1 Introduction

In 1952, the mathematician and pioneering computer scientist Alan Turing proposed a chen
mechanism by which patterns of tissue could be created in a developing embryo [Turing 52]. °
mechanism, calleteaction-diffusionjs still a contender among the theories of pattern formation i
the embryonic field of developmental biology. As examples of reaction-diffusion, Turing show
how such a system could be used to create patterns like the arrangement of tentacles on a hyd
like the dappling patterns found on cows. His use of the Manchester Mark | computer for pat
generation and a cathode ray tube for displaying these patterns qualifies him as an early practitiol
the field of computer graphics [Hodges 83, p. 445].

This paper shows how Turing's reaction-diffusion mechanism can be used to generate textures fc
in computer graphics. A number of researchers have explored the range of patterns that c:
generated by reaction-diffusion, but the results of these simulations have not been in a form usab
high quality image generation. This paper is aimed at filling this gap. The paper begins by cove
previous approaches to texture generation and texture mapping. Then the basic ideas behind re:
diffusion are introduced, and examples are given of spot and striped patterns that can be creat
reaction-diffusion models. A detailed description is given on how these patterns can be genel
across the surface of an arbitrary polyhedral model. Then a method is presented for displaying
patterns without aliasing artifacts. The final section describes possible directions for research to w
the range of patterns that can be generated by reaction-diffusion.

Figure 1. Spot pattern on a sea slug generated by reaction-diffusion.



2 Texture Mapping

Texture mapping was introduced by [Catmull 74] as a way to add visual detail to the surface o
object without explicitly modeling the fine geometry of the surface. A texture map is a function tl
associates a color to each point on an object's surface. Texture mapping can be extended to sii
reflection [Blinn and Newell 76] and rough or wrinkled surfaces [Blinn 78]. One important issue
texture mapping is how the texture is acquired. Often a texture is just a scanned image
photograph. Other textures are generated algorithmically, and this has the advantage that one ha:
control over the features of the texture through the algorithm parameters.

2.1 Artificial Texture Synthesis

Several methods have been proposed that use composition of various functions to generate te»
Gardner introduced the idea of summing a small number of sine waves of different periods, ph
and amplitudes to create a texture [Gardner 85]. Pure sine waves generate fairly bland texture
Gardner uses the values of the low period waves to perturb the shape of the higher period waves
method gives textures that are evocative of patterns found in nature such as those of clouds and
Perlin uses band-limited noise as the basic function from which to construct textures [Perlin 85].
has shown that a wide variety of textures (stucco, wrinkles, marble, fire) can be created
manipulating such a noise function in various ways. [Lewis 89] describes several methods
generating anisotropic noise functions to be used for texture synthesis.

Of course, a texture can be created by painting an image, and the kinds of textures that may be c
this way are limitless. An unusual variant of this is to paint an “image” in the frequency domain ¢
then take the inverse transform to create the final texture [Lewis 84]. That paper reports that tex
such as canvas and wood grain can be created by this method.

2.2 Mapping Textures onto Surfaces

Once a texture has been created, a method is needed to map it onto the surface to be textured.
texture is represented as a two-dimensional array of color values, and one can think of such a te

as resting in the unit square [04]0,1]. Mapping these values onto a complex surface is not eas
and several methods have been proposed to accomplish this. A common approach is to de
mapping from the unit square to the natural coordinate system of the target object's surface.
example, latitude and longitude can be used to define a mapping onto a sphere, and parar
coordinates may be used when mapping a texture onto a cubic patch [Catmull 74]. In some cas
object might be covered by multiple patches, and in these instances care must be taken to make
of the patches match. A successful example of this is found in the bark texture for a model of a n
tree in [Bloomenthal 85].



Another approach to texture mapping is to project the texture onto the surface of the object.
example of this is to orient the texture square in 3-space and perform a projection from this square
the surface [Peachey 85]. Related to this is a two-step texture mapping method given by [Bier
Sloan 86]. The first step maps the texture onto a simple intermediate surface in 3-space such as
or cylinder. The second step projects the texture from this surface onto the target object.

A different method of texture mapping is to make use of the polygonal nature of many graph
models. This approach was taken by [Samek 86], where the surface of a polygonal object is unft
onto the plane one or more times and the average of the unfolded positions of each vertex is us
determine texture placement. A user can adjust the mapping by specifying where to begir
unfolding of the polygonal object.

Each of the above methods have been used with success for some models and textures. The
pitfalls to these methods, however. Each of the methods can cause a texture to be distorted be
there is often no natural map from the square to an object's surface. This is a fundamental prc
that comes from defining the texture pattern over a geometry that is different than that of the obje
be textured. One solution to this problem is the use of solid textures.

A solid textureis a color function defined over a portion of 3-space, and such a texture is ea:
mapped onto the surfaces of objects [Peachey 85] [Perlin 85]. A pgiia) on the surface of an
object is colored by the value of the solid texture function at this point in space. This method is"
suited for simulating objects that are formed from a solid piece of material such as a block of wood
slab of marble. Solid texturing is a successful technique because the texture function matche
geometry of the material being simulated, namely the geometry of 3-space.

2.3 Textures from Simulation

None of the methods for texture synthesis described above attempt to model the actual phy
processes that produce patterns in the real world. We believe that generation of graphical model
come to rely more on physical simulation as the demand continues for greater realism in comy
images. Some of the textures generated by function composition produce images that look quite
but some physical phenomena are likely to prove too difficult to mimic without modeling tl
underlying processes that create the texture. One stunning example of using physical simulatic
texture creation is the dynamic cloud patterns of Jupiter in the movie 2010 [Yaeger and Upson
Another example of how physical simulation can be used to generate textures is the texture synt
method using reaction-diffusion that is presented in this paper.

The texture generation method described in this paper creates a texture pattern by simulation ¢



surface of the target object. Because texture generation is performed on the object's surface, tt
no later step necessary to map from texture space to object space. This means there is no t
distortion. This should also result in texture features that arise as a result of local surface geon
For example, simulation of some reaction-diffusion systems on a long cone show patterns of spc
the wide end of the cone but a change towards a pattern of stripes as the cone tapers [Murray 81]
trend of spots-to-stripes is found on the tails of some mammals. Another example of how textu
influenced by geometry is the triangular pattern found where the stripes of a zebra merge at the jo
of the legs with the body.



3 Reaction-Diffusion Systems

A central issue in developmental biology is how the cells of an embryo arrange themselves
particular patterns. For example, how is it that the cells in the embryo of a worm become organ
into segments? Undoubtedly there are many organizing mechanisms working together throughot
development of an animal. One possible mechanism, first described by Turing, is that two or n
chemicals can diffuse through an embryo and react with each other until a stable pattern of chel
concentrations is reached [Turing 52]. These chemical pre-patterns can then act as a trigger for ¢
different types to develop in different positions in the embryo. Turing gave themarpbogenso
these hypothetical chemical agents of embryo development, and such chemical systems are knc
reaction-diffusionsystems. Since the introduction of these ideas, several such systems have
studied to see what patterns can be formed and to see how these matched actual animal patterns
coat spotting and stripes on mammals [Bard 81] [Murray 81]. So far, no direct evidence has |
found to show that reaction-diffusion is the operating mechanism in the development of any partic
embryo pattern. This should not be taken as a refutation of the model, however, because the fit
developmental biology is still young and very few mechanisms have been verified to be the ager
pattern formation in embryo development.

3.1 A Simple System

The basic form of a simple reaction diffusion system is to have two chemicals, cal é&mely, that
diffuse through the embryo at different rates and that react with each other to either build up or b
downx andy. These systems can be explored in any dimension. For example, we might use a
dimensional system to look at segment formation in worms or we could look at reaction-diffusion ¢
surface for spot pattern formation. Here are the equations showing the general form of a two-chel
reaction-diffusion system:
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The first equation says that the change of concentratin@oé given time depends on some function
F of the local concentrations &fandy, and also depends on the diffusiorxdfom places nearby.

The constanD, says how fasx is diffusing, andJ? x is a measure of how high the concentration
of x is at one location with respect to the concentrationréarby. If nearby places have a higher
concentration ok, thend2 x will be positive anc diffuses towards this position. If nearby places
have lower concentrations, theR x will be negative and will diffuse away from this position.



Figure 2: One-dimensional example of reaction-diffusion. Chemical
concentration is shown in intervals of 220 time steps.

The key to pattern formation based on reaction-diffusion is that an initial small amount of variatiot
the chemical concentrations can cause the system to initially be unstable and be driven to a stabl
in which the concentrations of andy vary across the surface. To give a specific example o
reaction-diffusion, here is a set of equations that Turing proposed for generating patterns in
dimension:

AX; =5 (16 -X; ¥;) + Dy (X1 + X1 - 2X)
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These equations are given for a discrete model, wherexegabne “cell” in a line of cells and where

the neighbors of this cell arg; andx,, ;. The values fof, are the sources of slight irregularities
in chemical concentration across the line of cells. Figure 2 shows the progress of the cher
concentration oy across a line of 60 cells as its concentration varies over time. Initially the value



X; andy; were set to 4 for all cells along the line. The valugafere clustered around 12, with the
values varying randomly by 0.05. The diffusion constants were seDtp= .25 andDy = .0625,
which means that diffuses more rapidly thay, ands = 0.03125. Notice how after about 2000
iterations the concentration phas settled down into a pattern of peaks and valleys. The simulati
results look different in detail to this when a different random seed is use@,ftwut such

simulations have the same characteristic peaks and valleys with roughly the same scale to
features.

3.2 Reaction-Diffusion on a Grid

The reaction-diffusion system given above can also be simulated on a two-dimensional field of ¢
The most common form for such a simulation is to have each cell be a square in a regular grid
have a cell diffuse to each of its four neighbors on the grid. The discrete form of the equations are

Axi,j =s(16 “Xi yi,j) +D, (xi+1,j FXig X1t X 4xi,j)
Ay;i =s (i Yij~Yij - Bij) * Dy Vixnj *Virj +Vije1 +Vij-1 - i)

Figure 3 shows the result of such a simulation on a 64 by 64 grid of cells. Notice that the valley
concentration iry take the form of spots in two dimensions. Changing the value of the cosstar
results in spots of different sizes. Both spot patterns of Figure 3 were generatﬁﬂ wifl? + 0.1.

If the random variation oﬁi,j is increased to 12 3 then the spots become more irregular in shaps

(Figure 4). The patterns that can be generated by this reaction-diffusion system were extens
studied in [Bard and Lauder 74] and [Bard 81].

Figure 3: Large and small spots created with reaction-diffustgon@.1 ands = 0.4)



Figure 4: More irregular spots can be created by increasing the variati@(jl. of

Reaction-diffusion need not be restricted to two-chemical systems. For the generation of str
patterns, Meinhardt has proposed a system involving five chemicals that react with one anc
[Meinhardt 82, p.125]. Two of the chemicals are for indicating the presence of one or the other s
color (white or black, for instance), another chemical makes sure only one or the other of the first
chemicals are present in any one location, and the last two chemicals determine the widths ¢
stripes. The details of the equations and a complete FORTRAN program to generate patterns
this system can be found in [Meinhardt 82]. The result of simulating such a system on a t
dimensional grid can be seen in Figure 5. Notice that the system generates random stripes that t
fork and sometimes generate islands of one color or the other. This pattern is like random st
found on some tropical fish and is also similar to the pattern of right eye and left eye regions ol
ocular dominance columns found in mammals [Hubel and Wiesel 79]. Generating stripes that
more regular, such as those found on zebras, has proved to be more difficult with a reaction-difft
model, although there are a couple of methods that show promise [Bard 81].



Figure 5: Random stripes created by a five chemical reaction-diffusion system.



4 Meshes on Arbitrary Polyhedral Surfaces

The goal of the work presented in this paper is to simulate reaction-diffusion systems on the suri
of models to be used for high-quality image generation. For example, we may have a model
cheetah that needs a spot pattern for its coat. How can the simulation technique that works on a ¢
grid be extended to arbitrary surfaces? The surfaces used in this work have been restricted to the
of polyhedral models with faces that are convex polygons. Closed form solutions do not exist
reaction-diffusion equations on polyhedral surfaces. The alternative to this is to subdivide the sul
and solve the equations on this discrete mesh. Thus we seek an automatic method for breaking
surface of a polyhedral model into a mesh consisting of cells and interfaces between these cells.

generation is a common problem in finite-element analysis, and a wide variety of methods have

proposed to create meshes [Ho-Le 88]. Automatic mesh generation is a difficult problem in gen
but the requirements of reaction-diffusion systems will serve to simplify the problem.

4.1 Requirements for Mesh Generation

There are a wide variety of sources for polyhedral models in computer graphics. Models generat
special effects houses are often digitized by hand from a scale model. Models taken from CAD n
be created by conversion from constructive solid geometry to a polygonal boundary represente
Some models are generated procedurally, such as fractals used to create mountain ranges an
None of these methods give us any guarantees about the shapes of the polygons, the den:
vertices across the surface or the range of sizes of the polygons. Sometimes such models will
anomalies such as edges that belong to only one polygon or vertices where dozens of polygons
For these reasons it is unwise to use the original polygons as the mesh to be used for simul
Instead, a new mesh needs to be generated that closely matches the original model but thi
properties that make it suitable for simulation of chemical diffusion. This mesh generation met
must be robust in order to handle the wide variety of polyhedral models used in computer graphics

One requirement for a mesh to be used for reaction-diffusion is that the cells should all be roughl
same size. The patterns generated by reaction-diffusion systems have feature sizes that do nc
widely across the surface. For a particular set of parameters, the spots and stripes generated
systems described in section 3 fall within a fairly narrow size range. If mesh cells are too large the
features will be lost. Simulating on a mesh with cells much smaller than the feature size of
generated pattern is a waste of compute time. Uniform cell size, then, is our first requirement for r
generation. Another requirement is for the shapes of the cells to be fairly regular so that the chen
will diffuse isotropically across the surface. ldeally we would like a mesh to be formed by cells al
exactly the same shape, such as regular squares or hexagons. Unfortunately, this is not possil
arbitrary models.
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With the requirements of roughly uniform cell size and shape in mind, this paper describes a 1
automatic mesh generation procedure to be used for simulation of reaction-diffusion systems
polyhedral surfaces. The method first randomly distributes points on a model and then moves 1
points over the surface until they are evenly distributed. Then the region surrounding each poi
examined to determine which pairs of cells will diffuse to one another, and the result of this step is
final mesh on which the simulation will take place. The only user-supplied parameter for this met
is the desired density of cells across the mesh. Even this density parameter could be deterr
automatically from equation coefficients if the feature sizes resulting from a reaction-diffusion syst
is known, but this is not yet automated in the mesh generation system.

4.2 Random Points Across a Polyhedron

Distributing points randomly over a polyhedral model is non-trivial. Care must be taken so that
probability of having a point deposited at any one location is the same everywhere on the surface.
first step is to make an area-weighted choice of the polygon on which a point should be placed.
each polygorP,; in the model have an arég then let the value§ be the sum of the areasof all
polygons up to and including,. To choose a random polygon, first pick a random valinethe
range from zero to the total surface area of the model. Use binary search over the list & values
determine which polygon the valuespecifies. Now a random point on this polygon needs to b
chosen.

In what follows we will assume that we are picking a random point on a triangle. Any polyhed
model may be triangulated to satisfy this requirement. Call the vertices of the tramyéndC.

Let s andt be two random values chosen from the interval [0,1]. Then the code below pick:
random poinQ in the triangle:

if s+t> 1then
s=1-s

Q=aA+bB+cC

Without the “if” statement, the poirf@ will be a random point in the parallelogram with vertiéges
B,C and B + C - A) (Figure 6). A point that lands in the triandse C, (B + C - A) is moved
into the triangléA, B, C by reflecting it about the center of the parallelogram.
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B+C)-A

Figure 6: Choosing a random poitin triangleABC. The left diagram shows choice @f
whens +t < 1, and right diagram shows choice wisent > 1.

4.3 Point Relaxation

Once the proper number of points have been randomly placed across the surface, we need to mc
points around until they are somewhat regularly spaced. This is accomplished by using relaxa
Intuitively, the method has each point push around other points on the surface by repelling neighb:
points. The method requires choosing a repulsive force and a repulsive radius for the points. It
requires a method for moving a point that is being pushed across the surface, especially if the pc
pushed off its original polygon. Here is pseudo-code giving an outline of the relaxation process:

loop k times
for each poinP on surface
determine nearby points B
map these nearby points onto plane containing the polygen of
compute and store the repulsive forces that the mapped points eRert on
for each poinP on surface
compute new position & based on repulsive forces

Each iteration moves the points into a more even distribution across the polyhedron. Figure 7 sl

an initially random distribution of 200 points in a square and the positions of the same poiikts with
50 iterations of the relaxation procedure.
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Figure 7: Random points in a square (left) and the points after 50 relaxation steps (right).

The repulsive radius of the points should be chosen based on the average density of the points
the whole surface. The meshes used in this paper were created using a radius of repulsion given

r:2\/E
a

n = number of points on surface
a = area of surface

The above value far gives a fixed average number of neighboring points to any point, independe
of the number of points on the surface and independent of surface geometry. This is impol
because uniform spatial subdivision can then be used to quickly find neighboring points. See
appendix for details of this technique.

For repulsion by nearby points, we require a distance function across the surface. For points th
on the same polygon the Euclidean distance function can be used. For points that lie on diffe
polygons we need to do something reasonable. A logical choice is to pick the shortest dist.
between the two points over all possible versions of the polyhedral model where each model has
unfolded and flattened onto a plane. Unfortunately, determining the unfolding that minimizes f
distance for any two points is not easy. As a compromise, we choose only to use this flatt
distance when the two points are on adjacent polygons, and we will punt if the points are fur
removed than this. We can pre-compute and store a transformation khdtnxadjacent polygons

A andB that specifies a rotation about the shared edge that will bring poBgato the plane of
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polygonA. With this transformation, the distance between pBioin polygonA and pointQ on
polygonB is determined by applyiniyl to Q and then finding the distance between this new poin
andP.

For pointsP andQ on widely separated polygowsandB, we first find in which directiorQ lies
with respect to the polygoA. Then the transformation matrix of the edge associated with thi
direction is applied t@. Usually this will not brindQ into the plane of, so this point is projected
onto the plane of and we use the distance between this new poinPasdour final distance. This
gives a distance function across the surface, and in addition it gives a method of making every |
near a given poinP seem as though it lies on the plane of the polygdd. oket the procedure of
moving a pointQ onto polygonA be called MapToPlan€,A). Figure 8 give examples of
MapToPlane().

P MapToPlaneQ, A) P MapToPlaneQ, A)
e - - - — <------- ~---- --
polygonA polygonA BN f project
rotate >

polygonB

polygonB rotate

Q

Figure 8: Moving a pointQ onto the plane of polygod when it is on an adjacent
polygon (left) or when it is on a remote polygon (right).

With a distance function in hand, making the points repel each other becomes straightforward.
each pointP on the surface we need to determine a veStibrat is the sum of all repelling forces
from nearby points. Here is the determinatio® bfised on the repulsive radius

S=0
for each poinQ near poinP
mapQ onto plane oP's polygon, call the new poift
V = normalized vector frorR to P
d = distance fronRto P
if d<rthen
S=S+(-dV

Once this is done for each point on the surface, the points need to be moved to their new posi
The new position for the poir® on polygonA will be P' =P + kS wherek is some small
scaling value. The meshes of this paper were madekwitf.15. In many cases the new pdt
will lie on A. If P"is not onA then it will often not even lie on the surface of the polyhedron. Ir
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this case, we determine which edgeAahatP' was “pushed” across and also find which polygon,
call it B, that shares this edge wi#h The pointP' can be rotated about the common edge betwee
A andB so that it lies in the plane & This new point may not lie on the polygBnbut we can
repeat the procedure to move the point onto the plane of a polygon adjaBeriEazh step of this
process brings the point nearer to lying on a polygon and eventually this process will terminate.

Most polygons of a model should have another polygon sharing each edge, but some polygons
have no neighbor across one or more edges. If a point is “pushed” across such and edge then th
should be moved back onto the nearest position still on the polygon.

4.4 Mesh Cells from Voronoi Regions

Once relaxation has evened out the distribution of points on the surface, regions need to be const
to form cells surrounding each point. The purpose of defining these cells is to know how much
chemical is to be passed between nearby points in the mesh during a simulation step. In keepin¢
many finite-element mesh generation techniques, we choose to use the Voronoi regions of the poi
form the cells. A description of Voronoi regions can be found in a book on computational geom:
such as [Melhorn 84]. Given a set of poiSts a plane, the Voronoi region of a particular pdnt

is that region on the plane whepes the closest point of all points $ For points on a plane, the
Voronoi regions will always be bounded by portions of lines halfway between pairs of points. Wi
we simulate a diffusing system on such a set of cells, we will use the lengths of the edges sepal
pairs of cells to determine how much of a given chemical can move between the two cells. Figt
shows the Voronoi regions for the set of random points shown earlier.

Figure 9: Voronoi regions for the points from Figure 7.
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Finding the exact Voronoi regions of the points on a polyhedral surface is not simple, since on
these regions might be parts of several different polygons. Instead of solving this exactly, a pl
variation of the exact Voronoi region for a point will be used to determine the lengths of edges betv
cells. When the distinction is important this other region will be callegldrear Voronoi regionto
distinguish it from the actual Voronoi region across the surface. Using MapToPlane(), all points 1
a given poinP are mapped onto the plane of the polygon contaiRingVe first construct the planar
Voronoi region ofP in the plane of polygon containify compute the lengths of the edges bounding
this region and then store the edge lengths along with a reference to which point shared each edg
the cell ofP. For many point® andQ the length of their shared edge as computed from the plani
Voronoi region ofP will agree with the length given by the planar Voronoi regioQofFor some
points this might not be the case, due to the nature of the unfolding and projection that is used to
points onto the same plane. The average of the computed lengths is used when the shared edge
between a pair of points disagree.

In general, computing the Voronoi regions fgpoints in a plane has a computational complexity of
O(n log n]Melhorn 84]. However, the relaxation process distributes points evenly over the surf:
of the object so that all points that contribute to the Voronoi region of a point can be found by look
at just those points within a small fixed distance from that point. In practice we have found that
need only consider those points withind® a given point to construct a Voronoi region, wherg
the radius of repulsion used in the relaxation process. Uniform spatial subdivision can be used tc
these points in a constant amount of time, so constructing the VVoronoi regior@(iy obmplexity
in this case.

This automatic mesh generation method has been successfully used to create meshes on a wide
of polyhedral models. Such models include a sea slug and a horse, an icosahedron &
dodecahedron, a model of UNC's Old Well and a mathematical surface of minimum curvature. Fi
10 shows the Voronoi regions generated by the mesh generation technique for a polyhedral mode
horse.
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Figure 10: The Voronoi regions of 4000 points distributed over the model of a horse.
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5 Simulation on Arbitrary Meshes

Any reaction-diffusion system can be simulated over a surface once a mesh has been generated
model. The simulation can be performed by Euler integration as was done for square grids in se
3. The only difference between simulation on a square grid and on an arbitrary mesh is tha
computation of the diffusion term must take into account the Voronoi region adjacency. On a sq
grid the diffusion term for a particular c&llis the sum of the concentrations of the four neighborinc
cells of C minus four times the concentration@ On an arbitrary mesh, the diffusion term at a
pointP is the weighted sum of the concentrations of neighboring poifsrohus the concentration
atP. These weights should sum to one and the diffusion condtafdr chemicalx should be
multiplied by four in order to match the feature size of the simulation on a square grid. The wei
governing the amount of diffusion between neighboring mesh points should be proportional to
length of the common side between the Voronoi regions of the points. Chemicals do not dire
diffuse between mesh points whose Voronoi regions do not share a common edge.

Figures 11 and 12 shows two examples of reaction-diffusion that were simulated on a mesh -
model of a horse. Figure 11 shows a pattern generated by Turing's spot generating equation:
Figure 12 shows the result of Meinhardt's random stripe generation model. Notice how the featur
these textures follow the geometry of the surface.

Figure 11. Horse model with spots. Simulation performed on a 16,000 point mesh.
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Figure 12: Horse model with random stripes. Simulation performed on a 16,000 point mesh.
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6 Rendering of Textures from Meshes

Once the simulation of a reaction-diffusion system is finished, the resulting pattern given by chenr
concentrations can be displayed. The chemical concentrations of the system are only specified
mesh points, so some form of interpolation is needed to extend these values to all points ol
surface. Once the chemical concentration of a point is known, this value can be used as an index
color table. For the purpose of rendering, we have chosen let the chemical concentration at a loc
be a weighted sum of the mesh points within a given radius of the location. Once again, unif
spatial subdivision can be used to speed the search for nearby points. If the value at a nearby
pointQ is V(Q), then the value of an arbitrary pofbn the surface is:

> V(Q W(sCP - Q)
V(P) —QnearP

> WP - Q@)
Q nearP

The weighting functioW can be any function that monotonically decreases in the range zero up t
cutoff radius. The function we use was suggested by Brice Tebbs:

W (d) =20%-3d2+ 1 ifosds<1
wW(d)=0 fd<Oord>1

This function falls smoothly from the value 1 down to O in the range [0,1], and its first derivative
zero at 0 and at 1. Any similar function (like a Gaussian) could be used for the weighting funct
For efficiency, a table of weighting values can be pre-computed so that the function evaluation can
quick table lookup. The images in this paper have been made using a vakié 6&2, wherer is

the repulsive radius from the relaxation method above. This means only those mesh points with
of a given point will contribute to the value. Much larger values foake the individual mesh points
noticeable, and values much smaller than this tend to blur together the values of more nearby
points.

The interpolation method described above gives smooth variation of values across the surface s
any portion of the surface may be magnified without aliasing. If, however, the rendered image of
object is reduced greatly then point sampling of the texture is likely to produce aliasing. Suj
sampling of the texture is one possible solution, although this can become costly and will be unsui
for very small images of the surface. Another possibility, as yet unimplemented, makes use of the
that diffusion (without reaction) of a set of values on a surface is essentially the same as convolvin
values using a Gaussian filter. Thus the same diffusion mechanism that was used to create the
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can be used to help generate increasingly blurred versions of the texture to be rendered. W
surface is rendered, the final texture value can be a weighted average of two values taken
appropriately blurred versions of the texture, where the choice of blur levels and the weight betv
the levels is a function of how small the object appears in the image. Three sets of color values
green, blue) for each blurred level will be necessary if the color lookup table from concentration is
a linear ramp. The easiest way to store these blurred versions of the texture is to keep a texture
from each level at each point in the texture mesh. The notion of using increasingly blurred versiot
a texture for anti-aliasing is now in common use, and the idea was introduced in [Williams 83].
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7 Future Work

The variety of patterns that can be generated by reaction-diffusion needs to be expanded befor
technique will become truly useful for computer graphics. So far only the most simple patterns, s
and random stripes, have been created on polyhedral surfaces. The theoretical biology liter
describes reaction-diffusion systems that produce other patterns, most notably some ideas abot
to create more regular striped patterns [Bard 81], and these methods should be tried on con
surfaces. There are many naturally occurring patterns on animals that might be explained by rea
diffusion but where the patterns have not yet been matched by equations. Some promising cand
include the spot clusters found on cheetahs and jaguars know as rosettes, the alternating spot ant
pattern of some squirrels, the large spots of giraffes and the variable-width stripes of the lionf
Some of these more complex patterns might be explained by a cascade of reaction-diffusion sys
The idea of a cascade system is to have a coarse pattern set down by one system and then h
pattern further refined by a second process. This notion was suggested in [Bard 81], but we hav
found any computer simulations of cascade systems in the literature.

Although this paper concentrates on patterns created from reaction-diffusion systems, the basic r
of carrying out simulation on a model's surface could be used for generating quite different patterr
simulating other physical systems. For example, the cracking pattern of bark over a tree's su
might be created by simulating the growth and cracking processes. Other examples of patter
nature produced by physical processes include lichen growth on rocks, the branching tendrils c:
into the ground by erosion and the colorful thin film swirls of oil on water. There are many pattern:
nature that are just waiting to find their way into computer-generated images. Let's get simulating!
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Appendix: Hash-Based Uniform Spatial Subdivision

One problem that arose several times during implementation of this work was to find all points fro
set that are within a given radiu®f a position in space. This is needed to find the points to rep:
during the relaxation process and it is used again to find nearby mesh points to average during te
rendering. In addition, one common polygon format at UNC does not specify which vertices
shared between polygons, so a fast way to match nearly identical vertices is needed when an «
description is read from a file. Uniform spatial subdivision with hashing is a simple answer to al
these problems [Bentley and Friedman 79]. When the density of the set of points is bounded
method determines nearby points to a query point in constant time.

The basic idea is to divide up space into cells that have side lengths equal to the ocadeesrch.
One way to do this is to allocate a three-dimensional array of such cells that is known to contai
points in the set. An easier solution is to use a large linear array of cells and use a hash functi
give a single index into the array. One simple hash function begins by computing the indices
would be used for a three dimensional array of cells, then multiplies two of these indices by pri
and finally adds together all these values together. The pseudo-code below outlines the meth
uniform spatial subdivision with hashing:

table_size= size of the hash table
| = small prime number (say 17)
J = larger prime (say 101)
s=1/r

hash function
hash(x,y,2) = (I ($x1+ J [$y+ [$2) modulotable_size

table initialization
for each poinP = (X,y,2) in the set
insertP in linked list at positiotnash(x,y,z) in the table of cells

search (find points neaP by looking in cell containing and its eight neighboring cells)
fora=-1tol
forb=-1to1
forc=-1to1
index= hash(x+ra,y+rb,z+rc)
for each poin@Q in the list aindexin the cell table
if distance fronP to Q is less tham, addQ to list of points nealP
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