
On Optimal, Non-Preemptive Scheduling
of Periodic and Sporadic Tasks

TR90-019

April, 1990

Kevin Jeffay
Richard Anderson
Charles U. Martel

>

,:;;,~

I
I :' I

The University of North Carolina at Chapel Hill ' '
I I

Department of Computer Science i I
CB#3175, Sitterson Hall ,'

~
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Aflirmative Action Institution.

On Optimal, Non-Preemptive Scheduling of
Periodic and Sporadic Tasks

Kevin Jeffay•
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175

Richard Anderson ..
University of Washington

Department of Computer Science and Engineering, FR-35
Seattle, WA 98195

Charles U. Martel' ..
University of California at Davis

Computer Science Division
Davis, CA 95616

Technical Report 90-019
March 1990

Abstract: Periodic and sporadic tasks are central components in both the analysis
and implementation of real-time systems. A periodic task makes requests for
execution at precise intervals while a sporadic task makes execution requests at
arbitrary times but with a bounded minimum duration between requests. This paper
examines the problem of scheduling a set of periodic or sporadic tasks on a
uniprocessor using a non-preemptive discipline. We derive a set of conditions to
guarantee the correctness of a non-preemptive deadline driven scheduling
algorithm. We then show that for scheduling sporadic tasks this discipline is
optimal over the class of non-preemptive algorithms which do not use inserted idle
time. The problem of determining feasibility for our algorithm can be decided in
pseudo-polynomial time. This scheduling discipline is also optimal for scheduling
periodic tasks when all possible release times are considered. Lastly, we show that
if there exists an optimal polynomial time scheduling algorithm for periodic tasks
with arbitrary release times, then P = NP.

* Supported in pan by a Graduate Fellowship from the IBM Corporation, and in parts by a grant from the
National Science Foundation (number CCR-8700435), and by a Digital Faculty Program grant from Digital
Equipment Corporation.

** Supported in part by a National Science Foundation Presidential Young Investigator Award and in part
by the Digital Equipment Corporation External Research Program.

*** Supported in part by a grant from the National Science Foundation (number CCR-8722848).

1. Introduction

The concept of a task that repeatedly makes requests for execution is central to both the

design and analysis of real-time systems. In particular, formal studies of real-time systems

frequently represent the time constrained processing requirements of the system as a set of

periodic or sporadic tasks with deadlines [Liu & Layland 73, Leung & Merrill 80, Mok 83,

Jeffay 89a]. A periodic task will make execution requests at regular intervals while a

sporadic task makes execution requests at arbitrary times but with a bounded minimum

duration between requests. In practice, periodic tasks are commonly found in application

such as avionics and process control, in which accurate control requires sampling and

processing data at precise intervals. Sporadic tasks are also used in these applications but

are more commonly associated with event driven processing such as processing user inputs

or non-periodic device interrupts.

Given a real-time system, the goal is to determine whether or not it is possible to schedule

the system's tasks on a processor, or processors, such. that each task completes execution

before some well defined deadline. In this paper we consider the problem of non­

preemptively scheduling a set of periodic or sporadic tasks on a uniprocessor. The

emphasis on non-preemptive scheduling is motivated by the following observations. In

many practical real-time scheduling problems, preemption is not allowed. For example, in

I/0 scheduling, properties of device hardware and software often either prohibit preemption

or have a prohibitive cost associated with preemption. Secondly, most formal models of a

real-time system assume tasks are independent and do not share resources. Actual systems

rarely meet these assumptions. Non-preemptive scheduling can provide a simple but

effective vehicle for ensuring mutually exclusive access to shared resources and data in a

uniprocessor system. The problem of scheduling all tasks non-preemptively forms the

basis for more general tasking models that include shared resources [Jeffay 89b]. Finally,

in practice, a non-preemptive scheduling discipline is more desirable than a preemptive

discipline since a non-preemptive discipline is easier to implement and can exhibit

dramatically lower overhead at run-time. More importantly, it is easier to characterize the

overhead of dispatching tasks in the non-preemptive case. Since scheduling overhead is

typically ignored in most scheduling models (including ours), an implementation of a non­

preemptive scheduler will be closer to the formal model than an implementation of a

preemptive scheduler.

2

Formally, a periodic or sporadic task Tis a 3-tuple (s, c, p) where

s = release time: the time of the first request for execution of task T,

c =computational cost: the amount of processor time required in the worst case to
execute task T to completion on a dedicated uniprocessor, and

p = period: the interval between requests for execution of task T.

Throughout this paper we assume a discrete time model. In this domain we assume that all

s, c, and p are expressed as integer multiples of some indivisible time unit.

The behavior of a periodic task T is given by the following execution rules. Let tk be the

time that task T makes its kfh request for execution.

I) If task T has period p and makes its first request for execution ilt time s, then for all
k :2: 1, T will make its k1h request for execution exactly at time tk = s + (k-l)p.

ii) The kfh execution request of task T must be completed no later than the deadline
tk+P = (s + (k-l)p) +p =s +kp =tk+l·

iii) Each execution request of task T requires a constant c units of execution time.

If an execution request of a task has a deadline at time td, and the request has not completed

execution at time td, then we say the task has missed a deadline. If task T makes its k'h

execution request at time tk, then the closed interval [tk, tk+P] is called the k1h execution

request interval (or simply a request interval) of task T.

A sporadic task is a generalization of a periodic task. The behavior of a sporadic task T is

slightly less constrained than a periodic task. Its behavior is given by the following rules.

i) Task T makes its first request for execution at time t1 = s.

ii) If task T has period p, then for all k :2: 1, T makes its (k+ l)st request for execution
at time tk+l ~ tk + p :2: s + kp.

iii) The k1h execution request ofT must be completed no later than the deadline tk + p.

iv) Each execution request ofT requires a constant c units of execution time.

The "period" of a sporadic task is simply the minimum time between any two successive

execution requests of the task. We assume sporadic tasks are independent in the sense that

the time of a task's execution request is dependent only upon the time of its last request and

3

not upon those of any other task. Once released, both periodic and sporadic tasks make

requests for execution forever.

A set of periodic or sporadic tasks -r, is said to be feasible on a uniprocessor if it is possible

to schedule -ron a uniprocessor, without preemption, such that every execution request of

every task T is guaranteed to complete execution at or before its deadline. A non­

preemptive scheduling discipline is said to be optimal for a uniprocessor if it can correctly

schedule any task set that is feasible on a uniprocessor.

We will show that for sporadic tasks, a deadline driven scheduling algorithm that is a non­

preemptive version of the Earliest Deadline First (ED F) [Liu & Layland 73], is optimal with

respect to the class of algorithms that do not use inserted idle time. I For periodic tasks, our

ability to decide feasibility will be a function of our knowledge of the tasks' release times.

When all possible release times are considered, the non-preemptive EDF discipline will also

be shown to be optimal for periodic tasks. However, for a given set of release times, we

show that if there exists an optimal non-preemptive scheduling discipline for periodic tasks

with arbitrary release times that takes a only polynomial amount of time to make each

scheduling decision, then P = NP. This suggests that there likely does not exist an optimal

non-preemptive discipline for scheduling periodic tasks with arbitrary release times.

Previous work in the area of real-time scheduling has mainly focused on the analysis of

preemptive scheduling disciplines. For the case where all tasks are periodic and have

release times of 0, a well known result is that the preemptive EDF algorithm is optimal [Liu

& Layland 73]. Allowing the release times to be arbitrary integers does not change the

result [Jeffay 89a]. The extension of the preemptive problem to multiprocessors was

considered in [Dhall & Liu 78] and [Bertossi & Bonuccelli 83]. Work with non­

preemptive disciplines has typically been confined to the consideration of models where

tasks make only single requests for execution and there is a precedence order between the

tasks. In addition, each task's execution request requires only a single unit of computation

time and must be completed before a deadline [Garey et. al81, Frederickson 83].

1 If tasks are scheduled by a discipline that allows itself to idle the processor when there exists a task with
an outstanding request for execution, then that discipline is said to use inserted idle time [Conway et al. 67].

4

A more general characterization of periodic tasks has been considered in [Leung & Merrill

80], [Lawler & Martel 81], [Leung & Whitehead 82], and [Mok 83]. In these works,

when a task makes an execution request, it may have a deadline nearer than the time of the

next execution request. For this more general model, Mok has shown that the problem of

deciding feasibility of a set of periodic tasks which use semaphores to enforce mutual

exclusion constraints is NP-hard [Mok 83]. This paper demonstrates the intractability of

the feasibility question for an even simpler characterization of periodic tasks and provides

strong evidence that there may not exist an optimal non-preemptive scheduling discipline

for periodic tasks.

The remainder of this paper is composed of three major sections. In the following section

we prove the optimality of the non-preemptive EDF algorithm, over all algorithms which

do not use inserted idle time, for sporadic tasks and for periodic tasks when all possible

release times are considered. We are also interested in the complexity of deciding if a set of

tasks is feasible. Section two also presents a pseudo-polynomial time algorithm for

deciding if a set of sporadic tasks is feasible when scheduled without inserted idle time.

Section three demonstrates the absence of an optimal algorithm for periodic tasks with

arbitrary release times and proves that the problem of deciding feasibility of a periodic task

set (with arbitrary release times) is intractable. Section four discusses these results.

2. Optimal Non-Preemptive Scheduling of Sporadic Tasks

The basic scheduling policy we consider is the earliest deadline first (EDF) policy [Liu &

Layland 73]. The EDF scheduling policy dictates that when selecting a task for execution,

the task with an uncompleted execution request whose deadline is closest to the current

point in time is chosen for execution. Ties between tasks with identical deadlines are

broken arbitrarily. Once scheduled, a task is immediately executed to completion without

preemption. Unless the processor is idle, a non-preemptive scheduler will make

dispatching decisions only when a task terminates an execution request. If the processor is

idle then the first task to make an execution request is scheduled. We assume that both the

task selection process and the process of dispatching a task take no time in our discrete time

system.

In this section we derive conditions that ensure the correctness of the non-preemptive EDF

algorithm for scheduling periodic and sporadic tasks on a uniprocessor. We also show the

5

optimality of the non-preemptive EDF algorithm for sporadic tasks. The non-preemptive

EDF algorithm is also shown to be optimal for periodic tasks when all possible release

times are considered. Throughout this section, all optimality claims are assumed to be

claims of optimality with respect to the class of non-preemptive scheduling algorithms that

do not use inserted idle time. At the end of this section we will briefly comment on the

problem of scheduling with inserted idle time.

2. 1 Scheduling Without Inserted Idle Time

In [Jeffay 89a] it was shown that when preemption is allowed at arbitrary points, the

feasibility of a set of periodic or sporadic tasks was independent of the tasks' release times.

When preemption is not allowed, the release time of a task plays a more significant role in

the analysis of non-preemptive feasibility. We start by deriving feasibility conditions for all

possible release times and then extend these results to cover arbitrary release times. These

two problem characterizations correspond to problem domains in which the release times of

tasks are unknown and known, respectively. We ftrst develop necessary conditions for

· feasibility and then show these conditions are sufficient for ensuring the correctness of the

non-preemptive EDF discipline. Our approach is motivated by the early work of Sorenson

[Sorenson 74, Sorenson & Hamacher 75].

The following theorem establishes necessary conditions for ensuring the correctness of any

non-preemptive discipline that does not use inserted idle time. For convenience, we

assume throughout this section that our set of tasks is sorted in non-decreasing order by

period (if i > j, then Pi 2: Pj). The index of a task refers to its position in this sorted list.

Theorem 2.1: Let" be a set of periodic tasks {TJ, T2, ... , Tn), sorted in non­

decreasing order by period. " can be scheduled non-preemptively on a uniprocessor

. without inserted idle time for all possible release times, only if:
n

1) ""' Ci :::; l,
.£.....Pi
i=l

i-1

2) Vi,l<i:'>n;VL,pJ<L<pi: L 2: Ci +ILL; 1jcj.
. I 1
j=

Informally, condition (1) can be thought of as a requirement that the processor not be

overloaded. If a periodic task T has a cost c and period p, then c_ is the fraction of
p

6

processor time consumed by T over the lifetime of the system (i.e., the utilization of the

processor by n. The first condition simply stipulates that the cumulative processor

utilization cannot exceed one. 2

The right hand side of the inequality in the second condition is the worst case processor

demand that can be realized in an interval of length L starting at the time an execution

request of a task Ti is scheduled and ending sometime before the time the execution request

must complete. For a set of tasks to be feasible, the demand in this interval must always be

less than or equal to the length of the interval. Although this is semantically similar to a

utilization requirement, we will later show that conditions (1) and (2) are in fact not related.

Proof: To show that these conditions are necessary for all possible release times, we need

only demonstrate that there exist release times for which conditions (1) and (2) are

necessary for -r to be feasible. We first show that condition (1) is necessary.

For a set of tasks -r, the processor demand in the interval [a,b], written da,b· is defined as

the rrtinimal processing time required by -r in the interval [a,b]. That is, da,b is the

minimum amount of processor time required in the interval [a,b] to ensure that no deadline

is rrtissed in the interval [a,b]. If a set of tasks -r is feasible, then for all a and b, a < b, it

follows that da,b ~ b - a.

For all i, 1 ~ i ~ n, let Si = 0 and lett= PrPz· ... ·Pn· In the interval [O,t], ;/i is the total

processor time that must be allocated to task Ti to ensure that T; does not miss a deadline in

the interval [O,t]. If ds feasible then

or simply

n

= ~ !_c·
£...Pi I

i=l

n

L Ci
~ 1.

Pi
i=l

~ t'

2 In [Liu & Layland 73] it was shown that if all tasks are released at time zero, then condition (I) is
necessary and sufficient for scheduling a set of periodic tasks on a uniprocessor with the preemptive EDF
algorithm.

7

For condition (2), choose a task h 1 < i :s; n, and let Si = 0, Sj = 1 for 1 Sj :s; n, j #- i. This

gives rise to the pattern of task execution requests shown in Figure 2.1 below.

T,

Time
0 1 L Pi

Figure 2.1: Construction for the necessity of condition (2).

For all L, p 1 < L <Pi, in the interval [0, L], the processor demand, do,L. is given by

Hence for ~ to be feasible we must have

Conditions (1) and (2) from Theorem 2.1 are also necessary for the correct, non­

preemptive scheduling of a set of sporadic tasks when inserted idle time is disallowed.

This follows immediately from the previous theorem and our definition of sporadic tasks.

Corollary 2.2: A set of sporadic tasks~= {TJ, T2, ... , Tn}, sorted in non-decreasing

order by period, can be scheduled non-preemptively without inserted idle time for all

possible release times only if~ satisfies conditions (1) and (2) from Theorem 2.1.

0

8

Proof: Based on our definitions of periodic and sporadic tasks, a periodic task is a special

case of a sporadic task. Therefore, any conditions necessary for scheduling a set of

periodic tasks must also be necessary for scheduling a set of sporadic tasks. By Theorem

2.1, a set of periodic tasks can be scheduled non-preemptively without inserted idle time

for all possible release times only if conditions (1) and (2) hold, hence the same must hold

for sporadic tasks. 0

We next demonstrate the optimality of the non-preemptive EDF discipline over all non­

preemptive disciplines that do not use inserted idle time for scheduling sporadic tasks for all

possible release times. This means if any non-preemptive algorithm that does not use

inserted idle time can correctly schedule a set of sporadic tasks for all possible release

times, then the non-preemptive EDF algorithm will also correctly schedule the tasks. To

prove optimality, it suffices to show that conditions (1) and (2) are sufficient for ensuring

the correctness of the non-preemptive EDF algorithm.

Theorem 2.3: Let -r be a set of sporadic tasks {TJ, T2, ... , Tn}, sorted in non-decreasing

order by period. -r can be scheduled by the non-preemptive EDF discipline for all possible

release times, if conditions (1) and (2) from Theorem 2.1 hold.

Proof: (By contradiction.)

Assume the contrary, i.e., that conditions (I) and (2) from Theorem 2.1 hold and yet there

exists a set of release times such that a task misses a deadline at some point in time when -r

is scheduled by the non-preemptive EDF algorithm. The proof proceeds by deriving upper

bounds on the processor demand for an interval ending at the time a task misses a deadline.

Let td be the earliest point in time at which a deadline is missed. The set of sporadic tasks

can be be partitioned into three disjoint subsets:

S 1 = the set of tasks that have an execution request interval with a deadline at
time td,

S 2 = the set of tasks that have an execution request interval that contains the
point td as an interior point, or

S3 = the set of tasks not in S1 or S2.

Tasks in S3 either have a release time greater than td, or they have ceased making requests

for execution immediately prior to time td. To bound the processor demand prior to td, it

9

suffices to concentrate on the tasks in S 2· Let b I, bz, ... , bk be the request times

immediately prior to td of the tasks in Sz. There are two cases to consider.

Case 1: None of the execution requests made at the times b I, bz, ... , bk by tasks in Sz are

scheduled prior to td.

Let to be the end of the last period in which the processor was idle. If the processor has

never been idle let to= 0. In the interval [to, td], the cumulative processor demand is the

total processing requirement of tasks that male requests for execution at or after time to, and

that have deadlines at or before time td. This gives

< ~Ltd- toj dr0,td - £..J p· Cj.
j=l J

Since there is no idle period in the interval [to, td] and since a task misses a deadline at td, it
must be the case that td- to < d10,1d. Therefore

and hence

n
::; ~ td- to

£..J p· Cj,
. 1 1 1=

n

I< ~ S-. £..J p·
j=l 1

However, this is a contradiction of condition (I). Therefore, if conditions (I) and (2) hold

and the non-preemptive EDF discipline fails to schedule ~. then some of the execution

requests of tasks with request intervals containing the point td must have been scheduled

prior to td.

Case 2: Some of the execution requests made at the times bi, bz, ... , bk by tasks in Sz are

scheduled prior to td;

LetT; be the last task in Sz scheduled prior to td. Lett; be the point in time at which the

request interval ofT; that contains td commences execution.

10

Time
~ ~

Figure 2.2: Construction for the sufficiency of condition (2).

We will show that if the request interval of task T; containing the point td is scheduled prior

to time td, then there must have existed enough processor time in [t;, td] to schedule all

request intervals of tasks with deadlines at or before time td. To begin, we derive an upper

bound on the processor demand for the interval [t;, td].

The following facts hold for Case 2:

Follows immediately from the definition of task T;.

ii) No task with index greater than i is scheduled in the interval [t;, td].

Since task T; is the last task in S2 scheduled prior to td, every other task
scheduled in [t;, td] has a deadline at or before td. Since any task with an
index greater than i has a period at least as big asp;, if a task Tj, j > i, is
scheduled in the interval [t;, td], then the Tj must have been avru.lable for
execution at time t;. Consequently, since task T; has a deadline after td, the
EDF algorithm will always choose task Tj before T; in the interval [t;, td].
Therefore, no task with index greater than i is scheduled in the interval
[t;, tdl·

iil) Other than task T;, no task which is scheduled in [t;, td] could have made a
request for execution at t;.

Again, as a consequence of the definition of task T;, other than T;, every
task scheduled in [t;, td] has a deadline at or before td. Therefore, if a task
T;·, that is scheduled in [t;, td] had made a request for execution at t;, the
non-preemptive EDF discipline would have scheduled task h instead of
task T; at time t;.

iv) The processor is fully utilized during the interval [t;, td].

If the processor is ever idle in the interval [t;, td], then the analysis of Case
1 can be applied directly to the interval [to, td], where to> t; is the end of
the last idle period prior to time td, to reach a contradiction of condition (1).

11

Fact (ii) indicates that only tasks T1 - Ti need be considered in computing d1,,1". Since the

request interval of task Ti scheduled at time ti has a deadline after time td, all outstanding

requests for execution at ti with deadlines at or before td must have been satisfied by t;.

Therefore, when computing d1,,1", we need not consider request intervals of tasks T1 -Ti-l

that contain the point ti as an interior point. Similarly, since Ti has the last execution

request with deadline after td scheduled prior to td, the request intervals of tasks T1 - Ti-l

that contain the point td as an interior point need not be considered. Lastly, since none of

the tasks T1 - Ti-l made a request for execution at time ti, the demand due to tasks T1 - Ti-!

in the interval [ti, td] is the same as in the interval [ti+ I, td]. These observations indicate

that the cumulative processor demand in [ti, td] is bounded by

i-!
< . ""Ltd- Cti+l)J . - c, + ..t..J p· c,.

j=l J

Let L = td- t;. Substituting L into the above inequality yields

Since (iv) indicates that there is no idle time in [ti, td], and since a task missed a deadline at

td, it follows that td- ti < d1,,1". Since L = td- ti, this is simply L < d1,,1". Combining this

with the inequality above yields

Since from (i), Pi > td- ti, we have L <Pi· Furthermore, since a task missed a deadline at

time td, there must have been a task with an execution request wholly contained within the

interval [ti, td]. Therefore it must be the case that td- ti > PJ, or L >PI· Therefore the

above inequality contradicts the fact that condition (2) was assumed to be true. This

concludes Case 2.

We have shown that in all cases, if the non-preemptive EDF algorithm fails then either

condition (1) or condition (2) must have been violated. This proves the theorem. 0

12

Theorem 2.3 has shown that with respect to the class of scheduling policies that do not use

inserted idle time, the non-preemptive EDF scheduling discipline is an optimal non­

preemptive discipline for sporadic tasks when all possible release times are considered.

The following corollary shows that the non-preemptive EDF discipline is also optimal for a

set of periodic tasks for all possible release times. This again follows immediately from the

previous theorem and our definition of a sporadic task.

Corollary 2.4: Let -r be a set of periodic tasks (TJ, T2, ... , Tn), sorted in non­

decreasing order by period. The non-preemptive EDF discipline is correct with respect to -r

for all possible release times if conditions (I) and (2) from Theorem 2.1 hold.

Proof: Recall that a periodic task is a sporadic task. Therefore, if conditions (1) and (2)

are sufficient for guaranteeing the correctness of the non-preemptive EDF discipline when

scheduling a set of sporadic tasks for all possible release times, then conditions (1) and (2)

are also sufficient for guaranteeing the correctness of the non-preemptive EDF discipline

when scheduling a set of periodic tasks for all possible release times. 0

We can in fact show a stronger optimality result for sporadic tasks. Based on our

definition of a sporadic task, we can show that the non-preemptive EDF discipline is an

optimal discipline for scheduling sporadic tasks with arbitrary release times.

Lemma 2.5: A set of sporadic tasks -r, can be feasible for an arbitrary set of release times

only if it is feasible for all possible release times.

Proof: By the definition of sporadic tasks, an arbitrary amount of time may elapse

between the end of one request interval and the start of the next. Therefore, after all tasks

have been released, there can exist a time t such that a task, or group of tasks, in -r make

requests for execution at time t, and such that there are no outstanding requests for

execution at time t. In other words, if these tasks had not made execution requests at t then

the processor would have been idle for some non-zero length interval starting at t. At time

t, -r is effectively "starting over" with a set of "release times" that are independent from the

initial release times. Therefore, a set of sporadic tasks with arbitrary release times can be

feasible only if they are feasible for all possible release times. 0

13

Theorem 2.6: With respect to the class of scheduling algorithms that do not use inserted

idle time, the non-preemptive EDF discipline is an optimal discipline for scheduling

sporadic tasks with arbitrary release times.

Proof: The proof follows immediately from Theorem 2.3 and Lemma 2.5. D

2. 2 Complexity of Deciding Feasibility For Sporadic Tasks

Since the non-preemptive EDF discipline is optimal for sporadic tasks, in order to decide if

a set of sporadic tasks is feasible on a uniprocessor, one need only consider if conditions

(1) and (2) from Theorem 2.1 hold. Deciding if condition (1) holds is straightforward and

can be performed in time O(n). In this section we give an O(pn) decision procedure for

determining if condition (2) holds. (Recall that Pn is the period of the "largest" task.)

Let

f(L) = iLL; 1 Jj .
j=! 1

Intuitively, f(L) is the processor demand for the interval [0, L-1] when all tasks are

released at time zero. For all L, pI < L < Pn. we can compute f(L) in time O(pn) as

follows. Initialize an array of integers A of size Pn to zero. For each task h. 1 !> k !> n,

add Ck to location m of array A for all m that are multiples of Pk· At the completion of this

process the sum of the first I - l locations of A will be f(l). Using this method. the total

time required for the computation of f(L) for all L, pI < L < Pn. is O(pn) plus the total

number of execution requests that must be completed before time Pn- 1 when all tasks are

released at time zero. Note that if a set of tasks satisfies condition (1) then the latter term

can be at most Pn· In addition, note that the array A need only be of size Pn- pI since for

alii, 0 !>I <pi, f(l) = 0. However, this optimization does not effect the time complexity of

the computation.

For PI <p <pn, let

M(p) = MIN(L- f(L)) .
P1<L<p

14

Intuitively, M(p) is the minimum amount of time the processor will have sat idle over all

times L < p if all tasks with periods less than pare released at time one (and all tasks with

period greater than or equal top are released after time p). For allp,pJ < p <pn, the time

required for computing M(p) is again O(pn).

Since for all! < p;,

~L;jj Cj = ~L;jj Cj

for all i, 1 < i ::; n, a set of tasks will satisfy condition (2) if and only if for each i, 1 < i ::;

n, M(p;) ;:: c;. This final determination can be made in time O(n). For all task sets of size

n which satisfy condition (1), it follows that Pn;:: n. Therefore, the time required to the

decide feasibility of a set of sporadic tasks is dominated by the time required to compute

f(L); namely O(pn).

There are two possible variations on this strategy. The first will be faster if the number of

execution requests made in the interval [O,pn] when all tasks are released at time zero is

much smaller than Pn (for example, if Pn- p 1 is small).

The function f(L) can also be computed by simulating the earliest deadline algorithm in the

interval [O,pn] and summing the processing times of the requests. If R is the total number

of execution requests made up to time Pn. then the total time required to compute f(L) will

be Rlogn. This method also reduces the space needed to O(n). A second way to reduce the

space to O(n) is to compute the array A in windows of size n. For each task we compute

its multiples until the next one is outside the current window. We then update a cumulative

sum of all the AU] values computed so far, and test any Pi values which fall within the

current window. The total time required per window is O(n), hence the total time is still

O(pn). This last analysis assumes that Pn;:: n2, otherwise the computation will be O(n2).

Note that in several cases the time complexity bound depends on the value of one of the

inputs. Since the size of an input cannot be expressed as a polynomial in the length of the

input, our decision procedure is technically a pseudo-polynomial time algorithm [Garey &

Johnson 79]. However, this does not necessarily imply intractability in practice. For any

bound on the size of the inputs, our algorithm is polynomial in this bound. Therefore, if

15

we impose an upper bound on the size of the inputs, say 216, then the decision procedure is

polynomial for these restricted problems. For the task descriptions that are most likely to

be encountered in practice, one can efficiently determine the feasibility of the tasks. Lastly,

we mention that it is not known if condition (2) can be evaluated in time polynomial in n

alone. Therefore it is possible that the true complexity of evaluating condition (2), and

hence the complexity of deciding the feasibility of a set of sporadic tasks, is NP-complete.

2. 3 Scheduling With Inserted Idle Time

All of our optimality results for non-preemptive scheduling have been with respect to the

class of non-preemptive disciplines that do not use inserted idle time. That adopting

inserted idle time yields a more powerful scheduling algorithm can be seen by the following

example. Consider the two periodic tasks (recall T = (release time, cost, period)):

T1 = (9, 8, 20), and

T2 = (0, 23, 40).

These tasks cannot be scheduled correctly using any non-preemptive discipline that does

not use inserted idle time. Any such discipline would necessarily schedule T2 at time 0 and

T1 at time 23 as shown in the simulation depicted in Figure 2.3.

Time 111111 1111 IIIIIIIIIIIIIIIIIP'
0 10 20 30 40 50

Figure 2.3: Scheduling without inserted idle time.

These choices of release times force T1 to miss a deadline at time 29 when inserted idle time

is disallowed. These two tasks can, however, be scheduled correctly by a non-preemptive

algorithm that idles the processor as shown in Figure 2.4.

16

--
Time

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 2.4: Scheduling with insetted idle time.

We discuss our emphasis on scheduling without insetted idle time in greater detail in

Section 4.

3. Non-Preemptive Scheduling of Periodic Tasks

For periodic tasks, we limited our attention in Section 2 to scheduling problems where all

possible release times were considered. The existence of an optimal scheduling discipline

for periodic tasks is quite sensitive to knowledge of the release times. This section

provides evidence that there may not exist an efficient optimal non-preemptive uniprocessor

scheduling discipline for periodic tasks with arbitrary release times.

To begin, the definition of optimality presented in Section I must be refined to include

some notion of efficiency. So far, it has been assumed that a scheduling discipline can

determine which task to schedule next in zero time. Under this assumption, a scheduler

that enumerated all possible schedules would be an optimal, albeit uninteresting, scheduler.

Therefore, in addition to correctly scheduling all task sets that are feasible on a

uniprocessor, an optimal scheduling discipline should be required to make each scheduling

decision in time polynomial in the number of tasks. With this new notion of optimality, we

will show that if there exists an optimal non-preemptive scheduling discipline for

scheduling periodic tasks with arbitrary release times on a uniprocessor, then P = NP.

The following theorem shows that the complexity of deciding if a set of periodic tasks is

feasible on a uniprocessor when one is allowed to consider any non-preemptive scheduling

discipline (including those that allow insetted idle time) is NP-hard in the strong sense.

This means that unless P = NP, a pseudo-polynomial time algorithm does not exist for

deciding feasibility of periodic tasks with arbitrary release times [Garey & Johnson 79].

This provides strong evidence that the problem is intractable. This decision problem can be

formally stated as follows.

17

NON-PREEMPTIVE SCHEDULING OF PERIODIC TASKS: Given a set of periodic

tasks r = (T; = (s;, c;, p;) I 1 $ i $ n) with s;, c;, Pie Z+, is it possible to correctly

schedule r non-preemptively, on a uniprocessor?

Theorem 3.1: NON-PREEMPTIVE SCHEDULING OF PERIODIC TASKS is NP­

hard in the strong sense.

Proof: We will give a polynomial time transformation from the 3-PARTITION problem

([Garey & Johnson 79]) to NON-PREEMPTIVE SCHEDULING OF PERIODIC TASKS.

An instance of the 3-PARTITION problem consists of a finite set A of 3m elements, a

bound Be Z+, and a "size" s(a) e Z+ for each a e A, such that each s(a) satisfies

B/4 < s(a) < B/2, and I,f,."t s(aj) = Bm. The problem is to determine if A can be

partitioned into m disjoint sets Sf, Sz, ... , Sm such that, for 1 $ i $ m, Laes,s(a) =B.

(With the above constraints on the element sizes, note that every S; will contain exactly

three elements from set A.)

The transformation is performed as follows. Let A= (aJ, az, a3, ... , a3m}, Be Z+, and

s(aJ), s(az), s(a3), ... , s(a3mJ e Z+, constitute an arbitrary instance of the 3-PARTITION

problem. We create an instance of NON-PREEMPTIVE SCHEDULING OF PERIODIC

TASKS by constructing a set r of n =3m+ 2 periodic tasks as follows:

r= (T1 = (0, SB, 20B),

T2 = (9B, 238, 40B),

't/j, 3 Sj S 3m+2: Tj = (0, s(aj_z), 40Bm) }.

This construction can clearly be done in polynomial time with the largest number created in

the new problem instance being 40Bm. In this instance of NON-PREEMPTIVE

SCHEDULING OF PERIODIC TASKS, note that the system utilization is

n
" s_ 8 23 'il="t s(a;) 39 Bm
L.p· = 20+ 40+ 40Bm = 40+ 408m = 1.
j=l 1

By our choice of release times for T1 and Tz, r can be feasible under a non-preemptive

scheduling discipline only if Tz is scheduled at points in time 98 + 40Bk, and all the

18

request intervals of T1 that begin at time 20B + 40Bk, are scheduled at time

40B(k+1)- SB, for all k;;:: 0. Such an execution of -r is shown in Figure 3.1 below (with

the execution of the requests of task T1 made at times 20Bk omitted for clarity).

I

209 40B-89 409 99+409 20Bt409k 409(k+ 1)
99+409k 409(k+ 1) ~ 89

Figure 3.1: The only feasible execution schedule for tasks T1 and T2.

lf the jth request interval of T2 is scheduled at some time other than 9B + 40B(i-1), then the

request interval of T1 made at time 20B + 40B(i-1) will miss its deadline. Similarly, if a

request interval of T1 made at time 20B + 40Bk for some k, k ;;:: 0, is scheduled at some

time other than at 40B(k+ 1)- SB, then the request interval of T2 made at time 9B + 40Bk

will miss its deadline.

Note that with these scheduling constraints, if we consider only tasks T1 and T2o then for

all i, i > 0, in each interval [40B(i-1), 40Bi], the processor will be idle for exactly B time

units. It follows that in the interval [0, 40Bm], there will be I separate idle periods,

m ~I~ 2m, whose total duration is exactly Bm time units.

For example, Figure 3.2 below depicts a simulation of the non-preemptive EDF discipline

on the tasks in -r. With the non-preemptive EDF discipline in the interval [0, 40Bm] there

will be exactly m separate idle periods, each of duration B time units. For this policy, -r

will be feasible if and only if the EDF algorithm can schedule tasks in T3 - T3m+2 in these m

idle periods.

T a 1-1 ----:7--­
T b 1-1 ----:7--­
~c !.__....;..;.._

19

_ ___,_;..___ _____ .;.;---_____ ... __]

---....:~·:....· --------=.:.··______ __]
----:.J:-. ------,.,..:: ------··· __]

Th __]
Tj ... __]

\i :: __]
T x !--;J)\-: - __]
T y 1-....;:.~;-1: - ... __]
Tz L...-....j!"-:- __ _.. __ -------.:.. .. -------··· __]

..
Time t---i-i-

0 89 409k
99 99+409k

409(k+1)
99+409(k+ 1)

409(k+2) 409m
99+409m

Figure 3.2: Execution of -r under the non-preemptive EDF scheduling discipline.

In the general case, -r will be feasible on a uniprocessor under a non-preemptive scheduling

discipline if and only if there exists a partition of tasks T3- T3m+2 into m disjoint sets S1,

Sz, ... , Sm, such that for each setS;, Ires Cj =B.
I '

Therefore a solution to NON-PREEMPTIVE SCHEDULING OF PERIODIC TASKS can

be used to solve an arbitrary instance of the 3-PARTITION problem by simply constructing

a set of periodic tasks as shown in the beginning of this proof, and then presenting this set

of tasks to a decision procedure for NON-PREEMPTIVE SCHEDULING OF PERIODIC

TASKS. The answer from the NON-PREEMPTIVE SCHEDULING OF PERIODIC

TASKS decision procedure is the answer to the 3-PARTITION question for this.problem

instance. Since 3-PARTITION is known to be NP-complete in the strong sense [Garey &

Johnson 79], NON-PREEMPTIVE SCHEDULING OF PERIODIC TASKS must be at

least NP-hard in the strong sense. 0

The situation is actually bleaker for periodic tasks. The construction of 1: in Theorem 3.1

can also be used to show that if an optimal non-preemptive uniprocessor scheduling

discipline existed for scheduling periodic tasks, and this discipline took only a polynomial

amount of time (in the length of the input) to make each scheduling decision, then P = NP.

20

That is, if there exists an optimal non-preemptive scheduling discipline for periodic tasks,

then we can give a pseudo-polynomial time algorithm for deciding 3-PARTffiON. The

key observation is that if a 3-PARTITION problem instance is embedded in NON­

PREEMPTIVE SCHEDULING OF PERIODIC TASKS as described above, then only a

pseudo-polynomial length portion of the schedule generated by an optimal non-preemptive

discipline when scheduling '!', needs to be checked in order to decide the embedded 3-

PARTITION problem instance.

Corollary 3.2: If there exists an optimal, non-preemptive, uniprocessor scheduling

discipline for scheduling periodic tasks then P = NP.

Proof: Assume there exists such an optimal scheduling discipline. From an instance of

the 3-PARTITION problem, construct a set'!' of periodic tasks as described in the proof of

Theorem 3.1. Note that if'!' is not feasible, then some task in '!'will miss a deadline in the

deadline in the interval [0, 9B+40Bm]. Therefore we can simulate the optimal scheduling

discipline on'!' over the interval [0, 9B+40Bm] and simply check to see if any tasks miss a

deadline in this interval. The simulation and the checking of the schedule produced by the

optimal discipline can clearly be performed in time proportional to 40Bm. By the reasoning

employed in the proof of Theorem 3.1, if some task missed a deadline then there is a

negative answer to the 3-PARTffiON problem instance. If no task missed a deadline then

there is an affirmative answer. Therefore, since 3-PARTITION is NP-complete in the

strong sense and since we have given a pseudo-polynomial time algorithm for deciding 3-

PARTITION, P = NP. 0

Unless P = NP, Corollary 3.2 shows that we will not be able to develop an optimal non­

preemptive scheduling discipline for scheduling periodic tasks with arbitrary release times.

4. Discussion

Condition (1) of Theorem 2.1 requires that the cumulative utilization of a set of tasks not

overload the processor. It is important to note that this is the only feasibility condition that

constrains the achievable utilization of a real-time task set While condition (2) of Theorem

2.1 constrains the achievable utilization over a relatively short and well-defined set of

intervals, it does not constrain the overall processor utilization. The feasibility of a set of

periodic or sporadic tasks is not a function of processor utilization (to the extent that the

21

tasks do not overload the processor). It is possible to conceive of both feasible task sets

that have a processor utilization of 1.0, and infeasible task sets that have arbitrarily small

processor utilization.

The implication of this is that manipulating infeasible task sets according to such "rules-of­

thnmb" as lowering the overall processor utilization will not necessarily yield a feasible task

set. One special case task set worth mentioning arises when all tasks have the same period.

In this case condition (2) of Theorem 2.1 is vacuous and the tasks will be feasible if and

only if they do not overload the processor.

Condition (2) of Theorem 2.1 expressed the feasibility of a task set in terms of the worst

case processor demand that can occur in an interval of length L. For periodic tasks, the

intractability of deciding feasibility arises from our inability to efficiently determine if such

an interval can ever be realized. This is not an issue for sporadic tasks. Given the

potentially non-deterministic behavior of sporadic tasks, we were able to argue that there

can always exist an interval wherein the processor demand is given by the right hand side

of condition (2).

The non-determinism allowed in the behavior of sporadic tasks has influenced this work in

other dimensions as well. Our focus in this paper has been on the on-line scheduling of

tasks. This is because it will not be possible to generate a schedule off-line if the execution

request times of all tasks are unknown. For similar reasons, we have largely ignored the

investigation of scheduling policies that use inserted idle time. In order for inserted idle

time to function correctly, it would seem to require that the scheduler know when tasks will

make their next requests for execution. In general, this will not be possible for sporadic

tasks. Note that while an on-line algorithm for scheduling sporadic tasks clearly cannot use

inserted idle time effectively, however it is possible t)lat an off-line scheduling algorithm

could be employed for both periodic and sporadic tasks. In general, we do not view off­

line scheduling as a viable option as the time and space complexity of constructing off-line

schedules, independent of the use of inserted idle time, is likely to be prohibitive. In order

for a schedule to have finite length it must be repetitive. For a more refined model of

periodic tasks, Leung and Merrill have shown that a repetitive schedule always exists for

feasible task sets when preemption is allowed at arbitrary points. However the length of

this schedule has an upper bound proportional to the least common multiple of the periods

of the tasks [Leung & Merrill 80]. In general, it will take exponential time and space to

22

generate this schedule. For our tasking model it is not known if this bound can be

improved.

In [Jeffay 89a], it was shown that in terms of feasibility, when preemption is allowed at

arbitrary points, sporadic and periodic are equivalent characterizations of the repetitive

behavior of a real-time process. Our present results have shown that this is not the case

when preemption is disallowed. There are some other interesting observations to be made

concerning the non-preemptive scheduling of repetitive tasks. In the preemptive scheduling

domain, the space of scheduling policies is quite "dense" in optimal scheduling policies.

For example, in addition to the EDF discipline, an alternate uniprocessor scheduling policy

based on the laxity of each task has been shown to lead to an optimal preemptive

scheduling discipline for periodic tasks. The laxity of a task is defined as the difference

between the time remaining until the next deadline of an execution request of a task, and the

amount of processor time required to complete the current execution request of the task.

That is, if at time t a task has an outstanding request for execution with a deadline at time td,

then the request's laxity is td- t- c1, where c1 is the amount of computation remaining at

time t. The laxity of a task indicates the amount of time an execution request of a task can

wait before it must be scheduled. For this reason laxity is a better measure of the "time

criticalness" of an execution request of a task. For example if we consider two periodic

tasks

T1 = (0,1,5), and
T2 = (0,5,7),

then task T1 has a nominal laxity of 4 and task T2 has a nominal laxity of 2. That is, an

execution request of task T1 can afford to wait for 4 time units before it must be scheduled

while an execution request of task T2 can afford to wait for only two time units. In this

example, a least laxity first (LLF) scheduler would schedule task T2 at time 0. (An EDF

scheduler would schedule task T1 at time 0.)

Dertouzos has shown that an LLF scheduling discipline is an optimal preemptive discipline

for periodic tasks [Dertouzos 74]. In fact Mok has remarked that there exist an infinite

number of optimal preemptive uniprocessor scheduling disciplines for periodic tasks [Mok

83]. In essence, any scheduler that alternates between EDF and LLF scheduling can be

shown to be optimal. We mention these facts only to point out the LLF scheduling

discipline is not an optimal non-preemptive scheduling discipline. This can be seen by

23

noting that the tasks in the example above are feasible for arbitrary release times since they

satisfy the conditions of Theorem 2.1. However under a non-preemptive LLF scheduler,

the first execution request of task T1 will miss a deadline at time 5. This provides some

preliminary evidence that the number of plausible non-preemptive scheduling policies may

indeed be quite limited.

5. Summary

In summary, this paper has demonstrated the following key results. For non-preemptive

scheduling, the EDF discipline is optimal for sporadic tasks and for periodic tasks when all

possible release times are considered. The optimality is with respect to the class of

scheduling policies that do not use insetted idle time. Unless P = NP, there does not exist

an optimal non-preemptive scheduling discipline for periodic tasks with arbitrary release

times. Table 1 below summarizes these results. Table 2 gives the complexity measures for

deciding feasibility. The imponant aspects of these results are:

• sporadic and periodic tasks are not equivalent in terms of feasibility,

• for sporadic tasks, feasibility is not dependent on knowledge of release
times,

• for periodic tasks, feasibility is dependent on knowledge of release times,

• feasibility of sporadic tasks can be determined efficiently for tasks with
bounded periods, and

• the problem of determining the feasibility of a set of periodic tasks with
arbitrary release times is intractable.

Table 1: Optimal non-preemptive scheduling disciplines.

Arbitrary Release Times All Possible Release Times

Sporadic Non-preemptive EDF Non-preemptive EDF
Tasks

Periodic If a polynomial time algorithm Non-preemptive EDF
Tasks algorithm exists, then P = NP

24

Table 2: Complexity of deciding feasibility when preemptive is disallowed.

Arbitrary Release Times All Possible Release Times

Sporadic Pseudo-polynomial time Pseudo-polynomial time
Tasks O(pn) O(pn)

Periodic NP-hard in the strong sense Pseudo-polynomial time
Tasks O(pn)

Although there may not exist an optimal algorithm for scheduling periodic tasks with

arbitrary release times, Corollary 2.4 has established suffiCient conditions for ensuring the

correctness of the non-preemptive EDF discipline. This is certainly useful for problems

such as scheduling periodic tasks when the release times are unknown.

5. Acknowledgments

We would like to thank Alan Shaw, Ewan Tempera, and John Zaho:rjan for their comments

on earlier drafts of this paper.

25

6. References

[Benossi & Bonuccelli 83]
Benossi, A.A., Bonuccelli, M.A., Preemptive Scheduling of Periodic Jobs in
Uniform Multiprocessor Systems, Information Processing Letters, Vol. 16,
No. 1, (January 1983), pp. 3-6.

[Conway et al. 67]
Conway, R.W., Maxwell, W.L., Miller, L.W., Theory of Scheduling,
Addison-Wesley, Reading, MA, 1967.

[Dhall & Liu 78]
Dhall, S.K., Liu, C.L., On a Real-Time Scheduling Problem, Operations
Research, Vol. 26, No. 1, (January 1978), pp. 127-140.

[Denouzos 74] Denouzos, M.L., .K., Control Robotics: The Procedural Control of Physical
Processes, Proc. of the IFIP Congress, August 1974, Stockholm, Sweden, pp.
807-813.

[Frederickson 83]
Frederickson, G.N., Scheduling Unit-Time Tasks with Integer Release Times and
Deadlines, Information Processing Letters, Vol. 16, No. 4, (May 1983), pp.
171-173.

[Garey & Johnson 79]
Garey, M.R., Johnson, D.S., Computing and Intractability, A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, New York,
1979.

[Garey et al. 81]
Garey, M.R., Johnson, D.S., Simons, B.B., and Tarjan, R.E., Scheduling Unit­
Time Tasks with Arbitrary Release Times and Deadlines, SIAM J. Computing,
Vol. 10, No.2, (May 1981), pp. 256-269.

[Jeffay 89a] Jeffay, K., The Real-Time Producer/Consumer Paradigm: Towards Verifiable
Real-Time Computations, Ph.D. Thesis, University of Washington, Department of
Computer Science, Technical Repon #89-09-15, September 1989.

[Jeffay 89b] Jeffay, K., Analysis of a Synchronization and Scheduling Discipline for Real-Time
Tasks with Preemption Constraints, Proc. Tenth IEEE Real-Time Systems Symp.,
Santa Monica, CA, December 1989, pp. 295-305.

[Lawler & Martel81]
Lawler, E.L., Martel, C.U., Scheduling Periodically Occurring Tasks on Multiple
Processors, Information Processing Letters, Vol. 12, No. 1, (February
1981), pp.9-12.

26

[Leung & Merrill 80]
Leung, J.Y.-T., Merrill, M.L., A Note on Preemptive Scheduling of Periodic,
Real-Time Tasks, Information Processing Letters, Vol. 11, No. 3,
(November 1980), pp.115-118.

[Leung & Whitehead 82]
Leung, J.Y.-T., Whitehead, J., On the Complexity of Fixed Priority Scheduling of
Periodic, Real-Time Tasks, Performance Evaluation, Vol. 2, No. 4, (1982),
pp.237-250.

[Liu & Layland 73]

[Mok83]

[Sorenson 74]

Liu, C.L., Layland, J.W., Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment, Journal of the ACM, Vol. 20, No. 1, (January
1973), pp. 46-61.

Mok, A.K.-L., Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment, Ph.D. Thesis, MIT, Department of EE and CS,
MIT/LCS!IR-297, May 1983.

Sorenson, P.O., A Methodology for Real-Time System Development, Ph.D.
Thesis, University of Toronto, June 1974.

[Sorenson & Hamacher 75]
Sorenson, P.O., Hamacher, V.C., A Real-Time Design Methodology, INFOR,
Vol. 13, No. 1, (February 1975), pp. 1-18.

