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Random Sequences in Generalized Cantor Sets 

John H. Halton 1 
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This article presents a fast algorithm for generating random points in the finitely 
and infinitely defined generalized Cantor sets in the unit real interval. 
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1. THE CANTOR SETS 

Consider the closed unit interval 

D6°) = C0 = U = [0, 1] = { x: 0 ~ x < 1} ( 1.1) 

Call C0 the generalized discrete Cantor set of order 0 and denote its length 
by 

(1.2) 

Then we define Cn, the generalized discrete Cantor set2 of order n, to be the 
union of 2n equal closed intervals, 

D(n) =[A. (n) ll(n)] = {x· A (n) ~X~ "(n)} =[A (n) A (n) + b J {U) 
1 1 'r1 ' 1 ""' ""'r1 1 ' 1 n 

each of length 
J = ll(n)- )o (n) 

n r'J 1 (1.4) 

and we obtain C n + 1 by removing an open interval of length 0' n + 1 from the 
center of every interval D?l (} = 0, 1, 2, ... , 2n -1) making up Cn. Thus, we 
have 

D(n+l)= [A_(n+l) 11 (n+l)] = [A_(n) A_(n)+£5 J 
21 21 'r21 1 ' 1 n + 1 

1 University of North Carolina, Chapel Hill, North Carolina 27599-3175. 
2 See Mathematical Society of Japan (1977), p. 277. 
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and 

D(n+l)_ [)(n+l) (n+l)J _ [1(n)+ s: + (n)] 
2j+l- "2j+l ,fJ2j+l - Aj Un+l (Jn+i>J.lj 

= [11 (n)_ij 11 (n)] 
f'"J n+l>r"J (1.5b) 

It follows that 

( 1.6) 

This sequence of sets clearly depends on the choice of the sequence 

( 1.7) 

with 

( 1.8) 

Theorem 1. The relation (1.6), with (1.2), has the unique solution 

(1.9) 

and, further, if ( 1.7) holds, then ( 1.8) will hold if and only if 

(1.10) 

Proof When n = 0, the sum in (1.9) vanishes and the equation 
reduces to ( 1.2 ). Let us put 

(1.11) 

so that, by ( 1.2 ), 

( 1.12) 

Then (1.6) becomes 

(1.13) 

and, by "telescoping" [summing (1.12) from m = 1 to m = n and canceling 
intermediate terms] we get that 

n 

" 2m-l(Jm Yn-Yo=- L.., 
m=l 

(1.14) 
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which, by ( 1.11) and ( 1.12 ), yields that 

n 

2nDn=1- L 2m-l(Tm 

m~l 

This is the (necessarily unique) solution (1.9). 
Now, let ( 1. 7) hold. If ( 1.10) is true, then 

n n+l oo 

L 2m-l(Tm+2nO"n+l= L 2m-10"m< L 2m-l(Tm=:::;1 
m~l m=l 

whence 
n 

1- L 2m-lO"m>2nO"n+l 

m~l 
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(1.15) 

(1.16) 

(1.17) 

and therefore (1.8) follows, by (1.9). Conversely, if (1.8) is true, then, by 
( 1.9), 

whence 

n 

1- L 2m-l(Tm = 2nDn > 2nO"n+ 1 

m~l 

n+l 

L 2m-10"m<1 

m~l 

(1.18) 

(1.19) 

By letting n--+ oo, and noting that every O"m>O by (1.7), we obtain (1.10). 
D 

The limit set of the Cn is the generalized Cantor set (of infinite order), 
the intersection of all the en: 

(1.20) 

The original "Cantor sets, 3" are recovered from the generalized sets by 
putting 

( 1.21) 

We then observe that (1.7) holds, and that 

(1.22) 

3 See Georg Cantor's epoch-making series of papers (Cantor, 1879-1884 ). 
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whence, by ( 1.9 ). 

bn=2-n{1- m~l2m-lam}=2-n{l-[1-(~tJ} 
= 2-n(~t = mn = 3-n =an 

Halton 

(1.23) 

[Of course, the result (1.23) is obvious from the geometric construction
at each stage, every closed interval becomes two closed intervals, of 
one-third the length, by the removal of the open "middle third."] From 
( 1.23) we see at once that ( 1.8) holds; and [compare ( 1.22)] 

00 CJ:) 

I 2m-lam=~ I mm = 1 ( 1.24) 
m=l m=O 

which agrees with (1.10). 
The Cantor set has a number of interesting topological properties. For 

example, 4 it is closed, compact, nowhere dense (i.e., it has no interior), 
dense-in-itself (i.e., every point is a limit point), perfect (i.e., closed and 
dense-in-itself), and totally disconnected (i.e., it contains no intervals). It 
contains an uncountable infinity of points (i.e., it has the same cardinality 
as the unit interval), but has Lebesgue measure zero. It is often used to 
yield counter-intuitive examples in topology and analysis; for example, a 
continuous, strictly increasing function that has derivative zero almost 
everywhere. 

Theorem 2. If, in binary notation, we have 

J = IY.n + 2r:t.n-1 + 2 2
1Y.n-2 + ·'' + 2n-liY.1 = (1Y.11Y.2 '' ·r:t.nh (1.25) 

where 
(\ii I 0,;; i < n) IY.; = 0 or 1 ( 1.26) 

and we write 
( 1.27) 

then 

( 1.28) 

Proof When n = 0, the sums in ( 1.25) and ( 1.28) disappear and 
(since j<2n= 1) only j=O is allowed; so 26°)=0, as required by (1.1). 
Suppose that (1.25)-(1.27) hold for all n;;?: 0, and that (1.28) holds for all 
n,;; k, for some k. Then, by ( 1.25 ), for n = k, we have that 

(1.29a) 
4 See the general literature of point-set topology (e.g., Bourbaki, 1966, p. 338; Dugundji, 1966, 

pp. 22, 104-105, 112; Kelley, 1955, pp. 165-166; Mathematical Society of Japan, 1977, 
p. 277; Nanzetta and Strickland, 1971, p. 72; Pervin, 1964, p. 136; Sierpinski, 1956, 
pp. 143-145; Steen and Seebach, 1970, pp. 57-58). 
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and 

(1.29b) 

i.e., both indices again take the form ( 1.25) with n = k + 1. By ( 1.5 ), with 
(1.28) for n = k, 

)~ 2(k + 1J =A. (kJ 
J J 

(1.30a) 

and 
1(k+1)_ 1(k)+~ 

1\,2}+1 -A} "k+1 

(1.30b) 

Both these results agree with ( 1.28) for n = k + 1. Therefore, by induction, 
we have (1.28) for all n~O. D 

and 

We note from ( 1.2 ), ( 1.6 ), and ( 1.27) that 

.Corollary 1. If (1.21) holds, with (1.1)-(1.5), then we have 

A.tl=2x3-n(an+3an_ 1 +3 2an_ 2 + ... +3n- 1a 1) 

= (0. (2ad(2a2) · · · (2an)h 

(1.32) 

(1.33) 

Proof We return to the original Cantor sets. Here, by ( 1.21 ), ( 1.23 ), 
and (1.27), we have 

( 1.34) 

Since Theorem 2 still holds in this particular case, ( 1.28) becomes ( 1.33 ), by 
( 1.34 ), and the corollary follows at once from ( 1.20 ). D 

This particular result is, of course, well known. 
In recent years, the Cantor set and its generalizations have played a 

major role as part of the basis of the theory of fractals. 5 As such, it has 
become of interest to applied mathematicians and computer scientists 
specializing in computer graphics. Since many calculations in computer 
graphics, as elsewhere in general computing, require prohibitively large 
5 See the literature of fractals (e.g., Barnsley, 1988, pp. 44-45, 75, 83, 130, 134, 147, 150-151, 

156, 165, 179, 182, 187, 192, 265, 275, 302; Mandelbrot, 1983, pp. 3, 4, 14, 21, 76, 80-81, 82, 
181, 313, 357, 406, 407, 409). 
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amounts of time and effort to carry out by the classical methods, the Monte 
Carlo method has been evolved to perform them by means of random 
sampling. 6 We are thus led to the problem of generating a sequence of 
random variables, independently uniformly distributed in Cn. 

2. RANDOM POINTS IN Cn 

The purpose of this article is to find a way to generate a sequence 

(2.1) 

of random variables (r.v.) C, independently uniformly distributed (i.u.d.) in 
the generalized Cantor set of order n, C n, defined by ( 1.1 )-( 1.5 ), with 
respect to a given sequence I, as in (1.7). We have available to us so-called 
canonical random generators, 7 which yield sequences of "canonical random 
variables" ( c.r.v. ), 

(2.2) 

i.u.d. in the unit interval [0, 1]. (Such are the "random generators" we use 
in Monte Carlo computations, usually in the form of pseudorandom 
routines.) Therefore, if we can, for each r= 1, 2, 3, ... , use ~r alone to 
generate C, the given statistical independence of the ~r will guarantee that 
of the (n and we have merely to solve the problem of making the C 
uniform in Cn. Henceforth, therefore, we shall omit the subscript rand seek 
to generate a r.v. ,, uniform in en, from a r.v. ~, uniform in [0. 1]. 

Since Cn is the disjoint union of 2n equal intervals Djnl, each of length 
Jn [given by (1.9) or (1.31) in terms of I], the remaining problem divides 
into two parts: (i) to select an index K, uniformly distributed in the set 
{0, 1, 2, ... , 2n- 1 }, and thereby an interval D~n) = [A~l, ll~nl]; (ii) to select a 
point (, uniformly distributed in the interval D~nl. It is clearly possible, 
given a c.r.v. IJ, to perform the second task by putting 

(2.3) 

3. THE ALGORITHMS 

Consider a canonical random variable (c.r.v.) given in binary notation 
as 

(3.1) 

6 See the literature of Monte Carlo methods, e.g., Buslenko eta/., 1962; Carter and Cashwell, 
1965; Ermakov, 1971; Halton, 1970; Hammersley and Handscomb, 1964; Kleijnen, 1975; 
Rubinstein, 1981; Sobol', 1973; Spanier and Gelbard, 1969; Yakowitz, 1977; Zaremba, 1968. 

7 See Halton, 1991, p. 66. 
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It is known 8 that all its binary digits r:xi are independently uniformly 
distributed in {0, 1} (i.e., independently take the values 0 and 1 with equal 
probability 1/2), and therefore that the two numbers, 

K= (1X1(X20(3 ···ctnh and IJ= (O.an+10(n+2(Xn+3 ···)z (3.2) 

are themselves uniformly distributed, 1J (like~) in the closed real interval 
[0, 1], and Kin the integer set {0, 1, 2, ... , 2n-1}. 

Before computing the r.v. ((or a sequence of such r.v.), we must com
pute (Jn (as the computer variable D) and t: 1 , t: 2 , ... , t:n (as the computer array 
E [1, ... , n], where the computer constant n denotes n). To do this, we 
use (1.27), (1.32), the computer variable r as working space, and the given 
computer array S [ 1 , ... , n] , in the following pseudocode algorithm. 

Algorithm 1. 

E [1] ~ (1+3 [1] )/2; 
for r==2 ton doE [r] ~ (E [r-1] -S [r-1] +S [r] )/2; 
D~E[n]-S[n]; 

Clearly, this algorithm takes time O(n) to perform. 
Now, to complete the tasks (i) and (ii) stated earlier, we need only 

execute the following pseudocode algorithm. Here, the computer variables 
K, 1, X, Y, and Z, respectively, denote K, A~n>, ~. IJ, and (; while r, V, 
and W are working space. 

Algorithm 2. 

1+-- 0; 
v~xx2n; 

Y ~ FRACT (V); 
K +-- INTPT (V); 
W ~ K/2n; 
for r=1 ton do 

{ 1 +-- 1+ E [ r] x INTPT ( 2 x W) ; 
W +-- FRACT ( 2xW); 

} 
Z +-- 1+DxY; 

NOTES 

V = (1X1CX2 · • ·(Xn-(Xn+ 11Xn+2 • • • )z 
1J=(O.r:xn+1r:xn+2"""r:x,)z 
K = (a 1 r:x 2 · · ·ctn)z 
W = (O.r:x 1 r:x 2 · · ·ctnh initially 
W = (O.akr:xk+ 1 · • • r:xn)z in pass k 
A=IX1t:1 + ··· +akt:k 
W= (O.r:xk+1r:xk+2 ···r:xn)z 
A= r:x 1 t: 1 + · · · + r:xnt:n finally 
(=A+bniJ 

Clearly, the algorithm takes time O(n) to generate each of the required 
r.v. (. 

Finally, we should consider the particular case of the original Cantor 
sets. In this case, ( 1.28) is replaced by ( 1.33 ), and the following algorithm 
applies. 

8 See Halton, 1991, Theorem A, pp. 68-69. 



422 

Algorithm 3. 

L+- 0; 
V+-Xx2n; 

Y +- FRACT (V); 
K +- INTPT (V); 
W +- K/2n; 
while W>O do 

{L +- 3xL+INTPT(2xW); 
W +- FRACT ( 2 x W) ; 

} 
Z +- 2xL/3n+DxY; 

NOTES 

V = (1X10!:2 · · · Ol:wOI:n+ 1()(n+2 · · · h 
'1 = (O.an+ 1 an+2 · · · ar)z 
K=(01:1()(2·"0i:n}z 

w = (0. ()( 1 Ol:z ... an)z initially 

Halton 

W = (O.akak+ 1 .. · anh in pass k 
L=3k-1a1 + ... +3ak-1 +ak 
W = (O.ak+ 1 ak+ 2 · · · an)z 
L = 3n-

1
01: 1 + · · · + 3an_ 1 +an finally 

A=2x3-nxL; (=A+bn'1 
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