of the compiler, and need not be passed to the compiler's code generator.
The semantic analysis phase can also do the enforcement, using methods very similar to
the type checking this phase already performs. The target architecture specification and
enforcement requirements can therefore be satisfied without affecting at all the compiler's
code generator or the execution performance of generated code.

Even the prototype Porta.-SIMD implementation does most enforcement of target ar­
chitecture declarations at compile time. Doing it all at compile time would be assisted by
modifying the Porta.-SIMD language slightly, so virtual machines would not have architec­
ture identifiers. This would not sacrifice optimal portability, because all parallel variables
would still have architecture identifiers. Requiring virtual machines to have them also is
redundant. In any language where some of the architecture specification must be enforced
at run time, this checking could be omitted at the user's request (as C and other languages
often omit array bounds, overflow, and similar run time checks) to eliminate any effect on
execution efficiency.

The remaining requirement is to provide language features for all architectural features
supported by the computer's architecture. There are three classes of such language features.

• There are features also provided by the other language. These can be implemented
identically, providing identical performance in their execution.

• There are features not provided by the other language, but which are special cases of
features provided by the other language. For example, C* provides global communi­
cation but not grid communication. 1 Such features may either be implemented the

1There is a set oflllACl'os which provides grid communication, but it uses an escape to C/Paris and is not

106 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

same way as the more general case provided by the other language, or in a more effi­
cient way taking advantage of the known special case nature of the feature. In neither
case does the optimally portable language implementation need to be less efficient
than the other language implementation, in which the programmer would be forced
to use the more general feature.

• There are features supported by the architecture but not provided by the other lan­
guage. The other language therefore forces the programmer to code a simulation of the
feature. The optimally portable language implementation should be able to generate
code which is at least as efficient as that programmed simulation.

So none of the. language feature differences required for optimal portability detracts from the
execution efficiency of code generated by the compiler for the optimally portable language.

6.3.3 Parallel Overhead in Porta-SIMD Prototype

The use of C++ #include files and libraries to implement Porta.-SIMD places some signif­
icant limits on the implementation's efficiency. All parallel operations and data allocations
(including temporary variables) are implemented by methods in a library of classes. The
C++ compiler does not make any assumptions about what these methods do, and gener­
ates code to call them in a fixed and naive sequence for each SIMD expression. It does
none of its usual optimizations on parallel expressions. So the operations and data elements
which a compiler could save by register allocation, common sub-expression elimination,
loop-invariant code movement, strength reduction, and induction variable and array index
simplifications are not saved for parallel code.

The prototype Porta.-SIMD implementation therefore has many characteristics of a
threaded interpreter. There is no interpretive loop or repeated reparsing like an ordinary
interpreter would have. But there is also no overall knowledge of eXPressions and program
structure used in the execution. The program is simply compiled into a series of calls to
the routines which interpret each operation. Therefore, most C++ operators with parallel
operands produce a temporary result; if this result is assigned into a parallel variable, the
assignment copies the temporary result. The only C++ operators which do not produce
temporary results for parallel operands are++,--, and the assignment operators (e.g., =,
+=). Consider this example.

simd_int a, b, e;
a = b + e;

Porta-SIMD uses one temporary simd_int, one "add'' operation, and one "copy" operation.
Only the "add" would be needed if Porta-SIMD were implemented with a compiler.

In more complicated expressions where a compiler would reuse temporary variables,
C++ creates a new one wherever one is needed.

simd_int a, b, c, d, e;
a = b + c + d + e;

Here, Porta-SIMD creates three distinct temporary variables, one for each operator invo­
cation, when none are really needed. In fact, the situation is actually a little worse than
that. For each of these temporary variables, the operator method that performs the addition
creates an additional variable to hold the result, copies the result to the original temporary
variable, and deletes the additional variable. These extra temporaries do not overlap in

part of the language itself. Even this package does not provide diagonal adjacent communication or piped
adjacent communication with copy.

6.3. PERFORMANCE 107

time, so they only add one variable to the memory consumed by the program, but they do
add overhead for their allocation and freeing and for the extra copy.

Some of these temporary variables can be saved, if certain class operator methods are
rewritten to mark the values they create as temporaries, and if these and other operator
methods free a temporary parallel variable when they use its value. This would decrease
maximum memory use, which would help programs that would otherwise run out of memory.
It would not decrease parallel execution overhead, although one approach to doing that
would be to avoid the final copy by using the temporary for the real variable and freeing
the storage used by the real value instead of the temporary. But the sequential operations
needed to do this correctly might easily take more time than they saved.

6.3.4 Overall Performance of Porta-SIMD Prototype

A limited amount of measurement has been performed to quantify the performance of Porta­
SIMD programs with the prototype Porta-SIMD implementation. The method used is
to compare comparable programs written in Porta-SIMD and another SIMD language. A
program in another language is defined to be comparable to a Porta-SIMD program if it (a)
uses the same algorithm, and (b) uses C or C++ (or something very similar) to express
all sequential computations. It may use any available tool to express SIMD computations.
Performance is stated as the ratio of the performance of a Porta-SIMD program and a
comparable non-Porta-SIMD program.

The goal is to measure the performance of the Porta-SIMD implementation, not that of
the algorithm or the C++ compiler. These must remain constant.

Measuring the overall performance of comparable programs gives a very complete per­
formance measure, which includes sequential overhead in the Porta-SIMD implementation.
However, it is imprecise because the definition of "comparable program" is necessarily im­
precise. The definition was chosen to factor out (as much as possible) the performance of
the C++ (or C) compiler used and the program's algorithm. Still, differences in program­
mer skill, time, and goals may yield programs with different performance in any language.
Even if the same programmer writes both programs, has the same goals, and uses the same
amount of time, the programmer's skill may still vary: he may be more familiar with one
language than the other, or may be more familiar with the algorithm the second time he
writes the program. In addition, lower-level tools than Porta-SIMD may yield superior
performance at the expense of taking more programmer time.

The most reliable measurement, if least favorable for Porta-SIMD, may be to take stable
production programs written without Porta-SIMD and rewrite them using Porta-SIMD. This
assumes that such a program achieves approximately the best performance achievable, and
that comparing it to a comparable Porta-SIMD program will therefore give a conservative
estimate of Porta-SIMD's performance.

Greg Turk did exactly this with his Julia set program. It was a C program for PxP14,
with the parallel parts written with PxP14's C-callable assembly-level "FB macros". It was
hand-tuned for both speed and memory consumption. He measured its performance at 1500
iterations per second. There was sufficient memory to use 15-bit fixed point integers in the
computation.

He translated the algorithm to Porta-SIMD, a significantly higher-level language. It was
his first Porta-SIMD program, so he was less familiar with Porta-SIMD than with PxP14's
"FB macros". He measured the performance of the Porta-SIMD program on PxPI4 at 150
iterations per second, one tenth the speed of the comparable native PxPI4 program. There
was sufficient memory to use only 10-bit fixed point integers. This means that despite
some care in his coding, temporary values allocated by the prototype implementation of
Porta-SIMD increased his program's memory use by about 50%.

108 CHAPTER 6. IMPLEMENTING AN OPTIMALLY PORTABLE LANGUAGE

Chapter 7

Recommendations

In the course of the research reported in this dissertation, I have developed some insights
and opinions which are worth recording but which cannot necessarily be demonstrated or
substantiated as correct. This chapter presents some of these insights and opinions in the
form of recommendations for future work in various areas.

7.1 Prototype Porta-SIMD Implementation

The present implementation of Porta,.SIMD has served primarily· as a vehicle for language
prototyping and exploration. It can continue to serve as a research tool in this role, particu­
larly to explore greater use of operator syntax to express communication and local addressing
as discussed in section 5.5. The prototype can also be extended to support floating-point
data types and some additional architectural features. This will enhance its overall usability,
which by attracting more users will make it a more valuable research tooL

It would be useful and straightforward to port Porta,.SIMD to the MP-1, though the
designs of MPL and the current Porta,.SIMD implementation would necessitate some addi­
tional overhead not present in the other ports. The overhead is because parallel operations
on the MP-1 can only be expr,essed in MPL, and the C++ translator can output only pure
C. As a result, each C++ method in the Porta,.SIMD implementation that normally does
a parallel operation will instead call an MPL subroutine to do the operation for it. But I
do not think this function call and return overhead per operation will detract significantly
from the value of an MP-1 version of Porta,.SIMD.

While Porta-SIMD has been and can continue to be a useful research tool, the current
prototype implementation cannot be more than that. C++ #include files and libraries were
the right tools for early and rapid language prototyping, but they are too limited to fully
implement an optimally portable language. Only a compiler can implement all of Porta­
SIMD's language features and architecture identifiers. And only a compiler can provide
performance comparable to other compiled SIMD languages.

7.2 Porta-SIMD Language Design

Porta,.SIMD meets its design goal, which was to demonstrate the design of an optimally
portable SIMD language without sacrificing power or flexibility in other aspects of the lan­
guage. As discussed in section 5.5, though, there are several important ways in which
Porta-SIMD can be improved. While I think Porta-SIMD's design contributes some signifi­
cant ideas to the field of SIMD language design, it is not yet mature enough to be the basis
for a commercial compiler.

109

110 CHAPTER 7. RECOMMENDATIONS

Porta-SIMD's design was influenced significantly by the tools being used to implement
it. Those tools are not ·appropriate for a commercial or production quality implementation,
so it is appropriate to reappraise the design decisions to which they contributed. That is
the subject of the next section.

7.3 Improved Language Design

Deciding to develop a compiler to implement an optimally portable language would open
up new design alternatives I did not explore fully in designing Porta-SIMD. The next few
paragraphs discuss issues in optimally portable SIMD language design which I think it would
be productive to explore further.

I would like to explore two ways of specifying target architectures that were not possible
to implement with C++ #include files and libraries. Prepending simd_ARCHID to each
basic data type name is far from ideal, so an obvious improvement is to make simd and the
architecture identifier separate data attributes. Many existing SIMD languages use such an
attribute to identify parallel data, so using another to identify its architectural assumptions
is a natural extension. Another promising option is the scope-based target architecture
specification described in section 5.1.1 on page 42. It is not yet clear which approach is
better.

I have not yet seen a really satisfactory way of expressing all forms of inter-PE commu­
nication in any SIMD language. C* attempts to use only operators, and has some excellent
ideas, but it provides no access to grid communication. MPL uses a combination of keywords
and operators to express basic communication operations, and uses library routines for the
rest. But some important variations are not available, including zero-edges instead of wrap
and local addressing during communication. (The wrap/no-wrap option could be expressed
by appending a character to the xnet keywords, which would be w or 0 to indicate wrap or
zero edges.) Porta-SIMD's method-only mechanism is clearly not ideal. I think there is still
room for improvement in this part of language design.

It is important to build on the best available sequential language. I strongly advocate
C++ over C as a base language. C++ is more complex and less mature than C, so this
may be difficult at first, but I believe that in the long run C++ will be a much better base
language. The relative advantages of C++ and Fortran are probably less important than
their different user populations, so there will be a need for both flavors of SIMD languages.
Fortran-8X, or at least its data-parallel features, has already been recognized as the best
Fortran base language.

It is important to support different sizes and shapes of SIMD variables, reflecting different
kinds and sources of application data. Providing multiple virtual machines is one way to do
this, but certainly not the only way.

Finally, compilers for SIMD languages need to do most of the same optimizations on par­
allel expressions and statements that they do on sequential code. There are opportunities for
new optimizations unique to SIMD languages [Tuck87], but applying existing optimizations
to parallel code is important and perhaps easier.

7.4 Host/PE-Array Interface

The interface between the host and the PE array needs some cooperative work involving
compiler writers and architects. Existing SIMD systems implement this interface with dif­
ferent combinations of three basic elements: the host itself, a user-programmable sequential
processor (the "controller"), and a microprogrammed sequencer (the "sequencer'').

7.4. HOST/PE-ARRAY INTERFACE 111

, The CM-2, MP-1 and Pixel-Planes systems show typical uses of these elements. On the
CM-2, user programs run on the host and send parallel operations to the sequencer; there is
no controller. User programs on the MP-1 can run on both the host and the controller, but
can only initiate parallel operations from the controller; there is no sequencer. Both PxP14
and PxPI5 have all three elements. User programs run on the host and controller, like the
MP-1, but the controller program sends instructions to the sequencer for parallel execution.

Using a controller can improve performance, but often makes programming less conve­
nient. It is awkward and time consuming for the programmer to separate parallel programs
into host and controller parts, as required on Pixel-Planes and when using MPL on the
MP-1. The controller generally lacks some libraries and system calls present on the host,
so parallel programs cannot necessarily run entirely on the controller. However, eliminating
the controller, as the CM-2 does, has its own disadvantages. The most important is that
existing hosts have insufficient bandwidth to the sequencer to keep it busy. The controller
is normally specially designed to have much tighter coupling to the sequencer or PE array.
Many programs also benefit from the host-controller division by overlapping execution of
sequential user-interface operations on the host with parallel computation initiated from the
controller, although this is at most a two-times speedup.

A sequencer implements more powerful primitive parallel operations than the bare PE
array. This allows the controller (or host) to send fewer operations, reducing the sequential
overhead of parallel operations and the bandwidth required to send them. The only reason
I can see not to have a sequencer is if the performance increase it produces does not justify
its hardware cost or design effort. PxPl5's sequencer is a single custom chip (including
microcode store), so the hardware cost need not be large.

Several directions seem promising for improving the overall host to PE-array interface.
One is developing smarter compilers capable of automatically dividing a program between
the host and controller, relieving the programmer of this burden. This work is already un­
der way at MasPar, where the MPF (MasPar Fortran) compiler generates code for both the
host and the controller from a single user program. Another is improving the interface from
the controller (or host) to the sequencer. The goal is to keep the sequencer (and therefore
PE array) busy with minimum overhead on the controller (or host). This might be accom­
plished with more efficient hardware interfaces, or with higher-level sequencer primitives.
The higher-level primitives could even be code fragments pulled from the program by the
compiler.

Another direction is improving the host architecture. Existing SIMD systems use off-the­
shelf UNIX-based systems as hosts. This has many advantages, including well-developed
systems and applications software, wide variety of peripheral devices, and user familiarity.
If a host-to-sequencer interface with adequate bandwidth and low host overhead could be
developed without sacrificing the benefits of a standard host, it could eliminate the need to
program the controller separately.

PxPI5 has multiple controllers and multiple sequencers, aud host machines are beginning
to have multiple processors. These can be powerful configurations, but there is a great deal
we do not know about how to use them.

One useful feature of optimally portable languages for SIMD architects is that compilers
for these languages should be able to collect very accurate statistics on the frequency of use
of each architectural feature. This will be useful data in evaluating different host to PE-array
interfaces to find configurations with the best performance and price/performance.

112 CHAPTER 7. RECOMMENDATIONS

Chapter 8

Conclusion

The extraordinary architectural diversity of SIMD computers is too important to algorithm
selection to completely hide from programmers. This dissertation presents optimal portabil­
ity, a new concept for managing this architectural diversity. Optimal portability provides
specific criteria for identifying the architectural features a programmer needs to see. It
lets the programmer specify for each program the proper tradeoff between achieving broad
portability and taking full advantage of a particular architecture. A new taxonomy is pre­
sented which facilitates the development of optimally portable languages. A new language,
Porta-SIMD, is presented. It shows that optimal portability is an achievable goal for SIMD
languages. A subset of Porta-SIMD has been implemented for the Connection Machine,
two generations of Pixel-Planes, and sequential machines. Although the rapid prototyp­
ing implementation method does not maximize performance, analysis shows that optimally
portable languages can be implemented as efficiently with respect to run time as existing
high-level SIMD languages.

An optimally portable language for a set of architectures requires each program to spec­
ify .its target architecture, i.e., its architectural assumptions and precise portability. An
optimally portable language allows each program to use all the language features that are
supported by the program's target architecture; but it does not allow the program to use any
language feature not supported by that target architecture. An optimally portable language
thereby lets the programmer judge the proper tradeoff between achieving broad portability
and taking full advantage of a particular architecture. Existing languages foreclose this
decision with predetermined architectural assumptions.

An optimally portable language requires an appropriate taxonomy of the set of architec­
tures over which it is optimally portable. I present a taxonomy which uses constant-bounded
simulation as its criterion for distinguishing architectures and their features. It is based on
a precise definition of equivalence, defined by the requirements of optimal portability. This
precise definition of equivalence brings to the surface more architectural dimensions than
previous taxonomies used. As a result, each classification contains more descriptors and
can be used to more nearly reconstruct the properties of the architecture it classifies than
is possible with other taxonomies.

A subset of Porta-SIMD has been implemented to demonstrate the power and feasibility
of optimally portable languages. This prototype implementation takes advantage of C++
classes and operator overloading to reduce the implementation effort. The prototype im­
plementation runs on Pixel-Planes 4, the Pixel-Planes 5 simulator, the Connection Machine
model 2, and sequential computers simulating SIMD architectures.

While this implementation method took good advantage of C++ to evolve a prototype
Porta-SIMD implementation with a manageable effort, the limitations of C++ prevent the
prototype from becoming a complete or highly efficient implementation. Any commercial-

113

114 CHAPTER 8. CONCLUSION

quality implementation of an an optimally portable language will require a real compiler.
This will allow improvements in the syntax and semantics of the language, and make it
possible to provide a complete and efficient implementation.

Although optimal portability has been applied here to SIMD architectures, it is poten­
tially applicable to any diverse but related class of architectures, e.g., graphics engines and
MIMD (Multiple-Instruction, Multiple-Data) architectures.

Appendix A

Note on Prototype Porta-SIMD #include Files

The appendix "Prototype Porta-SIMD #include Files" is too large to include in this tech­
nical report. It is included in the official dissertation, which is archived in the library of
Duke University.

Copies of the official dissertation, including the appendix, are available for purchase from
UMI Dissertation Services, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, USA; (800)
521-0600, (313) 761-4700.

115

116 APPENDIX A. NOTE ON PROTOTYPE PORTA-SIMD #include FILES

Bibliography

[Abuhamdeh88] Zahi Abuhamdeh. The GAM II pyramid. In Mills [Mills88], pages 443-
448.

[Active Mem87a] Active Memory Technology Limited, Irvine, CA. DAP 500: APAL Lan­
guage, 1987.

[Active Mem87b] Active Memory Technology Limited, Irvine, CA. DAP 500: Introduction
to FORTRAN-PLUS Programming, 1987.

[Active Mem88] Active Memory Technology, Inc., Irvine, CA. AMT DAP Series Techni­
cal OveT'Iliew, 1988.

[AlbertKnLS88] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr.
Compiling Fortran 8x array features for the Connection Machine com­
puter system. SIGPLAN Notices, 23(9):42-56, September 1988. (Pro­
ceedings of the ACM/SIGPLAN PPEALS 1988).

[BallBolJMS62] J. R. Ball, R. C. Bollinger, T. A. Jeeves, R. C. McReynolds, and D. H.
Shaffer. On the use of the SOLOMON computer parallel-processing com­
puter. In Proceedings of the Fall Joint Computer Conference, volume 22,
pages 137-146. AFIPS, December 1962.

[BeetemDenW85] John Beetem, Monty Denneau, and Don Weingarten. The GFll su­
percomputer. In IEEE Proceedings of the 12th Annual International
Symposium on Computer Architecture, pages 108-115, June 1985.

[BeetemDenW86] John Beetem, Monty Denneau, and Don Weingarten. GFll. Journal of
Statistical Physics, 43(5/6), June 1986.

[BlaauwBroo90] Gerrit A. Blaauw and Frederick P. Brooks, Jr. Computer Architecture,
volume 1. Addison-Wesley Publishing Company, Reading, MA, 1990. In
press.

[Blelloch87] Guy Blelloch. Scans as primitive parallel operations. In Sartaj K. Sahni,
editor, Proceedings of the 1987 International Conference on Parallel Pro­
cessing, pages 355-362, University Park, PA, August 1987. The Pennsyl­
vania State University Press.

[BlevinsDaR87] Donald W. Blevins, Edward W. Davis, and John H. Reif. Processing el­
ement and custom chip architecture for the BLITZEN massively parallel
processor. Technical Report TR87-22, Microelectronics Center of North
Carolina, October 1987. Revised Edition, June 1988.

117

118 BIBLIOGRAPHY

[BlevinsDHR90] Donald W. Blevins, Edward W. Davis, Robert A. Heaton, and John H.
Reif. BLITZEN: A highly integrated massively parallel machine. Jour­
nal of Parallel and Distributed Computing, 8(2):150-160, February 90.
Originally published in [Mills88, pp. 399-406].

[ChinPasBTK88] D. Chin, J. Passe, F. Bernard, H. Taylor, and S. Knight. The Princeton
Engine: A real-time video system simulator. ICCE, May 1988.

[Collins90] Robert Collins. CM++ Manual, Release 2.02. Department of Computer
Science, University of California Los Angeles, April 1990. Available by
anonymous ftp from polaris.cognet.ucla.edu, in cm++-2.03.tar.Z.

[Dasgupta89] Subrata Dasgupta. Computer Architecture: A Modern Synthesis, vol­
ume 1. John Wiley & Sons, New York, 1989.

[DavisReif88] Edward W. Davis and John H. Reif. Architecture and operation of the
BLITZEN processing element. In Third International Conference on
Supercomputing, Vol. 3, pages 128-137. International Supercomputing
Institute, Inc., 1988.

[Duff83] M. J. B. Duff, editor. Computing Structures for Image Processing. Aca­
demic Press, Inc., Orlando, FL 32887, 1983.

[EylesAuFGP87] John Eyles, John Austin, Henry Fuchs, Trey Greer, and John Poulton.
Pixel-Planes 4: A summary. In Proceedings of £urographies '87 Second
Workshop on Graphics Hardware, 1987.

[Feng77] T. Y. Feng. Parallel processors and processing. ACM Computing Surveys,
9(1), March 1977.

[Flynn66] Michael J. Flynn. Very high speed computing systems. Proceedings of
the IEEE, 54(12):1901-1909, December 1966.

[Fountain83] T. J. Fountain. A survey of bit-serial array processor circuits. In Duff
[Duff83], chapter 1, pages 1-14.

[FuchsGHSA +85] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, Jr., John G. Eyles, and John Poulton. Fast
spheres, shadows, textures, transparencies, and image enhancements in
Pixel-Planes. Computer Graphics, 19(3):111-120, July 1985. (Proceed­
ings of SIGGRAPH '85).

[FuchsPEGG+89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Is­
rael. Pixel-Planes 5: A heterogeneous multiprocessor graphics system
using processor-enhanced memories. Computer Graphics, 23(3):79-88,
July 1989. (Proceedings of SIGGRAPH '89).

[FuchsPoult81] Henry Fuchs and John Poulton. Pixel-Planes: a VLSI-oriented design
for a raster graphics engine. VLSI Design, 2(3):20-28, 1981.

[GauchPizer88] John M. Gauch and Stephen M. Pizer. Image description via the mul­
tiresolution intensity axis of symmetry. Technical Report TR88-046,
University of North Carolina at Chapel Hill, Department of Computer
Science, September 1988. Also published in ICCV '88 Proceedings.

BIBLIOGRAPHY 119

[Gerritsen83] F. A. Gerritsen. A comparison of the CLIP4, DAP, and MPP processor­
array implementations. In Duff [Duff83], chapter 2, pages 15-30.

[Goodyear A83a] Goodyear Aerospace Corp. MPP Main Control Language - MCL, GER-
16672, April1983.

[Goodyear A83b] Goodyear Aerospace Corp. MPP PE Array Language - PRL, GER-
16655, March 1983.

[GreerEyles88] Trey Greer and John Eyles. Pixel-Planes 4 Programmer's Intro, 1988.

[HametDorba88] L. Hamet and J. Dorband. A generic fine-grained parallel C. In Mills
[Mills88], pages 625-628.

[Handler77] W. Handler. The impact of classification schemes on computer archi­
tecture. In Proceedings of the 1977 International Conference on Parallel
Processing, 1977.

[HarbisonSt84] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

[Hillis85] W. Daniel Hillis. The Connection Machine. MIT Press Series in Artificial
Intelligence. The MIT Press, Cambridge, MA, 1985.

[Hord82] R. Michael Hord. The Illiac IV: The First Supercomputer. Computer
Science Press, Inc., Rockville, MD, 1982.

[HwangBrigg84] Kai Hwang and Faye A. Briggs. Computer Architecture and Parallel
Processing. McGraw-Hill Book Company, New York, 1984.

[IIiffe82] J. K. Iliffe. Advanced Computer Design. Prentice/Hall International,
London, 1982.

[Jarnieson87] Leah H. Jamieson. Features of parallel algorithms. In Second Interna­
tional Conference on Supercomputing, Vol. 1, pages 476-478. Interna­
tional Supercomputing Institute, Inc., 1987.

[Karp87] Alan H. Karp. Programming for parallelism. Computer, 20(5):43-56,
May 1987.

[KernighanR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan­
guage. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978.

[Kohonen80] Teuvo Kohonen. Content Addressable Memories. Springer-Verlag, Berlin,
1980.

[KrikelisLe88a] A. Krikelis and R. M. Lea. An associative approach to computer vi­
sion. In Levialdi [Levialdi88], pages 75-95. Proceedings of the Eighth
Workshop on Multicomputers, held in Rome, Italy on June 2-5, 1987.

[KrikelisLe88b] A. Krikelis and R. M. Lea. Low-level vision tasks using parallel string
architectures. In Parallel Processing for Computer Vision and Display,
January 1988.

[KrikelisLe88c] A. Krikelis and R. M. Lea. Performance of the ASP on the DARPA
architecture benchmark. In Mills [Mills88], pages 483-486.

120

[Lea86a]

[Lea86b]

[Lea88]

[Levialdi88]

[Liebrick79]

[Lippman89]

[MarescaLi88]

[MarescaLi89]

BIBLIOGRAPHY

R. M Lea. SCAPE: A single-chip array processing element for signal and
image processing. lEE Proceedings, 133, part E(3):145-151, May 1986.

R. M Lea. VLSI and WSI associative string processor for structured data
processing. lEE Proceedings, 133, part E(3):153-162, May 1986.

R. M Lea. ASP: A cost-effective parallel microcomputer. IEEE Micro,
8(5):10-27, October 1988.

S. Levialdi, editor. Multicomputer Vision. Academic Press, Inc., San
Diego, CA 92101, 1988. Proceedings of the Eighth Workshop on Multi­
computers, held in Rome, Italy on June 2-5, 1987.

J. P. Lie brick. Burroughs super-computer scheduled for Japan. Bur­
roughs B Line, page 1, 1979. Spring Edition.

Stanley B. Lippman. C++ Primer. Addison-Wesley Publishing Com­
pany, Reading, MA, 1989.

Massimo Maresca and Hungwen Li. Toward connection autonomy of fine
grain SIMD parallel architecture. In Parallel Processing for Computer
Vision and Display, January 1988.

Massimo Maresca and Hungwen Li. Connection autonomy in SIMD
computers: A VLSI implementation. Journal of Parallel and Distributed
Computing, 7(2):302-320, October 1989.

[MasPar Com90a] MasPar Computer Corporation. MasPar Parallel Application Language
(MPL} Reference Manual, 1990.

[MasPar Com90b] MasPar Computer Corporation. MasPar Parallel Application Language
(MPL) User Guide, 1990.

[Massachuse84] Massachusetts Computer Associates, Inc. A FORTRAN Compiler for
the Massively Parallel Processor, February 1984. CADD-8402-2101.

[MiddletonT89] David Middleton and Sherry Tomboulian. Evaluating local indirect ad­
dressing in SIMD processors. ICASE Report 89-30, Institute for Com­
puter Applications in Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, VA 23665-5225, May 1989.

[MillerStou88a] Russ Miller and Quentin R. Stout. An introduction to the portable
parallel programming language Seymour. In Proceedings of the IEEE
Computer Society's Thirteenth Annual International Computer Software
and Applications Conference, 1988.

[MillerStou88b] Russ Miller and Quentin R. Stout. Portable parallel algorithms for geo­
metric problems. In Mills [Mills88], pages 195-198.

[Mills88] Ronnie Mills, editor. Proceedings of the 2nd Symposium on the Frontiers
of Massively Parallel Computation (Frontiers '88), Washington, DC, Oc­
tober 1988. Computer Society of the IEEE, NASA/Goddard Space Flight
Center, IEEE National Capital Area Council, and George Mason Uni­
versity, IEEE Computer Society Press.

BIBLIOGRAPHY 121

[NASA/Godda85a] MPP Main Control Language - MCL, September 1985. Revised March
1986. Prepared for NASA/Goddard Space Flight Center (Greenbelt, MD
20771) by Science Applications Research (Lanham, MD 20706). Based
on [Goodyear A83a].

(NASA/Godda85b] MPP PE Array Language - Pearl, September 1985. Prepared for
NASA/Goddard Space Flight Center (Greenbelt, MD 20771) by Sci­
ence Applications Research (Lanham, MD 20706), under Contract NAS
5-28200, Task Assignment 177. Based on [Goodyear A83b].

[Odonnell88] John T. O'Donnell. MPP implementation of abstract data parallel ar­
chitectures for declarative programming langnages. In Mills [Mills88],
pages 629-636.

[OldfielWWB88] J. V. Oldfield, R. D. Williams, N. E. Wiseman, and M. R. Brule. Content­
addressable memories for quadtree-based images. In Proceedings of Eu­
rographics '88 Third Workshop on Graphics Hardware, 1988.

[ParkinsoHM88] D. Parkinson, D. J. Hunt, and K. S. MacQueen. The AMT DAP 500. In
Spring COMPCON 88: digest of papers, pages 196-199. The Computer
Society of the IEEE, IEEE Computer Society Press, February 1988.

[Perrott75] R. H. Perrott. A language for array and vector processors. ACM Trans­
actions on Programming Languages and Systems, 1(2):177-195, October
1975.

[Potter85] J. L. Potter, editor. The Massively Parallel Processor. MIT Press Series
in Scientific Computation. The MIT Press, Cambridge, MA, 1985.

[PreparataV81] Franco P. Preparata and Jean Vuillemin. The Cube-Connected Cycles:
a versatile network for parallel computation. Communications of the
ACM, 24(5):300-309, May 1981.

[RiceSeidmW88] M.D. Rice, S. B. Seidman, and P. Y. Wang. A formal model for SIMD
computation. In Mills [Mills88], pages 601-607.

[RiceSeidmW90] Michael D. Rice, Stephen B. Seidman, and PearlY. Wang. The speci­
fication of data parallel algorithms. Journal of Parallel and Distributed
Computing, 8(2):191-195, February 90.

[RosenberBH88] Jonathan B. Rosenberg, Jonathan D. Becher, and Nigel F. Hooke. Vec­
torization enables full-scale simulation of massively parallel (SIMD) ar­
chitectures. In Third International Conference on Supercomputing, Vol.
3, pages 305-312. International Supercomputing Institute, Inc., 1988.

[RosenbergD88] Jonathan B. Rosenberg and Edward W. Davis. BLITZ: Blitzen's p­
code assembly langnage, design document, version 1.0. Technical Report
TR88-14, Microelectronics Center of North Carolina, March 1988.

[RoseSteele87] John R. Rose and Guy L. Steele Jr. C*: An extended C language for data
parallel programming. Technical Report PL87-5, Thinking Machines
Corporation, April 1987.

[Sabot87] Gary W. Sabot. The paralation model as a basis for parallel programming
langnages. Technical Report PL87-3, Thinking Machines Corporation,
April1987.

122 BIBLIOGRAPHY

[Sabot88a] Grucy W. Sabot. Paralation Lisp reference manual. Technical Report
PL87-ll, Thinking Machines Corporation, May 1988.

[Sabot88b] Grucy W. Sabot. The Paralation Model: Architecture-Independent Par­
allel Programming. The MIT Press, Cambridge, MA, 1988.

[SchaefeHBV87] D. H. Schaefer, P. Ho, J. Boyd, and C. Vallehos. The GAM pyramid. In
Leonrucd Uhr, editor, Parallel Computer Vision, pages 15-42. Academic
Press, Inc., Orlando, FL 32887, 1987.

[Schaefer90] David H. Schaefer. Special issue on massively parallel computation:
Guest editor's introduction. Journal of Parallel and Distributed Com­
puting, 8(2):101, February 90.

[Siegel85] Howard Jay Siegel, editor. Interconnection Networks for Large-Scale
Parallel Processing. Lexington Books, Lexington, MA, 1985.

[SlotnickBM62] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The
SOLOMON computer. In Proceedings of the Fall Joint Computer Con­
ference, volume 22, pages 97-107. AFIPS, December 1962.

[Snyder88] Lawrence Snyder. A taxonomy of synchronous parallel machines. In
Faye A. Briggs, editor, Proceedings of the 1988 International Conference
on Parallel Processing, volume 1 Architecture, pages 281-285, University
Park, PA, August 1988. The Pennsylvania State University Press.

[SteeleHill86] Guy L. Steele Jr. and W. Daniel Hillis. Connection machine lisp: Fine­
grained prucallel symbolic processing. Technical Report 86.16, Thinking
Machines Corporation, May 1986.

[Stroustrup86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, Reading, MA, 1986.

[Stroustrup89] Bjarne Stroustrup. AT&T C++ Language System Product Reference
Manual, May 1989. Select Code 307-146,

[Taylor88] Herb Taylor, 1988. Personal communication.

[Technical87] Technical Committee :X:3J3-Fortran, Accredited Standrucds Committee
X3--Information Processing Systems. X3.9-198x: Draft Proposed Revised
American National Standard Programming Language Fortran {Version
104). American National Standards Institute, April1987.

[Thinking M87a] Thinking Machines Corporation, Cambridge, MA. Connection Machine
Parallel Instruction Set (Paris): The C Interface {Version 4.0), 1987.

[Thinking M87b] Connection Machine model CM-2 technical summary. Technical Report
HA87-4, Thinking Machines Corporation, April 1987. Revised version
5.1, May 1989.

[Thinking M88] Thinking Machines Corporation, Cambridge, MA. Supplement to *Lisp
Reference Manual, June 1988. Version 5.0A Field Test.

[Thinking M89] Thinking Machines Corporation, Cambridge, MA. Paris Reference Man­
ual, Version 5.2, October 1989.

BIBLIOGRAPHY 123

[TombouliMW85] Sherry J. Tomboulian, Mary Mace, and Robert A. Wagner. Language
report and description for BVL-0. Unpublished paper, April1985.

[Tuck85]

[Tuck87]

[Tuck88]

[Tuck89]

[UNC MSL88]

[Unger 58]

[Wagner81]

[Wagner83]

[Wilson88]

[Wirbel89]

[WuFeng84]

Russ Tuck. BVL-0: A language for SIMD computing. Unpublished
paper, October-1985.

Russ Tuck. Issues in the design of an optimizing code generator for
BVL-0. Master's thesis, Duke University, Durham, NC, 1987.

Russ Tuck. An optimally portable SIMD programming language. In
Mills [Mills88], pages 617-624. Also available as University of North
Carolina at Chapel Hill, Department of Computer Science, Technical
Report TR88-048.

Russ Tuck. Porta.-SIMD user's manual. Technical Report TR89-006,
University of North Carolina at Chapel Hill, Department of Computer
Science, January 1989. Revised March 1989.

Microelectronic Systems Laboratory, Department of Computer Science,
University of North Carolina at Chapel Hill. Pixel-Planes 5 System Doc­
umentation, 1988.

S. H. Unger. A computer oriented toward spatial problems. Proceedings
of the IRE, 46(10):1744-1750, October 1958.

Robert A. Wagner. A programmer's view of the Boolean Vector Machine,
model-2. Technical Report CS-1981-8, Department of Computer Science,
Duke University, Durham, NC 27706, October 1981.

Robert A. Wagner. The Boolean Vector Machine (BVM). In IEEE 1983
Conference Proceedings of the 1Oth Annual International Symposium on
Computer Architecture, pages 59-66, 1983.

StephenS. Wilson. One dimensional SIMD architectures-the AIS-5000.
In Levialdi [Levialdi88], pages 131-149. Proceedings of the Eighth Work­
shop on Multicomputers, held in Rome, Italy on June 2-5, 1987.

Loring Wirbel. IBM's parallel efforts. Electronic Engineering Times,
page 32, May 15, 1989.

Chuan-lin Wu and Tse-yun Feng, editors. Tutorial: Interconnection Net­
works for Parallel and Distributed Processing. IEEE Computer Society
Press, Silver Spring, MD 20910, 1984.

